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Huang proved that every set of more than half the vertices 
of the d-dimensional hypercube Qd induces a subgraph of 
maximum degree at least 

√
d, which is tight by a result of 

Chung, Füredi, Graham, and Seymour. Huang asked whether 
similar results can be obtained for other highly symmetric 
graphs.
First, we present three infinite families of Cayley graphs 
of unbounded degree that contain induced subgraphs of 
maximum degree 1 on more than half the vertices. In 
particular, this refutes a conjecture of Potechin and Tsang, 
for which first counterexamples were shown recently by 
Lehner and Verret. The first family consists of dihedrants and 
contains a sporadic counterexample encountered earlier by 
Lehner and Verret. The second family are star graphs, these 
are edge-transitive Cayley graphs of the symmetric group. 
All members of the third family are d-regular containing an 
induced matching on a d

2d−1 -fraction of the vertices. This is 
largest possible and answers a question of Lehner and Verret.
Second, we consider Huang’s lower bound for graphs with 
subcubes and show that the corresponding lower bound is 
tight for products of Coxeter groups of type An, I2(2k + 1), 
and most exceptional cases. We believe that Coxeter groups 
are a suitable generalization of the hypercube with respect to 
Huang’s question.
Finally, we show that induced subgraphs on more than half 
the vertices of Levi graphs of projective planes and of the 
Ramanujan graphs of Lubotzky, Phillips, and Sarnak have 
unbounded degree. This gives classes of Cayley graphs with 
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properties similar to the ones provided by Huang’s results. 
However, in contrast to Coxeter groups these graphs have no 
subcubes.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recently, Huang [23] proved the Sensitivity Conjecture [30] by showing that an in-
duced subgraph on more than half of the vertices of the d-dimensional hypercube Qd

has maximum degree at least 
√
d. For a graph G = (V, E) denote by α(G) the size of a 

largest independent set in G, by Δ(G) its maximum degree, and for a K ⊆ V by G[K]
the subgraph induced by K. Define the sensitivity σ(G) of G as the minimum value 
Δ(G[K]) among all the K ⊆ V on more than α(G) vertices. Since in a regular bipartite 
G one has α(G) = |V |

2 , Huang’s result can be expressed as σ(Qd) ≥
√
d. Huang asks 

what can be said about σ(G) if G is a “nice” graph with high symmetry. Further, since 
by a result of Chung, Füredi, Graham, and Seymour [12] the bound for Qd is tight, he 
wonders for which graphs a tight bound on the sensitivity follows from his method.

The present paper studies both of these questions by considering (simple, undirected,1
right) Cayley graphs of groups to be “nice” with high symmetry. That is, for a group 
Γ and a subset C ⊆ Γ define Cay(Γ, C) with {x, y} ∈ E if and only if x−1y ∈ C. First 
positive results in this direction were obtained by Alon and Zheng [6], who proved that 
in a d-regular Cayley graph G of an elementary abelian 2-group, then σ(G) ≥

√
d. Then 

recently, Potechin and Tsang [31] showed that for every d-regular Cayley graph G of an 
abelian group any set of vertices of more than half the vertices induces a subgraph with 
maximum degree at least 

√
d/2 – hence answering Huang’s question in the bipartite case. 

Moreover, they conjectured this lower bound to hold for Cayley graphs of general groups. 
However shortly after, Lehner and Verret [25] found a bipartite cubic Cayley graph G of 
a dihedral group with σ(G) = 1 <

√
3/2 – thus, refuting the above conjecture. Moreover, 

they construct an infinite family of bipartite Cayley graphs of 2-groups of unbounded 
degree, with σ(G) = 1 for every member G of the family. Thus, concerning Huang’s 
questions, σ(G) cannot be bounded from below by a function of the degree for general 
Cayley graphs.

In the first part of the present paper, we give three more insensitive families of Cayley 
graphs, i.e., they have unbounded degree but σ(G) = 1 for all their members G.

The first family are bipartite dihedrants, i.e., Cayley graphs of the dihedral group 
(Theorem 2.1). The smallest member of this family is the graph presented in [25, Section 
3] as well as the smallest non-cyclic, bipartite Cayley graph with σ = 1 among all groups.

1 Even if graphs are considered undirected, in figures we use arcs to represent generators of order larger 
than 2 to increase readability.

http://creativecommons.org/licenses/by/4.0/
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The second family are the star-graphs [2], i.e., Cayley graphs of Sn with respect to all 
transpositions containing 1. These graphs, that were initially motivated as an “attractive 
alternative” to the hypercube (see [1]) form a family of bipartite edge-transitive Cayley 
graphs. The first non-trivial member is the Nauru graph G(12, 5), see Fig. 1 and [16] for 
a beautiful collection of models. Another feature that distinguishes this family from the 
previous one is that they are Cayley graphs with respect to a minimal set of generators 
of the group. We show that besides their very high symmetry star graphs have sensitivity 
1 (Theorem 3.3).

The third family consists of d-regular Cayley graphs that have an induced subgraph 
of maximum degree 1 on a d

2d−1 -fraction of the vertices (Theorem 4.1). This is largest 
possible in a d-regular graph and settles a question posed in [25, Remark 2]. In particular, 
we find the smallest such graphs and construct bipartite tight Cayley graphs by using 
the Kronecker double cover (Corollary 4.4).

The second part of the paper concerns the question of when σ can be bounded from 
below in a tight way. A first answer to this could be that many groups including dihedral 
groups admit Cayley graphs that are isomorphic to Cayley graphs of abelian groups, 
see [29]. Hence, in the bipartite case their sensitivity admits a lower bound in term of 
their degree by [31]. Also, in [25, Remark 4], the authors describe their groups as close 
to abelian (dihedral groups have a cyclic group of index 2, while 2-groups are nilpotent). 
They ask for a natural family of Cayley graphs of non-abelian groups for which σ grows 
in terms of the degree.

To this end consider the following easy consequence of Huang’s result. If a bipar-
tite Cayley graph G has a largest hypercube of dimension κ(G) as a subgraph, then 
σ(G) ≥

√
κ(G) (Proposition 5.1).2 In light of the second part of Huang’s question it is 

thus natural to ask when this bound is tight. Clearly, all the three above families and 
also the family of [25] have κ ≡ 1 and hence they give tight examples for this bound. 
In [12], Chung, Füredi, Graham, and Seymour show that Huang’s bound is tight for the 
hypercube itself, i.e., σ(Qd) = �

√
d�. We generalize this construction to sublattices of 

the hypercube (Lemma 5.5).
We obtain infinite families of Cayley graphs with unbounded κ, where Huang’s lower 

bound is tight. Namely, we study Coxeter groups. Our main result here is that the Cayley 
graph G of a Coxeter group of type An or I2(2k + 1) as well as their direct products 
satisfy σ(G) = �

√
κ(G)� (Corollary 6.7). We furthermore extend this result to type 

I2(n) × I2(n′) (Theorem 6.8) as well as to many small Coxeter groups with the help of a 
computer (Table 2). Moreover, we show that graphs G of Coxeter groups of type Bn and 
Dn satisfy σ(G) ≤ �

√
κ(G)� + 1 (Theorem 6.9). We conjecture, that for every Cayley 

graph G of a Coxeter group σ(G) = �
√
κ(G)� (Conjecture 6.10).

Next, we study the sensitivity of bipartite Cayley graphs in the absence of cubes, i.e., 
where Proposition 5.1 cannot be applied. We show that the Levi graphs of projective 

2 Note that this observation is also essential for the result for abelian groups in [31].
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planes have unbounded sensitivity (Corollary 7.3). Further we show that (Kronecker dou-
ble covers of) the Ramanujan graphs of Lubotzky, Phillips, and Sarnak have unbounded 
sensitivity (Corollary 7.4). Thus, providing families of cube-free, bipartite Cayley graphs 
that behave similarly to the hypercube with respect to sensitivity. The second family in 
particular has unbounded girth.

In the final section, after some concluding remarks we give an outlook on sensitivity 
in non-bipartite Cayley graphs. We show that the first guess on how to generalize the 
hypercube to higher chromatic number fails (Theorem 8.1).

Our experimental results were obtained combining SageMath [36], GAP [19], and 
CPLEX [14].

2. The dihedral group

Let Dn denote the dihedral group of symmetries of a regular n-gon, that is, the group

Dn = 〈a, b | an = b2 = (ab)2 = 1〉 = {1, a, . . . , an−1, b, ab, . . . , an−1b}.

For a positive integer m, we denote by [m]3 ∈ {1, 2} the right-most nonzero entry in 
its representation in base 3. For example, for m = 33 we have that m = 33 + 2 · 3 and, 
thus, [m]3 = 2.

The following result provides a family of bipartite (d + 1)-regular dihedrants with 
sensitivity 1 for all d ≥ 0.

