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Abstract

What drives behavior? This fundamental inquiry has been the cornerstone of disciplines span-
ning from philosophy to biology. In neuroscience and economics, however, the prevailing view-
point posits that reward plays a central role in motivating an organism’s behavior, such that
one is willing to endure larger costs for more valuable rewards. Within this framework, e�ort
naturally becomes an integral component of reward valuation since the subjective value of a
reward can be observed through the level of e�ort one is willing to expend to obtain it.

Despite the inherent connection between e�ort and reward, the impact that e�ort costs have
on reward value – and the neural architecture that underlies that valuation process – remains un-
clear. Extant research indicates that the processing of e�ort sometimes occurs in the same brain
regions as other cost-based rewards, while at other times, it engages distinct prefrontal regions,
suggesting that e�ort demands are treated separately from other reward-related costs. Addi-
tionally, substantial evidence suggests that e�ort requirements diminish the value of prospective
rewards, as demonstrated by the consistent preference of animals and humans for pursuing less
e�ortful rewards. Interestingly, this preference reverses once a reward is obtained such that
more value is attributed to rewards earned through greater e�ort. This dissociation presents a
unique opportunity to explore how e�ort and reward are integrated during reward receipt and
incorporated into representations of future predicted rewards. Nevertheless, previous studies
tend to focus on select phases of e�ort-based reward processing in isolation, obscuring a fuller
understanding of this valuation process. This factor, coupled with variability in experimental
paradigms and insu�cient control for confounders like success probability, potentially contribute
to inconsistencies in previous findings, necessitating new research focusing on how pure e�ort
demand impacts reward processing.

In this thesis, we employed a diverse range of techniques to examine the influence of e�ort
costs at di�erent stages of reward processing. Firstly, we conducted a comprehensive meta-
analysis, utilizing both coordinate-based and image-based approaches to identify brain regions
consistently involved in signaling prospective e�ort demands and the net value of e�ort-based
rewards. Our findings indicate that during the evaluation and selection of cues, the net value of
e�ort-based rewards is represented by a system comprised of the ventromedial prefrontal cortex
(vmPFC) and the ventral striatum, regions known to play a role in processing the subjective
value of rewards across various domains, costs, and stages of processing. The meta-analysis also
revealed a specific role for the pre-sensory motor area (pre-SMA), which tracked both e�ort
costs and net value, albeit in a di�erent manner than the vmPFC. These results provide robust
evidence for the distinct contributions of the vmPFC and pre-SMA in valuing incentivized e�ort
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costs and highlight their central involvement in the network that drives motivated behavior.

While preparing the meta-analysis, we observed that many experimental designs included
features that generated confounds that could have potentially contributed to conflicting findings
from previous studies. Motivated by this observation, we aimed to design a simple experimental
paradigm that would allow us to isolate pure e�ort and reward value signals by controlling
critical confounding factors, measuring responses across di�erent phases of reward processing,
and assessing e�ort-based reward signals in the absence of option comparison. Surprisingly,
across two experiments, we failed to observe any net value signal during cue evaluation at the pre-
SMA/dACC (as putatively measured by frontal midline theta). Instead, e�ects in component P3
suggest that higher magnitude and less probable rewards were more salient than lower magnitude
and more probable rewards, and that paid e�ort costs amplified this e�ect. Additionally, we
observed enhanced theta power for successful high e�ort outcomes, although theta did not track
reward magnitude. These findings suggest that the pre-SMA/dACC does not track prospective
e�ort when success rates are equivalent between e�ort conditions and in the absence of option
comparison. Finally, e�ort-related e�ects at feedback indicate that rewards earned through high
e�ort are more salient, suggesting a general attentional bias toward high e�ort outcomes.

We next aimed to test whether this attentional bias could potentially modulate individuals
learning speed. Specifically, we were interested in exploring how cognitive e�ort modulates
the reinforcing value of received rewards. Our results indicated that participants successfully
acquired cue-reward contingencies but that learning rates were una�ected by e�ort demands.
Instead, we observed an e�ect of performance feedback, such that learning rates were higher
when participants successfully completed the e�ort task than when e�orts were unsuccessful.

Collectively, the findings presented in this thesis provide several crucial insights into the
field of e�ort-based reward processing. Firstly, we provide compelling evidence that the net
value of prospective e�ort-based rewards engages a system involving the vmPFC and pre-SMA,
with supporting roles played by the ventral striatum, anterior cingulate cortex, and anterior
insula. This suggests that e�ort is treated similarly to other costs within the framework of
value-based decision-making. Furthermore, we demonstrate that when reward probabilities are
fully dissociated from e�ort requirements, frontal midline theta primarily reflects expended
e�ort during reward delivery and that e�ort enhances the salience of rewards during feedback,
which suggests that more attention is allocated to rewards obtained through greater e�ort.
Lastly, we investigated the impact of cognitive e�ort demands on reward learning and found
that positive performance feedback, but not e�ort demands, facilitated the updating of cue-
reward contingencies.

In conclusion, this thesis significantly advances our understanding of e�ort-based reward val-
uation by shedding light on the neural mechanisms involved at di�erent stages of reward pro-
cessing. This collection of work provides conclusive evidence for the roles of the vmPFC and
pre-SMA in valuing prospective incentivized e�ort costs. The current findings also provide addi-
tional evidence in support of the idea that e�ort is weighed di�erently in early stages of reward
processing (i.e., choice, cue evaluation, etc.) than in later stages (i.e. feedback, learning, etc.)
and that performance feedback may be more relevant in certain contexts than sheer e�ort expen-
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diture. Critically, these findings also underscore the need to reevaluate current methodologies
in the field of neuroeconomics, as the failure to replicate certain established e�ects calls for a
comprehensive reevaluation of existing practices.

keywords: e�ort, reward processing, subjective value, medial prefrontal cortex (mPFC),
frontal midline theta (FMT), e�ort-based reward, motivation
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Resumen

¿Qué impulsa el comportamiento? Esta pregunta fundamental ha sido el pilar de diversas
disciplinas, desde la filosof́ıa hasta la bioloǵıa. En neurociencia y economı́a, la perspectiva pre-
dominante propone que la recompensa es uno de los principales impulsores del comportamiento
del organismo y que estamos dispuestos a invertir más esfuerzo por recompensas de mayor
valor. Según esta lógica, el esfuerzo es un componente natural de la recompensa, ya que el valor
subjetivo de una recompensa puede observarse en el grado de esfuerzo que uno invierte para
obtenerla.

A pesar de la relación clara entre el esfuerzo y la recompensa, existen aún grandes lagunas
en nuestro conocimiento sobre como el esfuerzo afecta el valor de la recompensa. Hallazgos de
experimentos de neuroimagen indican que a veces el esfuerzo se procesa en las mismas regiones
del cerebro que otros costes, pero otras veces se procesa en regiones completamente diferentes.
También tenemos evidencia significativa de que las demandas de esfuerzo reducen el valor de
las recompensas futuras, como se evidencia en la observación consistente de que animales y hu-
manos prefieren buscar recompensas que requieran menos esfuerzo. Sin embargo, curiosamente,
una vez que se obtiene una recompensa, esta relación se invierte y las recompensas que fueron
conseguidos tras mayor esfuerzo tienden a ser más valoradas. Esta disociación nos brinda una
oportunidad única para observar cómo se integra el coste de esfuerzo al valor de una recom-
pensa antes y después de ejercer ese esfuerzo, y cómo se incorporan estas representaciones en
las predicciones de recompensas futuras. Sin embargo, los estudios anteriores tienden a cen-
trarse, de forma aislada, en fases selectas del procesamiento de recompensas, lo cual limita una
comprensión más completa del proceso de valoración. Junto con diferencias entre paradigmas
experimentales y la falta de control de factores de confusión como la probabilidad de éxito, es-
tos factores potencialmente contribuyen a las inconsistencias en los hallazgos anteriores, lo cual
impulsa nuevas investigaciónes que puedan captar el efecto de esfuerzo en representaciones de
la recompensa.

En esta tesis se ha utilizado un conjunto diverso de técnicas para investigar el impacto del
esfuerzo en diferentes etapas del procesamiento de la recompensa. En primer lugar, realizamos
un metaanálisis h́ıbrido basado en coordenadas e imágenes para identificar las regiones consis-
tentemente involucradas en la señalización de las demandas prospectivas de esfuerzo y el valor
neto de las recompensas basadas en el esfuerzo. Nuestros hallazgos sugieren que durante la
evaluación y elección de las señales, el valor de las recompensas basadas en el esfuerzo se rep-
resenta en un sistema compuesto por la corteza prefrontal ventromedial (vmPFC) y el cuerpo
estriado ventral, regiones implicadas en el procesamiento del valor subjetivo de las recompensas
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en diversos dominios y con diversos costes. El metaanálisis también reveló un papel especial
para el área motora pre-sensorial (pre-SMA), que segúıa tanto los costes del esfuerzo como el
valor neto, aunque con efectos opuestos a las que fueron identificadas en el vmPFC. Estos resul-
tados proporcionan evidencia sólida sobre el papel diferenciable del vmPFC y el pre-SMA en la
valoración de los costes del esfuerzo incentivado, y muestran que estas dos regiones son actores
centrales en la red que impulsa el comportamiento motivado.

Al revisar los datos del metaanálisis, observamos varias diferencias importantes en los diseños
experimentales, lo cual limitaba la interpretación de los hallazgos. Esto nos llevó a intentar aislar
las señales puras de esfuerzo y valor de recompensa mediante la creación de un paradigma que
nos permitiera: 1) controlar factores cŕıticos de confusión, 2) medir las respuestas en diferentes
fases del procesamiento de la recompensa y 3) medir las señales de recompensa basadas en el
esfuerzo sin tener que comparar opciones. Sorprendentemente, en dos experimentos no logramos
encontrar ninguna señal de valor neto en la evaluación de las señales. Por el contrario, los efectos
en el componente P3 sugieren que las recompensas de mayor magnitud y menos probables
resultaron más salientes que las recompensas de menor magnitud y más probables, y que los
costes del esfuerzo amplificaron este efecto. Además, observamos un aumento en la potencia de la
onda theta para los resultados exitosos de alto esfuerzo, aunque dicha actividad no correlacionó
con la magnitud de la recompensa. Estos hallazgos sugieren que el preSMA/dACC no sigue el
esfuerzo prospectivo cuando las tasas de éxito son equivalentes entre las condiciones de esfuerzo
y en ausencia de comparación de opciones. Por último, los efectos relacionados con el esfuerzo en
la retroalimentación indican que las recompensas obtenidas a través de un alto esfuerzo son más
relevantes, lo que sugiere un sesgo de atención general hacia los resultados de alto esfuerzo.

La ausencia de una señal de valor neto en la evaluación de las señales nos llevó a cuestionar
la relevancia del valor neto en esta fase bajo condiciones en las cual el esfuerzo era obligatorio
y las probabilidades de recompensa eran comparables entre diferentes niveles de esfuerzo. En
su lugar, planteamos la hipótesis de que la entrega de recompensa podŕıa ser más relevante, ya
que el esfuerzo y los resultados de recompensa podŕıan proporcionar más información sobre el
valor de una opción determinada. Por lo tanto, nos propusimos explorar si el esfuerzo cognitivo
modula el valor reforzante de una recompensa recibida. Nuestros resultados indicaron que los
participantes adquirieron exitosamente las contingencias est́ımulo-recompensa, pero que la tasa
de aprendizaje no se vio afectada por las demandas de esfuerzo. Sin embargo, observamos un
efecto del retroalimentación de rendimiento, ya que las tasas de aprendizaje fueron más altas
cuando los participantes recibieron retroalimentación positivo.

