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Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent
activity observed in several cortical areas during working memory tasks. In network models this kind of bistability
arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN)
bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks)
robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating
oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both
bistability and oscillatory activity have been intensively studied in network models, there has not been much focus
on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime,
their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known
as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed
of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the
bistable regime can, in principle, have arbitrarily low frequency.

DOI: 10.1103/PhysRevE.94.012410

I. INTRODUCTION

The simplest canonical cortical circuit consists of a single
population of excitatory neurons and a single population of
inhibitory neurons (E-I network). Models of E-I networks
robustly exhibit nontrivial computational and dynamical prop-
erties due to the occurrence of transitions in the qualitative
behavior of the system, called bifurcations. In particular, for
sufficiently strong excitation a region of bistability between
a low-activity and a high-activity state can arise via a pair
of saddle-node (SN) bifurcations [1–3]. E-I networks also
readily generate oscillations via a Hopf (H) bifurcation when
excitation is sufficiently strong and fast [4,5]. The frequency
of these oscillations, within the γ range (30–100 Hz), is
predominantly set by the E-I loop, and in particular by the
ratio of excitatory to inhibitory synaptic time constants. This
mechanism contrasts with the I-I loop, which underlies the
generation of fast oscillations (>100 Hz), the frequency of
which is set by the inhibitory synaptic delay [5,6]. Both
mechanisms are present in an E-I network and contribute
to the population frequency with the E-I loop dominating
when recurrent excitation is strong. Theoretical work therefore
suggests that when recurrent excitation is strong enough it
ought to be possible to obtain robust oscillations in the bistable
regime in E-I networks via the E-I loop alone.

Experimentally, in both humans and nonhuman primates
oscillations in several different frequency bands have been
observed to correlate with memory demands during working
memory tasks, including θ (4–8 Hz) [7–10], α to β (8–30 Hz)
[11–13], and γ (20–100 Hz) [14–16]. The functional role
of oscillations during working memory tasks is not known,
although it has been hypothesized to orchestrate the co-
ordinated computation of different brain regions through
synchronization [17]. Besides doubts regarding the functional
role of oscillations during working memory tasks, it is also

unknown what the physiological mechanisms which generate
them are. The most parsimonious mechanism would be the E-I
loop itself, without recourse to additional neuronal subtypes,
network structure, or single-cell properties.

In this paper, we explore the phenomenology of oscil-
lations in E-I networks in the bistable regime. We show
that oscillations are qualitatively distinct from those which
appear in the nonbistable regime (we can say “linear regime”).
Specifically, the presence of SN bifurcations, which generate
the bistable behavior, impose certain topological constraints on
the oscillatory dynamics which have two main consequences:
(1) Oscillations are subcritical and there is no stable limit
cycle over a large parameter range; (2) oscillations can have
arbitrarily low frequency. The first consequence means that
oscillations are generically damped in the bistable regime.
Hence, oscillations are only observable as a transient response
to time-varying input or as a sustained resonant response in the
presence of stationary fluctuations (for example, an external
noise source). The second consequence indicates that the E-I
loop alone can, in principle, account for oscillations throughout
the δ to γ range (roughly 1–100 Hz) in the bistable regime.

II. FIRING RATE MODEL

In this paper we consider a canonical cortical circuit
composed of recurrently coupled excitatory (E) and inhibitory
(I) neurons. In particular we study the phenomenology of
oscillations which arise through the E-I loop in the bistable
regime.

We first analyze a reduced model of firing-rate equations
for a network of E and I neurons. Specifically, we consider
a single continuous variable to represent the mean activity
in each of the two neuronal populations [1,2], resulting in a
system of two coupled differential equations. In general, it is
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not possible to derive such mean-field models rigorously from
a network model of spiking neurons, although see [18–20]. The
benefit of the reduced system is that it is amenable to analysis.
Finally, we compare the results from the reduced system to
some analysis and numerical simulations of a network of leaky
integrate-and-fire neurons.

The firing-rate equations we study are

τeṙe = −re + φe(Ie), τi ṙi = −ri + φi(Ii), (1)

where

Ie(t) = Jeesee(t) − Jeisei(t) + Iext,e(t),
(2)

Ii(t) = Jiesie(t) − Jiisii(t) + Iext,i(t),

where Jabsab(t) represents the population-averaged value of
the synaptic input from a neuron in population b to a neuron
in population a. The parameter Jab is the mean synaptic
strength, while the variable sab(t) is the level of activation of the
corresponding synapses. If we ignore the synaptic time course,
which is equivalent to assuming that postsynaptic currents
(PSCs) are fast compared to the time constants of the firing
rates, then the mean synaptic activation is identically equal to
the mean firing rate of the presynaptic population with a delay,
i.e., sab(t) = rb(t − Dab), where Dab is the synaptic delay from
population b to population a.

Alternatively, we can include the synaptic time course by
solving the equations

τd,bṡab = −sab + xab,

τr,bẋab = −xab + rb(t − Dab). (3)

Here x is an intermediate synaptic variable which leads to
a difference-of-exponential time course, where τd,a and τr,a

are the rise and decay time constants of the synapses of type
a ∈ {e,i}.

Equations (1)–(3) are a heuristic, mean field model of
the activity in a cortical microcircuit. Under very generic
constraints on the transfer functions φe and φi this model
can generate oscillations and exhibit bistability between a
low-activity and a high-activity state. Both of these dynamical
regimes are of relevance for real brain circuits, and for
this reason the equations have been extensively studied.
Nonetheless, less attention has been paid to the regime in which
both types of behavior coincide, namely when an oscillatory
instability occurs in the bistable regime.

A. Steady state solutions and their stability

The steady state fixed points of the model are found by
setting the time derivatives in Eqs. (1)–(3) equal to zero. The
resulting system of (in general) transcendental equations is
not usually analytically tractable. Nonetheless, the fixed-point
space is reducible to two dimensions, in re and ri , allowing
for a simple geometric analysis. The resulting number of
fixed points clearly depends on the shape of the transfer
functions φe and φi . Luckily, these are strongly constrained
by having to correspond to the mean field transfer functions
for networks of spiking neurons. This implies that they are
monotonically increasing with a concave upwards regime at
low rates and a concave downwards regime at high rates

[21–23]. These two regimes correspond to the fluctuation-
driven, subthreshold regime of neuronal spiking and the
mean-driven, suprathreshold regime of neuronal spiking,
respectively. We discuss this more in-depth later on in the
section on spiking networks.

With these constraints the model Eqs. (1)–(3) generically
admit either a single, stable fixed point or three fixed points,
two of which are stable and correspond to a low-rate and
a high-rate state. It is in this second regime that the model
exhibits bistable behavior. We write the fixed-point solutions
(re0,ri0) to Eqs. (1)–(3) as

ra0 = φa(Ia0),
(4)

Ia0 = Jaere0 − Jairi0 + Iext,a,

where a ∈ {e,i}.
Whether there is one fixed point or there are three, the

stability of each one is determined by slightly perturbing the
fixed-point solution and studying the linearized dynamics. This
leads to the eigenvalue equation

[1 − Aee(λ)][1 + Aii(λ)] + Aei(λ)Aie(λ) = 0, (5)

where Aab(λ) = JabRa(λ)Sab(λ) depends on the neuronal
response function of population aRa(λ) and the synaptic
response function Sab(λ). These functions are

Ra(λ) = φ′
a(Ia0)

(1 + τaλ)
,

(6)

Sab(λ) = e−Dabλ

(1 + τd,bλ)(1 + τr,bλ)
.

B. Rate equations without synaptic dynamics

In the simplest case we ignore both the synaptic dynamics
and the synaptic delay. In this case, Eq. (5) gives a condition
for a steady instability (saddle-node bifurcation),

Jeeφ
′
e > 1 + JeiJieφ

′
iφ

′
e

1 + Jiiφ
′
i

, (7)

which means that when the strength of recurrent excitatory
synapses (Jee) times the gain in the response of the population
of excitatory cells (φ′

e) reaches a critical value (the right-hand
side of the equation), there is a jump in the network activity.
Two such saddle-node bifurcations leading to a switch from
low-rate to high-rate activity, and vice-versa, encapsulate the
bistable regime. Note that the slope of the transfer function
(gain) is evaluated at the fixed point [φ′

e = φ′
e(Ie0)].