Theorem 2.1. Let n = 3d and consider G = Cay(Dn, C), where C = {a3i

b | 0 ≤ i ≤ d} ⊆
Dn. The set M = {ai | [i]3 = 1} ∪ {aib | [i]3 = 2} ∪ {1, b} induces a matching with n + 1
vertices. As a consequence, σ(G) = 1.

Proof. Denote c� = a3�

b for all 0 ≤ � ≤ d. Take x ∈ M and let us prove that it has 
exactly one neighbor in M . We separate the proof in four cases.

If x = ai with [i]3 = 1. We take j the largest exponent such that 3j divides i and 
write i =

∑
j<m<d βm3m + 3j . We observe that for all � ∈ {0, . . . , d}

[(i + 3�) mod n]3 =
{

1 if � = j,

2 if � = j.

Hence xc� = aia3�

b = ai+3�

b ∈ M if and only if � = j. As a consequence, x has exactly 
one neighbor in M .

If x = aib with [i]3 = 2. We take j the largest exponent such that 3j divides i and 
write i =

∑
j<m<d βm3m + 2 · 3j . We observe that for all � ∈ {0, . . . , d}

[(i − 3�) mod n]3 =
{

1 if � = j,

2 if � = j.
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Hence xc� = aiba3�

b = ai−3� ∈ M if and only if � = j. As a consequence, x has exactly 
one neighbor in M .

If x = 1, it is clear that xc� = c� ∈ M if and only if � = d.
If x = b, it is clear that bc� = an−3� ∈ M if and only if � = d.
Hence M induces a matching and it is easy to check that M has n + 1 elements. As 

a consequence σ(G) = 1. �
Exhaustive enumeration by computer shows that there is no smaller bipartite non-

cyclic Cayley graph with σ = 1, than the cubic 18-vertex dihedrant given by Theorem 2.1
for n = 9. This graph has been obtained earlier by [25].

3. Star graphs

The star graph is the bipartite graph SGn = Cay(Sn, {(12), (13), . . . , (1n)}). As the 
main result of this section, we will see in Theorem 3.3 that star graphs all have sensitivity 
equal to 1. In other words, we will show that they have an induced subgraph with more 
than half of the vertices and maximum degree equal to 1.

Given π ∈ Sn, we denote its support by supp(π) = {i ∈ {1, . . . , n} | π(i) = i}. A 
permutation π ∈ Sn is called a derangement if it has no fixed points or, in other words, 
if supp(π) = {1, . . . , n}.

Lemma 3.1. Let n ∈ Z+ and denote by dn the number of derangements of n elements. 
Then, dn is odd if and only if n is even.

Proof. It is easy to check that dn satisfies the recursive formula dn = (n −1)(dn−1+dn−2)
for all n ≥ 3. Since d1 = 0 and d2 = 1, the result follows by induction. �
Lemma 3.2. If π, τ ∈ Sn are adjacent in the star graph SGn, then the sets supp(π) − {1}
and supp(τ) − {1} differ in at most one element.

Proof. Since π and τ are adjacent in SGn, then τ = π · (1r) for some r ∈ {2, . . . , n}. We 
are going to prove that the symmetric difference of supp(π) and supp(τ) is contained in 
{1, r} and, hence, the result follows. We write π = c1 · · · ct as a product of cycles with 
disjoint support, we clearly have that supp(π) = ∪t

i=1supp(ci). We divide the proof in 
several cases:

If 1, r /∈ supp(π). Then τ = c1 · · · ct · (1r) is a product of cycles with disjoint support, 
thus supp(τ) = supp(π) ∪ {1, r}.

If 1 /∈ supp(π), r ∈ supp(π). We may assume that c1 = (rb2 · · · bk), then τ =
(1rb2 · · · bk) · c2 · · · ct and, thus, supp(τ) = supp(π) ∪ {1}.

If 1 ∈ supp(π), r /∈ supp(π). Proceeding as in the previous case we have that 
supp(τ) = supp(π) ∪ {r}.



216 I. García-Marco, K. Knauer / J. Combin. Theory Ser. B 154 (2022) 211–238
If 1, r ∈ supp(π) and both belong to the support of different disjoint cycles, say 
c1 = (1 a2 · · · ak), c2 = (r b2 · · · bl). Then c1 · c2 · (1r) = (1a2 · · · akrb2 · · · bl). Thus, 
supp(τ) = supp(π).

If 1, r ∈ supp(π) and both are in the support of the same cycle, say c1 = (1a2 · · · ak)
and r = ai for some i ∈ {2, . . . , k}. If k = 2, then c1 is the permutation (1r) and 
supp(τ) = supp(π) − {1, r}. If k > 2 and r = b2, then c1 · (1r) = (ra3 · · · ak) and 
supp(τ) = supp(π) − {1}. If k > 2 and r = ak, then c1 · (1r) = (1a2 · · · ak−1) and 
supp(τ) = supp(π) − {r}. Finally, if k > 2 and r = ai with 2 < i < k, then c1 · (1r) =
(1a2 · · · ai−1) · (rai+1 · · · ak) and supp(τ) = supp(π). �
Theorem 3.3. The star graph SGn = Cay(Sn, {(12), (13), . . . , (1n)}) has an induced sub-
graph with more than half of the vertices and maximum degree equal 1. In other words, 
σ(SGn) = 1.

Proof. Let H be the domino, that is, the graph with vertices {u1, u2, u3, v1, v2, v3} and 
edges {u1u2, u2u3, v1v2, v2v3, u1v1, u2v2, u3v3}. Consider the map f : V (SGn) −→ V (H)
defined as

f(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u1, if | supp(π) − {1}| = n − 1 and π ∈ An,

v1, if | supp(π) − {1}| = n − 1 and π /∈ An,

u2, if | supp(π) − {1}| = n − 2 and π /∈ An,

v2, if | supp(π) − {1}| = n − 2 and π ∈ An,

u3, if | supp(π) − {1}| < n − 2 and π ∈ An,

v3, if | supp(π) − {1}| < n − 2 and π /∈ An.

Let us check that f is a graph homomorphism (see Fig. 1 for an example when n = 4). 
We observe that f(An) = {u1, v2, u3}, f(Sn − An) = {v1, u2, v3}. Since the domino is 
the complete bipartite graph K3,3 minus the edges u1v3, v1u3, in order to prove that f
is a homomorphism we just have to check that if f(π) = u1 and f(τ) = v3 (respectively, 
f(π) = v1 and f(τ) = u3), then π and τ are not neighbors in SGn; this follows from 
Lemma 3.2.

Now we are going to prove that the induced subgraphs K and K ′ with vertices 
f−1({u1, u2, v3}) and f−1({v1, v2, u3}), respectively, have both maximum degree equal 
to 1. Let π ∈ V (K), we separate the proof in three cases:

Case f(π) = v3. Then π has no neighbors in K (since f is a homomorphism).
Case f(π) = u2. Then, π /∈ An and | supp(π) −{1}| = n −2. Let r be the only element 

in {2, . . . , n} − supp(π). If s ∈ {2, . . . , n} − {r}, then r is a fixed point for π · (1s) ∈ An

and then, π · (1s) /∈ V (K) because f(π · (1s)) ∈ {v2, u3}. As a consequence, the only 
neighbor of π that might belong to V (K) is π ·(1r) and the degree of π in K is at most 1.

Case f(π) = u1. Then π ∈ An and | supp(π) − {1}| = n − 1. We separate two cases:

• If 1 /∈ supp(π). Then π · (1s) /∈ An is a derangement for all s ∈ {2, . . . , n}. Therefore 
π · (1s) /∈ K because f(π · (1s)) = v1. Thus, π is an isolated vertex in K.
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Fig. 1. Homomorphism from the Nauru graph SG4 onto the domino.

• If 1 ∈ supp(π). Let r = π−1(1) ∈ {2, . . . , n}. If s ∈ {2, . . . , n} −{r}, then π ·(1s) /∈ An

and we claim that {2, . . . , n} ⊆ supp(π · (1s)). To prove the claim we take i ∈
{2, . . . , n} and we aim at proving that [π · (1s)](i) = i. We know that π(i) = i; we 
separate three cases:
– if π(i) /∈ {1, s}, then [π · (1s)](i) = π(i) = i,
– if π(i) = 1, then i = r and [π · (1s)](i) = s = r = i; and
– if π(i) = s, then [π · (1s)](i) = 1 = i.
Thus, we conclude that f(π · (1s)) = v1 and π · (1s) /∈ K for all s = r. As a 
consequence, the only neighbor of π that might belong to V (K) is π · (1r) and the 
degree of π in K is at most 1.