En conjunto, los hallazgos de esta tesis contribuyen al campo del procesamiento de recom-
pensas basado en el esfuerzo de varias maneras cruciales. En primer lugar, proporcionamos las
primeras pruebas concluyentes de que el valor neto de las recompensas prospectivas basadas en
el esfuerzo recluta un sistema compuesto por la vmPFC y el pre-SMA, con papeles de apoyo
desempeñados por el estriado ventral, la corteza cingulada anterior y la ı́nsula anterior. Esto
sugiere que el esfuerzo se trata de manera similar a otros costes dentro del marco de la toma de
decisiones basada en el valor. Además, demostramos que cuando las probabilidades de recom-
pensa se desvinculan por completo de los requisitos de esfuerzo, la amplitud theta en la ĺınea
media frontal refleja principalmente el esfuerzo invertido durante la entrega de la recompensa,
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y que el esfuerzo realza la relevancia de las recompensas durante el feedback, lo que contradice
la noción de que las recompensas obtenidas con mayor esfuerzo pierden valor. Por último,
investigamos el impacto de las demandas de esfuerzo en el aprendizaje de recompensas y encon-
tramos que el feedback positivo, pero no las demandas de esfuerzo, facilita la actualización de
las contingencias est́ımulo-recompensa.

En conclusión, esta tesis avanza significativamente nuestra comprensión del procesamiento
de recompensas basado en el esfuerzo. Este conjunto de investigaciones proporciona eviden-
cia concluyente sobre las funciones de la vmPFC y el pre-SMA en la valoración de los costes
prospectivos incentivados del esfuerzo. Además, los hallazgos actuales respaldan la idea de que el
esfuerzo se evalúa de manera diferente en las etapas iniciales del procesamiento de la recompensa
(elección, evaluación de señales, etc.) que en las etapas posteriores (feedback, aprendizaje, etc.),
y que el feedback de rendimiento puede ser más relevante en ciertos contextos que el simple es-
fuerzo. Es importante destacar que estos hallazgos también subrayan la necesidad de reevaluar
las metodoloǵıas actuales en el campo de la neuroeconomı́a, ya que la falta de replicación de
ciertos efectos establecidos requiere una revisión cŕıtica de las prácticas existentes.

palabras claves: esfuerzo, procesamiento de recompensas, valor subjetivo, corteza prefrontal
medial (mPFC), theta de ĺınea media frontal (FMT), recompensa basada en el esfuerzo, moti-
vación
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Chapter 1

Introduction

How organisms organize their behavior to reach a goal is one of the fundamental dilemmas of
value-based decision-making. Critically, goals and rewards are generally obtained by exerting
directed e�ort and this e�ort plays a crucial role in how that reward is evaluated. The study
of e�ort-based reward processing has yielded valuable insights into the behavioral patterns and
associated underlying neural mechanisms of reward and e�ort valuation. However, findings are
inconsistent and oftentimes contradictory and further investigation is needed to elucidate the
precise impact of e�ort expenditure on reward value, as well as the factors that modulate this
relationship. This thesis employs a variety of approaches, integrating neuroimaging techniques
and novel behavioral paradigms, with the aim of unraveling the intricate interplay between e�ort
expenditure and reward value.

In order to understand the e�ect of e�ort on reward value, it is first necessary to under-
stand the theoretical frameworks of reward valuation and the neural architecture supporting
this process. In the following sections, we will provide a basic overview of reward processing
as a whole, how e�ort costs are integrated into this valuation process, and how the subjective
value of e�ort-based rewards are measured.

1.1 Defining Reward Value

To study reward we must first understand how reward is defined. Rewards can be intrinsic
(e.g., satisfaction) or extrinsic (e.g., an award). Rewards can also be primary, or essential for
survival (e.g., food), or secondary (e.g., money, social inclusion) in nature. However, for an
option to be deemed rewarding, it must have some concept of value. The value of reward cannot
be measured directly and is instead estimated from observable behavior. The most intuitive
feature of reward value is the hedonic pleasure one experiences when consuming a reward. The
hedonic response to a reward is generally referred to as “liking” (Berridge et al., 2009; Schultz,
2015). Importantly, the value of a reward is directly related to the degree that is liked, such
that higher value is assigned to rewards that induce more pleasure. Liking is often measured
using physiological responses, such as electromyography facial recordings and skin conductance
arousal. Reward liking can also be measured behaviorally. For example; rats emit squeaks when
presented with appetitive rewards and both animals and humans lick their lips in response to
sweet, but not bitter, tastes (Berridge and Kringelbach, 2015). However, early studies of reward
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pleasure astutely observed that pleasure is not only passively experienced, but it is also sought
out. Specifically, Olds and Milner (1954) observed that electrical stimulation of specific brain
regions in rats had a “rewarding e�ect” such that, given the option to control stimulation (via
lever press in a Skinner box), rats would repeatedly press a lever to self-administer stimulation.
Thus, stimulating certain brain regions provided a reinforcing e�ect (Olds and Milner, 1954),
suggesting that hedonic response to external rewards is not the only factor which underlies
reward value.

This highlights another important feature of reward value: approach behavior. The incen-
tive motivation that promotes approach towards rewards is generally referred to as “wanting”
(Berridge et al., 2009; Schultz, 2015). In neuroscience, psychology, and behavioral economics
alike, value is often operationalized by the level of investment one is willing to make to obtain
that reward, such that organisms prefer and more vigorously pursue more valuable rewards. For
example, decades of research has shown that rewards that induce more pleasure are more vig-
orously pursued than their less pleasurable alternatives (Salamone et al., 2018). Thus, wanting
– and its behavioral correlates – can also be used as an indicator of value itself.

Finally, reward value can be altered by a variety of contextual factors, such as internal or
external states (e.g. food is more valuable when hungry than when satiated, change in food
sources, etc.). Thus, the value of rewards are not static, but are malleable and dependent on
environmental factors. To adapt to changes in the environment, reward values, and the actions
taken to pursue them, must be tracked and updated. This brings us to the third function of
reward value: learning (Berridge et al., 2009; Schultz, 2015). Reinforcement learning is defined
as the process by which associations between actions and rewarding outcomes are established and
how predictions and behaviors are adjusted when outcomes di�er from expectations (Schultz,
2016). This learning process implicitly relies on some representation of value, since generating
predictions about future rewards based on past experiences requires the comparison of current
reward value estimates with previous value estimates (Schultz, 2016).

1.2 The When, Where, and How of Reward Value

The wanting and learning functions of reward are distinct from liking not only in their nature,
but also in their temporality. While liking refers to the hedonic experience of receiving a reward,
wanting and learning imply a desire for and a prediction of a reward before it occurs. These
functions would require a representation of reward value prior to delivery. This phase in reward
processing is generally referred to as reward anticipation and includes not only the hedonic
impact of expecting a reward, but also the predicted value of that reward (Assadi et al., 2009;
Webber et al., 2020).

1.2.1 Signaling Reward Before It Occurs

Neural activations associated with reward anticipation were first studied under the scope of
Pavlovian conditioning. Under these paradigms, an arbitrary stimulus (conditioned stimulus,
CS) with no inherent reward properties (i.e. light flash, sound beep) is systematically and
reliably presented before a reward (unconditioned stimulus, UCS). Over time, an association
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between the stimulus and the reward is developed such that the CS becomes predictive of the
UCS (Mackintosh, 1994). As this predictive association develops, rewarding responses begin to

Figure 1.1: Schematic
of DA neuron firing
in the VTA. Top fig-
ure show firing in re-
sponse to reward delivery
(R). Middle figure shows
DA shift in firing towards
the condition stimuli (CS)
after acquisition of cue-
reward association. Bot-
tom figures shows sup-
pression of DA neurons
when predicted reward is
omitted (no R). Adapted
from Schultz et al. (1997)

not only occur at reward consumption, but also in anticipation of a reward. The first neuronal
activity during reward anticipation was reported by Miller et al. (1981), who identified dopamine
responses to conditioned light in rats treated with haloperidol. In the decades that followed,
seminal work by Schultz et al. (1998, 1997) revealed how dopaminergic neurons in the ventral
tegmental area (VTA) signal anticipated or predicted rewards. As shown in Figure 1.1A, the
firing rate of dopaminergic neurons in the VTA increases when receiving the UCS, initially
encoding for reward delivery. However, as the contingency between CS and UCS is developed,
VTA neural firing will shift towards the predictive stimulus (Figure 1.1B). Critically, once the
association is fully acquired, DA neurons in the VTA no longer respond to reward delivery.
Instead, dopamine neurons in the VTA will respond to rewards only when their delivery di�ers
from the learned prediction. For example, dopamine firing is suppressed when an expected
reward is omitted (Figure 1.1C). Conversely, firing rate increases when rewards are suddenly
delivered earlier or later, or are of a di�erent magnitude than predicted (Schultz et al., 2015).
This sensitivity to the predictability of reward outcomes suggests that dopamine neurons in
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the VTA do not encode the hedonic properties of a reward, but rather encode features of the
stimulus-reward contingency. Further, they confirm the existence of neural representation of
anticipated and predicted reward and directly implicate midbrain dopamine in this signaling at
both cue and feedback.

1.2.2 Neuroanatomy and Electrophysiological Activity Implicated in
Reward Value and Prediction

Since then, considerable e�ort has been dedicated to elucidating how VTA-DA input to cortical
and subcortical brain areas contributes to neural encoding of value and reward prediction. Over
the years, a general reward pathway has been identified. This pathway is primarily composed of
brain regions in the cortico-basal ganglia loop, with key hubs in the VTA / substantia nigra (SN)
and ventral striatum (VS), but also other key structures such as the amygdala, ventral pallidum
(VP), insula, anterior cingulate cortex (ACC), ventromedial prefrontal cortex (vmPFC) and
orbitofrontal cortex (OFC). Through a complex interaction of dopaminergic, GABAergic, and
opioidergic pathways, this system is activated for rewards across all domains and modalities
(Bartra et al., 2013; Mas-Herrero et al., 2021; Sescousse et al., 2013), and throughout all stages
of reward processing (Bartra et al., 2013; Berridge and Kringelbach, 2008; Chase et al., 2015). Of
key interest is the transmission of dopamine through three main pathways. Thus, it is worthwhile
to briefly review the DA receptor types and signaling dynamics in the reward circuitry before
discussing where specific aspects of reward value are represented in the brain. Finally, we
will also review general concepts of neural electrophysiology and what neuronal activity at the
population level is thought to be involved in reward processing.

1.2.2.1 Dopamine Receptor Types and Signaling Dynamics

Midbrain DA has two types of signaling behaviors: phasic and tonic. Phasic activity, or “burst
firing”, refers to a rapid series of action potentials that release large concentrations of DA
(Floresco et al., 2003; Grace, 1991; Grace, 2000). Conversely, tonic activity refers to steady-
state, single spike firing, which slowly di�uses and raises levels of extracellular DA (Floresco
et al., 2003; Grace, 1991; Grace, 2000). However, not all DA receptors are sensitive enough to
react to low, tonic levels of DA. So far, five di�erent DA receptor types have been identified,
labeled D1-D5. These receptors are generally categorized into two families: D1-like receptors,
which include D1 and D5, and D2-like receptors, which include D2, D3, and D4. These subtypes
di�er in their G-protein coupling and a�nity and are also distributed across synapses and brain
regions in di�erent concentrations. For example, D1-like receptors are mostly present pre-
synaptically and are abundant in the PFC, striatum, NAcc, and olfactory tubercle. Meanwhile,
D2-like receptors are present pre- and post-synaptically and are more highly concentrated in the
striatum. Critically, D2-like receptors have much higher a�nity than D1-like receptors and can
be stimulated in low-DA states. Thus, D2-like receptors are more likely to be activated by tonic
levels of DA, whereas D1-like receptors require higher concentrations of DA release and are thus
stimulated by phasic DA activity.

