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Abstract

Significance: Hydroxycinnamic acids (HCAs) are the main phenolic acids in the western diet. Harmonizing the
available information on the absorption, distribution, metabolism, and excretion (ADME) of HCAs is fundamental
to unraveling the compounds responsible for their health effects. This work systematically assessed pharmacoki-
netics, including urinary recovery, and bioavailability of HCAs and their metabolites, based on literature reports.
Recent Advances: Forty-seven intervention studies with coffee, berries, herbs, cereals, tomato, orange, grape
products, and pure compounds, as well as other sources yielding HCA metabolites, were included. Up to 105
HCA metabolites were collected, mainly acyl-quinic and Cg-C5 cinnamic acids. C¢-C3 cinnamic acids, such as
caffeic and ferulic acid, reached the highest blood concentrations (maximum plasma concentration [C,.x]=
423 nM), with time to reach C,,.x (Tax) values ranging from 2.7 to 4.2 h. These compounds were excreted in
urine in higher amounts than their phenylpropanoic acid derivatives (4% and 1% of intake, respectively), but
both in a lower percentage than hydroxybenzene catabolites (11%). Data accounted for 16 and 18 main urinary
and blood HCA metabolites, which were moderately bioavailable in humans (collectively 25%).

Critical Issues: A relevant variability emerged. It was not possible to unequivocally assess the bioavailability of
HCAs from each ingested source, and data from some plant based-foods were absent or inconsistent.
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Future Directions: A comprehensive study investigating the ADME of HCAs derived from their most im-
portant dietary sources is urgently required. Eight key metabolites were identified and reached interesting
plasma C,,,x concentrations and urinary recoveries, opening up new perspectives to evaluate their bioactivity at
physiological concentrations. Antioxid. Redox Signal. 00, 000-000.
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Introduction

PHYTOCHEMICALS ARE SECONDARY metabolites synthe-
sized in planta that attract pollinators and seed-
dispersing animals, and they provide a defense against
herbivores and microbial infections (Del Rio et al., 2013;
Rodriguez-Mateos et al., 2014). Dietary phytochemicals
include thousands of structures mainly represented by
(poly)phenols, followed by terpenoids, alkaloids, and sulfur-
containing compounds (Crozier et al., 2009; Scalbert et al.,
2005).

Based on their structure, (poly)phenols are classified as
flavonoids (i.e., flavan-3-ols, flavonols, flavones, isoflavones,
flavanones, and anthocyanins) and non-flavonoids, includ-
ing low-molecular-weight phenolic acids and more complex
structures, including stilbenes, lignans, and hydrolyzable
tannins (Del Rio et al., 2013). Hydroxycinnamic acids
(HCA-s) are the phenolic acids consumed in higher amounts
in the Western diet, providing, together with flavan-3-ols, the
majority of the intake of (poly)phenols (Zamora-Ros et al.,
2013; Ziauddeen et al., 2018).

The main dietary HCAs are 3’,4’-dihydroxycinnamic acid
(aka caffeic acid), 4’-hydroxy-3’-methoxycinnamic acid (aka
ferulic acid), 3’,5’-dimethoxy-4’-hydroxycinnamic acid (aka
sinapic acid), and 4’-hydroxycinnamic acid (aka p-coumaric
acid). In planta, these molecules can undergo esterification
with 1L-(—)-quinic acid producing caffeoylquinic, feruloyl-
quinic, and coumaroylquinic acids, along with dicaffeoyl-
quinic acids, known collectively as ‘‘chlorogenic acids’
(CGAs) (Clifford et al., 2017).

Some of these cinnamic acids and the associated phenyl-
propanoic acids may be formed in comparatively low yield
by the gut microbiota from other dietary (poly)phenols (e.g.,
flavonoids such as anthocyanins, flavanols, and proantho-
cyanidins) (Del Rio et al., 2013; Rodriguez-Mateos et al.,
2014) and under normal dietary conditions in the absence of a
labeled substrate it is not possible to discriminate between
these origins.

The metabolism of the minor dietary cinnamic acids has
been reviewed (Clifford et al., 2022) and they are not further
considered here. The mean dietary intake of CGAs in the
Western diet is estimated to be about 200 mg/day, with cof-
fee, cereals, potatoes, artichokes, and fruits, including apples,
cranberries, and blueberries, as the most abundant sources
(Clifford, 1999; El-Seedi et al., 2012; Farah and Lima, 2019;
Zamora-Ros et al., 2013; Ziauddeen et al., 2018).

After consumption, HCAs are partially absorbed in the
upper gastrointestinal tract, whereas up to two-thirds of the
ingested dose reaches the colon to be catabolized by gut
microbiota (Calani et al., 2012; Clifford et al., 2020; Kahle
et al., 2005; Olthof et al., 2001; Sova and Saso, 2020; Stal-

mach et al,, 2010). Some HCA metabolites, including
4’-hydroxy-3’-methoxycinnamic acid, 3’-methoxycinnamic acid-
4’-gulfate (aka ferulic acid-4’-sulfate), 3-(3",4’-dihydroxy
phenyl)propanoic acid (aka dihydrocaffeic acid), 3-(4’-hydroxy-
3’-methoxyphenyl)propanoic acid (aka dihydroferulic acid),
and 3’-methoxy-4’-hydroxycinnamoyl-glycine (aka feruloyl-
glycine), exhibit important bioactivity in in vitro models at
physiological concentrations (Botto et al., 2021; Krga et al.,
2016; Lonati et al., 2022; Monagas et al., 2009; Van Rymenant
et al., 2017a; Van Rymenant et al., 2017b; Verzelloni et al.,
2011).

The potential health benefits of HCAs include the media-
tion of postprandial glucose and hormonal responses (Ros
et al., 2011), and management of some cardiometabolic and
cancer risk factors (Coman and Vodnar, 2020; Kajikawa
et al., 2019; Kempf et al., 2015; Martini et al., 2019; Mills
et al., 2017; Ochiai et al., 2014; Rocha et al., 2012; Ronda-
nelli et al., 2013), lipid metabolism, and obesity (Alam et al.,
2016).

An increasing number of human studies have assessed the
absorption, distribution, metabolism, and excretion (ADME)
of HCAs, and they reveal a substantial inter-study variability
in pharmacokinetic and excretion profiles (Bento-Silva et al.,
2020; Clifford et al., 2020; Clifford et al., 2017; Sova and
Saso, 2020), with maximum plasma concentrations (Ci,.x)
typically ranging from <10 to 800 nM, although there are a
few reports of uM levels (Farah et al., 2008; Lang et al., 2013;
Monteiro et al., 2007; Nardini et al., 2002; Stalmach et al.,
2014; Stalmach et al., 2009).

The dietary sources, and their associated matrix effect,
dosages of ingested parent compounds, and differences be-
tween populations (Bento-Silva et al., 2020) are major factors
explaining the variability observed in blood and urine HCA
levels. However, no comprehensive collection of quantitative
data are currently available for pharmacokinetic profiles,
average blood concentrations, and urinary recovery of HCAs
and their metabolites after the intake of HCAs, or other
(poly)phenol sources that yield HCA-type metabolites.

A harmonized value of HCA bioavailability derived from
the consumption of different food sources is also lacking.
This systematic review, therefore, aimed at (1) summarizing
results from human studies evaluating the ADME of HCAs,
(2) analyzing pharmacokinetic parameters and urinary re-
covery of their circulating metabolites, and (3) carrying out
an estimation of HCA bioavailability. After defining the main
urinary metabolites of HCAs, the review also aimed at de-
fining stoichiometric balances in their production to estimate
the dose of parent compounds to be ingested to achieve a
known excreted amount. Finally, the review is intended to
provide a basis for nutritional planning of bioactivity studies
in physiological concentration ranges.
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Methods
Search strategy and study selection

This systematic review was reported in line with the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) statement guidelines (Moher et al.,
2009; Page et al., 2021). The systematic literature search was
conducted using PubMed, Scopus, and the Web of Science
databases in April 2022, using the syntaxes reported in
Supplementary Table S1. Temporal or spatial filters were
applied to the search.