A similar argument works for K ′. To get the result we now prove that K and K ′ do 
not have the same number of elements and, as a consequence, one has more than half 
of the vertices of SGn (see Fig. 1 for the case n = 4, where K ′ has 13 vertices). Since 
f−1({u1, v2, u3}) = An and f−1({v1, u2, v3}) = Sn − An and both sets have the same 
cardinality, we just need to verify that f−1(u1) and f−1(v1) do not have the same number 
of elements. It suffices to observe that the elements of f−1({u1, v1}) are in bijection with 
the set of derangements of either n or n − 1 elements and, thus, |f−1(u1)| + |f−1(v1)| =
dn + dn−1 which, by Lemma 3.1, is an odd number. This completes the proof. �

One can be more precise in the proof of Theorem 3.3 and determine that K has 
exactly n! + (−1)n+1 vertices and K ′ has n! + (−1)n vertices. Indeed, following the 
2 2
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notation of the proof, we have that |f−1(u1)| equals the number of even (belonging to 
An) derangements of n elements plus the number of even derangements of n −1 elements, 
then by [35, sequence A003221] we have that

|f−1(u1)| = dn − (−1)n(n − 1)
2 + dn−1 − (−1)n−1(n − 2)

2 = dn + dn−1 + (−1)n+1

2

and |f−1(v1)| = dn+dn−1−(−1)n+1

2 = |f−1(u1)| − (−1)n+1 and we get that

|V (K)| = |An| + |f−1(u1)| − |f−1(v1)| = n!
2 + (−1)n+1.

Thus, we conclude that the graph with more than half of the vertices of SGn is K for n
odd, and K ′ for n even.

4. Tight groups

It is easy to see that an induced subgraph of maximum degree 1 in a d-regular n-vertex 
graph has at most d

2d−1n vertices. We say that a graph is tight if it attains equality. Lehner 
and Verret ask if there are tight Cayley graphs of groups, see [25, Remark 2]. Here we 
give some examples and an infinite family.

First of all one has that Cay(D3m, {b, ab}) ∼= C6m, the cycle graph on 6m vertices. 
This graph has an induced matching on 2

3 of the vertices, hence it is tight of degree 2.
An exhaustive computer search yields that on up to 60 vertices there are exactly three 

tight cubic Cayley graphs. Two of them on 50 and 60 vertices, respectively, are depicted 
in Fig. 2. The other one is another Cayley graph of A5 and is the first member of the 
infinite family shown in Theorem 4.1.

Theorem 4.1. For m ∈ Z+, let Γ = S2m+1 if m is odd and Γ = A2m+1 if m is even. 
Further, let ck be the order 2 permutation of {1, . . . , 2m + 1} defined by:

ck(i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i + m if i < k − m,

i + m + 1 if k − m ≤ i ≤ m,

i − m if m < i < k

i if i = k

i − m − 1 if k < i ≤ 2m + 1.

Then, the set M = {π ∈ Γ | π(1) ≥ m +1} has m+1
2m+1 |Γ| elements and induces a matching 

in G = Cay(Γ, C) with C = {ck | m + 1 ≤ k ≤ 2m + 1}.

Proof. We observe that the signature of ck is (−1)m and then ck ∈ A2m+1 if and only if m
is even. Now, we consider the partition M = �2m+1

i=m+1Mi, where Mi = {π ∈ M | π(1) = i}. 
It is clear that |Mi| = |Γ|/(2m + 1) for all i, and then M has m+1 |Γ| elements.
2m+1
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Fig. 2. The smallest cubic tight Cayley graphs Cay(Z5 × D5, {(1, a), (0, b)}) and Cay(A5, {(12345),
(12)(34))}), which is an orientation of the skeleton of the truncated icosahedron. The white vertices in-
duce matchings on 3

5 of the vertices.

Take i ∈ {m + 1, . . . , 2m + 1} and consider π ∈ Mi. We claim that π · ck ∈ M if and 
only if k = i and, as a consequence, M induces a matching in G. Indeed, π ·ci ∈ Mi ⊆ M

because [π · ci](1) = ci(π(1)) = ci(i) = i and, for all k = i, then π · ck /∈ M because 
[π · ck](1) = ck(π(1)) = ck(i) ≤ m. �

We wonder if the set C described in this result is a minimal set of generators of Γ in 
every case. Otherwise, the subgroup of Γ spanned by C would provide a smaller tight 
group.

It is also worth pointing out that the same result (and the same argument of the 
proof) holds for any set C = {ck | m +1 ≤ k ≤ 2m +1} ⊆ Γ satisfying that ck is an order 
2 permutation with ck(k) = k and ck(i) ≤ m for all k = i ≥ m + 1.

We remark that while the above construction gives a tight Cayley graph for ev-
ery degree, the obtained graphs are pretty large. E.g., for degree 4, we obtain a 
Cayley graph of S7. However, we know of at least one smaller such graph, namely 
Cay(A7, {(1234567), (123)(45)(67)}). It has degree 4 and 2520 vertices and an induced 
matching of 1440 vertices, i.e., it is tight. We wonder what size the smallest 4-regular 
tight Cayley graph is. By computational means we checked that the answer is at least 
84.

Note further, that the above graphs are the only non-bipartite graphs that have ap-
peared so far. However, we can also construct bipartite ones. For this we recall a couple 
of definitions and prove a lemma that has been used implicitly in [25,31]. A covering map
from a graph Ĝ to a graph G is a surjective graph homomorphism ϕ : Ĝ → G such that 
for every vertex v ∈ Ĝ, ϕ induces a one-to-one correspondence between edges incident 
to v and edges incident to ϕ(v). If there is a covering map from Ĝ to G, we say that Ĝ
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is a covering of G. Finally, for a graph G and every 0 < β ≤ 1, we denote by Δβ(G) the 
minimum value Δ(G[H]) among all the H ⊂ V (G) with |H| ≥ β|V (G)|.

Lemma 4.2. Let Ĝ be a covering of G and β ∈ (0, 1]. Then Δβ(Ĝ) ≤ Δβ(G).

Proof. Let ϕ : Ĝ → G be a covering map and let us assume without loss of generality that 
G is connected. It is easy to see that all fibers of ϕ have the same size k and, thus |V (Ĝ)| =
k · |V (G)|. Now, take K ⊂ V (G) such that |K| ≥ β|V (G)| and Δβ(G) = Δ(G[K]). 
Considering K̂ := ϕ−1(K) one has that |K̂| = k · |K| and then |K̂|

|V (Ĝ)| = |K|
|V (G)| ≥ β. 

Since ϕ is a homomorphism and two neighbors of a given vertex cannot be mapped by 
ϕ to the same vertex, then the maximum degree induced by K̂ is at most the maximum 
degree induced by K. This yields the claim. �

The cross product G × H = (V × V ′, E′′) of two graph G = (V, E) and H = (V ′, E′)
has an edge {(u, u′), (v, v′)} ∈ E′′ if and only if {u, v} ∈ E and {u′, v′} ∈ E′. The 
Kronecker double cover of a graph G is the bipartite graph G ×K2. It is easy to see that 
G × K2 is a covering of G.

Remark 4.3. Given a Cayley graph Cay(Γ, C) its Kronecker double cover Cay(Γ, C) ×K2
is the bipartite Cayley graph Cay(Γ × Z2, C × {1}).

This remark together with Lemma 4.2 and Theorem 4.1 yield:

Corollary 4.4. There are infinite families of unbounded degree bipartite tight Cayley 
graphs.

We have checked with a computer that the smallest cubic bipartite tight Cayley graph 
comes from the above construction and is a Cayley graph of Z10 ×D5. We do not know 
which is the smallest 4-regular bipartite tight Cayley graph.

Note that a source of tight transitive graphs are odd graphs, see [25]. In particular, 
the smallest cubic tight transitive graph is the Petersen graph G(5, 2) and the smallest 
cubic bipartite tight transitive graph is its Kronecker cover, namely the Desargues graph
G(10, 3).

5. Bounds and constructions close to the hypercube

In the present section we give a very elementary generalization of the lower bound 
of Huang [23] and a more involved generalization of the construction of Chung, Füredi, 
Graham, and Seymour [12]. Both will be applied in the following section to Coxeter 
groups.

For any graph G, we denote by

κ(G) = max{n ∈ Z+ |Qn is a subgraph of G},
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i.e., κ(G) is the dimension of the largest hypercube contained in G.

Proposition 5.1. Let G be a bipartite Cayley graph and H a regular subgraph of G, then 
σ(G) ≥ σ(H). In particular, σ(G) ≥

√
κ(G).

