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Gran Via 585

08007 Barcelona, Spain

(Communicated by Xiaoying Han)

Abstract. A system modeling bacteriophage treatments with coinfections in

a noisy context is analysed. We prove that in a small noise regime, the system
converges in the long term to a bacteria-free equilibrium. Moreover, we com-

pare the treatment with coinfection with the treatment without coinfection,

showing how coinfection affects the convergence to the bacteria-free equilib-
rium.

1. Introduction. The emergence of pathogenic bacteria resistant to most cur-
rently available antimicrobial agents has become a critical problem in medicine. The
development of alternative antiinfection modalities has become a priority. Bacterio-
phage therapies are one of these alternatives. Prior to the discovery and widespread
use of antibiotics, it has been suggested that bacterial infections could be treated by
the administration of bacteriophages, but early clinical studies with bacteriophages
were not pursued in the United States and Western Europe. Nowadays, these ther-
apies are reemerging and attracting the attention of the scientific community.

Let us explain the (lytic) bacteriophage mechanism: the first step of an infection
of a bacterium by a bacteriophage is the adsorption, i.e., the attachment of the virus
to a given receptor of the bacterium surface (notice that in the literature often the
word infection is simply used for adsorption, but it is not always the case that
adsorption and infection can be used interchangeably [2]). After attachment, the
virus’ genetic material penetrates into the bacterium and uses the host’s replication
mechanism to self-replicate. After some latency time τ , the bacterium encounters
death releasing some new viruses (lysis), free to attack other bacteria.

Host-pathogen interactions can vary from single to multiple infections. For mul-
tiple infections, the term coinfection is used when the host can be infected at the

2010 Mathematics Subject Classification. Primary: 92D25; Secondary: 93E03, 34F05, 60H10.
Key words and phrases. Bacteriophage, coinfection, stochastic fluctuations.
X. Bardina is partially supported by the grant MTM2015-67802-P from MINECO, S. Cuadrado

is partially supported by the grant MTM2017-84214-C2-2-P from MICINN and C. Rovira is par-

tially supported by the grant MTM2015-65092-P from MINECO/FEDER, UE.
∗ Corresponding author: Carles Rovira.

1

http://dx.doi.org/10.3934/dcdsb.2019158
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same time by more than one pathogen whereas superinfection stands for subsequent
infections of an infected host at a later time.

In the case of bacteriophages, it has been seen [24, 26] that multiple phage can
be adsorbed to a single bacterium which will imply a bigger rate of loss of phage in
the population than if adsorption would happen only between one phage and one
bacterium.

There is a long history of mathematical modelling of phage dynamics. One of
the first papers was the work of Campbell [14] where he proposed a model based
on a system of delay differential equations. Deterministic models can be found,
for instance, in [10], [12], [13], [18], [20], [22], [27]. The literature about stochastic
models is scarce. For instance, in [24] the authors give a stochastic model allow-
ing multiple bacteriophage adsorption to host. On the other hand, [5] was one of
the first papers dealing with coinfection and superfinfection models in evolutionary
epidemiology, as previous models took only first infections into account. A gen-
eral discussion about how superinfections and coinfections have been modeled in
evolutionary epidemiology can be found in [4] and [21].

In [6] we have considered a stochastic model with a constant injection of phages
into the system. This variant corresponds to a treatment for cattle against Salmo-
nella, which was brought to our attention by the Molecular Biology Group of the
Department of Genetics and Microbiology at Universitat Autònoma de Barcelona.
We modeled the bacteria-phage dynamics by a system of predator prey type equa-
tions. For other bacterial population models, see e.g. [8].

Let S(t) (resp. Q(t)) denote the non-infected bacteria (resp. bacteriophages)
concentration at time t. Consider a truncated identity function σ : R+ → R+, such
that σ ∈ C∞, σ(x) = x whenever 0 ≤ x ≤ M and σ(x) = M + 1 for x > M + 1.
Then the model reads:{

dS(t) = [α− k1σ(Q(t))]S(t)dt

dQ(t) =
[
δ −mQ(t)− k1σ(Q(t))S(t) + k1 b e

−µτσ(Q(t− τ))S(t− τ)
]
dt,

(1)

where α is the growth rate of bacteria, k1 is the adsorption rate, δ stands for the
quantity of bacteriophages inoculated per unit of time (dose), m is their death
rate, b is the burst size, i.e., the number of bacteriophages that are released after
replication within the bacteria cell, τ is the delay necessary for the reproduction of
bacteriophages (called latency time) and the coefficient e−µτ represents an atten-
uation in the release of bacteriophages (given by the expected number of bacteria
cell’s deaths during the latency time, where µ is the death rate of bacteria). In fact,
α = β − µ where β is the reproduction rate of bacteria. A given initial condition
{S0(t), Q0(t);−τ ≤ t ≤ 0} is also specified.