The condition for an oscillatory instability is the following:

Jeeφ
′
e > 1 + τe

τi

(1 + Jiiφ
′
i). (8)

Therefore, the appearance of oscillations depends crucially on
the value of the ratio of the excitatory and inhibitory time
constants.

Both of these instabilities can occur for the same parameter
values. In fact, it is clear that an oscillatory instability can be
made to occur in the model near a saddle-node bifurcation
by appropriately adjusting the time constants, for example.
Characterizing the resulting dynamical behavior in the vicinity
of these two instabilities is the major goal of this paper.
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FIG. 1. The phase diagram for the firing-rate model Eqs. (1). The transfer function for the excitatory population is given by Eq. (10), while it
is linear-threshold for the inhibitory population. The solid lines are the saddle-node bifurcation lines, which meet as a cusp at (I,J ) = (1/2,1/2).
To the left of this point there is only a single fixed point, while to the right there are three. The low-rate solution reaches zero at I = 0 (dotted
line), while the low-rate and high-rate solutions meet along the diagonal I = 1 − J (dashed line). The feedforward inhibition β = 1, while
the time constant ratio τ = 2. There are no oscillatory instabilities, so the saddle-node lines provide a complete description of the possible
bifurcations. (a)–(c) Sample bifurcation diagrams taken along the cuts shown in the phase diagram. The right panel is the frequency of the most
unstable eigenvector. Stable branches are solid lines and unstable ones are dotted. Here τe = τi = 10, Jii = 1, Jie = Jei = √

2.

C. An analytically tractable example

It is helpful to make a concrete choice for the transfer
functions φe and φi so that a systematic and exhaustive analysis
can be done without resort to numerical simulations. For the
inhibitory population we choose a simple threshold linear
function, i.e., φi(I ) = I as long as I > 0; otherwise, it is zero.
In this case the fixed-point equations can be reduced to a single
dimension and expressed only as a function of re0,

re0 = φe(J re0 + I ), (9)

where J = Jee − JeiJie

1+J ii
and I = Ie0 − Jei Ii0

1+J ii
. The fixed-point

value of the inhibitory rate is just ri0 = (Jiere0 + Ii0)/(1 +
Jii).

Here we take the following shape for the excitatory transfer
function:

φe(x) =
⎧⎨
⎩

0, if x < 0,

x2, if 0 � x � 1,

2
√

x − 3/4, if x > 1.

(10)

This choice captures the fluctuation-driven regime (quadratic
nonlinearity) and the mean-driven regime (square-root nonlin-
earity) in the simplest possible way.

With this choice of transfer function we can solve the
fixed-point equation, Eq. (9), analytically. Figure 1 shows
the resulting phase diagram of the fixed-point solutions. For
J < 1/2 there is only a single fixed point, while for J > 1/2
there are three. This region of bistability is delineated by the
two saddle-node lines given by

IL
SN = 1

4J
, IH

SN = 3

4
− J 2, (11)

where the superscripts refer to a bifurcation of the low-rate (L)
or the high-rate (H ) state.

In the phase diagram the two firing regimes, which
we call low-rate and high-rate and which correspond to

the quadratic and square-root nonlinearities of the transfer
function, Eq. (10), respectively, meet along the line I = 1 − J .
This is shown as a dashed line in Fig. 1. Below I = 0 (dotted
line in Fig. 1) the excitatory firing rate re0 is equal to zero.

The saddle-node lines [Eqs. (11)] can be derived directly
from Eq. (9), but they are also equivalent to the stability
condition Eq. (7). The other stability condition, Eq. (8), can be
reduced to the conditions

IL
Hopf = 1

4J

[
1 − (β − τJ )2

(β + J )2

]
,

(12)

IH
Hopf = 3

4
− J 2 + (β − τJ )2

(1 + τ )2
,

where the parameter β = JeiJie/(1 + Jii) is the feedforward
inhibition to the excitatory population. The parameter τ =
(τe/τi)(1 + Jii) is an effective time constant which is large if
excitation is much slower than inhibition and small if inhibition
is slower than excitation.

The Hopf bifurcation lines Eqs. (12) exist only if τ < 2β.
In the phase diagram Fig. 1 we have chosen τ = 2 and β = 1,
so there are no Hopf bifurcations, and the saddle-node lines
give the full picture. This does not mean that there are no
oscillatory dynamics, however. Panels (a), (b), and (c) show
bifurcation diagrams along the cuts indicated in the phase
diagram. In the bifurcation diagrams stable fixed points are
drawn as solid lines and unstable ones are dotted lines. To
the right of each bifurcation diagram is the frequency of
oscillation, i.e., the imaginary part of the eigenvalue of the most
unstable eigenvector. In panels (a) and (b), for example, linear
perturbations of the fixed-point solution are always stable, but
they oscillate. That is, there are damped oscillations. Note that
we have taken the parameters in the firing rate equation to be
unitless; because they are not derived from first principles, the
choice of units is arbitrary. The oscillation frequency in Fig. 1
should therefore be measured relative to the time constants
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FIG. 2. The phase diagram for the same firing-rate model as in Fig. 1. Here the only change is that τi = 100 (β = 1 as before), which is
equivalent to increasing the inhibitory time constant compared to Fig. 1. Because τ < 2β, there are now two Hopf-bifurcation lines, shown in
green. The saddle-node lines are the same as before. The two Hopf-bifurcation lines meet along the diagonal I = 1 − J at a point which is
approximately (I ∗,J ∗) = (1/2 + β,1/2 − β). This approximation is exact in the limit τ → 0. The frequency of oscillation along these lines
increases to the left and reaches a maximum exactly at the point (I ∗,J ∗). As τ → 2β, the point (I ∗,J ∗) moves towards (1/2,1/2) and the
maximum frequency goes to zero. (a)–(e) Sample bifurcation diagrams taken along the cuts shown in the phase diagrams. Black lines are fixed
points and green lines are limit- cycles. Solid lines are stable solutions and dotted lines [panel (c)] unstable ones. τi = 100, all other parameters
are as in Fig. 1.

τe = τi = 10. For example, if we choose units of milliseconds,
then the value ω = 0.2 in Fig. 1 corresponds to about 32 Hz.

For τ < 2β, the two Hopf bifurcation lines meet along the
diagonal at a point (I ∗,J ∗). The frequency of the instability
along these lines increases for decreasing J and reaches a
maximum precisely at this point. The frequency along the
lines is

ω = ± 1

τe

√
τ (β − τJ )

(β + J )
, (13)

which has a maximum

ω∗ = ± 1

τe

√
τ (2β − τ ), (14)

from which is it easy to see that the maximum frequency
goes to zero when τ = 2β. This occurs at the point (I ∗,J ∗) =
(1/2,1/2). While the value of this point for the general case of
τ < 2β is a complicated formula, it takes a simple form in the
limit τ → 0, namely limτ→0(I ∗,J ∗) = (1/2 + β,1/2 − β).

Figure 2 shows the phase diagram when β = 1 and τ =
0.2. The Hopf bifurcation lines are shown in green. From
the limiting case, we expect the point (I ∗,J ∗) to be just to the
right and below (3/2, − 1/2), which it is. Example bifurcation

diagrams are shown in panels (a) through (e). Fixed points
are the black lines as before, whereas periodic limit cycles are
shown as green lines. Solid lines are stable solutions and dotted
lines are unstable solutions. Note that the plots of the frequency
of oscillation to the right of each bifurcation diagram refer to
perturbations of the fixed-point solution, not to the limit cycle
if there is one.

If we look at the bifurcation diagrams from (a) to (e) in
succession in Fig. 2, we see changes in the nature of the
oscillatory solutions. Furthermore, these changes are related
to the presence of the saddle-node bifurcations. Let us first
consider panels (b) and (c), which lie to the left of the
saddle-node lines, in the regime where there is only a single
fixed point. In these two panels, there is a subcritical Hopf
bifurcation at the critical values of the input I (the green
lines in the phase diagram). This means that the limit cycle
which grows continuously from the point of instability (as a
function of I in the panels) is unstable. At some point it meets
and annihilates with a large-amplitude limit cycle which is
stable. This so-called “saddle node” of limit-cycles bifurcation
is indicated in panel (b) with an arrow.

The nature of the Hopf bifurcation (super- or subcritical)
can be determined by carrying out a weakly nonlinear
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analysis at the bifurcation point; see the Appendix. The Hopf
bifurcation is subcritical if

J + 3

5

φ′′′
e

(φ′′
e )2

(β − τJ )

(β + J )
> 0. (15)

For the low-rate fixed point φ′′′
e = 0, which means that limit

cycles are supercritical for J < 0 and subcritical for J > 0.
For the high-rate fixed point one can show that the bifurcation
is always subcritical.