Proof. Since G and H are bipartite and regular, their maximum independent sets contain 
half the vertices. Now, for every x ∈ V (G), we consider the set of vertices x ·H = {x ·h | h ∈
V (H)}. The sets (x ·H)x∈V (G) cover G and every element in G belongs to exactly |V (H)|
of these sets. If one takes a set K ⊆ V (G) with |K| > 1

2 |V (G)|, then

∑
x∈V (G)

|K ∩ (x · H)| = |K||V (H)| > 1
2 |V (G)||V (H)|

and, by the pigeonhole principle, there exists an x ∈ V (G) such that |K ∩ (x · H)| >
1
2 |V (H)|. Since the induced graph with vertices x · H is isomorphic to H, we conclude 
that the maximum degree of the subgraph induced by K is at least σ(H). The second 
statement follows from Huang’s result [23]. �

Before we go into constructions let us introduce a coloring variant of the parameter 
σ: For a graph G = (V, E) and a non-negative integer k denote by

ιk(G) = max{|A| − |B| | V = A � B and Δ(G[A]),Δ(G[B]) ≤ k}

its k-imbalance. Hence, for a regular bipartite graph G there is a subset K on |V |+ιk(G)
2

vertices with Δ(G[K]) ≤ k. In particular, σ(G) ≤ min{k | ιk(G) > 0}. An easy observa-
tion is that if H is a subgraph of G with the same vertex set, then ιk(G) ≤ ιk(H) for 
every k ≥ 0. For the next property, define the Cartesian product of graphs G = (V, E)
and H = (V ′, E′) as G�H = (V × V ′, E′′), where {(u, u′), (v, v′)} ∈ E′′ if and only if 
u = v and {u′, v′} ∈ E′ or u′ = v′ and {u, v} ∈ E.

Lemma 5.2. For graphs G, H and non-negative integers k, �, we have ιk(G)ι�(H) ≤
ιk+�(G�H).

Proof. Let A �B be a partition of G such that both sets induce subgraphs of maximum 
degree at most k and |A| − |B| = ιk(G). Similarly, let A′ � B′ be a partition of H such 
that both sets induce subgraphs of maximum degree at most � and |A′| − |B′| = ι�(H).

Define two new sets A′′ = A ×A′∪B×B′ and B′′ = A ×B′∪B×A′. Clearly, A′′ and B′′

partition the vertex set of G�H. Let us analyze without loss of generality the maximum 
degree induced by A′′. Let v = (a, a′) with a ∈ A ⊆ V (G) and a′ ∈ A′ ⊆ V (H). The 
degree of v is constituted by its degree in A′′ ∩ {a} ×A′ and its degree in A′′ ∩A × {a′}. 
Thus, it equals the sum of the degree of a in A and the degree of a′ in A′. The analogous 
argument holds for v = (b, b′) with b ∈ B ⊆ V (G) and b′ ∈ B′ ⊆ V (H). We conclude 
that both A′′ and B′′ induce subgraphs of maximum degree at most k + �.
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Fig. 3. Three lattices that are cover subposets of B3, B4, and B5, respectively.

Finally, we compute the imbalance ιk+�(G�H) ≥ |A′′| − |B′′| = |A||A′| + |B||B′| −
|A||B′| − |B||A′| = (|A| − |B|)(|A′| − |B′|) = ιk(G)ι�(H). �

In [12], Chung, Füredi, Graham, and Seymour exhibited an induced subgraph of Qn

with 2n−1 + 1 vertices and maximum degree �√
n� for all n ≥ 1. Next we extend this 

construction to certain lattices.
We introduce some notation for posets and lattices. For a poset P , we say that y

covers x and we write x ≺ y, if x < y and there is no z ∈ P with x < z < y. We denote 
by GP = (P, E) its cover graph, i.e., {x, y} ∈ E whenever x ≺ y. We say that P ⊆ Q

are cover subposets if x ≤P y ⇐⇒ x ≤Q y for all x, y ∈ P and GP is an induced 
subgraph of GQ. For x ∈ P denote by ↑x = {y ∈ P | x ≤ y}, and for F ⊆ P denote by 
↑F = ∪x∈F ↑x. A lattice L is a partially ordered set, such that for any x, y ∈ L there 
is a unique smallest element x ∨ y ≥ x, y called the join of x and y and a unique largest 
element x ∧ y ≤ x, y called the meet of x and y. The Boolean lattice Bn is the inclusion 
order of all subsets of the set [n] = {1, . . . , n}. Its cover graph is the hypercube Qn.

We from now on consider a lattice L that is a cover subposet of Bn. Before proceeding 
to studying sensitivity related results, let us discuss the generality of this class. First, 
note that L is not a necessary a sublattice of Bn, i.e., it may have different join and 
meet operations. However, since L is a subposet of Bn we can assume without loss of 
generality that the minimum and maximum 0̂, 1̂ of L correspond to the empty and the 
full set in Bn, respectively. See Fig. 3 for three examples.

We proceed to define an important subclass of these lattices. A graph G is a partial 
cube if G is (isomorphic to) an isometric subgraph of Qn, i.e., dG(x, y) = dQn

(x, y) for 
all x, y ∈ G, where d denotes the distance function. Fixing z ∈ G and defining x ≤ y if 
dG(z, y) = dG(z, x) + dG(x, y) yields a poset denoted P (G, z).

Lemma 5.3. If G is a partial cube and z ∈ G a vertex, then the poset P (G, z) is isomorphic 
to a cover subposet of Bn with cover graph G.
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Proof. Let G be (isomorphic to) an isometric subgraph of Qn and choose the iso-
morphism such that z is identified with the empty set in Bn. Since G is bipartite, 
G is the cover graph of P (G, z). Furthermore, since G is isometric it is in particu-
lar an induced subgraph of Qn. Let, now x ≤P (G,z) y in P (G, z). This by definition 
means dG(z, y) = dG(z, x) + dG(x, y) which by isometry condition is equivalent to 
dQn

(z, y) = dQn
(z, x) + dQn

(x, y). Now, since z corresponds to the empty set for the 
sets X, Y corresponding to x, y this means X ⊆ Y , which is equivalent to x ≤Bn

y. �
Lemma 5.3 yields a rich class of lattices that are cover subposets of a Boolean lattice:

Remark 5.4. If G is a partial cube with a vertex z ∈ G such that P (G, z) is a lattice L, 
then L is a cover subposet of Bn. The dual graph G of a central hyperplane arrangement 
is a partial cube, see e.g. [15,24]. If the hyperplane arrangement is simplicial, then G
is regular and for any vertex z ∈ G the poset P (G, z) is a lattice L and G = GL, 
see [10].

The left-most lattice in Fig. 3 arises from a central hyperplane as described in Re-
mark 5.4. Indeed the so-called weak (right) order of a Coxeter group [8] is an example, 
that arises from taking the dual graph of a Coxeter arrangement. See the left of Fig. 4
for another example. The lattice in the middle of Fig. 3 arises from a partial cube, that 
is not the dual graph of a hyperplane arrangement. The right-most lattice in Fig. 3 arises 
from an induced subgraph of Q5, that is not a partial cube.

We return to studying sensitivity related notions. In a lattice L that is a cover sub-
poset of Bn, we call the vertices even and odd depending on the cardinalities of the 
corresponding sets. The set of even and odd vertices of a subset S ⊆ L is denoted 
even(S) and odd(S), respectively. For F ⊆ L define r(F) = max{|F | | F ∈ F} and 
t(F) = max{|X| | X ⊆ F and ∀F ∈ X : F \ (

⋃
K∈X
K �=F

K) = ∅}. This is, t(F) denotes the 

size of a largest subset X of F such that every F ∈ X contains an element that is in no 
other set from X. Given F we define:

X(F) = even( ↑F) ∪ odd(L\ ↑F).

Define G(F) := GL[X(F)] and G′(F) := GL[L \ X(F)] as the induced subgraph of GL
on X(F) and on the complement of X(F), respectively.

Lemma 5.5. Let L be lattice that is a cover subposet of Bn, F ⊆ L, and k =
max{r(F), t(F)}. We have:

max{Δ(G(F)),Δ(G′(F))} ≤ k.

As a consequence, if GL is regular, then
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ιk(GL)
2 ≥

∑
1≤i≤k

|even( ↑Fi)| − |odd( ↑Fi)|

−
∑

1≤i<j≤k

|even( ↑(Fi ∨ Fj))| − |odd( ↑(Fi ∨ Fj))| ± . . .

Proof. Since the statement for G′(F) is proved analogously, here we only prove 
Δ(G(F)) ≤ max{r(F), t(F)}. So let {S, S′} be an edge of G(F).

If S is even, then S′ ≺ S is a cover relation, S′ is odd, and for all F ∈ ↓(S) ∩ F we 
have S′ ∨ F = S. Thus, the coordinate corresponding to the element S \ S′ is contained 
in 

⋂
( ↓(S) ∩ F). Hence, deg(S) ≤ | 

⋂
( ↓(S) ∩ F)| ≤ r(F).

If S is odd, then S ≺ S′ is a cover relation, S′ is even and the only element s ∈ S′ \S
belongs to some F ⊆ S′ = S ∪ {s} such that F ∈ F. Thus, the neighbors S ≺ S′

1, . . . S
′
k

give rise to a set X = {F1, . . . , Fk} ⊆ F such that si ∈ Fi \ (∪j �=iFj) for all 1 ≤ i ≤ k. 
Thus, deg(S) ≤ t(F).