Note that we have considered a coefficient σ that is a truncation of the identity.
It is useful in order to manipulate bounded coefficients in our equations and our
parameter M can be interpreted as a maximal phage attack rate.

Given a large enough M we showed that when k1δ/m > α, there exists a unique
stable steady state of (1), E0 = (0, δ/m) (bacteria have been eradicated), while
when k1δ/m < α, the point E0 is still an equilibrium but it becomes unstable
and there exists another coexistence equilibrium. The paper only studies results
regarding the bacteria-free equilibrium E0, since it corresponds to the main practical
situation, where high doses of phages are usually introduced in cattle feed.

Our main interest was in fact a noisy version of system (1). In this type of models
there exist several random effects as the noise that can appear when collecting data
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from laboratory tests, random fluctuations in parameters (like temperature) that
can affect the coefficients of our system or some randomness in the latency times. We
summarized all these random effects in a small global stochastic term represented
by a Wiener process W. That is, we considered a small random perturbation of the
form

dSε(t) = [α− k1σ(Qε(t))]Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t)

dQε(t) = [δ −mQε(t)− k1σ(Qε(t))Sε(t)

+k1 b e
−µτσ(Qε(t− τ))Sε(t− τ)

]
dt+ εσ(Qε(t)) ◦ dW 2(t),

(2)

where ε is a small positive coefficient and W = (W 1,W 2) is a 2-dimensional Brow-
nian motion and with Stratonovich differentials, denoted by ◦ dW . We obtained a
concentration result for the perturbed system around E0.

Our aim in this paper is to study the problem of coinfection in the models we
have presented in [6]. As mentioned before, due to the ambiguity in terminology
we have to specify what we understand by coinfection in our model: after the first
infection by a bacteriophage and before the death of the bacterium we will assume
that more bacteriophages can be adsorbed to the bacterium. These later adsorptions
will not affect the behaviour of the bacteria but they cause an extra loss in the free
bacteriophage population. Thus, coinfection means here an extra mortality in the
bacteriophage population.

We will show existence of a steady state E0 = (0, 0, δ/m) (bacteria-free equi-
librium) and we will give conditions for its stability and also for the existence of a
coexistence steady state. Furthermore, we will obtain a concentration result around
E0 for a perturbed system. These results are similar to those obtained in [6]. Fur-
thermore, we will compare both models to determine the role of the coinfection in
the behaviour of the system. Since some of the proofs are similar to those given
in [6], we only will give some details of the proofs with new arguments and we will
refer to those in [6] in the other cases.

Our article is structured as follows: in Section 2 we introduce both the deter-
ministic and the stochastic model, in Section 3 we study the deterministic model
showing positivity and boundedness of solutions in subsection 3.1 and computing
the steady states and analysing the stability of the boundary steady state in sub-
section 3.2. Section 4 is devoted to the analysis of the stochastic system and in
Section 5 we finish with some concluding remarks.

2. Formulation of the models. In order to consider coinfection, we introduce
a new state variable I(t), that gives the infected bacteria concentration at time t.
Thus, we transform model (1) into the following

dS(t) = (α− k1σ(Q(t)))S(t)dt
dI(t) = [k1σ(Q(t))S(t)− µI(t)− k1e

−µτσ(Q(t− τ))S(t− τ)]dt
dQ(t) = [δ −mQ(t)− k1σ(Q(t))S(t)− k2σ(Q(t))I(t)

+k1be
−µτσ(Q(t− τ))S(t− τ)]dt.

(3)

where α > 0 denotes the growth rate of bacteria, k1 > 0 is the adsorption rate by
noninfected bacteria, k2 > 0 is the adsorption rate by infected ones, µ > 0 denotes
the death rate of infected bacteria, m > 0 is the death rate of bacteriophages and
b > 0 is the burst size (i.e., the average number of virus released per infected cell).

The first term on the right hand side of the equation for the infected bacteria,
k1σ(Q(t))S(t), stands for the rate of infection, i.e., the number of new infected
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bacteria per unit of time (assuming a “truncated” law of mass action) whereas the
terms k1e

−µτσ(Q(t−τ))S(t−τ) and µI(t) stand for loss of infected bacteria due to
lysis (after a latency time τ) and due to a different reason than lysis (with death rate
µ) respectively. On the other hand, in the last equation, the term −k2σ(Q(t))I(t)
accounts for the bacteriophages that the system loses when they try to infect infected
bacteria (coinfection).