Reports were included in this review provided they met the
following criteria (1) they were human studies investigating
the ADME of HCAs, (2) volunteers consumed single or re-
peated (multiple) dose(s) of HCAs through a dietary source,
an extract, or a pure compound, (3) they provided a quanti-
tative characterization of the total content of ingested pre-
cursor compounds, (4) native HCAs and their derived
metabolites were quantified in plasma, serum, and/or urine
samples without applying a hydrolysis step to remove phase-
I conjugating sulfate and glucuronide (GIcUA) moieties
(this approach avoided the possible distortion of data for the
phase-II glucuronide and sulfate conjugates of HCA metab-
olites), and (5) at least one pharmacokinetic parameter was
reported, namely peak plasma concentration (Cp,.), area
under the curve (AUC), total cumulative urinary excretion, or
urinary excretion (expressed as % of intake), for native HCAs
and their circulating metabolites.

Exclusion criteria included (1) the consumption of HCAs
through a mixture of different HCA sources, (2) studies on
ileostomists, and (3) studies reported in a non-European
language. No restrictions for the characteristics of study
participants for age, sex, and ethnicity were applied.

Data extraction

A pair of authors independently assessed the studies for
their inclusion. Disagreement between authors was resolved
through consultation with a third author.

Data were extracted from each identified study using a
standardized form, and the following information was col-
lected: first author name; publication year; type of study
(intervention or observational); characteristics of the circu-
lating compound (i.e., chemical name, molecular weight,
PhytoHub ID [https://phytohub.eu]) and type of biofluid(s)
(i.e., plasma, serum, urine) in which it was quantified; origin
of HCA metabolite [unchanged (when the native HCA did
not undergo any metabolic step following its ingestion), host
metabolism (when the compound derived from a biotrans-
formation by small intestine, hepatic, or renal phase-I or
phase-II enzymes), gut microbiota metabolism (when the
compound was derived from HCA metabolism through gut
microbiota activity), host-gut microbiota co-metabolism
(when the compound was derived from HCA metabolism
through gut microbiota activity and/or further conjugation by
a phase-II enzyme)]; chemical name of the precursor com-
pound(s) of the metabolite [as (1) single compound when it
was clearly a precursor of that metabolite, or (2) class when
various compounds belonging at HCA and/or other phyto-
chemical classes were putative precursors of the same me-
tabolite]; classification (i.e., food, pure compound, extract)
and description of the ingested HCA source; type of ingested

dose(s) (i.e., single or repeated [multiple]); intervention du-
ration (for studies in which multiple doses were ingested);
ingested amount (umol) of total precursor compounds (for
multiple dose studies, the total daily dose was provided);
description of the study population (i.e., number of subjects,
sex, age, body mass index, and ethnicity, if available); and
published values (i.e., mean, concentration unit, dispersion
parameter type, dispersion parameter value, and time covered
for AUC) for pharmacokinetic parameters (i.e., time to reach
Chax [Tmaxl, Cmax» AUC, and elimination half-life [half
elimination time [#;,]) and urinary excretion data (expressed
as cumulative excreted amount and/or % of intake) of the
circulating compounds.

Data on circulating compounds presented as mean and/or
sum of metabolites belonging to different chemical spe-
cies but grouped based on their chemical structure were ex-
cluded. On the other hand, data on some phenolic acids (i.e.,
phenylpropanoic, phenylacetic, and benzoic acids, catechols,
and benzaldehydes) that were not strictly related to HCA
intake due to their putative production through the metabo-
lism of other polyphenols such as anthocyanins and flava-
nones (Del Rio et al., 2013; Rodriguez-Mateos et al., 2014;
Selma et al., 2009) were not collected when the dietary source
of HCA also contained representative amounts of these
polyphenols; in this case, only data on unconjugated and
phase-II conjugated forms of C4-C; cinnamic acids were
collected.

Data analysis

Data were analyzed according to Di Pede et al. (2023a),
with minor modifications. Chemical names of circulating
metabolites were standardized following the recommenda-
tions of Kay et al. (2020). If the total amount (umol) of
ingested precursor compounds was not reported in the article,
it was calculated by summing the amount ingested of indi-
vidual compounds, ignoring those that accounted for <5% of
the total consumed precursors.

Pharmacokinetic parameters and urinary excretion data for
each metabolite were processed to obtain the following pa-
rameters (using harmonized units): (1) Cax (MM); (2) Trax
(h); (3) AUC (nM xh); (4) 1> (h); (5) urinary excretion ex-
pressed as cumulative excreted amount (umol), calculated by
summing the excreted amounts over different time intervals
when it was not reported; (6) % of intake, calculated as the
ratio between the cumulative urinary excretion (umol) of the
metabolite and the total intake (umol) of ingested precursor
compounds when no directly reported [urinary excretion data
(expressed as % of intake) >100%, possibly due to underes-
timations of the ingested dose of precursor compounds or to
overestimations of the excreted amount occurring when
metabolites were quantified without the proper reference
standards (Ottaviani et al., 2018), were excluded]; and (7)
average concentration (C,,g; nM) as the ratio between AUC
(nM xh)_ and the total number of hours considered for
AUC calculation (Mena et al., 2021) (when the time interval
employed for AUC calculation was equal to g, it was
considered as 24 h).

When a circulating compound in a publication had a C,,,
value exceeding its Cp,,x value, C,, value was excluded due
to its low physiological relevance. C,,, values that could not
be compared with their respective C,,,x values due to the
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absence of published C,,,, values were excluded. C,,., AUC,
and C,,, values for each circulating compound were also
normalized by dividing their value by the dose (umol) of
ingested parent compounds (Di Pede et al., 2023a; Mullen
et al., 2009); in the case of multiple-dose studies, values of
Cimax, AUC, and C,,, were normalized by using the total daily
amount (umol) of consumed native compounds.

Normalized C,,x values (C..x [nM]/ingested umol of
parent compounds) were used for comparisons among stud-
ies to determine the main circulating blood metabolites of
HCAs, thus avoiding any bias related to the dose—response
relationship existing in the production of phenolic metabo-
lites (Favari et al., 2020; Feliciano et al., 2017; Rodriguez-
Mateos et al., 2016a; Rodriguez-Mateos et al., 2016b).
Mean normalized C,,,, value >0.4 (nM)/total umol of in-
gested parental compounds was selected as the threshold
value to define the main circulating forms of blood HCA
metabolites. This value was established by ranking the me-
tabolites according to their normalized C,, values and
considering C,,,x values reached in the context of regular
HCA dietary intake (Farah et al., 2008; Gomez-Juaristi et al.,
2018a; Lang et al., 2013; Stalmach et al., 2014; Stalmach
et al., 2012; Stalmach et al., 2009). Mean urinary excretion
value 21.5% of intake was selected as the threshold value to
define the main urinary HCA metabolites.

Finally, to ensure data robustness, the main blood and
urinary metabolites of HCAs were selected when their mean
normalized C,,,x and urinary excretion (% of intake) values
were calculated using at least three biological replicates de-
riving from at least two publications. In accordance with
previous works (Di Pede et al., 2023a; Di Pede et al., 2022;
Ou et al., 2014; Stoupi et al., 2009), molar mass recoveries
in the production of the main urinary HCA metabolites
were calculated by comparing the mean value of ingested
HCAs (umol) with the mean cumulative urinary excretion
for each metabolite (umol) expressing data as a percent-
age (%).

Stoichiometric balances in the production of the main
urinary HCA metabolites were estimated through molar
mass recoveries assuming the production of each com-
pound from 1 umol of ingested parent HCAs. When data
on HCA bioavailability (%) were not reported in a article,
they were calculated by computing the ratio between the
total HCA metabolite urinary excretion (umol) and the
total intake (umol) of parent HCAs for each ingested
source.

Values for HCA bioavailability (published and/or esti-
mated) deriving from each study were averaged to provide a
mean bioavailability value, while excluding bioavailability
data if they were (1) <1 and/or >100%, or (2) calculated by
excluding an exhaustive panel of host gut microbiota me-
tabolites produced after HCA intake.

Finally, to unravel the contribution of each metabolite
class to the overall bioavailability of HCAs, for each study
and each ingested source of HCAs, the bioavailability was
calculated by computing the ratio between the total ex-
creted pumol of each metabolite class and the ingested pmol of
HCAs and thus bioavailability values for each metabolite
class were averaged. Data on blood and urinary metabolites
and on the bioavailability of HCAs were expressed as
mean * standard deviation (SD) and median (25th—75th per-
centile).