DA neurons originating in the VTA/SN project along three ascending pathways (Figure 1.2).
Terminating in the dorsal striatum (dorsal caudate and putamen), the nigrostriatal pathway
is generally implicated in motor control and habit learning (Bourdy et al., 2014; Faure et al.,
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Figure 1.2: Schematic illustration of reward circuit, and the glutaminergic (Glu), GABAergic (GABA),
and dopaminergic (DA) pathways linking the di�erent regions. Amyg, amygdala; Caud, caudate; Hipp,
hippocampus; NAcc, nucleus accumbens; Put, putamen; SN, substantia nigra; VP, ventral pallidum;
VTA, ventral tegmental area. Adapted from Treadway and Zald (2011).

2005; Redgrave et al., 2010). The mesolimbic pathway has terminals in the VS, amygdala, and
hippocampus, and has been linked to reinforcement learning and motivational components of
reward (Salamone and Correa, 2012; Salamone et al., 2016). The mesocortical pathway projects
to terminals in cortical regions, such as the ACC, mPFC, OFC, and insula, and has been
implicated in a variety of functions that subserve wanting, such as working memory, attention,
and cognitive control (Floresco and Magyar, 2006; Wise, 2005).

These three pathways, especially the mesolimbic and mesocortical pathways, are generally
referred to as the “reward circuit”, since several aspects of reward anticipation and outcome
processing have been linked to the complex interplay between dopamine (as well as other neuro-
transmitters) projections from the basal ganglia to cortical target regions (Haber and Knutson,
2010). Thus, although many aspects of reward are modulated by subcortical structures, mea-
sures of cortical activity, including electrophysiological signatures of this activity, are also highly
informative of the cognitive and neural processes underlying reward value and goal-directed
behavior.

1.2.2.2 Electrophysiological Components Relevant to Value Processing.

When neurons fire, they produce an electrical signal. This electrical activity can be categorized
into action potentials and postsynaptic potentials. Action potentials occur when a target neuron
receives su�cient input from an excitatory neuron so that it depolarizes and fires a discrete
voltage spike. This action potential originates in the cell body and is propagated through to
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the axon terminals where neurotransmitters are released. Conversely, postsynaptic potentials
are the voltages that arise when the neurotransmitters bind to receptors on the postsynaptic
terminal, resulting in graded change in voltage across the cell membrane. The summation of the
postsynaptic potential activity of a neural population can be captured by recording the local
field potential. These field potentials of cortical pyramidal cells are recordable from the scalp
using electroencephalography (EEG) techniques.

The electrical signals recorded from neuronal ensembles can be analyzed in several ways, but
one of the most common indices is event-related potentials (ERPs). ERPs refer to variations
in voltage that are time-locked to a sensory or cognitive event. While ERPs vary in their
time-course, scalp topographies, and distinct cognitive functions, several have been identified as
relevant to reward processing. For example, two ERP components – the cue-N2 and the cue-P3
– appear to be reliably sensitive to features of cues indicating upcoming rewards. Specifically,
the cue-N2 is a negative-going fronto-central ERP that arises 200-300ms after cue onset which
has been hypothesized to signal either upcoming cognitive control demands or a violation of
expectations (template mismatch; Glazer et al., 2018; Luck, 2014). Occurring a bit later (300-
600ms after cue onset) and in more parietal sites, the positive-going cue-P3 is hypothesized
to signal the saliency of a cue. Because it is modulated by likelihood and reward magnitude,
cue-P3 is usually interpreted as indexing motivated attention for reward-predictive cues (Glazer
et al., 2018; Luck, 2014). Similar ERP components appear at reward delivery or feedback,
however these components represent unique, albeit somewhat comparable, processes at di�erent
timepoints. The feedback-related negativity (FRN) is a variation of the N2-family; it is a fronto-
central ERP component thought to be generated in the mPFC (Cohen et al., 2007; Foti et al.,
2015), which peaks about 200 to 300ms following feedback onset. The FRN is not consistently
related to reward magnitude, but it is reliably sensitive to performance evaluation and reward
likelihood, and is generally larger for negative than positive feedback and for unlikely than likely
positive feedback, making it a candidate neural marker for prediction error signaling (Glazer et
al., 2018; Luck, 2014; Sambrook and Goslin, 2015). However, researchers have also observed that
the magnitude of the FRN is driven more by a positive-going deflection elicited by reward-related
response as opposed to a negative deflection elicited by an error-related response (Krigolson,
2018). This reward-specific activation has been deemed the Reward Positivity (RewP; Holroyd
et al., 2011; Holroyd et al., 2008). It is more central than the loss-related FRN and has been
shown to be generated in the ACC/mPFC and striatum (Becker et al., 2014; Foti et al., 2011).
Like the FRN, RewP amplitudes are modulated by reward prediction violation and outcome
probabilities (Bernat et al., 2015; Hajcak et al., 2007; Sambrook and Goslin, 2015). In contrast,
the feedback P3 (fb-P3) is sensitive to other properties of reward feedback, such as magnitude
and probability, but does not appear to reflect performance evaluation. This positive-going,
centro-parietal deflection peaks from 300 to 600ms post feedback onset and is thought to reflect
resource allocation and motivational salience (Glazer et al., 2018; Luck, 2014).

In addition to looking at temporal variations of voltage, as is done with ERP components,
EEG signals can also be quantified by looking at the amplitude of deflection in the frequency
domain. This measure is referred to as time-frequency power and allows researchers to capture
both phase-locked (called evoked power) and out-of-phase (called induced power) oscillatory
activity, the latter of which is lost in an averaged ERP waveform. Time-frequency components
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are defined by their time-course and frequency band. Although there is some variability in fre-
quency ranges, the canonical frequency bands are delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz),
beta (13-25 Hz) and gamma (26-80 Hz) (Cohen, 2014; Luck, 2014). Of these frequency bands,
beta and theta are particularly relevant for reward anticipation and feedback processing. Beta
power is typically measured in fronto-central midline sites about 200-600ms following stimulus
onset (Luft, 2014). It has been hypothesized that beta activity promotes incentive-motivational
processes, since studies have shown that beta power is enhanced for reward-predictive cues and
that beta suppression during motor-preparation facilitates behavioral approach (Glazer et al.,
2018). At outcome, beta power is also linked to reward and performance feedback processing
and has been proposed as a candidate signal for motivated learning (Marco-Pallares et al., 2008;
Marco-Pallarés et al., 2015). Theta power is also measured at frontal-midline sites, however in
the context of reward processing it is typically looked at during outcome, where it generally
peaks from 200 to 500ms post feedback onset (Glazer et al., 2018). Frontal midline theta has
been shown to be sensitive to both reward and feedback evaluation (Bernat et al., 2015; Hajihos-
seini and Holroyd, 2013) and related to behavioral adjustment (Cavanagh and Shackman, 2015)
and learning rate (Mas-Herrero and Marco-Pallarés, 2014). More recently however, there has
been more interest in the role of theta during reward anticipation, especially in relation to the
allocation of cognitive control for goal-directed behavior (Cavanagh and Frank, 2014; Verguts,
2017). This is critical, as we see that the direction and intensity of goal-directed behavior is
directly influenced by costs associated with a given reward.

Taken together, these ERP and time-frequency components provide valuable insight into the
cognitive and neural mechanisms underlying reward processing in humans and are candidate
measures for investigating the impact of e�ort costs on neural signatures of reward value.

1.3 When Reward Comes at a Cost

Anticipating a reward inherently implies a representation of this future reward and the relevant
environmental features associated with obtaining it (Rangel et al., 2008). These environmental
features include external and internal states which can influence how that reward is valued.
For example, one million dollars are valued di�erently when you have a low probability of
winning them (e.g. as in a lottery) versus when you have total certainty that you will be paid.
Similarly, food does not have the same value when you are full as when you are starving. Thus,
to understand reward value, one must also explore relevant features that can influence this
valuation process.

Researchers in behavioral economics have been traditionally concerned with decision-making
processes, particularly in how costs associated with certain rewards drive economic choice. This
framework lent itself well to behavioral and a�ective neuroscience since choice behavior provides
a reliable behavioral correlate of the emotional and subjective value of a reward. These fields
naturally intersected, forming what is now known as neuroeconomics. Despite the diversity of
mechanistic and theoretical perspectives in this field, all theories of neuroeconomics posit that
motivated, or goal-directed, behavior is driven by cost/benefit trade-o�s (Salamone et al., 2018;
Westbrook and Braver, 2015; Zald and Treadway, 2017). In this valuation process, expected
costs are weighed against predicted benefits, resulting in a net value (also referred to as the
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subjective value or decision value) of an option. The definition of benefits used in neuroeconomics
overlaps greatly with our prior definition of reward and can be primary or secondary, as well as
internal or external in nature. Costs also depend on internal and external states and, although
there are a variety cost types, the costs most discussed in the literature are temporal delay,
probability of reward, and e�ort required to obtain a reward (Bailey et al., 2016; Rangel et al.,
2008). The mechanism by which costs and benefits are integrated to derive net value remains a
topic of active debate (Kolling et al., 2016; Rangel et al., 2008; Shenhav et al., 2013; Vassena,
Holroyd, et al., 2017). However, most neuroeconomic theories agree that net values provides
a “common currency” by which options can be equally compared, thereby guiding choice and
action selection (Padoa-Schioppa, 2011).

In economics, one way of finding the subjective reward value of an item is to simply find the
maximum amount one is willing to pay to obtain it. Under the neuroeconomics framework,
this perspective has been broadened to include willingness to endure any type of cost in order
to obtain said reward. The most common external costs studied are probability, delay, and
e�ort, although others like e�cacy and opportunity costs have been explored (Bailey et al.,
2016; Frömer et al., 2019; Shenhav et al., 2021). Based on extensive behavioral findings in
both animals and humans, these costs are assumed to discount the value of a reward, such that
rewards that are less probable, more delayed, or require more e�ort to obtain are preferred
less than their more probable, more immediate, or less e�ortful alternatives (Salamone et al.,
2018; Zald and Treadway, 2017). These findings are primarily based on paradigms that utilize
a neuroeconomic framework to study cost-benefit weighting. Since the focus of this dissertation
is on the e�ect of e�ort on reward value, we will limit the scope of this review to paradigms
which use e�ort as a response cost.

1.3.1 Measuring Net Value

One of the prominent paradigms that has been used to assess the impact of e�ort demand on
reward preference is the T-maze barrier choice procedure developed by Salamone et al. (1994).
In this procedure, one arm of the maze contains a small amount of food while the other arm
contains a larger amount of food with a vertical barrier in front. Rodents must therefore climb
over the barrier to get the larger reward (see Figure 1.3A). Healthy rodents will generally go
over the barrier to get to the larger food reward. When both arms have the same amount of
food, however, animals will avoid e�ort and prefer the arm with no barrier. Thus animals are
e�ort avoidant, unless reward is a function of more e�ort (Salamone and Correa, 2012; Salamone
et al., 2018).

Another commonly used task for assessing e�ort-based choice in animals is the concurrent
lever-pressing procedure, also developed by Salamone and colleagues (1991). In this paradigm,
rodents are given the choice between either lever pressing to obtain a relatively preferred food
or approaching and consuming a less preferred food (lab chow) that is concurrently available
in the chamber. Under baseline conditions, rodents typically prefer lever pressing and only
consume small quantities of lab chow, again showing preference to endure e�ort when rewards
are su�ciently salient.