To the right of the saddle-node lines, in the regime where
there are three fixed points, the situation is different. In panel
(d) we see that there is a subcritical Hopf bifurcation of the
high-rate fixed point, but the resulting large-amplitude limit
cycle suddenly vanishes in the middle of the “s-shaped” region,
leaving the unstable fixed point to the left without a limit-cycle
solution. Figure 3 shows the same bifurcation diagram with
a close-up of the low-rate branch. By magnifying we see that
there is also a subcritical Hopf bifurcation of the low-rate state,
as expected, and that the unstable limit cycle (dotted green
line) meets and annihilates with the large-amplitude stable
limit cycle. However, this occurs to the right of the leftmost
saddle-node bifurcation. This means that the high-rate fixed
point in the “bistable” regime (it is not bistable) is an unstable
spiral which does not lead to a stable limit cycle.

In this regime the model exhibits an interesting “all-nor-
none” response to transient external inputs, similar to the action
potential of a neuron. If the steady input is fixed at, for example,
I = 0 in Figs. 2(d)–3(d), then a small transient increase in input
to the excitatory population would just decay away to zero,
which is the only stable solution. If, however, the transient
input is strong enough to increase the firing rate above the
saddle point (middle dotted line in the “s-shaped” region), then
the rate will increase beyond the unstable high-rate fixed point
and circle back down to zero again. More specifically, there is
a separatrix in phase space which separates those inputs which
decay to zero monotonically, from those which undergo an
excursion. In the case of the simple two-variable model Eqs. (1)
without delays, this separatrix is just the stable manifold of the
saddle point.

An illustration of this all-or-none effect can be seen in Fig. 4.
As the amplitude of the transient input is increased, a threshold
is reached, beyond which there is a large excursion, the shape
of which is essentially independent of the stimulus strength.
The latency of the onset of the excursion does depend on
stimulus strength, as with action potentials in neurons. To close
the analogy, excitation and inhibition are like Na and K. The
conditions for this behavior in the firing-rate model are that the
recurrent excitation be strong (J > 1/2) and that excitation be
sufficiently faster than inhibition τ < 2β. Similarly, in order to
generate action potentials, the Na conductance must be large,
and the Na activation must be fast compared to K.

Finally, another way to get over the separatrix is by
inhibiting the inhibitory population, e.g., by reducing its
external excitatory drive. This is illustrated in Fig. 5.

Now if we look at Fig. 2(e) we see that the situation has
changed yet again. Here there is a subcritical Hopf bifurcation
of the high-rate fixed point, as expected, but the unstable limit
cycle simply vanishes in the middle of the s-shaped region.
If we magnify the low-rate solution, seen in Fig. 3, we see
precisely the same type of behavior. In fact, the way the

FIG. 3. Panels (d) and (e) from Fig. 2. The close-ups show
bifurcations of the low-rate fixed point.

unstable limit cycle disappears is that it touches the saddle
point. When it does this, the unstable manifold of the saddle
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FIG. 4. An all-or-none population spike in the model Eqs. (1). The
parameters are J = 1, I = 0, β = 1, τ = 0.2, which place the model
in the s-shaped regime of Fig. 3(d). The excitatory input is transiently
increased between t = 100 and t = 150. Above a threshold value
of the transient input an all-or-none population spike occurs. The
inhibitory firing rate is shown as a dotted line.

point circles around and returns to the saddle, i.e., there is a
homoclinic bifurcation.

If we increase J even further, we will find no other changes
in the bifurcation diagram. There will always be an unstable
limit cycle, of both fixed points, and a homoclinic bifurcation,
again of both unstable limit cycles. Therefore, there are no
stable limit cycles. We can be confident that this is the case, not
because we have carried out extensive numerical simulations,
but rather because this behavior is predicted from theoretical
arguments.

D. The Takens-Bogdanov bifurcation in E-I networks

The reasoning is as follows. If we are interested in oscilla-
tions in, or near the bistable regime, then by construction we
are near both a saddle-node bifurcation (steady instability) and

0

1

2

3

4

5

6

r e

100 200 300 400 500
time

0
0.4
0.8

I i/I i0

FIG. 5. An all-or-none population spike is generated here by
transiently reducing the excitatory drive to the inhibitory population.
The parameter values are the same as in Fig. 4

a Hopf bifurcation (oscillatory instability). In our two-variable
firing-rate model this means that we are near a set of parameter
values for which both eigenvalues are zero; this is known as
a Takens-Bogdanov bifurcation. This double-zero eigenvalue
problem has been extensively studied for the general case (see
[24] for detailed description). Like all local bifurcations, the
dynamics near this point are well described by a simplified
equation (or set of equations), which are universal. That is, the
form of the reduced equations only depends on there being two
zero eigenvalues, not on the details of the original equations.
The exact parameter values in the reduced equations, however,
do depend on the details. In the next section we give a
detailed description of this bifurcation for Eqs. (1). The
Takens-Bogdanov (TB) bifurcation can exhibit two distinct
behaviors depending on the sign of the nonlinear terms in
the reduced or amplitude equations. Therefore, in order to
determine which case is the relevant one for the firing-rate
equations we are studying, we derive the amplitude equations.
We provide an overview of the procedure in this section and
relegate the detailed calculation to the Appendix.

In the vicinity of the TB bifurcation in Eqs. (1) with
instantaneous synapses, the firing rates can be expressed as(

re

ri

)
=

(
re0

ri0

)
+

(
a√
ab

)
X(T ) +

(√
a/b

−1

)
Y (T ), (16)

where re0 and ri0 are the steady state values of the firing rates
right at the bifurcation, a = φ′

eJei/τe, b = φ′
iJie/τi , and the

slowly evolving variables X and Y evolve on a slow time scale
T according to

∂T X = Y, ∂T Y = μ1�Ie + μ2�τiY + cX2 + dXY,

(17)

where

μ1 =
√

b

a

φ′
e

τe

, μ2 =
√

ab
1

τi

,

c = φ′′
e

√
b

a

J 2
ei

2τ 3
e

, d = φ′′
e

Jei

2τ 2
e

(
Jee + Jei

√
b

a
+ Jei

aτe

)
.

(18)

See the Appendix for details. Importantly, here the dynamics
depend on the two parameters �Ie and �τi , which are the
deviation of the external input to the excitatory neurons and the
deviation of the inhibitory time constant from their values right
at the TB bifurcation, respectively. The form of the amplitude
equations [Eqs. (17)] shows explicitly how the TB bifurcation
is intimately related to a SN bifurcation. Fixed points are
given by (X0,Y0) = (±√

μ1�Ie/c,0) and hence there is a SN
bifurcation in X for �Ie = 0. The two fixed-point solutions
near the SN are therefore given by(

re

ri

)
=

(
re0

ri0

)
±

(
a√
ab

)√
μ1�Ie/c. (19)

The stability of these two fixed-point solutions depends on
the influence of Y as well. Of the two, one will be stable to
steady instabilities, but will destabilize to a Hopf bifurcation
(HB) when the inhibitory time constant is sufficiently large. In
the case of the SN bifurcation which occurs at high rates, the
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FIG. 6. The phase diagram of fixed-point solutions in the vicinity
of the TB bifurcation for the high firing-rate branches in the firing-rate
equations [Eqs. (1)] with instantaneous synapses. Parameter values
are Jee = 2, Jei = Jie = 1, Jii = 0, τe = τi = 20, and Ii = 1.

condition can be written as

�τi >
d

μ2
X0, = d

μ2

√√
b

a

φ′
e

cτe

�I 1/2
e . (20)

Again, for the derivation please see the Appendix.
Figure 6 summarizes the types of fixed-point solutions seen

in the vicinity of the TB in an E-I network. When we are
slightly above the TB bifurcation, for values of �τi > 0 there
ceases to exist a stable fixed point near the SN; see, e.g., the
horizontal, black dashed line in Fig. 6 at �τi = 4. Rather,
there is an unstable focus. As explained in [24], there are two
possibilities in the vicinity of this focus: (1) a stable limit
cycle or (2) an unstable limit cycle. Which scenario occurs
depends on the sign of the product of the nonlinear coefficients
in Eq. (20) c and d. In the Appendix we show that the limit
cycle is always unstable in Eqs. (17). The solution to the
unstable limit cycle near the Hopf Bifurcation can be written
(X,Y ) = (1,iω)AeiωT + c.c., where A is the amplitude of the
unstable limit cycle, the dynamics of which are given by a
reduced equation in the vicinity of the Hopf bifurcation (see
the Appendix for details), and ω = √

2cX0. Hence, the firing
rate of the neurons in the vicinity of the Hopf bifurcation
arising from the TB is given by(

re

ri

)
=

(
re0

ri0

)
+2

(
a√
ab

)
A cos ωT −2ω

(√
a/b

−1

)
A sin ωT .