For the stochastic model we will introduce the random effects following the ideas
we have used in [6]. Thus, we consider system (3) with a small random perturbation
of the form

dSε(t) =
(
α− k1σ(Qε(t))

)
Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t),

dIε(t) =
[
k1σ(Qε(t))Sε(t)− µIε(t)− k1e

−µτσ(Qε(t− τ))Sε(t− τ)
]
dt

dQε(t) =
[
δ −mQε(t)− k1σ(Qε(t))Sε(t)− k2σ(Qε(t))Iε(t)

+k1be
−µτσ(Qε(t− τ))S(t− τ)

]
dt+ εσ(Qε(t)) ◦ dW 2(t),

(4)

where ε is a small positive coefficient and W = (W 1,W 2) is a 2-dimensional Brow-
nian motion defined on a complete probability space (Ω,F , P ) equipped with the
natural filtration (Ft)t≥0 associated to the Wiener process W . Recall that ◦dW (t)
denotes a Stratonovich integral.

Let us note that we assume that the noise enters in a bilineal way and that we
consider the random effects in the coefficients in the noise in the first and third
equation. We do not introduce an additive noise in the new state variable I(t) to
ensure the positivity of the solution.

3. Analysis of the deterministic model. This section is devoted to the study
of the deterministic coinfection model (3). Before going on with the study of the
deterministic model, let us present a set of hypotheses on the coefficient σ and on
the initial condition. The hypotheses on σ will be the same as those in [6].

Nonnegative initial data for S and Q must be given on [−τ, 0] whereas for I it
only has to be given at t = 0. However (see [11], [23], [25]) I0 cannot be given by
any nonegative value, it will depend on S and Q.

Indeed (see [23],[25]), it can be seen that

I(t) =

∫ t

t−τ
k1e
−µ(t−θ)σ(Q(θ))S(θ)dθ =

∫ τ

0

k1e
−µsσ(Q(t− s))S(t− s)ds (5)

is a solution to the second equation in (3) which is biologically meaningful because
it is the summation of all the rates of infection at previous times (up to −τ , i.e.,
the ones that have not lysed yet), k1σ(Q(t− s))S(t− s), multiplied by the survival
probability of infected bacteria e−µs.

To ensure that (5) is then the only solution to the equation for I(t) in (3), the
initial value must be chosen so that (5) holds at t = 0, i.e.

I0 := I(0) =

∫ τ

0

k1e
−µsσ(Q(−s))S(−s)ds. (6)

Hypothesis 3.1. We will make the following assumptions on our models:

(i) The function σ : R+ → R+ is such that σ ∈ C∞, and satisfies σ(x) = x for
0 ≤ x ≤M and σ(x) = M + 1 for x > M + 1. We also assume that 0 ≤ σ′(x) ≤ C
for all x ∈ R+, with a constant C such that C > 1.

(ii) As far as the initial condition is concerned, we assume that it is given as
continuous nonnegative functions {S0(t), Q0(t);−τ ≤ t ≤ 0} and a constant I0
given by (6).
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3.1. Positivity and boundedness of solutions. The first step to analyse the
model is to obtain existence and uniqueness of a global nonnegative solution.

Proposition 1. Under hypothesis 3.1 the initial value problem for system (3) has
a unique global nonnegative solution.

Proof. Local existence of a unique solution follows from standard results for delay
differential equations ([17], [23]). Let us study the positivity of the solution. Note
that {(S, I) = (0, 0)} is an invariant subspace. Clearly,

S(t) = S(0) exp
(
α− k1σ(Q(t)

)
> 0.

On the other hand, if for some t0 it holds that Q(t0) = 0 then Q′(t0) ≥ δ > 0. So,
Q(t) ≥ 0 for all t.

Since

I(t) =

∫ t

t−τ
k1e
−µ(t−θ)σ(Q(θ))S(θ)dθ

and Q(t) and S(t) are nonnegative on [−τ,+∞) we obtain I(t) ≥ 0 for all t ≥ 0.
In order to get the existence of global solution it is enough to check that the local

solutions are bounded (see for instance [15]). Since S′(t) ≤ αS(t), we get that for all
t > 0, S(t) ≤ S(0)eαt. On the other hand, Q′(t) ≤ δ+ k1be

−µτσ(Q(t− τ))S(t− τ).
Using that σ(x) ≤ x we get that

Q′(t) ≤ δ + k1be
−µτS(0)eαtQ(t− τ).

Applying a Gronwall’s lemma (see [16] Lemma A.1) we obtain that

Q(t) ≤ (Q(0) + δt+ k1bS(0)e−µτ
∫ 0

−τ
eαsds) exp

(
k1bS(0)e−µτ

∫ t

0

eαsds

)
.