DI PEDE ET AL.

Results
Study selection

The study selection process is shown in Supplementary
Figure S1. A total of 8383 records were identified through
database searches. After removing 2260 duplicates, up to
6123 studies were screened, of which 5908 were excluded
based on the title or abstract. A total of 198 eligible records
went under the full-text screening process, after which 151
records were excluded. Forty-seven publications met eligi-
bility criteria and were included in the data analysis.

Characteristics of the included studies

The main characteristics of the studies that met all inclu-
sion criteria are reported in Supplementary Table S2. Out of
the 47 included intervention studies (total sample size n=614
subjects), 43 investigated the ADME of HCAs following a
single dose intake of recognized sources of HCAs or dietary
sources of (poly)phenols leading to HCA metabolites.

Two publications assessed the ADME of HCAs following
a repeated, multiple-dose (1-30 days) intake, whereas the
remaining two publications showed an experimental setting
with both single and multiple doses. No observational study
met the inclusion criteria. The ADME of HCAs and their
metabolites was assessed after the intake of both green
and roasted coffee (n=12 studies), berries (i.e., raspberry,
blueberry, cranberry; n==6), herb preparations (i.e., Guizhi
Fuling, Melissa officinalis, Gumiganghwal-tang, guapo,
Socheongryong-tang, Shuanghua Baihe; n=06), cereals (i.e.,
wheat, oat; n=4), tomatoes (n=23), orange juice (n=23), pure
compounds (i.e., '*Cs-labeled-cyanidin-3-glucoside, 1,5-
dicaffeoylquinic acid; n=3), grape products (i.e., red grape
pomace, red wine; n=3), apples (n=1), olive oil (n=1),
rosemary tea (n=1), artichoke (n=1), yerba mate (n=1),
nuts (i.e., hazelnuts; n=1), and propolis (n=1) (Supple-
mentary Table S2).

The mean intake of parent compounds, both as recognized
sources of HCAs and as dietary sources of (poly)phenols
leading to HCA metabolites, ranged from 17 to 5715 pumol,
for those consumed with olive oil and artichoke, respectively
(479.2 [80.5-1096.1] umol; median [25th—75th percentile]
for all the administered doses of parent compounds) (Sup-
plementary Fig. S2 and Supplementary Table S2).

Circulating compounds after HCA intake

Up to 105 quantified metabolites in blood and urine fractions
were reported following the intake of HCAs and other phenolic
compounds [i.e., flavan-3-ols, flavanones, anthocyanins, cou-
marins, and (poly)phenols, when various flavonoid classes
were precursors of the same metabolite] (Table 1).

This set of metabolites includes 32 acyl-quinic acids,
which comprised caffeoylquinic acids (n=17), feruloyl-
quinic acids (FQA; n=12), and coumaroylquinic acids
(n=3), 24 C4C; cinnamic acids [derivatives of (1) 3’,4’-
dihydroxycinnamic acid (n=6), (2) HCA (aka coumaric acid;
n=6), (3) 4’-hydroxy-3’-methoxycinnamic acid (n=4), (4)
3’-hydroxy-4’-methoxycinnamic acid (aka isoferulic acid;
n=4), (5) 3’,5'-dimethoxy-4’-hydroxycinnamic acid (n=23),
(6) cinnamic acid (n=1)], 17 phenylpropanoic acids [derivatives
of (1) 3-(3'/4’-hydroxyphenyl)propanoic acid (aka dihydro-
coumaric acid; n=6), (2) 3-(3’,4’-dihydroxyphenyl)propanoic
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ADME OF HYDROXYCINNAMIC ACIDS

acid (n=5), (3) 3-(4’-hydroxy-3’-methoxyphenyl)propanoic
acid (n=3), 3-(3’-hydroxy-4’-methoxyphenyl)propanoic acid
(aka dihydroisoferulic acid; n=3)], 15 miscellaneous com-
pounds (including derivatives of rosmarinic acid [n=7]), 9
benzoic acids, 6 catechols, 1 benzaldehyde, and 1 hippuric
acid.

Ranking blood and urinary compounds according to their
metabolic origin, a total of 41 host-gut microbiota metabo-
lites including 15 phenylpropanoic acids, 9 benzoic acids, 6
acyl-quinic acids, 6 catechols, 3 C4-C3 cinnamic acids, 1
benzaldehyde, and 1 hippuric acid, 20 host metabolites
(10 acyl-quinic acids, 8 miscellaneous, and 2 C4-C3 cinnamic
acids), 19 unchanged compounds (8 acyl-quinic acids, 7
miscellaneous, and 4 Cs-C3 cinnamic acids), and 8 gut mi-
crobiota metabolites (4 acyl-quinic acids, 3 phenylpropanoic
acids, and 1 C¢-C5 cinnamic acid) were found after the intake
of HCAs and other phenolics (Table 1).

Interestingly, 17 metabolites, namely 13 Cq-C5 cinnamic
acids, 4 acyl-quinic acids, attained biphasic responses
showing both host and host-gut microbiota metabolism,
such as 3’- and 4’-sulfate conjugates of 5-caffeoylquinic
acid, 4’ -sulfates and 4’-glucuronides of 5-feruloylquinic
acid, 4’-hydroxy-3’-methoxycinnamic acid, 3’-hydroxy-4'-
methoxycinnamic acid, 3’-methoxy-4’-hydroxycinnamoyl-
glycine, and 3 and 4’ sulfate conjugate of
3’,4’-dihydroxycinnamic acid (Table 1).

More chemical data for each metabolite described in
Table 1 are reported in the PhytoHub database (www.
phytohub.eu). Circulating metabolites were grouped based
on their metabolic pathway and chemical structure inup to 16
classes, namely unchanged acyl-quinic acids and Cg-Cs
cinnamic acids, aglycones, and phase-II conjugates of acyl-
quinic acids [n=3 classes; i.e. (1) caffeoylquinic acids, (2)
FQAs, and (3) coumaroylquinic acids], C¢-C5 cinnamic acids
[n=5 classes; i.e. derivatives of (1) 3’,4’-dihydroxycinnamic
acid, (2) 4’-hydroxy-3’-methoxycinnamic acid, (3) 3’-
hydroxy-4’-methoxycinnamic acid, (4) 3’,5’-dimethoxy-
4’-hydroxycinnamic acid, (5) HCA and cinnamic acid],
phenylpropanoic acids [n=4 classes; i.e. derivatives of (1)
3-(3’,4’-dihydroxyphenyl)propanoic acid, (2) 3-(4’-hydroxy-
3’-methoxyphenyl)propanoic acid, (3) 3-(3’-hydroxy-4’-
methoxyphenyl)propanoic acid, and (4) 3-(hydroxyphenyl)
propanoic acid], benzoic acids and benzaldehydes, and
catechols.

Miscellaneous compounds included unchanged and
phase-II conjugates of rosmarinic acid, 3’,5’-diprenyl-4'-
hydroxycinnamic acid (aka artepillin C), 4’-hydroxy-
3’-prenylcinnamic acid (aka drupanin), capillartemisin A,
2,2-dimethylchromene-6-propenoic acid, 3,4-dihydroxy-
5-prenyl cinnamic acid, culifolin, methoxycinnamic acid-
sulfate, and hydroxymethoxycinnamic acid.

Out of the 105 quantified metabolites (among which 27 and
78 function as unconjugated and phase-II conjugates, respec-
tively), 51 of them were detected in both plasma/serum
and urine samples, followed by those recovered only in
plasma/serum (n=32) or urine (n=22) (Table 1).

Taking into account the circulating compounds strictly
related to HCA intake, coffee HCA consumption resulted in
up to 82 HCA metabolites mainly in the form of acyl-quinic
acids (n of metabolites =23) and C4-C3 cinnamic acids (18).
HCA metabolites were also reported after the ingestion of
yerba mate (30), artichoke (16), cereals (i.e., wheat, oat; 12),
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propolis (8), rosemary tea (7), pure HCAs (3), and herbs (2),
whereas unchanged Cg-C5 cinnamic acids were recovered
after the intake of berries (2), apples (1), tomatoes (1), and
grape products (1) (Supplementary Fig. S3).