(21)

Furthermore, this unstable limit cycle disappears via a ho-
moclinic bifurcation [24], and there is therefore no stable
large-amplitude limit cycle. The upshot is that near the SN
there will be no stable fixed points and no stable limit cycle.
Hence, the system will be ejected locally through growing
oscillatory fluctuations. For large values of the input, the
unstable focus stabilizes and an unstable limit cycle arises.

Figure 7 illustrates how the reduced equations capture the
bifurcation structure of the full firing rate equations in the
vicinity of the TB. The parameter values are the same as in
Fig. 6, with �τi = 4; see the dashed, horizontal line in that
figure. The two fixed-point branches near the SN, given by

-0.26 -0.24 -0.22 -0.2
I

1.8

2

2.2

2.4

2.6

r e

amplitude equation: stable FP
amplitude equation: ustable FP
amplitude equation: unstable LC
simulation of rate equation: unstable solutions

backward Hopf bifurcation

FIG. 7. A bifurcation diagram in the vicinity of the Takens-
Bogdanov bifurcation, showing a comparison of the amplitude
equation with simulation from the rate model. Parameters are the
same as in Fig. 6. The orange and black lines are from Eq. (19) and
the dashed green lines are from Eq. (21).

Eq. (19), are shown in orange and black. The orange fixed
point is unstable (dashed) until a critical value of the external
input is reached, given by condition Eq. (20). The amplitude
of the unstable limit cycle is shown by plotting the maximum
and minimum of re from Eq. (21); see the dashed green lines.
Finally, the unstable solutions from simulation of the firing-
rate equations Eqs. (1) are shown as open circles.

Finally, let us reiterate that in Fig. 2, as we increase J we
are moving ever closer to this double-zero bifurcation point
(in the vicinity of the saddle-node lines). Therefore, once we
arrive at panel (e), we can be confident that no further changes
in the bifurcation diagram will occur.

E. The rate equation with delays and synaptic dynamics

We now consider the rate equations with synapses that
exhibit delays and finite rise and decay times, i.e., Eqs. (1)–(3).
The fixed points are not altered by the presence of additional
time constants or delays. The linear stability of these fixed
points, on the other hand, is now given by the full eigenvalue
equation, Eq. (5).

The low-frequency limit

In the model without delays, the frequency of the oscillatory
instability goes to zero precisely at the saddle-node line. Once
delays and synaptic time constants are introduced, they will
alter these lines. We can study this by taking the limit of
λ = iω → 0 in Eq. (5). When we do this, we arrive once again
at the equations for the Hopf bifurcation, Eqs. (12) to leading
order. The only change is the form of the parameter τ , which
is now

τ = (τe + τd,e + τr,e + De)

(τi + τd,i + τr,i + Di)
(1 + Jii). (22)

This means that when we include synaptic time constants
and delays, the Hopf bifurcation arising from the Takens-
Bogdanov point in the vicinity of the saddle-node persists. The
only difference is that the effective time constant of excitation
and inhibition are now approximately just the linear sum of all
of the time constants of each type.
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FIG. 8. (Top) The phase diagram with both synaptic delays and
synaptic time constants. Here the parameter values are β = 1, τ =
0.2. The excitatory and inhibitory synaptic time constants and delays
are chosen so that the ratio, given by Eq. (22), remains fixed. The green
curve is for the case where all synaptic time constants and delays are
zero. The orange curve is for De = τr,e = τd,e = 0.1, Di = τr,i =
τd,i = 1 and the blue curve is for De = τr,e = τd,e = 1, Di = τr,i =
τd,i = 10. (Bottom) The critical frequency along the Hopf-bifurcation
line for the different cases.

We can examine the robustness of this asymptotic result
numerically by simulating Eqs. (1)–(3). Specifically, if we
vary the synaptic time constants but keep the combination τ

fixed, we expect that the Hopf line will asymptote to the case
without synaptic time constants as the frequency decreases
(which means for increasing J ). This is shown in the phase
diagram Fig. 8, where we have fixed the value τ = 0.2 and
also β = 1 as in Fig. 2. The green curve indicates the Hopf
bifurcation lines when there are no synaptic dynamics, and
it is therefore identical to the curve in Fig. 2. The orange
curve is for De = τr,e = τd,e = 0.1, Di = τr,i = τd,i = 1, and
therefore τ = 0.2 and so remains unchanged. The frequency of
oscillation along this curve is shown in the bottom panel. If we
increase all of the synaptic time constants tenfold, i.e., De =
τr,e = τd,e = 1, Di = τr,i = τd,i = 10, the blue curve is found.

III. AN E-I NETWORK OF LEAKY
INTEGRATE-AND-FIRE NEURONS

Here we test the robustness of the results in the preceding
section, which were derived from a set of firing-rate equations,
through analysis and numerical simulation of a network of

spiking neurons. We consider an all-to-all connected network
of NE and NI excitatory and inhibitory leaky integrate-and-fire
(LIF) neurons. The membrane potential of a neuron i from
population A ∈ {E,I } obeys the following equation:

τA

dV A
i

dt
= −V A

i + IA
rec(t) + IA

ext,i(t). (23)

Whenever the membrane voltage exceeds a threshold, a spike
is emitted and the membrane voltage is reset; i.e., whenever
V A

i (t−) = Vt , then V A
i (t+) = Vr . The external input current

is modeled as IA
ext,i(t) = μA

ext + σA

√
τAηi(t). That is, there is

a constant component plus Gaussian white noise, which is
independent from neuron to neuron, i.e., 〈ηi(t)ηj (t − t ′)〉 =
δij δ(t − t ′). The recurrent input current consists of inhibitory
and excitatory synaptic activation, i.e., IA

rec(t) = IAE
syn (t) +

IAI
syn(t), where IAB

syn = τA
JAB

NB
sB(t) and the strength of a recurrent

synapse from a neuron in population B to a neuron in
population A is therefore given by JAB

NB
. The synaptic variable

sA obeys the differential equations

τ d
A

dsA

dt
= −sA + xA,

τ r
A

dxA

dt
= −xA +

∑
k

NA∑
j=1

δ
(
t − t kj − τA

l

)
, (24)

where the summation is over all spikes emitted by all neurons
in population A (all-to-all connected).

This model network can be studied analytically by consid-
ering a kinetic formulation of the dynamics [3]. Specifically,
all neurons in population A are identical and receive identical
inputs except for uncorrelated and independent Gaussian
current injection. This allows us to write an evolution equation
for the probability distribution of the membrane potential
of neurons in a population A with appropriate boundary
conditions; see the Appendix for details. From this analysis
we can calculate the linear stability of stationary network
states, which leads again to Eq. (5). The lone difference with
the firing-rate equations is the form of the neural response
function, which takes the form of confluent hypergeometric
functions [3,25].

Figure 9 shows a phase diagram obtained by solving Eq. (5)
numerically for the E-I network of LIF neurons. The bold black
curve is the line of SN bifurcations, ending in a cusp near
(μext,Jee) = (−57 mV, 38 mV/ms). The thin lines are lines
of Hopf bifurcations, for increasing slow inhibitory synaptic
kinetics (black, τ r

i = 2 ms; green, τ r
i = 3 ms; orange, τ r

i =
4 ms). When the synaptic inhibition is sufficiently fast, τ r

i =
1 ms, there is no Hopf bifurcation. The bottom panel shows the
frequency of oscillation of the instability along the H curve.
Note that the frequency goes to zero for increasing Jee as the
H curve approaches the SN line (see the caption for parameter
values).