Finally, notice that I ′(t) ≤ k1σ(Q(t))S(t) ≤ k1Q(t)S(t). So, fixed T , the local
solutions are bounded in [0, T ]. �

In order to obtain a result giving the boundedness of the solution we will first
formulate some more hypotheses on the initial condition and on the ingredients of
the model.

Hypothesis 3.2. We will suppose that the ingredients satisfy the following condi-
tions, valid for any t ∈ [−τ, 0]:

(i) The initial condition (S0(t), I0, Q0(t)) of the system lies inside the region

R0 := [0,M ]× [0,M ]×
[

δbe−µτµ

mbe−µτµ+ k2(mM − δ)
,M

]
.

(ii) We have (mbe−µτµ+ k2(mM − δ))Q0(t)S0(t) > δµS0(0), and b e−µτ > 1.

(iii) The condition S0(t) < mM−δ
k1be−µτM

holds.

(iv) I0 <
mM−δ
be−µτµ .

Hypothesis 3.3. We will suppose that δ
m < M and

δ >
αm

k1

be−µτµ+ k2(M − δ
m )

be−µτµ
.

Then under Hypothesis 3.3,

α

k1
<

δbe−µτµ

mbe−µτµ+ k2(mM − δ)
<

δ

m
< M.
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Notice that when k2 = 0 we get the same hypothesis as in the model without
coinfection. Moreover, when k2 is increasing, we find that the constant dose δ must
increase, i.e., if we lose more bacteriophages by coinfection we need to introduce a
bigger dose of them. On the other hand, the region where the initial condition Q0

lives can have smaller lower boundary. It means that since the dose will be bigger,
the concentration of viruses in the initial condition can be smaller.

Remark 1. System (3) has two steady states (see Section 3.2), E0 = (0, 0, δm ) (for
any value of the parameters) and, under certain conditions, a coexistence equilib-
rium. Under Hypothesis 3.3, E0 will be asymptotically stable (see Proposition 3).
Moreover, if b > 1 (which holds under Hypothesis 3.2) and the latency time is below

a threshold that depends on b, (τ∗ = − 1
µ ln(

k1+k2
α
µ

k1b+k2
α
µ

), see Section 3.2) E0 is the

unique steady state.

For simplicity, set

ν =
δbe−µτµ

mbe−µτµ+ k2(mM − δ)
. (7)

Proposition 2. Under Hypotheses 3.1, 3.3 and 3.2, the region

R := R1 ×R2 ×R3

=

[
0,

mM − δ
k1be−µτM

]
×
[
0,
mM − δ
be−µτµ

]
×
[

δbe−µτµ

mbe−µτµ+ k2(mM − δ)
,M

]
⊂ [0,M ]3

is left invariant by equation (3).

Proof. We organize the proof in five steps.

Step 1. While Q(t) ≥ ν then S(t) ∈ R1 and is nonincreasing. Since S is
positive it is clear that

S′(t) ≤ 0 whenever Q(t) >
α

k 1
, and S′(t) ≥ 0 whenever Q(t) <

α

k 1
.

On the other hand, our system starts from an initial condition

Q0(0) ≥ ν ≥ α

k1
.

Thus S is non increasing and remains in R1 as long as Q ≥ ν.

Step 2. There exists a strictly positive ε such that Q(t) > ν for all t ∈ (0, ε).
Notice that here an ε0 exists such that I(t) < mM−δ

be−µτµ for all t ∈ (0, ε0). So, we have,

if Q(0) = ν,

Q′(0) ≥ δ −mν − k1νS0(0)− k2ν
mM − δ
be−µτµ

+ k1be
−µτQ0(−τ)S0(−τ)

= k1

(
be−µτQ0(−τ)S0(−τ)− νS0(0)

)
> 0,

where we have used Hypothesis (ii) of 3.2.

Step 3. If S(t) is nonincreasing and I(t) remains in R2 for any t ≤ T and
Q(T ) = ν then Q′(T ) > 0. Let us consider what happens when Q(t0) = ν. We
now introduce the quantity t0 = inf{t > 0 : Q(t) = ν}, and notice that we have

Q′(t0) = δ −mν − k1νS(t0)− k2ν
mM − δ
be−µτµ

+ k1be
−µτσ(Q(t0 − τ))S(t0 − τ).