Some other C¢-C; cinnamic acids, including derivatives of
3’ 4-dihydroxycinnamic acid, 4’-hydroxy-3’-methoxycinnamic
acid, 3’-hydroxy-4’-methoxycinnamic acid, 3’,5"-dimethoxy-
4’-hydroxycinnamic acid, HCA, and cinnamic acid, were
also found after the consumption of other (poly)phenols from
berries (n of metabolites=18), grape products (11), oranges
(10), tomatoes (10), rosemary tea (9), olive oil (6), nuts (3),
pure compounds (2), herbs (1), propolis (1), and cereals (1)
(Table 1).

Pharmacokinetics and urinary excretion
of circulating compounds

Pharmacokinetic parameters and urinary excretion of the
different classes of metabolites. T,,.x and C,., values for
circulating compounds, grouped by classes, are presented in
Table 2 and Figure 1. Derivatives of 3’-hydroxy-4’-
methoxycinnamic acid (isoferulic acid) had the highest C,,.x
(648 £ 1591 [mean £ SD] and 70 [19-390] nM; median [25th—
75th percentile] at 3.8 +3.5 and 1.9 [1.0-6.3] h [Tp,ax]), fol-
lowed by derivatives of 4’-hydroxy-3’-methoxycinnamic
acid (ferulic acid; 500 £ 1155 and 83 [30-310] nM at 3.2+ 2.8
and 1.6 [1.0-4.8] h), miscellaneous (396 £675 and 106 [46—
306] nM at 2.3+3.0 and 1.7 [1.4-2.1] h), catechols
(353+654 and 110 [61-355] nM at 3.3+ 2.1 and 4.0 [0.8-5.0]
h], derivatives of 3’,4’-dihydroxycinnamic acid (285905
and 37 [6-86] nM at 2.7%3.1 and 1.0 [1.0-3.3] h), and de-
rivatives of 3-(4’-hydroxy-3’-methoxyphenyl)propanoic acid
(206+200 and 112 [89-358] nM at 6.5+ 1.4 and 6.3 [6.0-7.7] h).

Pooling C,,.x and T,,.x values of all the compounds be-
longing to each class of Cs-Cs cinnamic acids, phenylpro-
panoic acids, and acyl-quinic acids, C4-C; cinnamic acids
reached a C,,, of 423 +1125 (mean+SD) and 63 (15-183;
median [25th—75th percentile]) nM at 3.3+3.0 and 1.7 (1.0-
4.9) h, followed by phenylpropanoic acids (154 +172 and 88
[42-220] nM at 6.7£ 1.4 and 6.6 [6.0-7.8] h) and acyl-quinic
acids (24+29 and 17 [2-27]nM at 3.3+£3.3 and 1.2 [1.0-5.9]
h) (Table 2 and Fig. 1).

Derivatives of 3’-hydroxy-4'-methoxycinnamic acid had
the highest C,y, (480£1212 [mean+SD] and 25 [2-100;
median; 25th—75th percentile] nM), followed by derivatives
of 3’,4’-dihydroxycinnamic acid (190 £ 628 and 4 [1-15] nM)
and 4’-hydroxy-3’-methoxycinnamic acid (163546 and 15
[1-81] nM). Pooled data of C,,, for C4-C3 cinnamic acids,
phenylpropanoic acids, and acyl-quinic acids confirmed the
same trend previously observed for Cp,x: The Cyyg 0f Co-Cs
cinnamic acids was 209+704 (mean*SD) and 13 (1-54;
median [25th—75th percentile]) nM, followed by phenylpro-
panoic acids (36147 and 17 [3-50] nM) and acyl-quinic
acids (9116 and 1 [0-8] nM) (Table 2). #;,, values ranged
from 0.410.1 (mean*SD) and 0.5 (0.4-0.5; median [25th—
75th percentile]) h to 20.71+34.5 and 3.8 (1.8-20.0) h for
caffeoylquinic acids and miscellaneous metabolites, respec-
tively (Table 2).

Cimax» AUC, and C,,, values normalized for the ingested
dose of parent compounds for each class of metabolites
are reported in Table 2. Overall, normalized C,,x val-
ues revealed the importance of considering derivatives of
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ADME OF HYDROXYCINNAMIC ACIDS

3’ 4-dihydroxycinnamic acid and 4’-hydroxy-3’-methoxycinnamic
acid, together with unchanged acyl-quinic acids and Cg-C3
cinnamic acids.

The urinary excretion data for circulating metabolites,
grouped by classes, are presented in Table 2. Catechols and
derivatives of 4’-hydroxy-3’-methoxycinnamic acid were
excreted in the highest amounts when compared with the
other classes of metabolites, equal to 11+ 18 (mean+SD; 2
[1-8; median [25th—75th percentile]]) and 8+ 17 (2 [1-5]) %
of intake, respectively (Table 2).

Values of urinary excretion for each class of metabo-
lites varied widely, with derivatives of 4’-hydroxy-3’-
methoxycinnamic acid (aka ferulic acid [FA]) extensively
excreted in urine with respect to FQAs, derivatives of 3’,5"-
dimethoxy-4’-hydroxycinnamic acid (aka sinapic acid; Sin)
and miscellaneous metabolites (Fig. 2 and Table 2).

Overall, all the compounds belonging to C¢-C3 cinnamic
acid classes were excreted in an amount equal to 4% 11
(mean=*SD; 0 [0-2; median [25th—75th percentile]]) % of
intake, followed by all the phenylpropanoic acids (1 £2 and 1
[0-2] % of intake) and all the acyl-quinic acids (12 and O
[0-1] % of intake).

Pharmacokinetic parameters of the main blood metabo-
lites. Based on the 83 mean normalized C,,,, values cal-
culated for all the metabolites quantified in blood fractions
(serum/plasma) (Supplementary Excel File), up to 18 com-
pounds were established as the most abundant blood me-
tabolites of HCAs (normalized C,,,, value >0.4 [nM]/total
umol of ingested parental compounds), including 10 Cs-Cs
cinnamic acids (3’,4’-dihydroxycinnamic acid, 4’-hydroxy
cinnamic acid-3’-sulfate [aka caffeic acid-3’-sulfate], 3",4’-
dimethoxycinnamic acid [aka dimethylcaffeic acid], 4'-
hydroxy-3’-methoxycinnamic acid, 3’-methoxycinnamic
acid-4’-sulfate, 3’-methoxycinnamic acid-4’-glucuronide
[aka ferulic acid-4’-glucuronide], 3’-hydroxy-4’-methoxy
cinnamic acid, 4’-methoxycinnamic acid-3’-glucuronide [aka
isoferulic acid-3’-glucuronide], cinnamic acid, and cinnamic
acid-4’-sulfate [aka coumaric acid-4'-sulfate]), 7 phenyl-
propanoic acids [3-(3",4’-dihydroxyphenyl)propanoic acid,
3-(4’-hydroxyphenyl)propanoic acid-3’-sulfate (aka dihy-
drocaffeic acid-3’-sulfate), 3-(4’-hydroxy-3’-methoxyphenyl)
propanoic acid, 3-(3’-methoxyphenyl)propanoic acid-4’-
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sulfate (aka dihydroferulic acid-4’-sulfate), 3-(3’-methoxyphenyl)
propanoic acid-4'-glucuronide (aka dihydroferulic acid-4'-
glucuronide),  3-(3’-hydroxy-4’-methoxyphenyl)propanoic
acid, 3-(4’-methoxyphenyl)propanoic acid-3’-glucuronide
(aka dihydroisoferulic acid-3’-glucuronide)] and one cate-
chol, namely hydroxybenzene-sulfate (aka catechol-sulfate,
unknown isomer).

The pharmacokinetic data for the main blood metabolites,
including their normalized values for Cy,ax, AUC, and C,y,,
are presented in Supplementary Table S3. Box plots for C,,.«
and T, for 4 out of 10 main blood C¢-C5 cinnamic acids and
4 out of 8 among the main phenylpropanoic acids and
hydroxybenzene-sulfate are reported in Figures 3 and 4, re-
spectively.