The phase diagram for the network of LIF neurons shown
in Fig. 9 is qualitatively similar to the one for the system
of firing-rate equations shown in Fig. 2. This suggests that the
oscillatory dynamics may also obey the same phenomenology.
This is illustrated in Fig. 10. Note the large amplitude
oscillations in panels (b) and (c), consistent with a large
amplitude limit cycle arising via a subcritical Hopf bifurcation,
as in Figs. 2(b)–2(d), while the oscillations in panel (d)
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FIG. 9. (Top) The phase diagram for the network of all-to-all
connected LIF neurons. Saddle-node (SN) bifurcations occur along
the black curve, whereas the colored curves are Hopf bifurcation lines.
The maroon, green, and orange curves are for τ r

i = 2, 3 and 4 ms,
respectively. There is no Hopf bifurcation for τ r

i = 1 ms. (Bottom)
The frequency of oscillation of the instability on the Hopf curves. Note
how the frequency of oscillation goes to zero as the curves approach
the SN, indicating the vicinity of a Takens-Bogdanov bifurcation.
Other parameters are τ r

e = 1 ms, τ d
e = τ d

i = 10 ms, τe = 20 ms, τi =
10 ms, τr = 1 ms, Jei = Jie = 30 mV/ms, Jii = 20 mV/ms, I I

ext =
−60 mV/ms, σe = σi = 5 mV, Vt = −55 mV, and Vr = −65 mV.

are much more irregular, consistent with damped noise-
driven oscillations [and with Fig. 2(e)] and hence with the
phenomenology of the Takens-Bogdanov bifurcation.

The noise-driven damped oscillations due to the proximity
of the TB bifurcation can lead to a broad increase in power at
low frequencies in the power spectrum of the spiking activity.
This is illustrated in Fig. 11. Figure 11(a) shows a bifurcation
diagram of the firing rate of E neurons in the bistable regime
in the network of LIF neurons. Figure 11(b) shows sample
traces of sustained, working-memory-like behavior for two
sets of parameter values, and the power spectra of this activity
is shown in Fig. 11(c). Note that the spectrum of the orange
trace, for which there is no instability, nonetheless shows a
large increase in power in the 1–10-Hz range (δ to θ ) [26].
Damped oscillations at higher frequencies can also be obtained
near the TB bifurcation; see Fig. 12 for an example of low-β
oscillations.

Once a Hopf bifurcation occurs in the vicinity of the SN
bifurcation, the effective range of inputs for which there is
bistability is reduced. Therefore, when the network activity
is in the low-activity state in the bistable regime, a transient

input will not necessarily lead to sustained activity. In the
firing-rate equation, transient inputs in this regime lead to an
all-or-none response of the network to population bursts; see
Fig. 4. In the network of LIF neurons, similar dynamics are
seen, although the response is more heterogeneous depending
on the strength of the input. This is illustrated in Fig. 13, where
sufficiently strong inputs lead to all-or-none population bursts
[green and black dashed lines in Fig. 13(b)], whereas more
moderate inputs can lead to more complex responses [violet
and orange in Fig. 13(b)].

IV. DISCUSSION

In this paper we have studied the phenomenology of
oscillations in the bistable regime of E-I networks. Oscillations
emerge generically in E-I networks via an oscillatory (Hopf)
instability and have been studied extensively both numerically
and analytically [3,5,27,28]. These studies, as well as related
work on the response of spiking networks to weak external
stimuli, e.g., [25], make the implicit assumption that the
network is far from a “working memory” regime in which
several stable stationary states coexist. When this is no longer
the case, the Hopf instability leading to oscillations and the
steady instability leading to bistability of fixed points must
be considered together. The dynamics which result from the
interaction of these two types of instabilities can be understood
by considering a reduced description of the system in which
they co-occur, known as a TB bifurcation [24]. This description
predicts that when the firing rate first becomes unstable to
oscillations, there is, in fact, no stable limit cycle solution.
This has two main consequences for neuronal activity: (1)
population bursts robustly occur (see Figs. 4, 5, and 13) and
(2) oscillations during working memory states are noise driven
(not limit cycles) and hence broadband. Oscillations emerging
from the TB bifurcation can, in principle, exhibit arbitrarily
low frequencies, although in network simulations they robustly
occur in the δ to γ range; see Figs. 11 and 12 for examples of
δ and θ and β.

Interestingly, the dynamical regime of neuronal networks
near the TB point is related to the so-called inhibition stabilized
network regime (ISN) discussed in [29]. In that work, it
was noted that eigenvalues of the linearization of a network
of excitatory and inhibitory neurons about a fixed point
are not orthogonal. The consequence of this is that certain
perturbations can lead to transient amplification of the activity,
even though the fixed point is linearly stable. The authors
showed that the linearized system could be rewritten in terms
of a difference and a summation mode, revealing a hidden
feedforward structure: Perturbations of the difference mode
caused transient amplification of the summation mode. An
analogous feedforward structure is clearly visible in the normal
form for the TB [Eqs. (17)]. In particular, the variable Y ,
which represents the amplitude of perturbations of the scaled
difference between the excitatory and inhibitory populations,
drives X, a summation mode; see Eq. (16). In contrast with
the ISN, networks at the TB point are not linearly stable and
hence nonlinear effects must be considered, i.e., the quadratic
terms in Eq. (13). Therefore, the TB represents the dynamics
of an ISN in the limit in which the recurrent excitation
is strong enough to overcome the stabilizing effects of the
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FIG. 10. A magnification of the phase diagram from Fig. 9(a) and illustrative bifurcation diagrams and corresponding dynamics from
numerical simulations (b)–(d). The phase diagram shows the line of SN bifurcations (black) and a line of H bifurcations for τ r

i = 2 ms
(maroon). The vertical dashed lines indicate the values of the recurrent excitatory synaptic weights Jee = 37, 38, and 39 mV/ms and the
ranges of external input μe,ext ∈ [−54, − 59] mV used for the bifurcation diagrams and numerical simulations shown in (b)–(d). (b) (Top) The
bifurcation diagram for Jee = 37 mV/ms showing the stationary firing rate νe0 of the excitatory population and the frequency ω of the most
unstable eigenvalue, both calculated from the dispersion equation for the network of LIF neurons. Below this diagram is the firing rate of the E
neurons from a numerical simulation in which the external input is ramped down across the range of values from the bifurcation diagram. (c)
and (d) Same as (b), but for Jee = 38 and 39 mV/ms. All parameter values are the same as in Fig. 9.

inhibition. There is growing evidence that neuronal circuits in
the visual cortex operate as an ISN [29,30]. Our results suggest
that ISN dynamics may also be associated with saddle-node
bifurcations typically linked to association cortex functions,
e.g., working memory and decision making, when recurrent
excitation is strong enough and the circuit operates near a TB
point.

Our approach in this paper has been to analyze the
dynamics near a TB point in a simplified firing-rate model
and then confirm this analysis in networks of spiking neurons.
The phase diagrams delineating different dynamical regimes
are qualitatively similar in the two models; compare, for
example, the phase diagrams in Figs. 2 and 9. Indeed, heuristic
firing-rate equations provide a good qualitative description of
emergent dynamical states in spiking networks even when
there is significant quenched variability and even for complex

spatiotemporal patterns, e.g., [23,31,32], although they fail to
describe the response of the network to external drive when
spike synchrony is important [20,33]. In general, important
differences in the dynamics between rate equations and spiking
networks can arise when the dynamics is nonstationary. An
example of this can be seen in the complex transient response
to pulses in the network shown in Fig. 13, compared to
the simple all-or-none response in the rate equation shown
in Fig. 4. Therefore, although both models exhibit large-
amplitude excursions in the firing rate in the vicinity of the
TB in response to transient inputs, a qualitative validation of
the analysis from the simplified model, the spiking network
shows more complexity in response duration. We have not
studied these differences in any detail here.

The existence of a TB bifurcation in the Wilson-Cowan
equations was first mentioned by Borisyuk and Kirrilov [34].
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FIG. 11. Oscillatory fluctuations in the bistable regime in the δ

and θ ranges. (a) A bifurcation diagram given the same parameters
as in Fig. 9 and with Jee = 39 mV/ms for the case when there is no
Hopf bifurcation, i.e., oscillatory modes are damped. (b) Examples
of sustained activity in the bistable regime for μe,ext = −57.78 mV
[see vertical dotted line in panel (a)]. The black trace is for slow
excitation: τ r

e = τ r
i = 1 ms, τ d

e = 20 ms, τ d
i = 10 ms. In this case

oscillations are very strongly damped. The orange trace is for the
same parameters except τ d

e = 10 ms. (c) The power spectra for 10-s
traces of sustained activity for the traces shown above.