We can now distinguish two cases:
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1. If t0 > τ , since S(t) is nonincreasing in [0, t0], S(t0 − ζ) ≥ S(t0) and hence

Q′(t0) ≥ k1S(t0)
(
be−µτσ(Q(t0 − τ))− ν

)
> 0,

due to the fact that be−µτ > 1, M > ν and Q(t0 − ζ) > ν.
2. If t0 ≤ τ , since S(t0) ≤ S0(0) we obtain

Q′(t0) ≥ k1

(
be−µτQ0(t0 − τ)S0(t0 − τ)− νS0(0)

)
> 0,

where we have used again Hypothesis (ii) of 3.2.

This discussion allows thus to conclude that t0 cannot be a finite time.

Step 4. If S(t) is nonincreasing for any t ≤ T and Q(T ) = M then Q′(T ) < 0.
To this aim notice that, whenever Q0(0) = M we have

Q′(0) ≤ δ −mM + k1be
−µτMS0(−τ) < 0,

where we recall that S0(−τ) < mM−δ
k1be−µτM

according to Hypothesis 3.2. This yields

the existence of ε > 0 such that Q(t) < M for all t ∈ (0, ε). We now define
t1 = inf {t > 0 : Q(t) = M}. It is readily checked that

Q′(t1) ≤ δ −mM + k1be
−µτσ(Q(t1 − τ))S(t1 − τ)

= δ −mM + k1be
−µτMS(t1 − τ),

and we can distinguish again two cases:

1. If t1 > τ , thanks to the fact that t 7→ S(t) is non-increasing on [0, t1], we have

Q′(t1) ≤ δ −mM + k1be
−µτMS0(0) < 0,

since we have assumed that S0(0) < mM−δ
k1be−µτM

.
2. If t1 ≤ τ then

Q′(t1) ≤ δ −mM + k1be
−µτMS0(t1 − τ) < 0,

thanks to the fact that S0(t) < mM−δ
k1be−µτM

for all t ∈ [−τ, 0].

We have thus shown Q(t) ≤M for all t ≥ 0, which finishes the proof.

Step 5. While S remains in R1 and Q remains in R3 then I lives in R2.
Notice first that

I ′(t) ≤ k1M
mM − δ
k1be−µτM

− µI(t)− k1e
−µτσ(Q(t− τ))S(t− τ)

=
mM − δ
be−µτ

− µI(t)− k1e
−µτσ(Q(t− τ))S(t− τ).

We have seen before that I is always nonnegative. Assume now that there exist t1
such that I(t1) = mM−δ

be−µτµ . Then

I ′(t1) ≤ −k1e
−µτσ(Q(t− τ))S(t− τ) ≤ 0,

and so, I(t) ≤ mM−δ
be−µτµ for all t ≥ 0.

Conclusion: From the previous steps we get that there exists ε > 0 such that
(S(t), I(t), Q(t)) ∈ R for any t ∈ [−τ, ε). Combining all the steps it is clear that
they can not leave the region. �
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3.2. Steady states. Stability. Let us study the equilibrium points. We have to
solve the following equations: 0 = (α− k1σ(Q))S

0 = k1σ(Q)S − µI − k1e
−µτσ(Q)S

0 = δ −mQ− k1σ(Q)S − k2σ(Q)I + k1be
−µτσ(Q)S.

(8)

Clearly, when S = 0 we get that I = 0 and Q = δ
m . So, we obtain the bacteria-free

equilibrium E0 = (0, 0, δm ) that exists for any value of the parameters. In the case
M+1 < α

k1
it is clear that no other equilibrium exists (because then α−k1σ(Q) > 0

for any Q).
Furthermore, if M ≥ α

k1
a possible coexistence equilibrium should be

Qc =
α

k1
, Ic(S) =

α

µ
(1− e−µτ )S,

and

Sc =
m− k1δ

α

k1(be−µτ − 1)− k2
α
µ (1− e−µτ )

.

Notice that the sign of Sc depends on both the sign of m− k1δ
α and the quantity

R0 := k1be
−µτ

k1+k2
α
µ (1−e−µτ ) being bigger or smaller than 1. This quantity can be inter-

preted as the expected number of virions produced by a phage during its lifetime
in case there is no degradation of phages. Indeed, it is the product of the prob-
ability that a phage is adsorbed by a susceptible bacteria k1S

k1S+k2I
= k1

k1+k2
I
S

(
=

k1
k1+k2

α
µ (1−e−µτ ) in equilibrium

)
times the expected number of virions released by

a single infection be−µτ .
The function in the denominator of Sc,

f(τ) := e−µτ (k1b+
k2α

µ
)− (k1 + k2

α

µ
)

is a decreasing function of τ for which we have

a) f(0) < 0 ⇐⇒ b < 1,

b) f(0) > 0 ⇐⇒ b > 1. in this case there exists a unique τ∗ = − 1
µ ln(

k1+k2
α
µ

k1b+k2
α
µ

)

such that f(τ∗) = 0

The coexistence equilibrium must be positive. We can distinguish the cases

1) δ
m > α

k1
. Then, if b < 1 there is always (for any latency time τ) a coexistence

equilibrium (Sc, Ic, Qc). If b > 1 the coexistence equilibrium exists only for
τ > τ∗.