3’-Hydroxy-4’-methoxycinnamic acid reached the highest
Chax value (149412429 [meanzSD] and 119 [20-2503]
nM; median [25th—75th percentile] at 4.3+4.5 and 1.0 [1.0-
8.0] h [Taxl), followed by 3’-methoxycinnamic acid-4’-
sulfate (9661707 and 82 [38-975] nM at 2.1+ 1.8 and 1.2
[1.0-4.0] h), hydroxybenzene-sulfate (9151037 and 418
[363-970] nM at 3.8 £2.1 and 4.6 [3.1-5.2] h), and cinnamic
acid-4’-sulfate (768+654 and 1100 [558-1145] nM at
1.61£0.6 and 1.6 [1.4-1.8] h) (Supplementary Table S3 and
Figs. 3 and 4).

The C,,ax of the main C¢-C5 cinnamic acids was higher
than all the main phenylpropanoic acids (main Cg¢-C5 cin-
namic acids: 55311301 [mean=+SD] and 83 [29-310] nM;
median [25"-75" percentile; Cpay] at 3.1+3.2 and 1.4 [1.0—
4.6] h [T ax]; main phenylpropanoic acids: 159 £ 169 and 92
[45-231] nM at 6.9+ 1.4 and 6.6 [6.0-8.0] h). 3"-Hydroxy-4'-
methoxycinnamic acid also reached the highest C,,, value
(123211826 [mean+ SD]; 32 [1-2409; median [25th—75th
percentile]] nM) with respect to the other main blood me-
tabolites (Supplementary Table S3).

Again, the C,, of data pooled for all the main C4-Cs
cinnamic acids was higher than that of the main phenylpro-
panoic acids (280£ 829 and 17 [1-82] nM and 41 £50 and 21
[5-59] nM for C¢-C;5 cinnamic acids and phenylpropanoic
acids, respectively). T, values ranged from 1.3+0.4
(mean*SD; 1.2 [1.1-1.4; median [25th—75th percentile]]) to
32.5+15.7 (32.5 [27.0-38.1]) h for 4’-hydroxycinnamic
acid-3’-sulfate and 4’-hydroxy-3’-methoxycinnamic acid,
respectively (Supplementary Table S3).

>

FIG. 1.

Box plot for Cpay (nM) (A, C, E) and T,.x (h) (B, D, F) of UC, CQAs, FQAs, CoQAs, CA, FA, isoFA, Sin,

Cou/Cinn, Di-CA, Di-FA, Di-isoFA, Di-Cou, BA/BE, Cat, and Misc. C4-C; cinnamic acids include compounds quantified
in biofluids after the consumption of other phytochemicals. Apart from UC, classes of CQAs, FQAs, CoQAs, Cs-Cs
cinnamic acids, phenylpropanoic acids, BA/BE, and Cat. include data derived from both aglycones and their phase-II
conjugates. Misc class includes data for unchanged and phase-II conjugates of methoxycinnamic acid sulfate and hydro-
xymethoxycinnamic acid, derivatives of rosmarinic acid, 3’,5'-diprenyl-4’-hydroxycinnamic acid, 4’-hydroxy-3’-
prenylcinnamic acid, capillartemisin A, 2,2-dimethylchromene-6-propenoic acid, 3,4-dihydroxy-5-prenyl cinnamic acid,
and culifolin. n indicates the number of biological replicates collected for the same class of HCA metabolites and for the
same pharmacokinetic parameter. BA/BE, derivatives of benzoic acid and benzaldehyde; CA, derivatives of 3’4’-
dihydroxycinnamic acid (aka caffeic acid); Cat, catechols; C,,.x, maximum plasma concentration; CoQA, coumaroylquinic
acid; Cou/Cinn, derivatives of hydroxycinnamic acid (aka coumaric acid) and cinnamic acid; CQA, caffeoylquinic acid;
Di-CA, derivatives of 3-(3",4’-dihydroxyphenyl)propanoic acid (aka dihydrocaffeic acid); Di-Cou, derivatives of 3-
(hydroxyphenyl)propanoic acid (aka dihydrocoumaric acid); Di-FA, derivatives of 3-(4’-hydroxy-3’-methoxyphenyl)
propanoic acid (aka dihydroferulic acid); Di-isoFA, derivatives of 3-(3’-hydroxy-4’-methoxyphenyl)propanoic acid (aka
dihydroisoferulic acid); FA, derivatives of 4’-hydroxy-3’-methoxycinnamic acid (aka ferulic acid); FQA, feruloylquinic
acid; HCA, hydroxycinnamic acid; isoFA, derivatives of 3’-hydroxy-4"-methoxycinnamic acid (aka isoferulic acid); Misc,
miscellaneous; Sin, derivatives of 3’,5’-dimethoxy-4’-hydroxycinnamic acid (aka sinapic acid); Tpax, time to reach Cpay;
UC, unchanged acyl-quinic and Cg-C3 cinnamic acids.
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FIG. 2. Single values of urinary excretion (% of intake) for UC, CQAs, FQAs, CoQAs, CA, FA, isoFA, Sin,
Cou/Cinn, Di-CA, Di-FA, Di-isoFA, Di-Cou, BA/BE, Cat, and Misc. C¢-C3 cinnamic acids include compounds
quantified in biofluids after the consumption of other phytochemicals. Apart from UC, classes of CQAs, FQAs, CoQAs,
Ce-C5 cinnamic acids, phenylpropanoic acids, BA/BE, and Cat. include data derived from both aglycones and their phase-II
conjugates. Misc class includes data for unchanged and phase-II conjugates of methoxycinnamic acid sulfate and hydro-
xymethoxycinnamic acid, derivatives of rosmarinic acid, 3’,5-diprenyl-4-hydroxycinnamic acid, 4’-hydroxy-3’-
prenylcinnamic acid, capillartemisin A, 2,2-dimethylchromene-6-propenoic acid, 3,4-dihydroxy-5-prenyl cinnamic acid and

culifolin.

Urinary excretion and stoichiometry of the main urinary
metabolites. Based on the 76 urinary excretion (% of in-
take) mean values calculated for all the metabolites quanti-
fied in urine (Supplementary Excel File), up to 16 compounds
were established as the main urinary metabolites of HCAs: 3
acyl-quinic acids (3-caffeoylquinic lactone-sulfate [unknown
form], 4-caffeoylquinic lactone-sulfate [unknown form],
and 3-feruloylquinic acid), 8 CgC; cinnamic acids
(3’,4’-dihydroxycinnamic acid, an unknown isoform of
HCA-glucuronide [aka caffeic acid-glucuronide], 4-hydroxy-3"-
methoxycinnamic acid, 3’-methoxycinnamic acid-4’-sulfate,
3’-methoxycinnamic acid-4’-glucuronide, 3’-methoxy-4'-
hydroxycinnamoyl-glycine, 4’-hydroxycinnamic acid [aka
p-coumaric acid], and cinnamic acid-4’-glucuronide [aka
p-coumaric acid-4’-glucuronide]), and 5 phenylpropa-
noic acids [3-(4"-hydroxyphenyl)propanoic acid-3’-sulfate,
3-(4’-hydroxy-3’-methoxyphenyl)propanoic  acid, 3-(3'-
methoxyphenyl)propanoic acid-4’-sulfate, 3-(3’-methoxyphenyl)
propanoic acid-4’-glucuronide, and 3-(phenyl)propanoic
acid-4’-sulfate (aka dihydrocoumaric acid-sulfate)].

3’-Methoxycinnamic acid-4’-glucuronide was excreted at
the highest level (17128 [mean+SD] and 1 [0-23; median
[25"-75" percentile]] % of intake), followed by 4’-hydroxy-
3’-methoxycinnamic acid (7£12 and 0 [0-7] % of intake),
HCA-glucuronide (6 £ 10 and 1 [0-13] % of intake), and 3-
(4’-hydroxyphenyl)propanoic acid-3’-sulfate (5+4 and 6 [2—
8] % of intake) (Supplementary Table S4 and Fig. 5).