These procedures were directly translated to humans (Salamone et al., 2018; D. H. Treadway,
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Figure 1.3: Examples of common e�ort-based reward paradigms. (A) T-maze barrier choice
paradigms. Rodents freely choose between climbing a barrier for a preferred food (high e�ort for high
reward) or a less preferred food with a smaller or no barrier (low e�ort for low reward). (B) Dual-
alternative e�ort-based decision-making paradigm. Participants are given a maximum of 5 seconds to
choose between a default option (40 pence with no e�ort) and another option with higher e�ort require-
ments, but also higher payo�s (55% of maximum voluntary contraction for 57 pence). Participants then
exert the force for 15% of their selections. In this case, they must reach the grip threshold and hold for
12 seconds. Reward is only given if e�ort is correctly exerted. (C) Passive e�ort-based reward task. In
this task by (Croxson et al., 2009), participants are presented with a compound e�ort and reward cue.
Participants then have two seconds to emit a button response before having to complete a trackball task
of varying degrees of di�culty (ranging from 8 targets at the lowest level of e�ort and 20 targets at the
highest level of e�ort). Feedback about the amount of reward gained on the trial is then presented. Image
A has been adapted from Assadi et al., (2009), B from Klein-Flügge et al., (2015), and C from Croxson
et al., (2009).

2011) and are analogous to T-maze and concurrent lever-pressing procedures. As seen in Figure
3B, dual-alternative paradigms in humans require subjects to repeatedly choose between a higher
e�ort/higher reward option and a lower e�ort/lower reward option (Chong et al., 2016; Chong
et al., 2015; Reddy et al., 2015). In some studies, the lower e�ort/lower reward alternative is
simply a no e�ort/no reward option, and thus the participant only needs to accept or reject the
o�er on hand (“accept/reject tasks” in Chong et al., 2016). Irrespective of the format, these tasks
produce estimates of net value by fitting choice data to discounting curves, which characterizes
how reward is devalued as costs increases (Hartmann et al., 2015; Hartmann et al., 2013; Klein-
Flugge et al., 2016). This procedure allows investigators to characterize the subjective, or net,
value of an option based on an individual’s personalized tolerance to expend e�ort to gain reward.
Neural correlates of net value are then identified by employing neuroimaging techniques locked
to the time of option presentation, or performing pharmacological manipulations to identify
changes in choice behavior (Chong et al., 2016; Webber et al., 2020).
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In addition to choice paradigms, there are also what we will call 1) progressive cost tasks
and 2) passive tasks. In these paradigms, participants are not required to choose between
two competing cost-benefit options. Instead, in “progressive cost” tasks, participants withstand
increasing amounts of cost for higher rewards. The amount of cost incurred can be freely decided,
and the putative measure of net value is the “breakpoint”, or the point at which the subject
is unwilling to continue enduring a cost for a given reward value (Acheson and de Wit, 2008;
Hershenberg et al., 2016). Finally, another group of studies have used “passive” cost-based
reward paradigms, where participants are presented with a cue that signals the degree of cost
and reward required to obtain an outcome (see Figure 1.3C). No choice is required in these
tasks; however participants must endure the cost to obtain the reward. In these paradigms,
neural correlates of subjective value are identified as brain activity that is sensitive to both
reward and cost values near the time of cue presentation and reward delivery (Botvinick et al.,
2009; Croxson et al., 2009).

The e�ort manipulations used in these paradigms can be broadly categorized into physical
and cognitive tasks. Extant physical e�ort tasks used in humans include choice-based hand-grip
tasks where willingness to exert e�ort is measured by motor force exerted on a grip (Clery-Melin
et al., 2011; Kurniawan et al., 2010; Reddy et al., 2015; Schmidt et al., 2012) and choice-based
or progressive cost button or lever pressing tasks (Hershenberg et al., 2016; Lane et al., 2005;
M. T. Treadway et al., 2009). Running tasks have also been used in the context of exercise
research, where preferences to run for less or more time in order to obtain less or more reward
were fit to discounting models (Bernacer et al., 2016; Bernacer, Martinez-Valbuena, Martinez,
Pujol, Luis, et al., 2019). Cognitive paradigms are substantially more varied and include Stroop
tasks (Schmidt et al., 2012), cued set-switching tasks (Botvinick et al., 2009; Lopez-Gamundi
and Wardle, 2018), visual shift tasks (Apps et al., 2015), memory search tasks (Ennis et al.,
2013), attention tasks (Schevernels et al., 2014), backward typing of words (Massar et al., 2015),
arithmetic tasks (Vassena, Silvetti, et al., 2014), and working memory tasks (Westbrook et al.,
2013; Westbrook et al., 2019). These e�ort-based decision-making tasks generally either examine
behavioral biases to avoid cognitive e�ort in choice-based tasks or are also used in discounting
paradigms.

There is also a significant variety in the metrics used to analyze choice behavior in cost/benefit
valuation tasks. Some tasks use percent of high e�ort choices to measure willingness to exert
e�ort for reward (Barch et al., 2014; M. T. Treadway et al., 2009). Another approach is to use
staircase paradigms in order to derive subject-specific e�ort indi�erence points (Klein-Flügge
et al., 2015; Westbrook et al., 2013). The great majority of tasks however, use computational
modeling based on discounting functions. As mentioned earlier, discounting curves are generally
fit to trial-by-trial choices using a softmax function. These discounting functions take the reward
value (R) of a given option on trial (t) and detract the cost (C) in order to calculate the subjective
value (SV). Discounting functions can take various forms and are amendable to the specific
parameters of a paradigm (Cooper et al., 2019; Soder et al., 2020), but the most popular are
linear, hyperbolic, parabolic and exponential functions:

Linear : SV = R(t) ú (1 ≠ kE(t))
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Hyperbolic : SV = R(t) ú 1
kE(t)

Parabolic : SV = R(t) ≠ kE(t)2

Exponential : SV = R(t) ≠ e
≠kE(t)

The discounting parameter k represents the steepness of each individual’s discounting func-
tion. Thus, the higher the k value, the more an individual devalues a reward based on e�ort.
Once a subject-specific discounting parameter is derived, trial-wise data can be used to compute
the subjective value of an o�er. Figure 1.4 illustrates the shape of each discounting function.

Figure 1.4: Discounting Functions. Subjective value of a 1-unit reward decreases monotonically as a
function of increasing e�ort demand. The magnitude of the discounting k parameter regulates the degree
to which a reward is devalued by e�ort demands. Lower discounting factors result in less subjective
devaluation of reward as a function of increasing e�ort, while larger discounting factors result in steeper
devaluation of reward as a function of increasing e�ort. In this case, low k parameter was set to .3 and
high k parameter was set to .8.

Several studies relate brain activity locked to e�ort/reward cue or choice presentation to
these subject- and trial-specific subjective value estimates. Subject-specific subjective value
estimates can also be inputted back into the softmax function to estimate the probability that
a given subject will accept one e�ortful reward option over another. Correlations between brain
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activity and this probability of choice metric are also often investigated. These distinctions will
be relevant for the next section, which will review the neural underpinnings of net value for
e�ort-based rewards.

1.3.2 Neural Correlates of Net Value and E�ort-Based Reward

Over the past two decades, extensive research in both animals and humans has demonstrated
that the key regions engaged in reward processing are also sensitive to cost valuation. Animal
studies suggest that net value of rewards are encoded in a core valuation system composed
of the VTA, NAcc, and basolateral amygdala, and that these regions are engaged in choices
about rewards with e�ort, delay, and probability costs alike (Bailey et al., 2016). Critically,
DA manipulations in these regions alter e�ort-based decision-making and motivated behavior
in rodents. Furthermore, the role of mesolimbic DA in e�ort-based decision-making appears
to be bi-directional, such that interference with DA transmission biases preferences to the low-
e�ort option, while augmenting DA transmission increases selection of high-e�ort options in
both T-maze and progressive ratio tasks (Salamone et al., 2018). These findings have been
replicated using a variety of methods to alter DA transmission, such as administration of DA
antagonists and agonists, depletions of local DA using neurotoxin injections, lesions of midbrain
DA structures, and optogenetics (Floresco et al., 2008; Hauber and Sommer, 2009; Mai et al.,
2012; Salamone et al., 2007; Salamone et al., 2018; Winstanley and Floresco, 2016). Of key
interest is the VS, and more specifically the nucleus accumbens (NAcc), which has been shown
to regulate movement- and value-related signals associated with e�ort-based rewards. These
signals may arise from distinct neural populations within the striatum, such that the NAcc core
and shell help regulate computations related to e�ort-based choice, whereas the NAcc core is
more directly responsible for the invigoration and persistence of motivated behavior (Bailey et
al., 2016). In humans, the VS also plays a critical role in tracking the net value of cost-based
rewards. Specifically, fMRI studies have shown that the activity in the VS, along with the
vmPFC, tracks delay- and probability-discounted subjective values (Dreher, 2013; Haber and
Knutson, 2010; Knutson et al., 2005; D. J. Levy and Glimcher, 2012; I. Levy et al., 2010; Peters
and Büchel, 2009; Prévost et al., 2010). Meta-analytic results indicate that the vmPFC and
VS consistently scale positively with subjective value of rewards during decision-making (Bartra
et al., 2013; D. J. Levy and Glimcher, 2012), making them candidate hubs for processing net
value.

However, several experiments have failed to find a relationship between activity in this general
valuation network and the net value of e�ort-based rewards (Chong et al., 2017; Croxson et al.,
2009; Klein-Flugge et al., 2016; Kurniawan et al., 2010; Massar et al., 2015; Prévost et al.,
2010; Schmidt et al., 2012; Suzuki et al., 2021), thus calling into question the existence of a
unitary corticostriatal system for net value representation. Instead, a large body of evidence
supports the hypothesis that specific neural substrates are recruited based on the specific cost
feature being weighed. For instance, in rodents, risky rewards engage the medial OFC while
delayed rewards engage the lateral OFC and prelimbic and infralimbic medial PFC (Bailey
et al., 2016). Critically, the ACC appears to be a critical node for representing the value of
e�ortful reward (Bailey et al., 2016). For example, lesions to the rodent homolog of the dACC
and to the primate dACC have been shown to induce a shift in preference away from larger
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and more e�ortful rewards in favor of smaller and less e�ortful rewards (Rudebeck, Buckley,
et al., 2006; Walton et al., 2003; Walton et al., 2007; Walton and Mars, 2007, but see Walton
et al., 2005). Critically, when e�ort costs are equalized, rodents return to choosing the larger
reward, suggesting that the ACC is nonessential when decisions can be resolved relying purely
on reward value (Floresco and Ghods-Sharifi, 2007; Rudebeck, Walton, et al., 2006; Walton
et al., 2003). Data from single neuron recordings also suggest that the ACC is one of the
only prefrontal structures that consistently tracks e�ort costs throughout the course of decision-
making (Kennerley et al., 2011; Kennerley and Wallis, 2009; Kennerley et al., 2006; Wallis and
Kennerley, 2011), making it a candidate substrate for facilitating the integration of e�ort costs
and reward values throughout the time course of reward processing.

