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To the Editor, 65 

Understanding the molecular mechanisms of lung function trajectories that progress to 66 

chronic obstructive pulmonary disease (COPD) (pre-COPD trajectories), especially those with 67 

a rapidly declining phenotype, should inform preventive interventions. The Tasmanian 68 

Longitudinal Health Study (TAHS) previously defined life-course lung function trajectories by 69 

serial spirometry in a cohort of all seven-year-old school children in the state of Tasmania 70 

recruited in 1968 and followed up to age 53 years (1). Of the six pre-bronchodilator FEV1 71 

lifetime trajectories identified, three collectively accounted for 75% of chronic obstructive 72 

pulmonary disease (COPD) prevalence at age 53 years (2). These high-risk trajectories were: 73 

1) early below average lung function (with usual rate of subsequent decline), 2) persistently 74 

low, and 3) early below average lung function with accelerated decline. The TAHS cohort 75 

provides a unique opportunity to investigate molecular factors associated with disadvantaged 76 

trajectories, and we conducted a pilot study in this cohort to characterize associations with 77 

COPD high-risk trajectories to inform more extensive longitudinal studies in the future. 78 

The rationale for our approach was based on previous studies that demonstrate declining 79 

lung function (3-6) and lower lung function associated with COPD (7, 8) are complex 80 

phenotypes involving the interplay between genomic and environmental factors. Genetic (9) 81 

and epigenetic associations (3, 7, 10) have been previously been described for disadvantaged 82 

lung function trajectories, including epigenetic aging related phenotypes (epigenetic age 83 

acceleration) (5, 10). We therefore conducted a screen of both epigenetic (DNA methylation) 84 

and genetic (single nucleotide polymorphisms; SNPs) markers on available whole blood 85 

samples collected at the 45-year follow-up. We used an extremes of phenotype design to 86 

maximise power randomly selecting 80 subjects from across the three high-risk trajectories 87 



and matching on age and smoking status to 80 subjects from the persistently high trajectory. 88 

By design, individuals belonging to the different lung function trajectories varied in post 89 

bronchodilator FEV1, but also steroid medication use, and sex so these differences were 90 

examined in adjusted models. We quantified 787,111 DNA methylation markers (CpGs) and 91 

4,456,571 SNPs using the InfiniumMethylationEPIC (v1) and Infinium Global Screening Array 92 

(v3) genotyping microarrays. Some of the results of this study have been previously reported 93 

in the form of an abstract (11). 94 

We detected DNA methylation differences at 55 differentially methylated regions (DMRs) 95 

containing 73 unique genes and 6 non-coding regions (FDR adjusted P < 0.05; Figure 1A). 96 

Notable genes in DMRs included LY6G5C and HLA-DQB1 within the major histocompatibility 97 

complex, HOX cluster transcription factors (HOXB-AS3, HOXB3, HOXB6) which have been 98 

implicated in the pathogenesis of pulmonary diseases (12, 13), and transmembrane 99 

glycoproteins (LGALS3BP, OCA2, KCNE1, PTPRN2, TNXB, PCDHGA5, CDSN, PCDHGA4, 100 

PCDHGA3, PCDHGB3, PCDHGA2, PCDHGB2, PCDHGA1, EGFR, DPP6, FOLH1, SGCD, CRTAC1, 101 

PCDHGB1, FIBIN, CHST1, MUC4, DPEP3) that play a role in epithelial biology and when 102 

disrupted may lead to EMT (14). 103 

This DMR signature was only partially consistent across the high-risk trajectory sub-groups 104 

(24% of DMRs shared across all sub-groups), whereas sub-group specific regions 105 

predominated (Figure 1B) consistent with the notion of COPD risk factor etiotypes that likely 106 

exhibit different molecular drivers (15). Current COPD or current asthma explained 17-30% of 107 

methylation differences across the DMRs respectively, but sex and blood cell counts were not 108 

mediators or confounders of these associations. Integrating the genetic and epigenetic data 109 

sets we performed methylation quantitative trait (mQTL) mapping and found that genetic 110 

variation at 381 nearby SNPs (+/- 500kb of DMRs) in 17 genomic loci were associated with 111 



23% of CpGs within DMR regions (Figure 1C). The strongest mQTL region was on chromosome 112 

6 at the major histocompatibility locus. Using publicly available tissue specific gene expression 113 

signatures (GTEx catalogue v8) we determined these mQTL SNPs were statistically enriched 114 

among transcripts primarily expressed in the lung (ATP13A4, MUC4, PSORS1C1) (Figure 1D). 115 