Pooling data from the main urinary metabolites according
to their class, we found that the main C¢-C;5 cinnamic acids
were excreted in amounts equal to 7% 15 (mean+ SD) and 1
(0-5; median [25“‘—75[h percentile]) % of intake, whereas the
excretion for acyl-quinic acids and phenylpropanoic acids
was equal to, respectively, 2+2 (1 [0-3]) and 2+ 2 (2 [1-3]).

Stoichiometric balances for the main urinary com-
pounds are described in Supplementary Table S5. Molar
mass recovery varied from 0.02% for 4’-hydroxycinnamic
acid and cinnamic acid-4’-glucuronide to 4.4 and 5.3%
for 3’-methoxy-4’-hydroxycinnamoyl-glycine and 3-(4'-
hydroxyphenyl)propanoic acid-3’-sulfate, respectively.

In parallel, the ingestion of about 19 and 23 umol of the
appropriate HCAs would be needed to reach 1 umol of
urinary 3-(4’-hydroxyphenyl)propanoic acid-3’-sulfate and
3’-methoxy-4’-hydroxycinnamoyl-glycine, respectively. Stoi-
chiometric balances increased to more than 4000 ymol
of ingested HCAs to potentially excrete 1umol of 4'-
hydroxycinnamic acid or cinnamic acid-4’-glucuronide
(Supplementary Table S5).

Bioavailability of HCAs. The 17 values of HCA bio-
availability (%) collected from literature and/or estimated
from urinary excretion data are described in Supplementary
Table S6. The mean bioavailability of HCAs was 25% + 19%
(median [25"-75" percentile]: 22 [13-28] %) (Fig. 6).
Bioavailability values were compared source by source with
the ingested amount (umol) of total parent compounds de-
riving from each study (Fig. 7A), and they were averaged to
estimate the mean bioavailability of HCAs for each source
employed in the studies analyzed (Fig. 7B).

Bioavailability of HCAs from coffee was 31% (number—
n—of HCA bioavailability values collected/estimated for
each source=11), followed by cereals (16%; n=4), yerba
mate (13%; n=1), and artichoke (4%; n=1) (Fig. 7B).

The relative contribution of each metabolite class to the
overall bioavailability of HCAs is presented in Supplemen-
tary Figure S4. Regardless of the ingested dose of HCAs,
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value 20.4 nM, calculated using at least three biological replicates deriving from at least two articles. n indicates the number
of biological replicates collected for the same HCA metabolite and for the same pharmacokinetic parameter. Metabolites are

named according to Kay et al. (2020). S, sulfate.

derivatives of coumaroylquinic acids and 4’-hydroxy-
3’-methoxycinnamic acid contributed to the overall
bioavailability of HCAs for ~5 and ~7%, respectively,
followed by unchanged acyl-quinic and C¢-C; cinnamic ac-
ids (both 4%) and caffeoylquinic acids (3%).

Considering specific colonic metabolites of HCAs, 3-
(3’,4’-dihydroxyphenyl)propanoic acid and 3-(4’-hydroxy-3’-
methoxyphenyl)propanoic acid derivatives contributed both
to 4% of HCA bioavailability (Supplementary Fig. S4). Fi-
nally, considering later products of HCA catabolism, benzoic
acid and benzaldehyde accounted for 21%, followed by cat-
echols (5%).

A similar trend was also found when studies evaluating
HCA bioavailability from coffee, the most investigated food
source, were taken into account (Supplementary Fig. S5).

Discussion

In this systematic review, the workflow already applied by
our group to understand the ADME of another important
class of (poly)phenols, flavan-3-ols (Di Pede et al., 2023a),
was used to assess the extent to which HCAs are metabolized
in humans. Highlighting the ADME of bioactive (poly)phe-
nols represents a key point for correlating their intake to the
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multitude of potential beneficial effects observed in human
studies (Bento-Silva et al., 2020; Carregosa et al., 2022;
Carregosa et al., 2020; Guerreiro et al., 2022; Williamson,
2017).

Our work pointed out that after their intake, unchanged
acyl-quinic and C¢-C5 cinnamic acids are rapidly absorbed
(Timax about 1.7 h) (Table 2 and Fig. 1B), provided they cross
the gastric and/or intestinal epithelium. Nevertheless, some
unchanged mono-acyl quinic acids (i.e., 5-caffeoylquinic
acid, 3-caffeoylquinic acid, S-feruloylquinic acid, and 4-
feruloylquinic acid) and 1,5-dicaffeoylquinic acid presented
Tmax Vvalues <3h (Feliciano et al., 2017; Liu et al., 2010;
Mena et al., 2021), suggesting absorption in the small in-
testine.

Differences in absorption rates for acyl-quinic acids, pre-
sumably related to their chemical-structural features (i.e., the
number of acyl quinic moieties, hydrophobicity, efc.), were
previously demonstrated in vitro (Farrell et al., 2011).
Aglycones and phase-II conjugates of acyl-quinic acids were
grouped into three categories based on their C4-C; trans-
hydroxycinnamic acid skeleton (Table 2). Caffeoylquinic
acids appeared in blood and urine fractions only non-
conjugated or as sulfate conjugates (Table 1).

After being readily absorbed at the gastric and/or small
intestine level (Ty,.x ca. 1 h), they are quickly removed from
the circulatory system (¢, ca. 0.4 h). Ty,.x values three-fold
higher than for caffeoylquinic acids were observed for FQAs
(Tiax ca. 3.7h, ranging from 1 to >9h), since this category
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FIG. 6. Box plot for bioavailability (%) of HCAs cal-
culated taking into account all the values of HCA bio-
availability collected from literature and/or estimated
from urinary excretion data derived from studies ana-
lyzed (n of values of HCA bioavailability [%]=17).
Details on HCA bioavailability (%) values employed to
calculate the value for bioavailability of HCAs are reported
in Supplementary Table S6.

included products of both phase-II conjugation and hydro-
genation reactions (Table 1 and Fig. 1B).

These observations suggested that the metabolism of
FQAs might occur in both the upper and lower gastrointes-
tinal tract. Coumaroylquinic acids were absorbed very slowly
(Tinax ca. 7.4h) (Table 2 and Fig. 1B), and they were found
circulating as glucuronide conjugates and dihydrocoumar-
oylquinic acids after coffee and yerba mate intake (Gomez-
Juaristi et al., 2018a; GOmez-Juaristi et al., 2018b; Mena
et al., 2021). Late dehydroxylation and demethoxylation of
the feruloylquinic and/or caffeoylquinic acid skeletons me-
diated by colon microbiota might be involved in the pro-
duction of these coumaroylquinic acids and they are not
necessarily identical to the p-coumaroyl-quinic acids found
in the beverages.

Coumaroylquinic acids reached C,,, values three times
higher than caffeoylquinic and FQAs (Table 2), indicating
that coumaroylquinic acids circulate in blood at higher con-
centrations than their hydroxylated and methylated deriva-
tives (Fig. 1A). This finding was also supported by C,y,,
normalized values for Cy,,x and C,,,, and urinary excretion
(Table 2 and Fig. 2).

In general, the low circulatory levels and limited urinary
excretion for acyl-quinic acids suggest that after their intake,
acyl-quinic acids are highly susceptible to hydrolysis by an
esterase, and as a consequence yield further metabolites.

23

Partial or total removal of acyl-quinic acid moieties may
occur at gastric, small intestine, and/or colonic levels through
mammalian and bacterial esterase activity (Andreasen et al.,
2001; Buchanan et al., 1996; Erk et al., 2014; Guy et al.,
2009; Ludwig et al., 2013; Xie et al., 2016), resulting in Ce-
C5 cinnamic acids.

It seems that 3’,4’-dihydroxycinnamic acid derivatives are
absorbed more rapidly than their methylated and dehy-
droxylated counterparts (Table 2 and Fig. 1D), in line with
the shorter T, value observed for caffeoylquinic acids than
feruloylquinic and coumaroylquinic acids (Table 2). Free
3’,4’-dihydroxycinnamic acid might arise from direct ab-
sorption and/or release through hydrolysis of ingested caf-
feoylquinic acids (Lafay et al., 2006; Ludwig et al., 2013;
Stalmach et al., 2009), and be further subjected to phase-1I
conjugation steps catalyzed by mammalian enzymes (Clif-
ford et al., 2017). 3’-Hydroxy-4'-methoxycinnamic acid and
its phase-II conjugates circulate in blood at higher concen-
trations than 4’-hydroxy-3’-methoxycinnamic derivatives
(Table 2 and Fig. 1C).