2) δ
m < α

k1
. Then the coexistence equilibrium exists only if b > 1 and τ < τ∗.

From the biological point of view, these situations correspond to the cases of a
“large” dose of “nonefficient” viruses, “large” dose of viruses with burst size bigger
than one but “big” latency time and “small” dose of viruses with burst size bigger
than one and “small” latency time respectively.

As we have explained in the introduction we are interested in the behaviour of
solutions in a neighborhood of the bacteria-free equilibrium E0 = (0, 0, δm ). We
now state the local stability result for this boundary equilibrium which ensures
local stability when the “carrying capacity” ([9]) of phages, δ

m , is bigger than the
one for susceptible bacteria, α

k1
.
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Notice that, if we assume δ
m > α

k1
(large dose) and b > 1 then E0 is the unique

steady state as long as τ < τ∗ (which implies in particular that be−µτ > 1 i.e.,
that the viruses are “efficient” in the sense that the expected increase in the virus
population by infection is positive) .

Proposition 3. The bacteria-free equilibrium E0 = (0, 0, δm ) is asymptotically sta-

ble if α− k1
δ
m < 0 and unstable if α− k1

δ
m > 0.

Proof. When τ = 0, using that σ(Q(t)) = Q(t), around E0 the differential matrix
is:  α− k1

δ
m 0 0

0 −µ 0
k1(b− 1) δm −k2

δ
m −m

 ,

with eigenvalues λ0 = α − k1
δ
m , λ1 = −µ < 0 and λ2 = −m < 0. Thus E0

is stable if α − k1
δ
m < 0 and unstable if α − k1

δ
m > 0. In order to study the

system with delay, we linearize it around E0, i.e, S(t) = 0 + s(t), I(t) = 0 + i(t) and
Q(t) = δ

m + q(t) and we assume that the solutions are exponential, i.e. (abusing

the notation) s(t) = eλts, i(t) = eλti and q(t) = eλtq. We get
λeλts = (α− k1

δ
m )eλts

λeλti = k1
δ
me

λts− µeλti− k1e
−µτ δ

me
λ(t−τ)s

λeλtq = −meλtq − k1
δ
me

λts− k2
δ
me

λti+ k1be
−µτ δ

me
λ(t−τ)s.

(9)

Thus the characteristic equation is

p(λ) =

∣∣∣∣∣∣
λ− (α− k1

δ
m ) 0 0

−k1
δ
m + k1e

−(µ+λ)τ δ
m λ+ µ 0

k1
δ
m − k1be

−(µ+λ)τ δ
m k2

δ
m λ+m

∣∣∣∣∣∣ = 0,

and the eigenvalues will be λ1 = α − k1
δ
m , λ2 = −µ < 0 and λ3 = −m < 0 and so

E0 is stable under the same condition that when τ = 0. �
The previous result implies that the stability of the bacteria-free steady state is

assured by supplying a large dose of viruses (notice that the condition implying this
stability was also needed in order to obtain boundedness of the solutions (hypothesis
3.3)).

Characteristic equations for delay differential equations are usually trascenden-
tal. However, for our model, due to the type of nonlinearity of the model, this
characteristic equation is a cubic polynomial which implies that we have exactly
three eigenvalues.

We state now the result about the exponential convergence to the bacteria-free
equilibrium point.

Theorem 3.4. Let us assume that Hypotheses 3.1, 3.2 and 3.3 hold. Let R be
the region defined in Proposition 2. Then the solution of system (3) with initial
condition (S0, I0, Q0) ∈ R exponentially converges to the equilibrium E0:

|(S(t), I(t), Q(t))− E0| ≤ c e−ηt, with η = γ ∧m ∧ µ, (10)

where γ = νk1 − α > 0 and ν is given by (7).

Remark 2. Notice that γ is decreasing with respect to k2 (adsorption rate of
infected bacteria) and that if k2 = 0 then γ = k1δ

m − α as in [6].
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Proof. According to Proposition 2, we have Q(t) ≤ M for all t. Doing now the

change of variables Q̃ = Q− δ
m we get:

dS(t) = −
(

(k1δm − α)S(t) + k1Q̃(t)S(t)
)
dt,

dI(t) =
(
k1

δ
mS(t) + k1Q̃(t)S(t)− µI(t)− k1

δ
me
−µτS(t− τ)

−k1e
−µτ Q̃(t− τ)S(t− τ)

)
dt,

dQ̃(t) =
(
−mQ̃(t)− k1

δ
mS(t)− k1Q̃(t)S(t)− k2

δ
mI(t)− k2Q̃(t)I(t)

+k1
δ
mbe

−µτS(t− τ) + k1be
−µτ Q̃(t− τ)S(t− τ)

)
dt.