Several mQTLs have previously been associated with Lung function phenotypes (HAPLN1, 116 

HLA-DRB1, HLA-DQA1, HLA-DQB1), COPD (HLA-DQB1, HLA-DQA1) and Asthma risk (HLA-117 

DQB1, HLA-DQA1, HLA-DRB1, HLA-DRB6, PSORS1C1) in the genome-wide association study 118 

(GWAS) catalogue. Consistent with previous studies (5, 10) we also found that epigenetic age 119 

predictions were significantly higher in the high-risk group when measured using the 120 

phenoAge algorithm (16) (Table 1). On average, individuals in the high-risk category had 121 

increased mean predicted chronological age of 1.5 years relative to controls (40.2 v 38.7, 122 

P=0.03, t-test). Stratified analysis suggested age-acceleration was strongest in the early below 123 

average, accelerated decline group (Beta = 2.1, P=0.06 v 1.4, P=0.11, below average; v 1.1, 124 

P=0.19, persistently low) although sample size was a limiting factor. 125 

To our knowledge this was the first epigenome-wide association analysis in individuals from 126 

COPD-risk lung function trajectories, providing a strong foundation for further delineation of 127 

phenotypes and risk factors to enable precision molecular profiling. We determined blood to 128 

be a phenotypically relevant tissue to explore molecular associations with life-time lung 129 

function trajectories in this cohort. Although causality of the epigenetic associations cannot 130 

be established in this pilot, a subset of epigenetic changes in the high-risk trajectory were 131 

mQTLs whereby genetic variants affected the methylation patterns at these genes.  Since the 132 

causality of genetic variation on DNA methylation levels is uni-directional, these analyses aid 133 

in prioritization of methylation-trait associations from epigenome-wide scans. The mQTL 134 

associations are compelling candidates for gene-environment interactions, and might be 135 



linked to early life events, as well as processes related to disease progression. Confirmatory 136 

longitudinal are now planned to dissect these environmental and host genomic risk factors 137 

that are reflected in the epigenome. Our analysis of DMR sharing across sub-groups suggests 138 

molecular risk factors will be unique across different life-time lung function trajectories 139 

warranting follow-up studies at cohort-wide scale. We also determined that comorbidities 140 

including current asthma and COPD explained a proportion of variation in the blood 141 

epigenetic markers. Consistent with previous reports for declining lung function and 142 

epigenetic ageing phenotypes (5, 10), we also found that epigenetic age acceleration was 143 

detectable in the high-risk trajectory group, the biology of which is still poorly understood. In 144 

summary this pilot study confirms the utility of our approach and paves the way for future 145 

profiling studies in this unique cohort. An enhanced understanding of molecular risk factors 146 

associated with disadvantaged trajectories will enable more precise biomarker-driven 147 

interventions in the future with potential to redirect the course of respiratory health in 148 

vulnerable individuals. 149 
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Figure Legends 244 

Figure 1 – (A) Volcanoplot of differentially methylated regions. Each point represents a 245 

genomic region, and the number of individual CpGs in the region is shown on the y-axis as a 246 

function of the effect size (x-axis) interpreted as the percent change in methylation ratios (10-247 

2). (B) Upset plot showing the number of overlapping DMRs per trajectory sub-group. ph= 248 

persistently high; acc.dec = accelerated decline; bl.ave = below average. (C) Boxplot of the 249 

Mucin 4 mQTL showing methylation ratios expressed as a percentage (10-2) stratified by 250 

genotype. Means comparisons by t-test, exact P-values shown. (D) Summary statistics of 251 

tissue-specific enrichment testing for mQTLs and sets of differentially expressed genes for 30 252 

general tissue types in the GTExv8 catalogue. 253 
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Tables 255 

Table 1 - Logistic regression of PhenoAge clock with case - control group 

  Coefficient Std. Error z value P value 

AA 0.09 0.05 1.85 0.06 

Male sex 1.11 0.38 2.90 0.06 

Asthma 2.23 0.48 4.67 <0.01* 

          

EAA 0.09 0.05 1.85 0.06 

Male sex 1.11 0.38 2.90 <0.01* 

Asthma 2.23 0.48 4.66 <0.01* 

          

IEAA 0.10 0.05 1.94 0.05* 

Male sex 1.09 0.38 2.87 <0.01* 

Asthma 2.26 0.48 4.70 <0.01* 

Outcome variable = high-risk/persistently low, predictors: AA = Age acceleration residual, 256 

EAA = Extrinsic age acceleration residual, IEAA = Intrinsic age acceleration residual. * = P 257 

<0.05. 258 
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