A similar regional specialization based on cost features has also been proposed for humans.
Specifically, the ACC, insula, midcingulate, and supplementary motor area (SMA) are signifi-
cantly more activated in representing e�ort-discounted compared to time-discounted (Massar et
al., 2015; Prévost et al., 2010) and probability-discounted subjective values (Burke et al., 2013).
Furthermore, the ACC has been shown to encode both e�ort costs and integrated cost/benefit
values, with blood oxygenation level dependent (BOLD) activity generally scaling positively with
increasing e�ort demands and negatively with the subjective value of decision options (Chong
et al., 2017; Klein-Flugge et al., 2016; Prévost et al., 2010). Intriguingly, activity related to
SV encoding during e�ort-based decision-making is found only partially and, oftentimes, exclu-
sively outside of the core valuation network. For example, Bonnelle et al. (2016) found that
cost/benefit weighting of two e�ortful reward options positively correlated with BOLD activity
in the ACC and pre-SMA, but negatively correlated with activation in the vmPFC. Seaman
et al. (2018) also found that BOLD activity in the VS and ACC/mPFC was associated with
the subjective value of the selected option in an e�ort-based decision-making task. However, in
several studies, a relationship between activity in the VS/vmPFC and subjective value encoding
is completely absent. For example, the ACC, pre-central gyrus and insula, but not the VS and
vmPFC, were shown to track the SV of e�ortful choice and e�ort demand in a physical and
cognitive task (Massar et al., 2015; Prévost et al., 2010). Klein-Flugge et al. (2015) also showed
that the di�erence in subjective value between two e�ortful options was encoded by BOLD ac-
tivity in the dACC and SMA, but not the common valuation network, and that activity in these
substrates scales with both reward di�erence and e�ort di�erence. Finally, a study by Chong et
al. (2017) identified a network composed of the dACC/dmPFC, dlPFC, the intraparietal sulcus,
and the anterior insula as being involved signaling the subjective value of a reward across both
cognitive and physical e�ort demands. Further, activity within these domain-general areas also
covaried negatively with reward and positively with e�ort, suggesting an integration of these
parameters within these areas (Chong et al., 2017). Critically, even in a region-of-interest anal-
ysis activity in neither the VS or vmPFC were shown to relate to subjective value encoding,
suggesting a limited role for the common valuation network in encoding e�ort-based reward
value (Chong et al., 2017) . These conflicting findings necessitate further exploration into the
factors driving these divergent signaling patterns of e�ort-based reward representation.
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1.3.3 The Peculiar Case of E�ort

How is it that sometimes e�ort-based rewards are represented like other cost-based rewards while
other times e�ort-based rewards are treated as something unique? One potential explanation
for the lack of convergence in previous findings could be that di�erences in previous method-
ologies and uncontrolled confounds are driving these results. We will now review some of the
methodological di�erences that could contribute to these divergent findings, as well as some of
the relevant confounds that arise when designing e�ort-based reward paradigms.

1.3.3.1 Caveats of Measuring E�ort-Based Reward

Domains of E�ort. As reviewed earlier, there are several paradigms used to measure cost-
based decision-making. Probability and delay discounting use costs with unitary measures that
rely on an objective scale. That is to say that while the magnitude can change (i.e. 10% vs 90%
chance or 1 day vs. 100 days), the cost itself is grounded in an objective unit of measure. In
the case of e�ort however, several di�erent methods have been used to manipulate demand and
it remains unclear whether all e�ort is processed in a common, domain-independent manner.
One central line of research has been to determine if cognitive and physical e�ort costs are
represented in separate or overlapping regions in the brain. In rodents, inactivation of the
ACC increases willingness to expend cognitive e�ort for a food reward (Hosking, Lam, et al.,
2014), but decreases willingness to expend physical e�ort for food reward (Floresco and Ghods-
Sharifi, 2007), suggesting dissociable e�ects within the same substrate. Behaviorally, individual
di�erences in willingness to exert cognitive and physical e�ort are only moderately correlated
within rodents at baseline (Cocker et al., 2012; Hosking, Cocker, et al., 2014; Hosking et al.,
2015). In humans, individual di�erences in cognitive e�ort discounting are only moderately
positively related to individual di�erences in physical e�ort discounting under conditions of
hypothetical (Ostaszewski et al., 2013) and real (Lopez-Gamundi and Wardle, 2018) e�ort costs.
In another adult sample, choices about cognitive e�ort were best modelled with a hyperbolic
function while choices about physical e�ort were best modelled with a parabolic function, which
suggests that the extent to which individuals devalue rewards and the mathematical nature of
that discounting e�ect depends on the domain of the e�ort itself (Chong et al., 2017). Imaging
studies similarly suggest that e�ort-based rewards are processed in a domain-general network
but also activate task-dedicated regions; however, the nature of this domain-general network
remains a topic of active debate. For example, in a study using a mixed paradigm containing
both an e�ortful cognitive task (the Stroop task) and a physical task (hand grip), VS activity
significantly reflected performance level for both, while physical e�ort demands were primarily
reflecting in the sensorimotor cortex and cognitive demands in the dlPFC and paracingulate
cortex (Schmidt et al., 2012). However, in two e�ort-based decision-making tasks, cognitive
and physical e�ort was subserved by a common network of areas, including the ACC/dmPFC,
dlPFC, the intraparietal sulcus, and the anterior insula, with the right amygdala specifically
tracking the subjective value of cognitive e�ort subjective value but no specific area tracking
the subjective value of physical e�ort (Chong et al., 2017). Thus, one relevant open question
is whether di�erent domains of e�ort are processed in a similar manner and if there exists any
consistently identifiable common neural basis in representing these di�erent types of e�ort.

Certainty of Reward Delivery and E�ort Execution. Another methodological feature
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that is unique to e�ort-based decision-making paradigms is the timing and uncertainty of e�ort
execution and reward delivery. For example, in delay- and probability-discounting paradigms,
costs are oftentimes not experienced and rewards are only delivered for a select few trials which
are selected at the end of the task. This carries significant benefits, such as being able to use
parametric measures with a wide range of reward, probability, and delay values and having many
trials, allowing for more extensive modeling. However, one of the drawbacks is that rewards and
their associated costs are generally hypothetical, thus it is di�cult to conclude whether areas
activated during probability- and delay-related choices in these paradigms are the same areas
that are activated when making choices with real outcomes.

Many e�ort-based decision-making paradigms also use “hypothetical” rewards and e�ort.
Specifically, many studies only require participants to execute the e�ort component (and there-
fore receive the corresponding reward) for a small, random selection of the choices made (Aridan
et al., 2019; Bernacer, Martinez-Valbuena, Martinez, Pujol, Luis, Ramirez-Castillo, and Pastor,
2019; Chong et al., 2017; Chong et al., 2015; Hogan et al., 2019; Massar et al., 2015; Westbrook
et al., 2019). Oftentimes, e�ort is only executed o�ine, such that no reward is received and no
e�ort is executed during the task itself (Aridan et al., 2019; Arulpragasam et al., 2018; Chong
et al., 2017; Hogan et al., 2019). This could create a significant confound as the VS and vmPFC
have been found to be sensitive to real versus hypothetical reward in the context of e�ort (Scholl
et al., 2017). Alternatively, due to the role of mesolimbic DA in action encoding (Syed et al.,
2016), it is possible that subjective value is indeed signaled by the VS, but that this signal
is muted by opponent behavioral activation signals that arise in e�ort-based decision-making
paradigms. For example, a study by Suzuki et al. (2021) found that activity in the VS was
increased when anticipating and initiating e�ort in a non-choice (passive) e�ort-based reward
task where e�ort was performed online. Conversely, the authors also found that VS BOLD
responses were significantly lower for delivery of a reward that had required more, as opposed
to less, e�ort, consistent with a discounting signal (Suzuki et al., 2021). However, in the same
study, activity in the VS did not correlate with subjective value of the chosen option in a sep-
arate e�ort-based decision-making task where e�ort was performed o�ine. In a cross-paradigm
analysis, Suzuki and colleagues (2021) found that VS responses to e�ort initiation in the online
e�ort task were significantly positively associated with VS responses to prospective e�ort cues
during the decision-making task, suggesting that there is an e�ort activation signal present in
the VS even when e�ort demands will not be immediately executed. Similarly, that VS responses
to discounted value during reward delivery in the online e�ort task were numerically negatively
associated with VS responses to prospective e�ort cues during the decision-making task, pro-
viding trending support for a negative e�ort-discounting signal in the VS (Suzuki et al., 2021).
Thus, the existence of opposing e�ort-activation and e�ort-discounting signals in the VS could
explain why some studies fail to find net value encoding in the striatum (Arulpragasam et al.,
2018; Chong et al., 2017; Hogan et al., 2019; Massar et al., 2015), but cannot explain why the
VS is activated in other experiments where e�ort is executed online and e�ort-activation signals
would be presumably more salient (Bonnelle et al., 2016; Hauser et al., 2017; Klein-Flugge et al.,
2016).

Di�erences in Reward Rate. In paradigms with online e�ort exertion, it is relatively
common to find lower success rates in the high demand condition (Aridan et al., 2019; Gaillard et
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al., 2019; Grodin et al., 2016; Ma et al., 2014; “Neural Correlates of Successful and Unsuccessful
Strategical Mechanisms Involved in Uncertain Decision-Making”, 2015; Schevernels et al., 2014;
Umemoto et al., 2022; Westbrook et al., 2019; Yi et al., 2020. In some studies, the di�erence
in success rates is small (<3%) and potentially imperceptible (Botvinick et al., 2009; Stoppel
et al., 2011; Vassena, Silvetti, et al., 2014), while in other studies, di�erences in success rates are
large and task di�culty (i.e. e�ort demand) is directly manipulated by lowering the probability
of success (Ma et al., 2014; Silvetti et al., 2014). These di�erences in success rates result in
less cumulative reward under high e�ort conditions, thereby confounding e�ort demands with
reward rate. This is critical, as some of the e�ects observed in e�ort-based reward preference
may be driven by estimates of reward likelihood instead of e�ort cost. For example, it has
been observed that participants also modulate behavior on the basis of average reward rate
rather than instantaneously available reward (Guitart-Masip et al., 2011). Increased reward
rates have also been shown to invigorate behavioral responses; this relationship is also mediated
by midbrain dopamine (Beierholm et al., 2013). Furthermore, midbrain DA and the common
valuation network modulate probability discounting behavior (Bailey et al., 2016) and encode
probability during reward anticipation (Bretzke et al., 2021; Yacubian et al., 2007), opening the
possibility that striatal activity during e�ort-based decision-making could reflect a probability
signal as well. Activity in the anterior insula and mPFC/ACC have been shown to track both
probability and e�ort discounted subjective value (Burke et al., 2013; Seaman et al., 2018),
suggesting that there is also a partial overlap in regions associated with signaling the subjective
value of these two costs even outside of the common valuation network. Finally, reward rate has
been repeatedly shown to modulate outcome processing. For example, increased reward rate
potentiates the learning of action-outcome associations, a process heavily mediated by striatal
DA (Taswell et al., 2018). Component P300, as well as EEG signals originating from the mPFC
(FRN and frontal midline theta) have all been shown to be sensitive to reward probability
and expectation at outcome (Bellebaum et al., 2010; Cavanagh et al., 2012; Hajcak et al.,
2007; Hajihosseini and Holroyd, 2013; Oliveira et al., 2007; Rawls et al., 2020; Silvetti et al.,
2014; Wu and Zhou, 2009). Therefore, one critical consideration when designing e�ort-based
decision-making paradigms is to either experimentally or statistically control for demand-driven
di�erences in reward rates.

Metrics of Subjective Value. Another important observation about the di�erent e�ort-
based reward paradigms is whether subjective value is measured using a choice metric or by
simple main and interaction e�ects of e�ort. Current evidence partially supports the role of
the common valuation network and the ACC in signaling prospective net value of e�ort-based
rewards in the absence of choice. Activity in the VS has been shown to track prospective
incentive value for rewards with e�ort requirements (Gaillard et al., 2019; Schmidt et al., 2012).
In Croxson et al. (2009), BOLD activity in both the VS and ACC scaled with the net value of
prospective e�ort-based rewards. Another study also found that the ACC and striatum were
sensitive to both prospective cognitive e�ort and reward anticipation (Vassena, Silvetti, et al.,
2014). Krebs et al., (Krebs et al., 2012) found enhanced BOLD responses in the vmPFC and
dorsal striatum for both anticipated e�ort and reward, but that responses in the VS and pre-
SMA were predominantly sensitive to prospective reward and e�ort, respectively. In contrast,
the ACC and pre-SMA have also been shown to weakly predict upcoming e�ort expenditure
and instead predominately signal upcoming reward incentives, while the activity in the vmPFC
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and VS more consistently related to prospective reward, e�ort, and average e�ort exertion
(Kroemer et al., 2014). Further, Stoppel et al. (2011) found that activity in the VS and
midbrain/SN tracked reward magnitude and di�culty at cue but that activity in the ACC was
sensitive to reward and e�ort only immediately prior to e�ort execution (target period) and
at feedback. This finding converges with a recent coordinate-based meta-analysis which shows
that the ACC was not consistently engaged in cue valuation signaling of upcoming rewards and
cognitive control demands but was consistently engaged during the target period (Parro et al.,
2018). Taken together, these findings implicate the common valuation system in encoding the
net value of e�ortful rewards in the absence of choice, although it remains unclear why only
select regions of this network are recruited in some studies while others engage both the VS and
vmPFC. Furthermore, the conditions under which the ACC is recruited for net value signaling
also remain unclear.