Despite this, the significance of the TB for neuronal dynamics
has not been discussed or analyzed in detail elsewhere. Here
we explicitly derived the normal form equation for the TB
from the firing-rate equations [Eqs. (1)]. From the normal
form we showed that the Hopf bifurcation leads to an unstable,
small-amplitude limit cycle. This unstable limit cycle, in turn,
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FIG. 12. Oscillatory fluctuations in the bistable regime in the low-
β range. (a) The firing rate of the excitatory population in response
to a transient input at t = 1000 ms and for three values of τ d

e : 10 ms
(black), 4ms (orange), and 2 ms (violet). Note that when τ d

e = 2 ms
the upper branch is unstable and the response is a population burst.
Parameters: Ii,ext = −48.3 mV, Jee = 10 mV/ms, Jie = 20 mV/ms,
Jei = Jii = 3 mV, τ r

e = τ r
i = τ d

i = 1 ms, τe = 20 ms, τi = 10 ms,
τr = 1 ms, Vt = −55 mV, Vr = −59 mV.

vanishes in a homoclinic bifurcation of the saddle point [see
Figs. 2(e) and 7] with the consequence that over a range of
external input values there is no stable attractor, oscillatory or
otherwise, at “high” rates; the activity drops to the stable lower
branch in this range. This suggests that physiological effects
or external manipulations which promote oscillations in the
E-I loop may disrupt working-memory states; e.g., see [35].
More generally, slow oscillations due to the E-I loop can serve
as electrophysiological biomarkers of networks operating in
the bistable regime: Hyperactivity in such networks (leaving
the bistable regime through excess excitation) is accompanied
by a decrease in oscillation amplitude and an increase in
oscillation frequency, while hypoactivity with an increase in
oscillation amplitude and a decrease in frequency [36]. We
have recently suggested that this mechanism may account for
the θ -band EEG being a biomarker of treatment outcome in
patients suffering major depression [36].

ACKNOWLEDGMENTS

A.R. acknowledges a Ramón y Cajal grant from the Spanish
government and the Marie Curie Cofund action BIOTRACK.

012410-11



ALEX ROXIN AND ALBERT COMPTE PHYSICAL REVIEW E 94, 012410 (2016)

-58 -57.8 -57.6 -57.4
μe,ext (mV)

0

20

40

60

80

ν e0
 (H

z)

(a)

0

50

100

150

ν e (H
z)

500 1000 1500 2000 2500 3000
time (ms)

-58
-57.5

-57
-56.5

-56
-55.5

-55

μ e,
ex

t (m
V

)

(b)
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APPENDIX

1. Amplitude equation for oscillations in the E-I rate
equations without synaptic dynamics

In this section we calculate an equation for the amplitude of
oscillations arising from a Hopf instability a system of firing
rate equations for an E-I network. The equations are

τeṙe = −re + φ(Jeere − Jeiri + Ie),
(A1)

τi ṙi = −ri + [Jiere − Jiiri + Ii]+,

where [x]+ = x if x > 0 and is zero otherwise. The fixed-
point solution of this system of equations can be written r0 =
(re0,ri0).

To determine the dynamics of the amplitude of the os-
cillations, we expand the rates as r = r0 + εr1 + ε2r2 + · · · ,

where ε 	 1 is a small parameter defined by the distance from
the value of the external input to E neurons at the bifurcation,
i.e., Ie = Ie0 + ε2�Ie. We also define a slow time T = ε2t and
so ∂t → ∂t + ε∂T . Expanding in orders of ε we find

(L + ε2L2)(εr1 + ε2r2 + · · · ) = ε2N2 + ε3N3 + · · · ,

(A2)
where

L =
(

τe∂t + 1 − Jeeφ
′ Jeiφ

′
−Jie τi∂t + 1 + Jii

)
,

L2 =
(

τe∂T 0
0 τi∂T

)
,

N2 =
(

φ′′
2 (Jeere1 − Jeiri1)2 + φ′�Ie

0

)
, (A3)

N3 =
(

φ′′(Jeere1 − Jeiri1)(Jeere2 − Jeiri2 + �Ie)
0

)

+
(

φ′′′
6 (Jeere1 − Jeiri1)3

0

)
.

O(ε):
At this order we have the linear stability condition

Lr1 = 0. (A4)

The solution to these equations at an oscillatory instability
is r1 = (re1,ri1) = (r̃e1,r̃i1)A(T )eiωt + c.c., where ω is given
by Eq. (13), (r̃e1,r̃i1) = (−Jeiφ

′,iτeω + 1 − Jeeφ
′), and A(T )

is a slowly varying amplitude. We also need the left-null
eigenvector r†, where rL = 0. It is r† = (Jie, − iτeω + 1 −
Jeeφ

′)eiωt .
O(ε2):

Lr2 = N2. (A5)

Making use of the solution r1 from the previous order, we
can write

N2 =
(

J 2
eiφ

′′(1 + τ 2
e ω2

)|A|2 + φ′�Ie

0

)

+
(

J 2
ei

φ′′
2 (1 + iτeω)2A2

0

)
e2iωt + c.c. (A6)

The solution of Eqs. (A5) is r2 = r20 + (r22e
2iωt + c.c.),

where

r20 = (1 + Jii,Jie)T · φ′′J 2
ei

(
1 + τ 2

e ω2
)|A|2 + φ′�Ie

τeτiω2
,

r22 = −(2iτiω + 1 + Jii,Jie)T · φ′′J 2
ei(1 + iτeω)2A2

6τeτiω2
. (A7)

O(ε3):

Lr3 + L2r1 = N3. (A8)

At this order we note that the nonlinear term N3 generates
terms proportional to r1. These secular terms must be elim-
inated in order to solve for r3. This is done by applying the
solvability condition

〈r†,L2r1〉 = 〈r†,N3〉, (A9)

where 〈x,y〉 = ∫
dt(x∗ · y), and we have used 〈r†,Lr〉 = 0,

for any r .
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Using the results from the last two orders we find

N3 =
(−1

0

)[
φ′′Jei(1 + iτeω)A(Jeere20 − Jeire20 + �Ie)

+φ′′Jei(1 − iτeω)A∗(Jeere22 − Jeiri22)

+ φ′′′

2
J 3

ei

(
1 + τ 2

e ω2)(1 + iτeω)|A|2A
]
eiωt + · · · ,

(A10)

and, finally, Eq. (A9) yields the equation

τe∂T A = JeiJie(1 + iτeω)

2τeω[τiω + i(1 + Jii)]
[μ�IeA + c|A|2A],

μ = φ′′
[

1 + φ′(1 + Jii)J

τeτiω2

]
,

(A11)

c = J 2
ei

(
1 + τ 2

e ω2
)[5

6

(φ′′)2(1 + Jii)

τeτiω2
J + φ′′′

2

− i

3ω
(φ′′)2Jee

]
.

Whether the oscillations are subcritical or supercritical de-
pends on the sign of the real part of the cubic term c. They
are subcritical when the inequality Eq. (15) is satisfied. Note
also that the dynamics blows up in the limit ω → 0, i.e., in the
vicinity of the SN bifurcation. In this limit one must rescale
the firing rates and take into account the fact that there are two
near-zero eigenvalues to obtain the correct equations. We do
this in the next section.

2. Amplitude equation for the Takens-Bogdanov bifurcation

Again we consider the firing-rate equations Eqs. (A1),
although we rewrite them slightly to obtain

ṙe = − re

τe

+ 1

τe

φ(Jeere − Jeiri + Ie),
(A12)

ṙi = − ri

τi

+ 1

τi

[Jiere − Jiiri + Ii]+.

At the TB bifurcation point, there are two zero eigenvalues
of the linearized system; i.e., both conditions Eqs. (7) and
(8) hold. These conditions greatly simplify the form of the
linearized system.

Once again we expand the firing rates in a small parameter ε,
which measures the distance from the TB bifurcation. The ex-
pansion is r = r0 + εr1 + ε3/2r2 + ε2r3 + ε5/2r4 + · · · . We
take Ie = Ie0 + ε2�Ie, τi = τi0 + ε�τi and define the slow
time T = ε1/2t . Plugging these expansions into Eqs. (A12)
and using Eqs. (7)–(8), we can write

(L + ε1/2L1 + εL2)(εr1 + ε3/2r2 + · · · )

= ε2N2 + ε5/2N3 + · · · , (A13)

where

L =
(

∂t − √
ab a

−b ∂t + √
ab

)
, L1 =

(
∂T 0
0 ∂T

)
,

L2 =
(

0 0
b −√

ab

)
�τi

τi0
,

N2 =
(

φ′′
2τe

(Jeere1 − Jeiri1)2 + φ′
τe

�Ie

0

)
,

N3 =
(

φ′′
τe

(Jeere1 − Jeiri1)(Jeere2 − Jeiri2)
0

)
, (A14)

and where a = φ′
eJei/τe and b = Jie/τi0.