3’-Hydroxy-4’-methoxycinnamic acid is considered the
most prominent methylated product of 3’,4’-dihydroxy
cinnamic acid with respect to 4’-hydroxy-3’-methoxy
cinnamic acid, both being further conjugated by mammalian
enzymes (Clifford et al., 2017), even if this fact was not fully
supported by the previous work of Rubid et al. (2021).

Free 4’-hydroxy-3’-methoxycinnamic acid might also
derive from its direct absorption and/or post-absorption hy-
drolysis of FQAs (Gomez-Juaristi et al., 2018a; Ludwig
et al., 2013; Poquet et al., 2008). Actually, even if 3’4’
dihydroxycinnamic acid is a potential source of methylated
metabolites, it has been demonstrated that 4’-hydroxy-3’-
methoxycinnamic acid metabolites are mainly derived from
hydrolysis of the ingested FQAs in vivo (Clifford et al., 2017;
Stalmach et al., 2010; Stalmach et al., 2009).

Taking into account the main blood circulating Cgs-Cs
cinnamic acids, 3’-hydroxy-4’-methoxycinnamic acid reached
the highest C,,,x (>1400 nM), followed by 3’-methoxycinnamic
acid-4’-sulfate (ca. 966 nM), in line with data on the classes.
This study showed that aglycones of 3’,4’-dihydroxycinnamic
acid and 3’-hydroxy-4’-methoxycinnamic acid had a higher
plasma C,,., than their phase-II conjugates.

Unexpectedly, the opposite pattern was found with 4’-
hydroxy-3’-methoxycinnamic and cinnamic acids (Fig. 3 and
Supplementary Table S3). The variability observed in Ty,.x
values for both classes and main blood circulating Cs-Cs
cinnamic acids might be explained by their biphasic profiles
due to enterohepatic recycling and/or colonic absorption (Del
Rio et al., 2013; Rodriguez-Mateos et al., 2014) (Table 2,
Figs. 1D and 3, and Supplementary Table S3).

Derivatives of 4”-hydroxy-3’-methoxycinnamic acid were
excreted extensively in urine, reaching over 8% of intake,
with 3’,4’-dihydroxycinnamic acid and C¢-C; derivatives
attaining about 1.7% of intake (Table 2 and Fig. 2). 4’-
Hydroxy-3’-methoxycinnamic acid derivatives had the
highest metabolic efficiency (based on blood and urine data)
with respect to the other classes in vivo.

Eight main C4-C3 cinnamic acids were found being ex-
creted in urine in amounts ranging from 2.3% to 17.0% of
intake for 4’-hydroxycinnamic acid and 3’-methoxycinnamic
acid-4’-glucuronide, respectively (Fig. 5 and Supplemen-
tary Table S4). Interestingly, four compounds, namely
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3’-methoxy-4’-hydroxycinnamoyl-glycine, an unknown iso-
form of HCA glucuronide, 4’-hydroxycinnamic acid, and
cinnamic acid-4’-glucuronide, were among the major me-
tabolites in urine but not in blood.

On the other hand, results for these compounds need to be
confirmed. 3’-Methoxy-4’-hydroxycinnamoyl-glycine has
been suggested as a potential biomarker of intake of acyl-
quinic acids (Clifford et al., 2017; Rothwell et al., 2018). The
unknown isoform of HCA glucuronide, arguably, is 3’-
hydroxycinnamic acid-4’-glucuronide, which occurs in bio-
fluids in more substantial amounts than the 3’-glucuronide
one (Dominguez-Fernandez et al., 2022; Feliciano et al.,
2017; Feliciano et al., 2016; Heiss et al., 2022; Mena et al.,
2021; Mena et al., 2019; Mills et al., 2017; Rodriguez-Mateos
et al., 2016a).

The two cinnamic derivatives result from dehydroxylation
and demethoxylation steps catalyzed on Cg-C3 unsaturated
skeleton (Baba et al., 2004; Choudhury et al., 1999; Farah
et al., 2008). Overall, sulfates may represent the main blood
HCA metabolites, whereas glucuronidation seems to occur to
a lesser extent, although some glucuronide conjugates are
excreted in large quantities (Clifford et al., 2020; Clifford
et al., 2017) (Supplementary Table S4).

About 70% of unabsorbed acyl-quinic acids and/or C¢-C5
cinnamic acids reach the colon, where they are subjected to
the action of the gut microbiota (Clifford et al., 2017). Spe-
cific metabolites of HCAs produced from catabolic activities
occurring in the colon were grouped into three categories
(Table 2). Phenylpropanoic acids result from the hydrogena-
tion step on the side chain of C4-C5 cinnamic acids, catalyzed
by both colonic and mammalian enzymes (Clifford et al.,
2017; Williamson and Clifford, 2017), consistently with their
Thax values ranging from 5.5 to 7.7 h (Table 2 and Fig. 1F).

The highest blood circulating levels for derivatives of 3-
(4’-hydroxy-3’-methoxyphenyl)propanoic acid (C,,. and
Cavg values of 206 and 51 nM, respectively) (Table 2 and
Fig. 1E) suggest that 4’-hydroxy-3’-methoxycinnamic acid

might be particularly susceptible to enzymatic hydrogena-
tion. Seven phenylpropanoic acids were found as the main
blood metabolites of HCAs. 3-(4’-Hydroxy-3’-methoxyphenyl)
propanoic acid attained higher Cy,,« and C,,, values than the
other main phenylpropanoic acids (Fig. 4 and Supplementary
Table S3).

Urine data showed that phenylpropanoic acids are excreted
in amounts relatively smaller than their Cq-C3 unsatu-
rated precursors. Unexpectedly, derivatives of 3-(3’,4'-
dihydroxyphenyl)propanoic acid were excreted in urine (ca.
2.4% of intake) in more substantial amounts than other
phenylpropanoid classes (Table 2 and Fig. 2). In keeping with
this, among the five urinary phenylpropanoic acids, 3-(4'-
hydroxyphenyl)propanoic acid-3’-sulfate was excreted in
highest amounts with a urinary recovery of more than 5%
(Fig. 5 and Supplementary Table S4).

There are two pathways by which phenylpropanoic acids
may be converted to benzoic acid. One is a two-step route
involving a-oxidation via phenylacetic acids, which is cata-
lyzed by microbiota and/or mammalian enzymes. The other
is a one-step f-oxidation that removes two carbons from the
side chain that is catalyzed by mammalian enzymes (Clifford
et al., 2022; Clifford et al., 2017). Data on benzoic acids were
pooled together with benzaldehydes to maximize the data
harmonization due to the low number of biological replicates
for these classes (Table 2).

Finally, hydroxybenzoic acids are further decarboxylated
in the colon, yielding the corresponding catechols (Wil-
liamson and Clifford, 2017) (Table 2). T,,.x Values of benzoic
acids and catechols suggest their production and absorption
in the distal gastrointestinal tract (Table 2 and Fig. 1F).
However, catechols may be more readily absorbed than their
Ce-C, precursors, as shown by their T, times that ranged
0.5-5.8 h after coffee intake (Lang et al., 2013; Mena et al.,
2021). Blood and urine data indicate that catechols contribute
more to the ADME of HCAs than benzoic acids (Table 2 and
Figs. 1E and 2).
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Despite the comprehensive nature of this work, some
limitations are conditioning the quality the evidence col-
lected. Data on the bioavailability of HCAs for each ingested
source (Fig. 7B) must be considered with caution, due to the
variable number of biological replicates collected, the anal-
ysis protocol employed, and variability between studies and
between sources of HCAs (Fig. 7A).

For example, the low yield of HCA metabolites after ar-
tichoke intake highlights that the food matrix might play a
major role in affecting the ADME of these dietary phyto-
chemicals, although more studies are required to firmly
demonstrate this. On the other hand, differences in the
number of HCA metabolites quantified in biofluids after the
intake of the various dietary sources of HCAs might be linked
to different ingested dosages, or analytical issues such as the
instrument sensitivity.