With this change of variables, we have also shifted the equilibrium to the point
(0, 0, 0). We now wish to prove that S(t), I(t) and Q̃(t) exponentially converge to
0.

The bound on S(t) is easily obtained: just note that by Proposition 2, we have

Q(t) ≥ ν which implies that Q̃(t) ≥ ν − δ
m and since by Hypothesis 3.3 we have

α
k1
< ν < δ

m

S′(t) = −
(

(k1δm − α)S(t) + k1Q̃(t)S(t)
)
≤ −(νk1 − α)S(t)

which yields S(t) ≤ S0(0) e−γt where γ = (νk1 − α) > 0.

As far as Q̃(t) is concerned, one gets the bound

Q̃′(t) ≤ −mQ̃(t) + k1be
−µτ (

δ

m
+ Q̃(t− τ))S0(0) e−γ(t−τ)

≤ −mQ̃(t) + c e−γt,

with c = k1bMS0(0) e(γ−µ)τ , and where we have used the fact that Q(t) ≤ M
uniformly in t. Using that equation x′(t) = −mx(t) + c e−γt with initial condition

x0 = Q̃0(0) can be explicitly solved as

x(t) =

(
Q̃0(0)− c

m− γ

)
e−mt +

c

m− γ
e−γt

and by comparison, this entails the inequality Q̃(t) ≤ c1 e−(m∧γ)t, where c1 > 0.
Finally, let us consider I(t). Clearly

I ′(t) ≤ k1
δ

m
S(t) + k1Q̃(t)S(t)− µI(t) ≤ k1MS0(0)e−γt − µI(t).

Following the same method, we get that I(t) ≤ c2 e−(µ∧γ)t. �
Summarizing, the boundary equilibrium point is, in some sense, the same point

that in the model without coinfection [6]. That is, the concentration of bacteria is 0
and the concentration of bacteriophages is δ

m . We also have exponential convergence
but in our model with coinfection it will be slower than or equal to the one in the
model without coinfection. More precisely, in [6] it was of order e−(γ′∧m)t with
γ′ = k1δ

m − α whereas in the model with coinfection we treat here it is of order

e−(γ∧m∧µ)t with γ = νk1 − α (ν given by (7)), a decreasing function of k2.

4. Analysis of the stochastic model. For the stochastic model (4) existence
of solution follows from the fact that the coefficients of the equation are locally
Lipschitz with linear growth (see Theorem 2.7 in [6]). The positivity holds using
the same arguments that in Proposition 2.8 in [6]. In order to give the convergence
result for the stochastic model (4) we will introduce some notation: for a continuous
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function f , we set ‖f‖∞,L = supx∈L |f(x)| and Zε = (Sε, Iε, Qε). Let us also recall
that γ = νk1 − α > 0 where ν is given by (7). Then we can state the result about
convergence to E0 as follows:

Theorem 4.1. Given positive initial conditions and assuming that Hypotheses 3.3,
3.1, and 3.2 hold, equation (4) admits a unique solution which is almost surely an
element of C(R+,R3

+). Set η = m ∧ γ ∧ µ and consider three constants 1 < κ1 <
κ2 < κ3. Then there exists ρ0 such that for any ρ ≤ ρ0 and any interval of time of
the form L = [κ1 ln(c/ρ)/η, κ2 ln(c/ρ)/η], we have

P (‖Zε − E0‖∞,L ≥ 2ρ) ≤ exp

(
−c1ρ

2+λ

ε2

)
, (11)

where λ is a constant satisfying λ > κ3/η.

The last theorem can be interpreted as follows: assume that we observe a small
noise with intensity ε, then the deviation we can expect from the noisy system with
respect to the equilibrium E0 is of order ε2θ with θ = 2η/κ3. This range of deviation
happens at a time scale of order ln(ρ−1)/η. As in the exponential convergence for
deterministic model, the rate of convergence of the stochastic model with coinfection
will be slower than or equal to the rate of convergence of the stochastic model
without coinfection.

Proof. Since we have exponential convergence for the deterministic delayed system,
it is enough to check (see subsection 3.1 in [6]) that for any ε ≤ ε(M,T )

P (‖Zε − Z0‖∞,[0,T ] ≥ ρ) ≤ exp−
( c2ρ

2

eK2T ε2

)
.