For the second part of the statement we estimate |X(F)| = |even( ↑F)| + |odd(L\ ↑F)|
via inclusion-exclusion. The size of the first term can be written as

|even( ↑F)| =
∑

1≤i≤k

|even( ↑Fi)| −
∑

1≤i<j≤k

|even( ↑(Fi ∨ Fj))| ± . . .

Similarly, we can express the size of the second term as:

|odd(L\ ↑F)| = |odd(L)| −
∑

1≤i≤k

|odd( ↑Fi)| +
∑

1≤i<j≤k

|odd( ↑(Fi ∨ Fj))| ∓ . . .

Since GL is bipartite and regular we have |odd(L)| = |even(L)| = |L|
2 . We can write 

|X(F)| as:

|L|
2 +

∑
1≤i≤k

|even( ↑Fi)|−|odd( ↑Fi)|−
∑

1≤i<j≤k

|even( ↑(Fi∨Fj))|−|odd( ↑(Fi∨Fj))|± . . .

This concludes the proof. �
When L is the Boolean lattice Bd itself, the first part of Lemma 5.5 is [12, Proposition 

3.3]. Thus, applying Lemma 5.5 with an appropriate set F = {F1, . . . , Fk}; for example, 
F is any partition of {1, . . . , d} with 

√
d − 1 < k <

√
d + 1 and 

√
d − 1 < |Fi| <

√
d + 1

for all i ∈ {1, . . . , k}, one recovers the following:

Theorem 5.6 ([12]). For any integer d, we have ι�
√
d�(Qd) ≥ 2. In particular, σ(Qd) ≤

�
√
d�.

Note that with Remark 5.4 there is a wider class of lattices where Lemma 5.5 can be 
applied. In particular if the graph GL of the lattice L is the dual graph of a simplicial 
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Fig. 4. Induced subgraphs of maximum degree 2 in Cay(A3) and Cay(B3).

hyperplane arrangement, then GL is regular. Clearly, Lemma 5.5 is only useful together 
with a smartly chosen set F. We will come back to this in the next section.

6. Coxeter groups

We consider Cayley graphs of Coxeter groups and provide explicit constructions show-
ing that the bound in Proposition 5.1 in each case is either an equality or at most one 
unit away from an equality.

More precisely, we first introduce the notion of cube-like Coxeter groups. This allows 
us to establish equality for Coxeter groups of types I2(2k + 1), An, and their products. 
Further we show equality for types I2(n) and I2(n) × I2(n′), and many small Coxeter 
groups by computer. We also show that types Bn and Dn cannot deviate by more than 
one unit from the lower bound. We finish the section with a conjecture.

We start with the necessary definitions and refer the reader to [9,38] for more thorough 
introductions into the combinatorics of Coxeter groups. A finite Coxeter system is a 
pair (W, S), where W is a group with generators S = {a1, . . . , an} and presentation 
W = 〈a1, . . . , an | (aiaj)mij = 1〉 where mij > 1 and mii = 2. In [13], Coxeter classified 
all finite Coxeter groups as (direct products of) the members of three infinite families 
of increasing rank An, Bn, Dn, one family of dimension two I2(n), and six exceptional 
groups: E6, E7, E8, F4, H3 and H4.

Since any Coxeter group W corresponds to a unique Coxeter system (W, S), we denote 
the Cayley graph Cay(W, S) just as Cay(W ). See Fig. 4 for a drawing of the Cayley 
graphs of A3 and B3. It is well known that the Cayley graph of a Coxeter groups Cay(W )
is the dual graph of a simplicial hyperplane arrangement – the Coxeter arrangement of the 
corresponding type. As explained in Remark 5.4 this gives that Cay(W ) is a partial cube
– an isometric subgraph of a hypercube. The dimension of this hypercube corresponds 
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Table 1
Largest cube and number of reflections in irreducible Coxeter groups.

An Bn Dn I2(n) E6 E7 E8 F4 H3 H4

κ �n
2 � �n

2 � �n+1
2 � 1 3 4 4 2 2 2

r n(n+1)
2 n2 n(n − 1) n 36 63 120 12 10 30

to the number of hyperplanes in the arrangement, which is the number r of reflections
of W , i.e., the elements of order 2. See Table 1 for the number of reflections of the 
irreducible Coxeter groups and for the dimension of the largest hypercube contained in 
their corresponding Cayley graphs, this number coincides with the size of the largest 
independent set of their Coxeter-Dynkin diagrams.

Following Remark 5.4, from the simpliciality of the Coxeter arrangement we get 
that Cay(W ) is regular and the cover graph of a lattice LW that is the cover sub-
poset of a Boolean lattice. We are thus in the position to apply Lemma 5.5 once 
we have found an interesting set F. In order to get there, we will proceed to intro-
duce more specific properties of LW , mostly taken from [9,38]. Taking as base-point 
of Cay(W ) the neutral element e ∈ W , with the notation of Lemma 5.3, the lattice 
P (Cay(W ), e) = LW is called the weak (right) order [8]. For two group elements we have 
w ≤ w′ if dCay(W )(e, w′) = dCay(W )(e, w) + dCay(W )(w, w′). This makes it convenient to 
denote the length of an element w ∈ W is �(w), which is the distance from e in Cay(W ), 
i.e., �(w) = dCay(W )(e, w).

For J ⊆ S, we denote by WJ the subgroup of W generated by J . The Coxeter system 
(WJ , J) is called a parabolic subgroup of (W, S). Note that the graph Cay(WJ) is a 
subgraph of Cay(W ) and hence σ(Cay(WJ)) ≤ σ(Cay(W )), by Proposition 5.1. The set 
W J = {w ∈ W | �(wj) > �(w) for all j ∈ J} is the corresponding quotient. We collect 
some facts about WJ and W J with respect to LW .

(1) the elements of WJ define an order-interval I(WJ) that induces a sublattice of LW ,
(2) the elements of W J define an order-interval I(W J), whose graph we denote by 

G(W J), moreover I(W J) is isomorphic to the reversed order I(W J)∗,
(3) the set of isomorphic intervals {jW J | j ∈ WJ} partitions LW and each of them 

intersects I(WJ) exactly in the element j,
(4) the set {WJ i | i ∈ W J} partitions LW and each of them induces a graph Gi isomor-

phic to a subgraph of GI(WJ),
(5) the edges of Cay(W ) are partitioned into the edges of {Gi | i ∈ W J} and {jG(W J) |

j ∈ WJ}.

The last item yields that Cay(W ) is a subgraph of Cay(WJ)�G(W J), thus with 
Lemma 5.2 we conclude:

Lemma 6.1. Let (W, S) be a Coxeter system and J ⊆ S. We have

ιk(Cay(WJ))ι�(G(W J)) ≤ ιk+�(Cay(W )).
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We call a Coxeter system (W, S) cube-like if it admits an abelian parabolic subgroup 
WJ such that ι0(G(W J)) > 0. A consequence of Lemma 6.1 together with Theorem 5.6
is:

Proposition 6.2. If (W, S) is cube-like with respect to J ⊆ S, then we have σ(Cay(W )) =
�
√

κ(Cay(W ))� and Cay(W ) has an induced subgraph of maximum degree σ(Cay(W ))
on |W |

2 + ι0(G(W J)) vertices.

Proof. Denote d = κ(Cay(W )), by Proposition 5.1 we have that σ(Cay(W )) ≥ �
√
d�. 

Since WJ is abelian and minimally generated by J , Cay(WJ) is a cube contained in 
Cay(W ). Denote its dimension by d′ = |J |, we have that d′ ≤ d. By Theorem 5.6, we 
have that ι�√d′�Cay(WJ) ≥ 2. Lemma 6.1 yields

ι�
√
d′�+0(Cay(W )) ≥ ι�

√
d′�(Cay(WJ))ι0(G(W J)) ≥ 2ι0(G(W J)) > 0.

As a consequence σ(Cay(W )) ≤ �
√
d′� ≤ �

√
d� ≤ σ(Cay(W )); so they are all equalities 

and we are done. �
A useful feature of cube-like Coxeter groups is that they are closed under products:

Proposition 6.3. If (W, S) and (W ′, S′) are cube-like, then so is their product (W ×
W ′, S × {e′} ∪ {e} × S′). Moreover, ι0(G(W J)�G(W ′ J ′)) ≥ ι0(G(W J))ι0(G(W ′ J ′)).

Proof. If J, J ′ yield the two parabolic subgroups witnessing that (W, S) and (W ′, S′)
are cube-like, then also J × {e′} ∪ {e} × J ′ generates an abelian parabolic subgroup of 
(W × W ′, S × {e′} ∪ {e} × S′). The graph G of quotient W × W ′ J×{e′}∪{e}×J ′ is the 
Cartesian product G(W J)�G(W ′ J ′). It follows from Lemma 5.2, that

ι0(G(W J)�G(W ′ J ′
)) ≥ ι0(G(W J))ι0(G(W ′ J ′

)) > 0. �
We present some necessary and one sufficient criterion for being cube-like:

Proposition 6.4. Let (W, S) be a Coxeter system with r reflections. If (W, S) is cube-like 
with respect to J , then

(1) �
√

κ(Cay(W ))� = �
√

|J |�,
(2) r − |J | is even,
(3) J is inclusion-maximal with respect to generating an abelian subgroup.