This work would strongly encourage authors in reporting
all the possible targeted metabolites, even if some com-
pounds were not identified in biofluids, to fully clarify the
metabolic pathway to which HCAs are subjected after their
consumption. Differences in the number of metabolites
among food sources may also be related to the fact that some
metabolites, such as phenylpropanoic, phenylacetic, and
benzoic acids, catechols, and benzaldehydes, were not con-
sidered when the dietary source of HCAs also included no-
table amounts of other polyphenols, such as anthocyanins,
flavan-3-ols, and flavanones, that are catabolized into the
same metabolites as HCAs (Del Rio et al., 2013; Rodriguez-
Mateos et al., 2014).

This aspect should be taken into account when designing
future interventions aiming at understanding the bioavail-
ability of HCAs present in food sources such as apples, or-
anges, and some berries. Other limitations to acknowledge
are related to the methodological approach followed here. For
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instance, the reference standards used for quantifying me-
tabolites in each work were not taken into account here,
which may provide biased data when reporting metabolites
not quantified with the same reference standard compounds
(Ottaviani et al., 2018).

In addition, method validation is not usually carried out or
described, and this may condition data quality. The risk of
overestimating or underestimating bioavailability data is re-
lated not only to analytical constraints (the lack of adequate
reference standards and validated methods) but also to the
experimental design: Most bioavailability works lack control
arms to assess, for instance, the production of phenolic me-
tabolites of endogenous sources (Di Pede et al., 2023b). In this
sense, blinded, randomized, controlled trials may help better
estimate the metabolism of HCAs and other (poly)phenols.

The insights into the pharmacokinetics of HCAs may be
useful to better understand the health effects attributed to
these major dietary phenolics. So far, the number of experi-
ments carried out with metabolites at physiological concen-
trations is somehow limited. Among others, some good
examples are the works carried out by Van Rymenant et al.
(2017a), who tested the vasorelaxant activity of a set of HCA
metabolites on an ex vivo model of mouse arteries and con-
firmed the higher activity of 3’-methoxycinnamic acid-4’-
sulfate in comparison to 4’-hydroxy-3’-methoxycinnamic
acid in vivo (Van Rymenant et al., 2017b).

Botto et al. (2021) assessed two pools of coffee-derived
HCA metabolites, including sulfates or glucuronides, and
demonstrated the role of these metabolites in protecting gli-
oma cells from the oxidative stress induced by diesel exhaust
particles. Lonati et al. (2022) demonstrated the antioxidant
effect under conditions mimicking ischemia of these coffee-
derived HCA metabolites, when incubated together at con-
centrations as low as 100 nM.
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Since many of these biological pathways may be linked to
disrupted redox homeostasis, it would be interesting to ad-
dress the role of HCA metabolites in the redox regulation of
cellular stress responses and the vitagene network (Calabrese
et al., 2010; Calabrese et al., 2007; Calabrese et al., 2006).
Overall, testing the right molecules (those in contact with the
cell system chosen) at the right doses (physiological ones, as
retrieved here) characterizes the most realistic physiological
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approach (Mena and Del Rio, 2018), and the data summa-
rized here may help to design new experiments adhering to
representative dietary approaches.

Conclusions

The HCAs are extensively metabolized as they pass along
the human gastrointestinal tract, with up to 105 compounds

Metabolites

Acyl-quinic acids

3-Caffeoylquinic lactone-5*; 3-Caffeoylquinic lactone-S*
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3-Feruloylquinic acid; 3-Feruloylquinic acid

C,-C; cinnamic acids

Caffeic acid; 3',4'-Dihydroxycinnamic acid

Caffeic acid-3'-S; 4'-Hydroxycinnamic acid-3'-S

Caffeic acid-GIcUA*; Hydroxycinnamic acid-GIcUA*
Dimethylcaffeic acid; 3',4"-Dimethoxycinnamic acid
Ferulic acid; 4'-Hydroxy-3'-methoxycinnamic acid

Ferulic acid-4'-S; 3'-Methoxycinnamic acid-4'-S
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Coumaric acid-4'-S; Cinnamic acid-4'-S
p-Coumaric acid-4'-GlcUA; Cinnamic acid-4'-GlcUA
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FIG. 9.

Overview of the main metabolites quantified in blood/urine samples following HCA intake. Cs-C5 cinnamic

acids include compounds quantified in biofluids after the consumption of other (poly)phenols. Different gray scales indicate
the belonging of metabolite at each category (main blood, main urine, both main blood and urine).
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recovered in blood and urine fractions after intake. This ar-
ticle systematically reviewed the large amount of data pub-
lished in the literature on the ADME of this important class of
dietary phenolic acids. Following HCA intake, C¢-C;5 cin-
namic acids attained the highest plasma C,,,,x concentrations,
with T,,.x times indicating absorption in the small intestine.

They were also excreted in amounts corresponding to 4%
of intake compared with 1% for phenylpropanoid derivatives.
There was a more substantial excretion of catechols equiva-
lent to 11% of intake. Taking into account all the metabolites
produced after HCA intake, it is possible to deduce that de-
rivatives of 4’-hydroxy-3’-methoxycinnamic acid might have
the most interesting profile in vivo.

Pharmacokinetic and urinary recovery data revealed
that the individual compounds of particular interest were
the cinnamic acids and their phase-II conjugates (3’,4-
dihydroxycinnamic acid, 4’-hydroxy-3’-methoxycinnamic
acid, 3’-methoxycinnamic acid-4’-sulfate, 3’-methoxycinnamic
acid-4’-glucuronide) plus C¢-C3 hydrogenated metabolites
(3-(4-hydroxyphenyl)propanoic acid-3"-sulfate, 3-(4-hydroxy-
3’-methoxyphenyl)propanoic acid, 3-(3’-methoxyphenyl)
propanoic acid-4’-sulfate and 3-(3’-methoxyphenyl)propanoic
acid-4’-glucuronide) (Fig. 8).

These phenolic compounds might be considered as key
metabolites of HCAs (Fig. 9) to which attention should be
paid in (i) bioavailability studies when the ADME of dietary
HCAs would be assessed, although ideally all other metab-
olites should be quantified as well, and (ii) in vivo and in vitro
models aiming at investigating their bioactivity at physio-
logical concentration levels.

This work demonstrated that HCAs have a moderate bio-
availability with a ca. 25% urinary recovery of metabolites.
Finally, the lack of clarity on HCA bioavailability for each
ingested source lays the basis for designing a comprehensive
human intervention study assessing the ADME of HCAs for
all their most commonly dietary sources. Data on ADME of
HCAs from some plant-based foods such as potatoes, cereals,
and artichoke were absent or inconsistent and this gap should
be addressed.
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Abbreviations Used (Cont.)
Cnax = maximum plasma concentration
CoQA = coumaroylquinic acid
Cou/Cinn = derivatives of hydroxycinnamic acid (aka
coumaric acid) and cinnamic acid
CQA = caffeoylquinic acid

Di-CA = derivatives of 3-(3",4'-
dihydroxyphenyl)propanoic acid (aka
dihydrocaffeic acid)

Di-Cou = derivatives of 3-(hydroxyphenyl)propanoic acid
(aka dihydrocoumaric acid)

Di-FA = derivatives of 3-(4’-hydroxy-3’-
methoxyphenyl)propanoic acid (aka
dihydroferulic acid)

Di-isoFA = derivatives of 3-(3"-hydroxy-4’-
methoxyphenyl)propanoic acid (aka
dihydroisoferulic acid)

FA = derivatives of 4’-hydroxy-3’-methoxycinnamic
acid (aka ferulic acid)
FQA = feruloylquinic acid
GlcUA = glucuronide
HCA = hydroxycinnamic acid
isoFA = derivatives of 3’-hydroxy-4’-methoxycinnamic
acid (aka isoferulic acid)
Misc = miscellaneous
OF = orange flavanones
RA =raspberry anthocyanins
S = sulfate
SD = standard deviation
Sin = derivatives of 3’,5’-dimethoxy-4’-
hydroxycinnamic acid (aka sinapic acid)
t1» = half elimination time
T max = time to reach Cpax
UC =unchanged acyl-quinic and C¢-C;3 cinnamic acids