O(ε):

Lr1 = 0. (A15)

The solution is r1 = e1X(T ), where e1 = (a,
√

ab) is the
right null eigenvector of L and X(T ) is a slowly varying
amplitude. The left null eigenvector of the matrix L satisfies

LT r†1 = 0 (A16)

and can be taken as r†1 = (b, − √
ab).

O(ε3/2):

Lr2 = −L1r1, = −e1∂T X, (A17)

which indicates that the action of the linearized operator on
r2 is to rotate it parallel to the right null eigenvector. This
is one way of defining a generalized right null eigenvector
e2, for which L2e2 = 0. One choice for this eigenvector is
e2 = 1

2 (
√

a/b, − 1). If we choose r2 = e2Y (T ), where Y (T )
is a slowly varying amplitude we find that ∂T X = Y . The
generalized left-null eigenvector e†2 for which LT e†2 = e†1 can
be taken to be e†2 = − 1

2 (
√

b/a,1)
O(ε2):

Lr3 + L1r2 + L2r1 = N2, (A18)

where

N2 =
(

φ′′
e J 2

ei

2τ 3
e

X2 + φ′
e

τe
�Ie

0

)
. (A19)

We project Eq. (A18) onto the left-null eigenspace of L to
eliminate secular terms. That is, we must solve

〈e†1,L1r2〉 = 〈e†1N2〉, (A20)

where the term proportional to L vanishes by the definition
of e†1 and the term proportional to L2 is identically zero. Here
〈x,y〉 = xT · y is a dot product. Solving this equation yields

√
ab∂T Y = bφ′

e

τe

�Ie + bφ′′
e J 2

ei

2τ 3
e

X2. (A21)

In order to solve for r3, we project onto the generalized
left-null eigenspace

〈e†2,Lr3〉 = 〈e†2,N2〉, (A22)

which yields

−bre3 +
√

abri3 = 1

2

√
b

a

φ′
e

τe

�Ie + 1

2

√
b

a

φ′′
e J 2

ei

2τ 3
e

X2. (A23)

O(ε5/2):

Lr4 + L1r3 + L2r2 = N3. (A24)

We project onto the left-null eigenspace to obtain

〈e†1,L1r3〉 + 〈e†1,L2r2〉 = 〈e†1,N3〉, (A25)
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where

N3 =
(

φ′′
e Jei

2τ 2
e

(Jee

√
a/b + Jei)XY

0

)
. (A26)

This yields

−
√

b

a

φ′′
e J 2

ei

2τ 3
e

XY − ab
�τi

τi0
Y = bφ′′

e Jei

2τ 2
e

(Jee

√
a/b + Jei)XY.

(A27)
Finally, collecting terms at orders up to ε5/2 yields the

coupled amplitude equations Eqs. (17).

3. Amplitude equation for the Hopf bifurcation near the
Takens-Bogdanov bifurcation

In this section we show that the Hopf bifurcation in the
vicinity of the TB is always backward, indicating that the limit
cycle which arises is unstable. We first consider the linear
stability of fixed-point solutions in Eqs. (17). We note first that
the sign of the nonlinear coefficients c and d depends only
on the sign of the curvature of the transfer function φ′′

e . The
sign is negative for high rates (when the transfer function is a
square root) and positive for low rates (when it is quadratic).
Fixed-point solutions are given by X = X0 = (±

√
−μ1�Ie

c
,0),

and hence two solutions appear for �Ie > 0 when c < 0 (high
rate) and for �Ie < 0 when c > 0 (low rate).

The linear stability is found by perturbing about the fixed-
point solutions X = X0 + δXeλt and plugging into Eqs. (17),
where δX 	 1. This yields the characteristic equation λ2 +
λ(−μ2�τi − dX0) − 2cX0 = 0. There is an oscillatory insta-
bility when λ = iω, which occurs when �τi = −dX0

μ2
, and ω =√−2cX0. Note that the combinations dX0 > 0 and cX0 > 0

for the relevant branch (the other is a saddle).
We conduct a weakly nonlinear analysis for this oscilla-

tory instability by expanding the variables X = X0 + εX1 +
ε2X2 + · · · , where the small parameter ε measures the distance
to the bifurcation and is given by �Ie = �Ie0 + ε2�Ie1. We
define a slow time τ = ε2T . Plugging these expansions into
Eqs. (17), we can write

(L + ε2L2)(εr1 + ε2r2 + · · · ) = ε2N2 + ε3N3, (A28)

where

L =
(

∂T −1
ω2 ∂T

)
, L2 =

(
∂τ 0
0 ∂τ

)
,

N2 =
(

0
cX2

1 + dX1Y1

)
,

N3 =
(

0
2cX1X2 + d(X1Y2 + X2Y1)

)
. (A29)

O(ε):

LX1 = 0. (A30)

The solution for an oscillatory instability is X1 = eA(τ )eiωT +
c.c., where the right null eigenvector e = (1,iω) and A is a
slowly varying amplitude. The left null eigenvector is e† =
(ω2,iω)eiωt .

O(ε2):

LX2 = N2. (A31)

Using the solution X1 from last order, we can express the
nonlinear forcing as

N2 =
(

0
c + idω

)
A2e2iωt + c.c. +

(
0

2c|A|2 + �Ie1

)
.

(A32)
From this we find that the solution at this order can be

written X2 = X22A
2e2iωt + c.c. + X20, where

X22 = − (c + idω)

3ω2

(
1

2iω

)
,

X20 = 1

ω2

(
2c|A|2 + �Ie1

0

)
. (A33)

O(ε3):

LX3 + L2X1 = N3, (A34)

where

N3 = 1

ω2

(
0

2c + idω

)
�Ie1Aeiωt

+ 1

ω2

(
0

10
3 c2 + 1

3d2ω2 + icdω

)

× |A|2Aeiωt + c.c. + · · · , (A35)

where we have only written the terms proportional to eiωt .
These are secular terms which must be eliminated for a
bounded solution to exist at this order. This is done by
projecting onto the left null eigenvector of the linearized matrix
L, i.e.,

〈X†,L2X1〉 = 〈X†,N3〉, (A36)

where 〈X,Y 〉 = 1
T

∫ T

0 (X∗ · Y)dt , T = 2π/ω, and X∗ is the
complex conjugate of X. Evaluating Eq. (A36) leads to the
amplitude equation

∂τA = 1

2ω2

(
d − i

2c

ω

)
�Ie1A

+ 1

2ω2

[
cd − i

1

3ω
(10c2 + d2ω2)

]
|A|2A. (A37)

Near the Hopf bifurcation the original firing rates are given
by Eq. (21).

Because the product cd is always positive, the real
part of the cubic coefficient is also always positive, indicating
that the Hopf bifurcation is always backward in the vicinity
of the Takens-Bogdanov bifurcation. This immediately implies
that there is no stable oscillatory solution (locally) since it
can be shown that this unstable limit cycle disappears via
a homoclinic bifurcation (as shown illustratively in Fig. 3);
see [24] for details. This means that, there being no stable
dynamical structures in the vicinity of the TB, the system is
ejected locally.

4. LIF network

The equations are

τA

∂PA

∂t
= σA

2

∂2PA

∂V 2
A

+ ∂

∂VA

[(
VA − IA

rec(t) − IA
ext

)
PA

]
,

(A38)
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together with the boundary conditions

PA(Vt ) = 0, [PA]V
+
r

V −
r

= 0,

∂PA

∂VA

(Vt ) = −2τAνA(t)

σ 2
A

,

[
∂PA

∂VA

]V +
r

V −
r

= −2τAνA(t)

σ 2
A

, (A39)

where [f ]x
+

x− = limε→0[f (x + ε) − f (x − ε)], as well as with

the normalization
∫ Vt

−∞ dVAPA(VA) = 1. Here νA(t) is the
time-varying firing rate of population A. This partial differ-
ential equation is coupled to the following different equations
for the synaptic kinetics through the recurrent input

τ d
A

dsA

dt
= −sA + xA,

τ r
A

dxA

dt
= −xA + νA

(
t − τA

l

)
, (A40)

where νA(t) is the firing rate of population A. Our goal is to
study the oscillatory instabilities of the stationary state in these
equations.