One proposal is that the ACC is recruited for to execute the cognitive functions that subserve
option comparison and decision-making (Kennerley et al., 2006; Kolling et al., 2016; Shenhav
et al., 2014). If this were the case, one would expect that the ACC would be more consistently
engaged in e�ort-based decision-making tasks. Specifically, activity in the ACC, along with a
series of other regions associated with cognitive control (i.e. dlPFC, insula, intraparietal sulcus
(IPS)), has been shown to scale negatively with subjective value and the magnitude of di�erence
between subjective values of the two options on o�er. For example, in a physical e�ort-based
decision-making task, similarity in net value between options (i.e. “cost-benefit weighing load”)
positively correlated with BOLD activity in the dACC and pre-SMA, but negatively correlated
with activation in the vmPFC (Bonnelle et al., 2016). In a similar handgrip task, activity in
the dACC and SMA, but not the vmPFC or VS, encoded the di�erence in subjective value
between e�ortful reward options (SV di�erence), and scaled negatively with reward di�erence
and positively with e�ort di�erence (Klein-Flugge et al., 2016). BOLD activity in the ACC-
insula network scaled negatively with the subjective value of the variable e�ortful option in
physical e�ort-based reward task (Prévost et al., 2010). In this case, since the alternative o�er
had a fixed e�ort and reward, this metric of subjective value was analogous to SV di�erence.
However, BOLD activity in the mPFC/ACC and VS has also been shown to scale positively
with subjective value of chosen option in a key-press e�ort-based decision-making task (Seaman
et al., 2018), highlighting the importance of the subjective value metric used when interpreting
the direction of neural activity. Activity in the dACC/dmPFC, dlPFC, IPS, and the anterior
insula has been shown to scale negatively with SV di�erence in both a cognitive and physical
e�ort-based decision-making task (Chong et al., 2016). Interestingly, Massar et al. (2015)
found that the subjective value of the variable e�ortful option correlated with activity in the
left temporal and bilateral parietal cortices, as well as the dlPFC, but that subjective value of
the chosen option correlated with activity in the ACC, again highlighting the sensitivity of some
subjective value metrics in capturing specific valuation signals even within the same paradigm.

One common observation is that the SV di�erence metric approximates decision di�culty.
Thus, one plausible interpretation is that regions that are more typically associated with cogni-
tive control itself, such as the ACC, IPS, dlPC, and insula, are recruited to support the cognitive
control functions that subserve decision-making. This proposal would explain why these regions
are active when SV di�erence is small and why signals in these regions generally become weaker
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when the subjective value of a single option is large (i.e. presumably when SV di�erence is large,
at least in e�ort-based decision-making paradigms). In fact, the two studies that experimentally
controlled for decision di�culty found that BOLD activity in the ACC encoded for decision dif-
ficulty while activity in the VS and vmPFC tracked the subjective value of e�ort-based reward.
In a novel experiment by Westbrook et al. (2019), participants first completed an e�ort dis-
counting task to generate an estimate of their individual indi�erence points. Later these custom
indi�erence points were used to set the value of the rewards-on-o�er in a cognitive e�ort-based
decision-making task. This allowed experimenters to create a custom measure for decision dif-
ficulty, since choices where o�ers were close to the indi�erence point were considered di�cult,
while o�ers that were far from the indi�erence point were considered easy. They found that
the cognitive control network, comprised of the dACC, dlPFC, and IPS, but not the common
valuation network, were more active on di�cult versus easy decision trials; conversely, activity
in the VS and vmPFC not only correlated with single-o�er SV, but also scaled positively with
reward amount and negatively with e�ort demand (Westbrook et al., 2019). In a similar vein,
Hogan et al. (2019) used a non-rewarded e�ort-based decision-making task to disentangle the
e�ects of choice di�culty from subjective e�ort valuation. Interestingly, Hogan and colleagues
(2019) found that the vmPFC tracked the subjective value of e�ort as well as the di�erence in
e�ort values, but that the ACC scaled with choice di�culty (as measured by reaction time).
Taken together, these findings suggest that the common valuation network subserves subjective
valuation of e�ortful rewards and option comparison, but that the ACC is recruited when deci-
sions are more di�cult and require more cognitive control, such as when options are very similar
in value.

This interpretation of the ACC aligns well with neurocomputational frameworks which pro-
pose that the ACC is involved in motivated control, or the promotion of successful selection and
invigoration of behavioral response in goal-directed behavior (Shenhav et al., 2013; Vassena,
Deraeve, et al., 2017). Specifically, the Expected Value of Control (EVC) theory posits that the
dACC integrates a variety of signals – including reward, cost, uncertainly, as well as other state
variables and control-relevant information – to determine the degree of control worth allocat-
ing to a task (Shenhav et al., 2013). Each control signal has an identity (e.g., which task to
perform, which cognitive mechanism to employ, which choice to select) and an intensity (e.g.,
how much control to employ); the ACC is responsible for selecting the control signal that max-
imizes the EVC. This model has successfully linked neural activity and behavioral correlates to
performance e�cacy (Frömer et al., 2021; Grahek et al., 2022) and attention allocation (Shen-
hav et al., 2018). In the case of choice di�culty, the EVC account predicts increased dACC
involvement as o�ers become increasingly similar in value (Shenhav et al., 2013; Shenhav et al.,
2021). However, the EVC model would also predict that optimal control signals would decrease
when choices become too similar in expected value, as added control is not necessary since both
options are equally valuable (Vassena et al., 2020). Although one study has directly tested this
hypothesis (Vassena et al., 2020), other experiments are needed to examine this activation patter
for choices about e�ortful reward. This computational framework also proposes that the dACC
monitors outcome-value information in order to estimate EVC (Shenhav et al., 2013). This
claim is supported by the dACC’s involvement in conflict monitoring (Botvinick and Braver,
2015; Botvinick et al., 2001; Laird et al., 2005), responsivity to positive and negative outcomes
(Bartra et al., 2013; Holroyd and Coles, 2002; Kouneiher et al., 2009), and relationship with
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prediction errors (Amiez et al., 2012; Kennerley et al., 2011). To fully test these hypotheses
however, future research will need to measure dACC activity in response to e�ortful rewards
both at the time of decision and at outcome.

1.3.3.2 Contradictory E�ects of E�ort

Of key interest then is to understand how e�ortful rewards are valued at the time of receipt.
While virtually all research focusing on the cue evaluation or decision-making period assumes
that prospective e�ort attenuates the value of a future reward, a growing body of work suggests
that expended e�ort actually potentiates the value of a reward. So while people are generally
e�ort avoidant and will only engage in e�ort when the incentives are large enough, it is also
true that rewards gained under more e�ort are deemed more valuable (Inzlicht et al., 2018).
This observation has been deemed the “e�ort paradox”, as it completely contradicts the e�ort
discounting perspective that predominates the neuroeconomic framework.

This psychological phenomenon has been observed in a variety of contexts and several frame-
works have been used to reconcile these two contradictory e�ects of e�ort. For example, studies
of consumer behavior observed that people value furniture more when they assembled it person-
ally as compared to when assembled by a professional, an observation known as the IKEA e�ect
(Norton et al., 2012). Alternatively, justifications of e�ort were also explained by cognitive dis-
sonance theory, which proposes that e�ort is indeed aversive, but that individuals change their
attitudes about a reward to justify past e�ort (Covey, 2009). However, in some cases it appears
that e�ort itself is deemed rewarding. For example, many animal species prefer to work for food
even when they can obtain an identical amount of food without e�ort, a behavior referred to as
contra-freeloading (Inglis et al., 1997). Significant research has also been done on the personality
trait “need for cognition”, which refers to a person’s tendency to engage in and enjoy cognitively
e�ortful tasks (Cacioppo et al., 1996). Independent of whether or not e�ort itself is valued, the
idea that working for a reward increases the value attributed to that reward appears relatively
universal.

Evidence of e�ort’s added value has also been demonstrated by activity in the common reward
valuation system and EEG markers related to reward processing. Specifically, BOLD activity
in the VS and the subgenual ACC has been shown to be higher for rewards gained under high
compared to low e�ort (Gaillard et al., 2019). Both the ventral and dorsal striatum had stronger
responses to rewards that required instrumental responses compared to reward that did not (Zink
et al., 2004). This converges with evidence that the P300 amplitudes are larger for rewards that
subjects obtained by performing an action as opposed to inhibiting a response (Schevernels et
al., 2016). Component P300 has also been shown to be enhanced in response to reward after
exerting high, but not low, e�ort (Ma et al., 2014). Furthermore, positive performance feedback
on di�cult compared to easy arithmetic tasks also elicited an enhanced P300, suggesting that
e�ort itself can increase saliency (Ma et al., 2014; Wang et al., 2017). Execution of high-e�ort
compared to low-e�ort also resulted in increased amplitudes in an EEG signal related to reward
processing in the ACC (Reward Positivity; RewP), consistent with increased valuation of reward
outcomes by ACC (Umemoto et al., 2022).

However, other studies suggest that e�ort has a limited or even discounting e�ect at feedback.
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For example, activity in the VS and vmPFC scaled positively with reward magnitude at feedback,
this e�ect was not modulated by physical e�ort demand (Prévost et al., 2010). NAcc activation
to reward delivery was blunted after completing more demanding, as opposed to less demanding,
working memory (2014 and cognitive e�ort tasks (2009). In fact in Botvinick et al. (2009), high
e�ort expenditure resulted in a deactivation in the NAcc for no reward outcomes, consistent
with the idea that e�ort is costly and devalues reward (Botvinick et al., 2009). Anterior VS
BOLD responses to reward have been shown to be attenuated after exerting higher degree of
e�ort in a navigation task (Suzuki et al., 2021). P300 amplitudes have also been shown to be
enhanced for rewards received after low, compared to high, e�ort expenditure, again consistent
with an e�ort discounting e�ect (Bowyer et al., 2021).

One e�ective strategy for understanding how both prospective and expended e�ort demands
impact the subjective valuation of reward would be to measure the impact of e�ort during both
reward anticipation and reward delivery. For practical reasons (e.g., o�ine e�ort execution,
reduced task length, etc.), most studies only analyze data locked to the initial evaluation phase or
to e�ort execution and feedback. Of the e�ort-based reward studies that measure brain activity
at both cue valuation/choice and feedback phases, only a handful utilized fMRI (Gaillard et
al., 2019; Prévost et al., 2010; Schmidt et al., 2012; Stoppel et al., 2011; Suzuki et al., 2021).
Furthermore, despite the high temporal resolution of EEG imaging, relatively few studies have
looked at the EEG signals related to e�ort-based reward processing starting at the cue evaluation
or decision-making period (Schevernels et al., 2016; Schevernels et al., 2014; Silvetti et al., 2014;
Umemoto et al., 2022). Significant methodological di�erences between fMRI and EEG e�ort-
based reward tasks make it di�cult to consolidate results and draw conclusions. Additionally,
virtually all of the studies that used EEG to study net value of e�ort-based rewards have focused
on one component (P300), ignoring more fine-grained aspects of how reward value and e�ort costs
are signaled and integrated together during decision-making (but see Harris and Lim (Harris and
Lim, 2016) for time course of separable e�ort, stimulus value, and net value signals in e�ortful
choice). Components N2/FRN and oscillatory behavior in the theta frequency band would also
be useful markers for ACC activity and could help elucidate the role of the ACC/mPFC in
valuation of e�ort-based rewards at cue and outcome monitoring at feedback.