Conversely, if r − |J | is even and the middle layer of I(W J) is odd, then (W, S) is 
cube-like with respect to J .

Proof. 1. This is proved implicitly in Proposition 6.2.
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2. The length of any shortest path from the minimum to the maximum of LW is r and for 
any parabolic subgroup WJ , such path can be obtained by first going from the minimum 
to the maximum of LWJ

and then traversing a translate of the interval I(W J). Since the 
diameter of the cube generated by J is |J | we get that r − |J | is the length of I(W J).

Now, we use the fact 2., that order reversing is an automorphism of I(W J). If the 
length of I(W J) is odd, then this automorphism identifies layers of different parity, hence 
both parts of a bipartition of GJ will be of the same size and ι0(GJ) = 0.
3. Whenever WJ is abelian for some J ⊆ S, then J corresponds to an independent set in 
the Coxeter-Dynkin diagram of W . When (W, S) is cube-like with respect to J ⊆ S, then 
J corresponds to a maximal independent set. Indeed, if this is not the case, there exists 
J � J ′ ⊆ S such that WJ ′ is abelian. As a consequence, G(WJ ′) = G(WJ)�G(WJ ′\J)
and G(WJ ′\J) = Q|J ′\J|, a hypercube of dimension |J ′ \ J | ≥ 1. Hence, G(W J) �
G(W J ′)�Q|J ′\J|; but this implies that ι0(G(W J)) = 0, a contradiction.

For the sufficient condition, if we have an odd number of layers such that by fact 2. 
opposite ones are of the same size the bipartition class not containing the middle layer 
is even, but the one containing the middle layer will be odd. Hence ι0(GJ) > 0. �

From Proposition 6.4 together with Table 1 we can infer that the following Coxeter 
groups are not cube-like with respect to any J ⊆ S: B2(n2+1), B2(n+1)2+1 for n even, 
D8n2 , D8n2+1 for n ≥ 1, I2(n) for n = 0 mod 2 and E6. Indeed, in all these groups 
there are no J ⊆ S satisfying the necessary conditions of Proposition 6.4. We will show 
next that Coxeter groups of type An and I2(2k+1) are cube-like. As a consequence any 
Cayley graph G of them or their products satisfies σ(G) = �

√
κ(G)�.

The Coxeter system I2(n) is (Dn, {b, c}), where both b and c are generators of order 2.

Theorem 6.5. For any k ≥ 0 the Coxeter group I2(2k + 1) is cube-like.

Proof. The graph Cay(I2(2k + 1)) is a cycle of length 4k + 2. The maximal abelian 
parabolic subgroup is generated by a single element j, i.e., the maximal cube is an edge. 
The corresponding quotient I(W j) is an interval consisting of a single chain of length 
2k. In particular the middle layer is odd and ι0(Gj) > 1, by Proposition 6.4. �

The symmetric group Sn+1 with generators S = {(12), (23), . . . , (n(n + 1))} consti-
tutes the Coxeter system of type An. As an example consider A3. Its illustration in the 
left of Fig. 4 shows that this Coxeter group is cube-like, even though it does not sat-
isfy the sufficient condition in Proposition 6.4. This exemplifies the construction shown 
below.

Theorem 6.6. For all n ≥ 0 the Coxeter system An is cube-like with respect to a set J
such that ι0(G(An

J )) ≥ �n
2 �!.

Proof. We set J = {(12), (34), . . . , (nn +1)} is n is odd and J = {(12), (34), . . . , (n −1n)}
otherwise. Clearly the parabolic subgroup generated by J is abelian. For the proof we 
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identify the permutations with strings of length n + 1 in the standard way, e.g., e =
[1, 2, 3, . . . , n + 1]. For a permutation π, its length �(π) equals the number of pairs that 
are ordered differently from [1, 2, . . . , n + 1]. We refer to the two bipartition classes of 
Cay(An) as even and odd and correspondingly denote the parity of a permutation π by 
p(π) ∈ {0, 1}. Let P J be the poset on {1, . . . , n + 1} whose relations are of the form 
(i ≺ j) if (ij) ∈ J . Now W J can be seen as the set of linear extensions of P , i.e., all 
linear orders on {1, . . . , n + 1} that respect the relations prescribed by P .

Let us first consider the case n even. In this setting P consists of the single element 
{n +1} and a disjoint union of chains 1 ≺ 2, . . . , n −1 ≺ n called M . We label these chains 
C1, . . . , Cn

2
. For the sake of the proof we say that an arc-diagram D is a perfect matching 

of Kn. Any linear extension LM of M corresponds to an arc diagram, where each edge 
is labeled with a chain among C1, . . . , Cn

2
. More precisely, a linear extension of M can 

be seen as a permutation π of {1, . . . , n} such that i < j whenever π(i) ≺ π(j); then the 
linear extension corresponds to the arc-diagram D with edges ej = (π(2j − 1), π(2j)) for 
1 ≤ j ≤ n/2, and the edge ej is labeled by Cj . Thus, given one arc diagram D there are 
n
2 ! linear extensions with this diagram. Moreover, all of them have the same parity p(D). 
To see the latter it is sufficient to distinguish how two arcs intersect whose assigned 
chains are exchanged. We skip this case distinction.

Now, there are n + 1 possible ways to insert {n + 1} into a given linear extension of 
M with diagram D. Note that �n+1

2 � of these have parity p(D) and �n+1
2 � of these have 

parity (p(D) + 1) mod 2.
Since the number of arc-diagrams, i.e., the number of perfect matchings of Kn is 

odd, for some p ∈ {0, 1} there is one more arc-diagram of parity p than there are of 
parity (p +1) mod 2. So, take a diagram D of parity p. It corresponds to �n+1

2 �n
2 ! linear 

extensions of parity p and �n+1
2 �n

2 ! linear extensions of parity p +1 mod 2. We thus have 
ι0(GJ) ≥ n

2 !.
In the case that n is odd, the same proof works except that P is entirely partitioned 

into chains of length 2. The analogous analysis yields ι0(GJ) ≥ n+1
2 !. �

The results of the present section can be applied to the sensitivity of some Coxeter 
groups:

Corollary 6.7. Let G be the n-vertex Cayley graph of the product

I2(2k1 + 1) × . . . × I2(2ki + 1) × A(n1) × . . . × A(nj).

Then σ(G) = �
√

κ(G)� and there exists a set of n2 + Πj
�=1(�n�

2 �!) vertices inducing this 
degree.

We proceed to study σ for Coxeter groups, where we cannot apply the above strategy.

Theorem 6.8. Let G be the Cayley graph of a Coxeter group of type I2(n) or I2(n) ×I2(n′). 
Then σ(G) = �

√
κ(G)�.
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Table 2
Largest subgraphs of maximum degree �√κ� in small Coxeter 
groups.

Group Order κ Subgraph of degree ≤ 2
F4 1152 2 768
H3 120 2 85
H4 14400 2 8624 ≤ · ≤ 9599
E6 51840 3 25926 ≤ ·
D4 192 3 120 ≤ · ≤ 122
D5 1920 3 1004 ≤ · ≤ 1199
B3 48 2 34
B4 384 2 235 ≤ · ≤ 252
B5 3840 3 1976 ≤ · ≤ 2398
B3 × I2(2) 192 4 98 ≤ · ≤ 115
B3 × I2(3) 288 3 150 ≤ · ≤ 175
B3 × I2(4) 384 3 200 ≤ · ≤ 235
I2(2) × I2(3) × I2(3) 144 3 73 ≤ · ≤ 79
I2(1) × I2(2) × I2(4) 64 4 33
I2(1) × I2(3) × I2(4) 96 3 52

Proof. The Cayley graph of I2(2) is a square and, then, κ(I2(2)) = 2 and σ(I2(2)) =
2 = �

√
2�.

Let us see that also the product of two even cycles Ci�Cj has a subgraph on more 
than half the vertices with max degree at most 2. If i = j = 4, one can take the subgraph 
consisting of an induced 8-cycle and a vertex without neighbors in this cycle. So assume 
that i > 4. Take a proper 3-coloring of Cj with a, b, x, such that x is used at least once 
and such that the neighbors of every vertex colored x are colored differently. Now, in 
Ci�Cj every copy of Ci has color a, b or x. In every copy of Ci colored with x, we always 
pick the same subgraph of maximum degree 1 and with more than i/2 vertices (we can 
do this because i > 4). In the other copies of Ci we choose one of the two bipartition 
classes of Ci, depending on whether its color is a of b. The resulting subgraph has more 
than half of the vertices and maximum degree 2.