Recall that ‖S0‖∞ + ‖I0‖∞ ≤ c4 and set J1(t) =
∫ t

0
σ(Sε(t)) ◦ dW 1(t) and J2(t) =∫ t

0
σ(Qε(t)) ◦ dW 2(t). Then, using that σ is a truncated identity function, we can

write

|Sε(t)− S0(t)|

≤
∫ t

0

|(α− k1σ(Qε(s)))(Sε(s)− S0(s))|ds

+

∫ t

0

|k1(σ(Qε(s))− σ(Q0(s)))S0(s)|ds+ ε|J1(t)|

≤
∫ t

0

(α+ k1M)|Sε(s)− S0(s)|ds

+

∫ t

0

k1c4C|Qε(s)−Q0(s)|ds+ ε|J1(t)|,

|Qε(s)−Q0(s)|

≤
∫ t

0

m|Qε(s)−Q0(s)|ds

+

∫ t

0

k1be
−µτ [|σ(Qε(s− τ))− σ(Q0(s− τ))||S0(s− τ)|

+|Sε(s− τ)− S0(s− τ)||σ(Qε(s− τ)|]ds

+

∫ t

0

k2[|σ(Qε(s))− σ(Q0(s))||I0(s)|+ |Iε(s)− I0(s)||σ(Qε(s)|]ds
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+

∫ t

0

k1[|σ(Qε(s))− σ(Q0(s))||S0(s)|+ |Sε(s)− S0(s)||σ(Qε(s))|]ds

+ε|J2(t)|

≤
∫ t

0

(m+ c4C(k1 + k1be
−µτ + k2))|Qε(s)−Q0(s)|ds

+

∫ t

0

(Mk1(1 + be−µτ ))|Sε(s)− S0(s)|ds

+

∫ t

0

Mk2|Iε(s)− I0(s)|ds+ ε|J2(t)|

and doing the same computations

|Iε(t)− I0(t)| ≤
∫ t

0

µ|Iε(s)− I0(s)|ds

+

∫ t

0

Mk1(1 + e−µτ )|Sε(s)− S0(s)|ds

+

∫ t

0

k1c4C(1 + e−µτ )|Qε(s)−Q0(s)|ds.

Thus

|Zε(t)− Z0(t)|2 ≤ c5ε2(|J1(t)|2 + |J2(t)|2) + c6

∫ t

0

|Zε(s)− Z0(s)|2ds.

The proof finishes using a Gronwall’s lemma type and exponential inequalities for
martingales (see the proof of Proposition 3.2 in [6] for the detailed methods). �

5. Concluding remarks. Bacteriophage therapy has lately been considered an al-
ternative to the increasing resistance of pathogenic bacteria to antibiotic treatment
([3, 19, 22]). Mathematical modelling of bacteria-phage interactions could then be
a helpful tool for this therapy. Since the first work of Campbell [14] there have been
quite some papers devoted to bacteria-phage dynamics, most of them considering
deterministic models of ordinary differential equations or delay differential equa-
tions. In order to consider random effects (noise in data, random fluctuations in
parameters...) it is also important to study stochastic models of bacteria-phage dy-
namics. In [6] we studied a stochastic model of susceptible bacteria and free phages
with a constant injection of phages into the system, inspired by the experiments
carried in [7].

Since it has been seen that many bacteriophages can be adsorbed to a single
bacterium, we consider in the present paper a variant (both deterministic and sto-
chastic) of the model in [6] where we add infected bacteria and include the possibil-
ity of this multiple adsorption which is what we call coinfection (meaning an extra
mortality for the bacteriophage population).

We have then a system of susceptible bacteria, infected bacteria and free bacte-
riophages for which we have assumed a constant supply of viruses in order to model
therapy. We have also assumed a constant latency time (time passing between the
phage-bacteria binding and the lysis of the virus) which introduces a delay in the
system. We have shown global existence of a unique positive solution of the initial
value problem for both models, the deterministic and the stochastic and we have
proved boundedness of the solutions. Moreover we have seen (also for both mod-
els) that for any value of the parameters a bacteria-free equilibrium exists which is
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locally asymptotically stable if a large dose of phages is supplied (if this large dose
is given and the phages are “efficient” the bacteria-free equilibrium is unique as
long as the latency time is not too big) and we have shown exponential convergence
to this steady state. This convergence rate decreases when the adsorption rate of
infected bacteria increases and it is slower than the exponential convergence to the
bacteria-free equilibrium of the model without coinfection in [6].

Acknowledgments. The authors would like to thank the Referees for their helpful
comments.
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