Stationary state and linear stability

The stationary state can be found to be

νA,0 = 1√
πτA

[∫ yA
t

yA
r

dueu2
erfc(−u)

]−1

, (A41)

where yA
t = Vt−IA,0

σA
and IA,0 = IA

ext + τA(JAEνE,0 − JAI νI,0).

The linear stability of this solution is studied by expanding the
dynamical variables as

νA = νA,0 + ενA,1e
iωt , PA = PA,0 + εPA,1e

iωt ,

IA
rec = IA,0 + εIA,1e

iωt , sA = s0
A + εs1

Aeiωt ,

xA = x0
A + εx1

Aeiωt , (A42)

where ε 	 1. Additionally, we define the following variables:

QA = σ 2
A

2τAνA,0
PA, yA = VA − IA,0

σA

. (A43)

Then the linear stability problem can be expressed as

1

2
Q′′

A,1 + yAQ′
A,1 + (1 − iωτA)QA,1 = IA,1

σA

Q′
A,0,

QA,1(yt ) = 0,

[QA,1]y
+
r

y−
r

= 0, (A44)

Q′
A,1(yt ) = −νA,1

νA,0
,

[Q′
A,1]y

+
r

y−
r

= −νA,1

νA,0
,

where, from the differential equations describing the synaptic
kinetics we find that

IA,1 = τA[JAERE(ω)e−i�E (ω)νE,1 − JAIRI (ω)e−i�I (ω)νI,1],

RA(ω) = 1√[
1 + (τ d

A)2ω2
][

1 + (
τ r
A

)2
ω2

] ,

�A(ω) = τ l
Aω + arctan

(
τ d
Aω

) + arctan
(
τ r
Aω

)
. (A45)

Solving for Eqs. (A44) yields the two-by-two system of linear equations(
[UE(iω)]yt

yr
− τEJEEνE,0

σE (1+iτEω) [U
′
E]yt

yr
AE(ω)ei�E (ω) τEJEI νE,0

σE (1+iτEω) [U
′
E(iω)]yt

yr
AI (ω)ei�I (ω)

− τI JIEνI,0

σI (1+iτI ω) [U
′
I (iω)]yt

yr
AE(ω)ei�E (ω) [UI (iω)]yt

yr
+ τI JII νI,0

σI (1+iτI ω) [U
′
I ]yt

yr
AI (ω)ei�I (ω)

)(
νE,1

νI,1

)
= 0. (A46)

Taking JEE = JIE = JE and JII = JEI = JI simplifies the determinant of Eq. (A46) considerably, leading to

1 + τI JI νI,0

σI (1 + iτIω)

[U ′
I (iω)]yt

yr

[UI (iω)]yt
yr

AI (ω)ei�I (ω) − τEJEνE,0

σE(1 + iτEω)

[U ′
E(iω)]yt

yr

[UE(iω)]yt
yr

AE(ω)ei�E (ω) = 0, (A47)

where UA(y,λ) = ey2

�( 1+λτA
2 )

M( 1−λτA

2 , 1
2 , − y2) + 2yey2

�( λτA
2 )

M(1 − λτA

2 , 3
2 , − y2) and M(a,b,z) is the confluent hypergeometric

function; see [37].

Zeros of this complex equation give the combination of
parameters for which an oscillatory instability occurs with
frequency ω. When ω = 0 this equation takes the particularly
simple form

1 + τI JI

∂νI,0

∂II,0
− τEJE

∂νE,0

∂IE,0
= 0, (A48)

where ∂νA,0

∂IA,0
=

√
πτAν2

A,0

σA
[ey2

erfc(−y)]yt

yr
. Equation (A47) can

be hard to solve because one needs to evaluate confluent
hypergeometric functions for which there is no general
scheme. An alternative approach is to solve the PDE via
Laplace transforms, which leads to a stability criterion in terms
of integrals, which are easier to evaluate.
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Stationary state and linear stability via Laplace Transform

This method of solution is described in detail in [38]. The
Fokker-Planck equation, Eq. (A38) can be written

∂PA

∂t
+ ∂FA

∂νA

= νA[δ(VA − Vr ) − δ(VA − Vt )],

FA = − σ 2
A

2τA

∂PA

∂VA

− VA − IA

τA

PA, (A49)

where FA(VA) is the probability flux, IA is the total current, and
the reset condition has now been incorporated directly into the
PDE. Once again we perform the expansion Eqs. (A42) (the
ODEs describing the synaptic activity are solved as before
and so are not explicitly shown here). We additionally expand
JA = JA,0 + εJA,1e

iωt .
The order one equations are

dFA,0

dVA

= νA,0[δ(VA − Vr ) − δ(VA − Vt )],

FA,0 = − σ 2
A

2τA

dPA,0

dVA

− VA − IA,0

τA

PA,0. (A50)

These equations are transformed using a generalized
Laplace transform; see [38]. This leads to an equation for
the transformed probability density,

dP̃A,0

ds
−

(
IA,0 + s

σ 2
A

2

)
P̃A,0 = τAνA,0

s
(esVr − esVt ), (A51)

where f̃ (s) = ∫ ∞
−∞ dvevsf (v). Solving this first order ODE

and then imposing the condition P̃ (0) = 1, yields

νA,0 = 1

τA

[∫ ∞

0

dy

y
e−y2(

e2yyA
t − e2yyA

r

)]−1

, (A52)

which shows the equivalence of the integrals in Eqs. (A41)
and (A52).

At order ε the equations are

iωPA,1 + dFA,1

dVA

= νA,1[δ(VA − Vr ) − δ(VA − Vt )],

FA,1 = − σ 2
A

2τA

dPA,1

dVA

−VA−IA,0

τA

PA,1+IA,1

τA

PA,0,

(A53)

which, once transformed, give

dP̃A,1

ds
−

(
IA,0 + s

σ 2
A

2
− iτAω

s

)
P̃A,1

= IA,1P̃A,0 + τAνA,1

s
(esVr − esVt ). (A54)

Solving this equation and imposing the condition that
P̃A,1(0) = 0 gives

νA,1 = 2IA,1νA,0

σA(1 + iτAω)

B1
A(ω)

B0
A(ω)

, (A55)

where Bn
A(ω) = ∫ ∞

0
dy

y
yne−y2

(e2yyA
t − e2yyA

r )yiτAω. The
conditions for the two populations A are coupled
through the currents IA = τAJAEνEAE(ω)ei�E (ω) −
τAJAI νIAI (ω)ei�I (ω), which leads again to a system of
two coupled linear equations. Setting the determinant equal to
zero (with JEE = JIE = JE and JII = JEI = JI ) yields

1 + τI JI νI,0

σI (1 + iτIω)
2
B1

I (ω)

B0
I (ω)

AI (ω)ei�I (ω)

− τEJEνE,0

σE(1 + iτEω)
2
B1

E(ω)

B0
E(ω)

AE(ω)ei�E (ω) = 0, (A56)

which, comparing with Eq. (A47) shows that [U ′
A(iω)]yt

yr

[UA(iω)]yt
yr

=
2B1

A(ω)
B0

A(ω)
. The advantage of the Laplace transform method is

the ease with which the integrals can be evaluated.
When ω = 0 note that it can easily be shown that B0

A(0) =
1

τAνA,0
and B1

A(0) =
√

π

2 [ey2
erfc(−y)]

yA
t

yA
r

, which agrees with
(A48).

Stability of slow oscillations

Another advantage of the Laplace transform method is
that the resulting integrals can be easily expanded for small
ω. This is the relevant expansion near the Takens-Bogdanov
codimension-two point where the oscillations go to zero. In
this case we have

Bn
A(iω) ∼ Bn

A(0) + ∂Bn
A

∂(iω)

∣∣∣∣
ω=0

iω − ∂2Bn
A

∂(iω)2

∣∣∣∣
ω=0

ω2,

= 1

τAνA,0
+ b

n,1
A iτAω − b

n,2
A τAω2, (A57)

where

b
n,k
A =

∫ ∞

0
dyyn−1[ln y]ke−y2

(e2yyA,t − e2yyA,r ). (A58)
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