Thus, Coxeter groups of the form I2(n) × I2(n′) are fine, too. �
The group Bn equals the wreath product Z2  {1,...,n} Sn. Equivalently, this group 

can be seen as the group with elements 2[n] × Sn, where 2[n] denotes the power set of 
{1, . . . , n}, with operation (A, π) · (B, τ) = (A ! π−1(B), π · τ) being ! the symmetric 
difference of the two sets, and generators S = {a1, . . . , an} with ai = (∅, (i i + 1)) for all 
i ∈ {1, . . . , n − 1} and an = ({1}, id).

The group Dn is a subgroup of Bn of index 2; it can be seen as the group with elements 
E[n] ×Sn, where E[n] denotes the elements in 2[n] with an even number of elements, and 
generators S = {a1, . . . , an−1, a′n} with ai = (∅, (i i + 1)) for all i ∈ {1, . . . , n − 1} and 
a′n = ({1, 2}, (12)).

Theorem 6.9. Let G be a Cayley graph of Bn or Dn. Then σ(G) ≤ �
√

κ(G)� + 1.

Proof. We first observe that Bn has a bipartite Cayley graph, indeed the bipartition 
classes are U1, U2 ⊆ 2[n] × Sn where U1 = {(A, π) | |A| and π have different parity}
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and U2 = {(A, π) | |A| and π have the same parity}. The induced subgraph with ver-
tices {∅} × Sn is isomorphic to Cay(An−1) and, by Corollary 6.7, it has an induced 

subgraph K with more than n!/2 vertices and maximum degree k = �
√

�n−1
2 ��.

Now we consider K ∪ {(A, π) ∈ U1 | A = ∅}, which has |K| + 1
2 (|Bn| − n!) > 1

2 |Bn|
elements and we are going to prove that the maximum induced degree is at most k + 1. 
Take (B, τ) ∈ K∪{(A, π) ∈ U1 | A = ∅}. If B = ∅, then (B, τ) ∈ U1 and (B, τ) ·aj /∈ U1 for 
all j ∈ {1, . . . , n − 1}; thus, (B, τ) has degree at most one. If B = ∅, then (B, τ) · aj ∈ K

for at most k values of j ∈ {1, . . . , n − 1} and, hence, its degree is at most k + 1 ≤
�
√

�n
2 �� + 1 = �

√
κ(Cay(Bn))� + 1.

A similar proof works for Dn. �
We have shown that several Coxeter groups are tight with respect to the lower bound 

from Proposition 5.1. Also consider Table 2 (see also Fig. 4 for B3) for further results 
into this direction that were obtained by computer. All the results from Table 2 have 
been obtained by solving a straight-forward integer linear program in CPLEX, except 
for E6 where the linear program exceeded the memory of the computer. In this case 
an exhaustive search through all pairs of 2-elements sets of J as candidate for F for 
Lemma 5.5 gave the result. Note in particular, while in every cube-like Coxeter group 
the construction from Lemma 5.5 yields a solution via Theorem 5.6, E6 is not cube-
like by Proposition 6.4. This shows the generality of lattices that are cover subposets of 
cubes, see Remark 5.4. For E7 and E8 even this exhaustive method was not feasible by 
computer. However, we believe to have gathered sufficient evidence to dare the following:

Conjecture 6.10. Let G be the Cayley graph of a Coxeter group and Qd the largest sub-
graph isomorphic to a cube. Then G contains a set K of more than half the vertices, that 
induced a subgraph of maximum degree �

√
d�, i.e., σ(G) = �

√
κ(G)�.

7. The absence of cubes

In a sense most of the paper so far has been about Huang’s lower bound (Proposi-
tion 5.1) being tight, i.e., if a bipartite Cayley graph contains a largest cube Qd, then 
there is an induced subgraph of maximum degree at most �

√
d� on more than half the 

vertices.
However, we do not want to give the wrong impression that this lower bound is tight 

in general bipartite Cayley graphs. In this section we provide families of cube-free graphs 
and with unbounded sensitivity. Observe that if a graph has girth at least 6, then it does 
not contain non-trivial hypercubes, since these have a 4-cycle.

An (n, d, λ)-graph is a d-regular graph (which might have loops) on n vertices in which 
all nontrivial (different from d) eigenvalues have absolute value at most λ.

The following Theorem 7.2 was provided to us by Noga Alon. For its statement we 
need the notion of Kronecker double cover introduced at the end of Section 4 and for 
its proof we use Lemma 7.1, which is a direct consequence of the so-called expander 
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mixing lemma (see, e.g., [3,5], [21, Section 5] or [7, Lemma 2.1]). One consequence of 
Theorem 7.2 will be Corollary 7.3, which slightly improves the bound we obtained in an 
earlier version of this paper.

Lemma 7.1. Let K be an (n, d, λ)-graph and consider S, T ⊆ V (K) with |S| + |T | = n. 
Then,

e(S, T ) ≥ (d − λ) |S||T |
n

,

where e(S, T ) is the number of (ordered) edges uv with u ∈ S, v ∈ T . In particular, there 
is a vertex of S that has at least (d − λ) |T |

n neighbors in T .

Proof. The expander mixing lemma asserts that

∣∣∣∣e(S, T ) − d
|S||T |
n

∣∣∣∣ ≤ λ

√
|S||T |

(
1 − |S|

n

)(
1 − |T |

n

)
.

In particular, if |S| + |T | = n, this implies that

e(S, T ) ≥ (d − λ) |S||T |
n

and thus there is a vertex of S that has at least (d − λ) |T |
n neighbors in T . �

Theorem 7.2. Let G be the Kronecker double cover of an (n, d, λ)-graph, then σ(G) >
(d − λ)/2.

Proof. Take H such that G = H ×K2, i.e., G is the Kronecker double cover of H. Take 
a set U with more than n vertices in G. Since |U | > n, then U must contain vertices in 
both vertex classes of G. Take S, T be the nonempty sets of vertices of H corresponding 
to the vertices of U in each of the two vertex classes of G. Without loss of generality we 
assume |T | > n/2. If |T | = n, then T = V (H) every vertex in S has its d neighbors in 
T . Otherwise, we consider S′ ⊆ S with |S′| = n − |T |. Applying Lemma 7.1 with S′ and 
T we get that there is a vertex of S′ that has at least (d − λ) |T |

n > (d − λ)/2 neighbors 
in T . The desired result follows from the definition of double cover. �

Consider the polarity graph of the Desarguesian projective plane P (2, q) (with loops), 
which is a (q2 + q + 1, q + 1, √q)-graph. Note that this graph is not transitive (and, 
thus, not a Cayley graph) in general. Now, its Kronecker double cover is the Levi graph, 
i.e., point-line incidence graph, of P (2, q), which we denote by Lq. It is known that 
Lq has girth 6. Moreover, Lq is the Cayley graph of Dq2+q+1 with respect to a set of 
q + 1 involutions, see [26, Theorem 1]. As a direct consequence of Theorem 7.2 we have 
the following result providing a family of cube-free (q + 1)-regular Cayley graphs and 
unbounded sensitivity.
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Corollary 7.3. The graph Lq satisfies σ(Lq) > (q + 1 − √
q)/2.

Note that we do not need the projective plane to be Desarguesian for the proof to 
work (see, e.g., [37]).

Using the list of small vertex-transitive graphs [11,22,34], we verified that each vertex-
transitive, bipartite G on at most 47 vertices and with girth at least 6 has σ(G) ≤ 2. Also 
compare sequences A185959 and A006800 in [35] for the numbers of Cayley and transitive 
graphs, respectively. In particular, examination by computer shows that σ(Lq) = 2 for 
q ≤ 4 and σ(Lq) = 3 for q = 5, 7. Indeed, L2 is the well-known Heawood graph and yields 
the smallest transitive bipartite graph with girth 6 and σ = 2. The 62-vertex Levi graph 
of the Desarguesian projective plane P (2, 5) is the smallest transitive graph with σ = 3
that we know of. In particular, Corollary 7.3 yields σ(L8) ≥ 4 and the computer finds 
that this is an equality.

Theorem 7.2 can also be used to provide bipartite Cayley graphs with high sensitivity 
and arbitrarily high girth. Indeed, a famous construction of Ramanujan graphs by [27]
gives families of unbounded girth. For p, q distinct primes congruent to 1 modulo 4 they 
construct a (p + 1)-regular Cayley graph Xp,q in which all nontrivial eigenvalues have 
absolute value at most 2√

p. Its properties depend on the Legendre symbol of p and 

q. Namely, if 
(

p
q

)
= −1, then Xp,q is a bipartite Cayley graph of PGL(2, q) (of order 

q(q2 − 1)) with girth at least 4 logp q − logq 4. If 
(

p
q

)
= 1, then Xp,q is a non-bipartite 

Cayley graph of PSL(2, q) (of order q(q
2−1)
2 ) with girth at least 2 logp q. In this case, we 

denote by Y p,q the Kronecker double cover of Xp,q Since the Kronecker double cover of 
a Cayley graph is a bipartite Cayley graph (see Remark 4.3), Y p,q is a bipartite Cayley 
graph of arbitrary high girth and Theorem 7.2 yields:

Corollary 7.4. The graph Y p,q satisfies σ(Y p,q) > (p + 1)/2 − √
p.