Another important strategy for studying the e�ect of e�ort on reward at feedback would be
to remove confounding e�ect of reward likelihood. As discussed before, some paradigms have
large di�erences in success rate – and therefore reward probability – between high and low e�ort
conditions (Schevernels et al., 2014; Silvetti et al., 2014). This leaves open the possibility that
e�ort-related neural responses during reward feedback are actually driven by the di�erent reward
probabilities under high and low e�ort. For example, feedback-P3 has been found to covary with
both reward magnitude and probability (Yeung and Sanfey, 2004) and is sensitive to reward
expectancy, so that it is generally enhanced for less probable compared to more probable gains
(Hajcak et al., 2007; San Mart́ın, 2012; Watts et al., 2017). FRN and RewP are also sensitive to
reward probability and expectancy and are generally enhanced for reward prediction violations
(Glazer et al., 2018; Sambrook and Goslin, 2015), such that these components could potentially
be more enhanced under conditions where rewards were less likely under high e�ort. The VS
and vmPFC have also been repeatedly implicated in signaling violation of reward expectancy
at outcome, with findings from a fMRI meta-analysis concluding that this network is more
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consistently enhanced when reward outcomes are better-than-expected (Fouragnan et al., 2018).
As discussed previously, since high e�ort rewards are generally more unlikely, it is plausible that
enhancements in activity in the VS and vmPFC during delivery of high-e�ort rewards are a
function of prediction violations as opposed to amplification of subjective value. Controlling for
the di�erence in reward rates between e�ort demands is therefore critical for identifying a pure
e�ort signal at feedback.

1.3.3.3 E�ort as a Reinforcer

As suggested in the previous section, several of the neural substrates and markers involved
in e�ort-based reward processing at feedback are also implicated in reward learning. More
specifically, the ventral striatum has been repeatedly shown to encode reward prediction error in
both animals and humans (Abler et al., 2006; Cohen, 2007; Daniel and Pollmann, 2014; Jocham
et al., 2011). Meanwhile, the vmPFC has also been shown to track the learned subjective value
of an option independent of the sensorimotor demands of the task (Jocham et al., 2011; Vassena,
Krebs, et al., 2014), which falls in line with accounts of the vmPFC as a central node for signaling
abstract reward values once these values have been computed elsewhere (Padoa-Schioppa, 2011).
Single unit recordings (Kennerley et al., 2011), EEG signals (Cavanagh et al., 2012; Chase et al.,
2011; Mas-Herrero and Marco-Pallarés, 2014; Oliveira et al., 2007; Silvetti et al., 2014; Talmi
et al., 2013), and BOLD activity (Vassena, Krebs, et al., 2014) all indicate that activity in
the ACC/mPFC tracks the discrepancy between expected and actual rewards. Several have
also proposed that the size of the FRN, an EEG component thought to be generated in the
ACC, is predictive of reward learning (see Luft (2014) for a comprehensive review). Another
putative marker of ACC function – frontal midline theta – has also been shown to correlate
with prediction errors and individual di�erences in reward learning (Mas-Herrero and Marco-
Pallarés, 2014). In all, these findings suggest that the VS and ACC – two regions that play a
very important role in net value signaling – are also highly involved in signaling violations of
expected reward during feedback.

E�ort-based reward processing, however, requires more than simple reward prediction. Unlike
traditional classical conditioning, where feedback is only informative about the stimulus-reward
association, feedback during e�ort-based reward processing reveals relevant information about
the value of the action and performance. This complicates the interpretation of feedback-related
brain activity in e�ort-based reward paradigms since net valuation occurs in overlapping tem-
poral windows and neural substrates as action-value updating and performance monitoring. For
example, the striatum has been shown to update the value of a chosen action based on the
outcome (Ito and Doya, 2009; Kim et al., 2009). In humans, the VS signals violations in re-
ward expectation, with greater physical e�ort attenuating this signal (Kurniawan et al., 2013).
While the VS appears to incorporate some aspects of e�ort value with reward prediction, it
remains unclear to what degree the ACC integrates the two. For instance, BOLD activity in the
ACC/mPFC and anterior insula have been shown to reflect the discrepancy between expected
and actual e�orts, but not between expected and actual reward (Hauser et al., 2017; Skvortsova
et al., 2014). However, e�ort has been shown to modulate subjective value prediction error
signals in BOLD activity in the ACC at cue (Arulpragasam et al., 2018), which implies that
the ACC weighs e�ort costs in violations of expected subjective value. Neurons in the ACC
have also been shown to integrate motor information with outcome predictions (Cowen et al.,
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2012; Hyman et al., 2017), update action values (Mashhoori et al., 2018), track trial-by-trial
information (Akam et al., 2021; Kawai et al., 2015) and correlate with behavioral adjustments
(Akam et al., 2021). The role of the ACC in adapting behavior on the basis of performance
monitoring and reward prediction has led to proposals that the dACC serves as a reinforcement
learning agent that optimizes adaptive resource allocation via cortico-brainstem recursive loop
(Silvetti et al., 2018). According to the Reinforcement Meta-Learner theory, the dACC tunes
reward and prediction signals (broadcasted by VTA-DA) and learning signals about the envi-
ronment (broadcasted by noradrenergic release from locus coeruleus) for the purpose of selecting
optimal behavioral responses (Silvetti et al., 2018). This new theoretical perspective highlights
the importance of elucidating how e�ort demands impact learning signals and the consequences
this has for e�ort-based choice.

In the preceding sections, we provided an overview of the fundamental theoretical and neural
foundations pertaining to the evaluation of rewards and e�ort. We emphasized existing knowl-
edge regarding the localization and integration of costs and benefits within the brain. However,
this concise analysis also underscored several apparent contradictions in the literature. Notably,
signals related to rewards with e�ort requirements are frequently absent in the common val-
uation system, indicating the involvement of a distinct yet partially overlapping set of brain
regions involved in the integration of e�ort costs and reward value. The diversity of experi-
mental designs used to assess e�ort-based reward processing, as well as the potential confounds
generated by these paradigms, pose challenges in interpreting findings and may account for some
of these disparate results. Additionally, another contradictory observation is that individuals
often exhibit a preference for prospective rewards requiring less e�ort, while concurrently as-
signing higher value to rewards attained through greater e�ort. This indicates the presence of a
dissociation that necessitates further investigation into the integration of e�ort costs with value
across various stages of reward processing.
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Chapter 2

Research Aims

The overarching objective of the current work was to investigate the influence of e�ort costs on
the processes involved in evaluating rewards. Specifically, our aim was to determine where in
the brain the subjective value of e�ort-based rewards is represented and how e�ort costs impact
these representations across the di�erent phases of reward processing. To achieve this primary
goal, we divided our investigation into three main research questions.

First, we aimed to identify brain regions that consistently (and across experimental paradigms)
signal prospective e�ort costs and net value of e�ort-based rewards. Building on previous lit-
erature, we anticipated that prospective e�ort demands would be signaled in frontal regions
such as the ACC, SMA, and AI. However, conflicting findings regarding the neural correlates
of net value prompted us to explore whether these signals are consistently observed in the core
valuation network (including the orbital and ventromedial prefrontal cortex and the striatum)
or in more frontal regions.

Second, we aimed to examine to what extent the mPFC (which includes the pre-SMA and
ACC) selectively tracks pure e�ort costs and net value signals in the absence of several confounds,
and the extent to which this signal varies over the course of reward processing. We hypothesized
that the mPFC – putatively measured by frontal midline theta activity – would track the net
value of prospective e�ort-based rewards and that e�ort would enhance reward-related signals
during feedback. However, the precise nature of this net value signal and whether it follows a
discounting pattern or resembles the need for control, remained an open question.

Third, we sought to determine if the net value of e�ort-based rewards could be tracked
through the learning of stimulus-outcome associations. Specifically, we hypothesized that the
subjective value of e�ort-based rewards would modulate the learning of cue-reward associations.
We presented two opposing predictions: if e�ort discounts the value of the reward, we expected
that contingencies of rewards requiring higher e�ort would be learned more rapidly compared
to those requiring lower e�ort. Conversely, if e�ort enhances the saliency of reward feedback,
we anticipated that rewards with higher e�ort requirements would be learned more quickly than
those with lower e�ort requirements. The three following studies were implemented to achieve
these aims.
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2.1 Study 1: Identifying areas consistently involved in e�ort
valuation and net value signaling

As discussed above, previous studies implicate a general valuation system comprised of the VS
and vmPFC in encoding the net value of prospective rewards. However, several reports suggest
that the subjective value of e�ort-based rewards is not processed in this general valuation system,
but rather in the ACC, pre-sensory motor area (pre-SMA), and anterior insula, brain regions
which are associated with cognitive control (Kouneiher et al., 2009; Parro et al., 2018). Further,
the diversity of paradigms and neuroeconomic measures used in e�ort-based decision-making
studies make it di�cult to parse apart whether these regions are signaling the prospective
demands and integrated net values of e�ort-based rewards, or simply engaged in cognitive control
processes that subserve the decision-making features of these experimental paradigms. One way
to identify which brain regions are systematically recruited for e�ort valuation and cost-benefit
integration is to look for overlapping activity across a variety of e�ort-based reward paradigms.
To this aim, we designed and executed a hybrid coordinate- and image-based fMRI meta-analysis
of e�ort-based reward studies. The methods and findings of this study are reported in Chapter
3.

2.2 Study 2: Isolating the e�ect of e�ort demands, reward
magnitude, and reward probability in mPFC e�ort-based
reward processing

The majority of studies investigating e�ort-based reward have relied on paradigms that either
1) limit analyses to one phase (anticipation vs feedback) of reward processing, 2) do not require
participants to reliably execute e�ort demands to receive the reward and 3) have lower reward
rates for high e�ort options. The third observation in particular presents a crucial confound in
e�ort-based reward studies, as rewards might be devalued based on lower reward probability as
opposed to increased e�ort demands.

To disentangle the e�ects of reward probability from signals of e�ort-based reward, we de-
veloped a novel paradigm which equalized success rates (and therefore reward rates) between
levels of e�ort demand. We then used scalp electroencephalography (EEG) techniques to inves-
tigate how frontal midline theta (FMT) – an oscillatory index of cognitive control and a putative
measure of mPFC functioning – and the event related component P300 – an EEG marker of
incentive salience – responded to prospective and experienced rewards with varying e�ort de-
mand requirements and reward probabilities (Cavanagh and Frank, 2014; Glazer et al., 2018;
Mas-Herrero and Marco-Pallarés, 2016). This study can be found in Chapter 4.

2.3 Study 3: Identifying the e�ects of cognitive e�ort
expenditure on reward prediction and learning

Many of the brain regions involved in reward prediction and behavioral adaptation to reward
(e.g., VS and ACC) have also been implicated in tracking the net value of e�ort-based rewards.
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Furthermore, since the strength of reward prediction errors (RPEs) and learning of stimulus-
outcome contingencies depends on the quantity, quality, and subjective value of a reward (Lak
et al., 2014; Roesch et al., 2007; Schultz et al., 2015; Stau�er et al., 2014), it would follow that
e�ort-requirements could impact the value of the reward and therefore the learning of these
contingencies. Thus, reward learning paradigms could provide a perfect proxy for exploring the
e�ect of e�ort expenditure on net value estimates of reward. In fact, a recent study in non-
human primates, found that dopamine neurons in the VTA increased firing in response to cues
predicting reward and to reward delivery after exerting more, compared to less, e�ort (S. Tanaka
et al., 2019). These neurophysiological responses were coupled with behavioral e�ects, such that
subjects learned stimulus-reward associations more quickly when exerting more, compared to
less, e�ort for a reward (S. Tanaka et al., 2019). However, to date, the impact of e�ort on reward
learning has not been investigated in humans.