Interestingly, the bound of Corollary 7.4 depends on the degree of the graph, but not 
on the number of vertices of the graph Y p,q.

There are many graphs with similar properties to the ones in the preceding corollaries. 
Indeed, by a result of [4] for every 0 < δ < 1 there exists cδ such that for any group Γ of 
order n, the Cayley graph Cay(Γ, C) with respect to a random set C ⊆ Γ of size cδ logn
has λ ≤ (1 − δ)d almost surely. Moreover, it is known that the girth of Cay(Γ, C) is large 
with high probability for many groups, see [18]. As a direct consequence of Theorem 7.2
we have the following lower bound on σ.

Corollary 7.5. For every 0 < δ < 1 there is a cδ > 0 such that the following holds. Let Γ
be any group of order n and let G = Cay(Γ ×Z2, C × {1}) be the Cayley graph of Γ ×Z2

with respect to a set C of cδ log(n) random elements of Γ. Then σ(G) ≥ δd/2 almost 
surely.
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One may wonder if the above constructions give minimal Cayley graphs, i.e., with 
respect to inclusion-minimal generating sets. However, we observe the following:

Lemma 7.6. Let G be an (n, d, λ)-graph. If G × K2 is a minimal Cayley graph, then 
λ ≥ d − 4.

Proof. Since G × K2 = Cay(Γ, C) is minimal, removing any generator from C creates a 
disconnected graph. Thus, there is a 1- or 2-factor F , whose edge-removal disconnects G. 
Let S be the set of vertices in one of these connected components and T = V (G ×K2) −S

(observe that |T | ≥ n). Denote by 0, 1 the vertices of K2 and write Si = S ∩ (G × {i})
and Ti = T ∩ (G × {i}) for i = 0, 1. We have that |S0| = |S1|, |T0| = |T1| and, then, 
|S0| + |T1| = n. Consider S′ = {s | (s, 0) ∈ S0} ⊆ V (G) and T ′ = {t | (t, 1) ∈ T1} ⊆
V (G) (observe that |T ′| ≥ n/2). Thus, we get e(S′, T ′) ≤ 2|S′|. On the other hand, by 
Lemma 7.1, we get that

e(S′, T ′) ≥ (d − λ) |S′||T ′|
n

≥ (d − λ) |S′|
2 .

The result follows from both inequalities. �
The Levi graphs of projective planes from Corollary 7.3 are Kronecker double covers 

of (q2+2 +1, q+1, √q) graphs. Hence, by Lemma 7.6, we deduce that Lq is not a minimal 
Cayley graph for q > 5. So Levi graphs are not minimal Cayley graphs whenever σ > 3. 
Similarly, one can see that the graphs Y p,q in Corollary 7.4 with p > 5 cannot provide 
minimal Cayley graphs. Since the sensitivity of a d-regular bipartite graph is upper 
bounded by d − 1, we have that this construction does not yield minimal Cayley graphs 
with σ > 5.

So while Corollaries 7.3 and 7.4 give rise to families of Cayley graphs of κ ≡ 1 and 
unbounded σ, one might still believe that minimal Cayley graphs could satisfy Huang’s 
lower bound with tightness. However, the Möbius-Kantor graph G(8, 3) is bipartite and 
the Cayley graph Cay(P1, {X, Y, Z}), where

X =
(

0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

and P1 = {±I, ±iI, ±X, ±iX, ±Y, ±iY, ±Z, ±iZ} < SU(2) is the (first) Pauli group, see 
the left part of Fig. 5. This group can also be described as central product of Z4 with 
D4. While G(8, 3) has girth 6 one can check that σ(G(8, 3)) = 2 > 1 = �

√
κ(G(8, 3))�.

Indeed G(8, 3) is also isomorphic to both Cay(M16, C) and Cay(QD16, C), where 
M16 = {xrys | x8 = y2 = e, yx = x5y} is the modular group of order 16, 
QD16 = {xrys | x8 = y2 = e, yx = x3y} is the quasidihedral group of order 16, and 
C = {x, y}. Yet another way of representing the Möbius-Kantor graph is as the di-
hedrant Cay(D8, {b, ab, a3b}). However, this generating set is not minimal. For further 
information on this remarkable graph, see [28].
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Fig. 5. Two Cayley graphs of the Pauli group. Left: the Möbius-Kantor graph G(8, 3) as Cay(P1, {X, Y, Z}). 
Right: the lexicographic product Q3[K2] as Cay(P1, {iI, −iX, −iZ}), where iI corresponds to the thick 
gray arcs.

Another example is the lexicographic product Q3[K2]. One way of representing this 
graph is as Cay(P1, {iI, −iX, −iZ}) where again P1 is the Pauli group, see the right part 
of Fig. 5. Another representation is Q3[K2] ∼= Cay(Z2

2 × Z4, {(1, 0, 1), (0, 1, 1), (0, 0, 1)}). 
One calculates σ(Q3[K2]) = 4 > 2 = �

√
κ(Q3[K2])�. We believe that the family of 

graphs Gm := Qm[K2] with m ∈ Z+ is a good candidate to provide minimal Cayley 
graphs where the difference σ(Gm) −

√
κ(Gm) is unbounded.

All this leads to a question analogous to χ-boundedness [20] or τ -boundedness [17].

Question 7.7 (σ-boundedness). Is there a function f such that for every minimal bipartite 
Cayley graph G, we have σ(G) ≤ f(κ(G))?

8. Conclusions

Most of the paper is about Huang’s lower bound (Proposition 5.1) being tight, i.e., if a 
bipartite Cayley graph contains a largest cube Qd, then there is an induced subgraph of 
maximum degree at most �

√
d� on more than half the vertices. We show that this holds 

for some dihedrants, the star graphs, and some tight groups, where these results can 
be seen as proving insensitivity. We further prove the lower bound to be tight for large 
classes of Coxeter groups, and conjecture it for general Coxeter groups (Conjecture 6.10). 
On the other hand we show that there are also cube-free graphs of unbounded sensitivity, 
e.g., Levi graphs of projective planes. A curiosity is that the latter class as well as the first 
family of insensitive graphs are dihedrants with respect to non-minimal generating sets. 
While we have provided insensitive Cayley graphs with respect to minimal generating 
sets, it remains open if there are bipartite Cayley graphs with respect to a minimal 
generating set that have bounded κ and unbounded σ (Question 7.7).
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Further, we believe that the k-imbalance ιk, i.e., the coloring parameter associated to 
sensitivity σ deserves further investigation. Indeed, apart from cube-like Coxeter groups 
and in particular Qd, our results on star graphs and tight groups can be read in terms 
of this stronger parameter.

Let us finally conclude with some thoughts on non-bipartite Cayley graphs. Since 
many things already do not work in the bipartite case, let us go back to abelian groups. 
The result of [31] gives a lower bound on the induced maximum degree when more than 
half of the vertices are taken, but in a non-bipartite Cayley graph α is less than half 
the vertices. We show that the stronger version is false, i.e., there abelian groups with 
Cayley graphs of unbounded degree but σ ≡ 1.

Theorem 8.1. We have σ(Cay(Zr
3, {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)})) = 1, for all 

positive integers r.

Proof. First note that α(Cay(Zr
3, {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)})) = 3r−1. We 

show that there is a set of 3r−1 + 1 vertices inducing degree 1 whose complement con-
tains a maximum independent set, by induction on r. While the case r = 1 is trivial, let us 
consider r > 1 and take a set A of 3r−2+1 vertices inducing degree 1 and disjoint indepen-
dent set B of size 3r−2 both in Cay(Zr−1

3 , {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)}). Our 
solution for Cay(Zr

3, {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)}) is A′ = A ×{0} ∪B×{1, 2}. 
This set has size 3r−2 + 1 + 2(3r−2) = 3r−1 + 1 and induces degree 1. Moreover, the set 
B× {0} ∪ (B+(1, . . . , 0)) × {1} ∪ (B+(2, . . . , 0)) × {2} induces a maximum independent 
set complementary to A′. �

We do not know if there is a family of tripartite Cayley graphs playing the role of 
hypercubes with respect to σ. More generally, we wonder:

Question 8.2. Is there an infinite family G of non-bipartite (minimal) sensitive Cayley 
graphs, i.e., is there a function f such that d ≤ f(σ(G)) for all d-regular G ∈ G?
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