To this aim, we modified a common reward learning paradigm (the Reversal Learning Task),
where stimulus-reward contingencies were learned through experience and participants were
required to perform either a high or low cognitively demanding task in to obtain the reward.
We then fit choice data using a reinforcement model to formally test the hypothesis that learning
rates are modulated by the net value of rewards with high vs. low e�ort costs. Our hypothesis
was two-fold. If e�ort costs devalued the benefits of reward, participants should acquire stimulus-
reward associations more slowly for rewards that require higher e�ort costs. Conversely, if
e�ort expenditure potentiates the value of subjective value of reward, participants should learn
stimulus-reward contingencies more quickly for rewards that require higher e�ort costs. This
experiment is discussed in Chapter 5.
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Chapter 3

The neural basis of e�ort valuation: A
meta-analysis of functional magnetic
resonance imaging studies�

3.1 Abstract

Choosing how much e�ort to expend is critical for everyday decisions. While several neuroimag-
ing studies have examined e�ort-based decision-making, results have been highly heterogeneous,
leaving unclear which brain regions process e�ort-related costs and integrate them with rewards.
We conducted two meta-analyses of functional magnetic resonance imaging data to examine con-
sistent neural correlates of e�ort demands (23 studies, 15 maps, 549 participants) and net value
(15 studies, 11 maps, 428 participants). The pre-supplementary motor area (pre-SMA) scaled
positively with pure e�ort demand, whereas the ventromedial prefrontal cortex (vmPFC) showed
the opposite e�ect. Moreover, regions that have been previously implicated in value integration
in other cost domains, such as the vmPFC and ventral striatum, were consistently involved in
signaling net value. The opposite response patterns of the pre-SMA and vmPFC imply that
they are di�erentially involved in the representation of e�ort costs and value integration. These
findings provide conclusive evidence that the vmPFC is a central node for net value computation
and reveal potential brain targets to treat motivation-related disorders.

3.2 Introduction

Every day, we are faced with choices about whether to invest e�ort to attain certain goals (Bai-
ley et al., 2016; Salamone et al., 2009). These e�ort demands are often regarded as costly, such
that individuals tend to avoid one action if it requires too much e�ort with respect to the reward
it entails (Kool et al., 2010; Kurniawan et al., 2010; Kurniawan et al., 2011; Lopez-Gamundi
and Wardle, 2018; Salamone et al., 2018). The ability to accurately weigh energy requirements
against potential benefits (e.g., “e�ort-based decision-making”), is therefore crucial for optimal
goal-directed action, and alterations in this function are believed to be a core component of

�
This study has been published in Lopez-Gamundi, P., Yao, Y-W, Chong, T. T-J., Heekeren, H. R., Mas-

Herrero, E. & Marco-Pallarés, J. (2021). The neural basis of e�ort valuation: A meta-analysis of functional

magnetic resonance imaging studies. Neuroscience & Biobehavioral Reviews, 131. Text, tables and figures are a

reproduction of the article.
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motivational disorders, such as apathy (Chong and Husain, 2016; Hartmann et al., 2015; Hu-
sain and Roiser, 2018), and have been found across a variety of psychopathologies, including
depression (hua Yang et al., 2014; M. T. Treadway, Bossaller, et al., 2012), schizophrenia (Barch
et al., 2014; Park et al., 2017), Parkinson’s disease (Chong, 2018; den Brok et al., 2015; Le
Heron et al., 2018), and substance dependence (Grodin et al., 2016). Due to its clear clinical
importance, there has been a recent surge of interest in how e�ort devalues prospective rewards,
and such studies have demonstrated that e�ort might be a unique cost, distinct from other more
investigated cost domains, such as risk and delay. However, work on the neural mechanisms
underlying e�ort-based valuation have yielded heterogeneous results, and the question of how
humans integrate e�ort and reward remains a subject of contention.

Most behavioral economic theories of reward-related behavior rely on the assumption that an
organism weighs a reward and its associated costs to generate a net value of an option (Kahneman
and Tversky, 1979; Sutton and Barto, 1998; Von Neumann and Morgenstern, 1990). A popular
hypothesis proposes that, to e�ectively compare di�erent options, the net value of each must
be represented in a ‘common currency’ (Padoa-Schioppa, 2011; Rangel et al., 2008; Westbrook
and Braver, 2015). A network of regions, including the ventromedial prefrontal cortex (vmPFC;
and adjacent orbitofrontal cortex) and ventral striatum (VS), have been repeatedly implicated
in the encoding of the net value of rewards discounted by the costs associated with obtaining
them (Bartra et al., 2013; D. J. Levy and Glimcher, 2012). Based on these data, this valuation
network is posited to be ‘domain-general’, as it tracks net value representations regardless of the
nature of the reward (e.g., primary vs secondary) (Bartra et al., 2013; Sescousse et al., 2013)
or of the type of cost (e.g., risk vs delay) (Kable and Glimcher, 2007; Peters and Büchel, 2009;
Prévost et al., 2010).

However, much of these data have focused on outcome-related costs such as risk or delay.
Notably, research on e�ort-based valuation suggests a limited role for the vmPFC and VS for
value integration. Instead, other frontal regions beyond this core valuation network, including
the anterior cingulate cortex (ACC), supplementary motor area (SMA), and anterior insula
(AI), have been shown to signal net value discounted by e�ort costs (Arulpragasam et al., 2018;
Camille et al., 2011; Chong et al., 2017; Klein-Flugge et al., 2016; Massar et al., 2015; Skvortsova
et al., 2014; Walton et al., 2003). These findings are consistent with animal studies showing that
lesions to the ACC, but not the nucleus accumbens, prelimbic/infralimbic cortex (homologous
to the vmPFC), or orbitofrontal cortex, reduce the amount of e�ort rats invested for rewards
(Rudebeck, Buckley, et al., 2006; Walton et al., 2003; Walton et al., 2009). Furthermore, neural
activity in the ACC, as measured by single unit recordings, varies with cost-benefit weighting
(Hillman and Bilkey, 2010, 2012) and e�ort-related choice (Cowen et al., 2012). This body
of work thus raises the possibility that a distinct frontal network is specifically recruited to
integrate e�ort-related value.

On the other hand, these frontal regions (i.e. ACC, pre-SMA, AI, etc.) are also commonly
implicated in cognitive control processes (Wu et al., 2020), which may overlap or obscure value
signals. For example, value-based decision-making may trigger cognitive control functions such
as conflict detection and response inhibition (Botvinick and Braver, 2015; Botvinick et al.,
2001), surprise and/or prediction error signaling (Vassena, Deraeve, et al., 2017, 2020), and
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invigoration of goal-directed behavior (Kouneiher et al., 2009; Kurniawan et al., 2013; Mulert
et al., 2005).Therefore, it is plausible that these regions are recruited to prepare and invigorate
behaviors necessary for realizing a prospective reward instead of for computing prepotent net
values per se. Cognitive control is also required for di�cult decision-making, such as when two
simultaneously presented options have similar net value (Klein-Flugge206; Chong et al., 2017;
Hunt et al., 2012; Massar et al., 2015), and in exploration/exploitation and foraging contexts,
where individuals forego more immediate, secure rewards in order to search for alternative reward
sources (Kolling et al., 2016; Shenhav et al., 2013). Indeed, studies that have independently
manipulated net value and decision di�culty showed that these frontal regions, particularly the
dorsal ACC, specifically tracked decision di�culty (Hogan et al., 2019; Westbrook et al., 2019)
while, in contrast, the vmPFC uniquely tracked net value (Westbrook et al., 2019). Similarly,
exploration of the reward environment – a behavior which is associated with increased cognitive
control since it requires forgoing the “default” reward option in favor of uncertain rewards –
also engages the dACC (Amiez et al., 2012; Cavanagh et al., 2012 although see Daw et al.,
2006 for overlap with vmPFC). Taken together, these findings suggest that this distinct frontal
network is recruited more specifically for cognitive control, such as response planning, option
comparison, and foraging, whereas e�ort-related value integration is still processed in the core
valuation network (e.g., vmPFC and VS) that have been identified in other cost domains.

The inconsistencies in previous studies may be related to several issues. For example, some
may have been statistically underpowered due to small sample sizes, which may have reduced the
probability of detecting significant e�ects, and/or reduce the reliability of their findings (Müller
et al., 2018; Poldrack et al., 2017). Furthermore, the specific e�ort requirements of each task may
have induced di�erent patterns of brain activity, making it di�cult to judge whether findings
from individual studies can be generalized to the cognitive process of interest. A promising
approach to address these issues is to quantitatively synthesize fMRI data across multiple studies
using an image-based meta-analysis (Müller et al., 2018). Relative to traditional meta-analyses
based only on peak coordinates of significant activity, an image-based meta-analytic approach
uses the full information of the statistical maps from each study, and has greater power to detect
small e�ect sizes (Luijten et al., 2017; Salimi-Khorshidi et al., 2009). A previous study showed
that even the inclusion of 20% of statistical maps for included studies could significantly improve
the precision of a meta-analysis (Radua et al., 2012).

Here, we conducted a hybrid coordinate- and image-based fMRI meta-analysis to identify
the neural correlates of e�ort-related cost processing and value integration. Considering their
critical roles in response planning, we hypothesized that frontal regions like the ACC, SMA, and
AI would be consistently involved in representing prospective e�ort, independent of the reward
o�er. We also aimed to test whether e�ort-related net value integration (i.e., the integration of
reward value with the e�ort required to obtain it) relied on the core valuation areas such as the
vmPFC and VS or broader frontal regions.
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3.3 Materials and Methods

3.3.1 Literature Screen, Data Collection, and Preparation

3.3.1.1 Exhaustive Literature Search

We conducted a systematic literature search to identify neuroimaging studies on prospective
e�ort and the integration of reward value and e�ort costs in healthy adults. Candidates for
inclusion were initially identified by searching PubMed, ProQuest, and Web of Science on June
29, 2020 using the grouped terms (“fMRI” OR “functional magnetic resonance imaging”) AND
(“e�ort discounting” OR “e�ort-based decision-making” OR “e�ort valuation” OR “e�ort an-
ticipation” OR “cost-benefit valuation” OR “cognitive e�ort” OR “physical e�ort” OR “e�ort
expenditure” OR “e�ort allocation” OR “e�ortful goal directed action” OR “reward related mo-
tivation” OR “reward related e�ort”). Searches were limited to human studies where databases
would allow. 121, 787, and 127 studies were identified on PubMed, ProQuest, and Web of
Science, respectively. We also searched existing in-house reference libraries and names of promi-
nent authors in the field, resulting in the addition of candidate studies. 934 candidate studies
remained after search results were pooled and duplicates removed. Two researchers (PL-G,
Y-WY) then independently reviewed the title and abstract of candidate papers to determine
relevance, resulting in a pool of 72 studies that underwent a full-text review (Figure 3.1).

3.3.1.2 Inclusion/Exclusion Criteria

Studies were included if they: 1) had a healthy adult human sample in the non-elderly age
range (ages 18 to 65, with one exception detailed below); 2) used functional MRI; 3) either
reported or referenced a whole-brain analysis; and 4) utilized a task with an e�ort component
with clear e�ort (or combined e�ort and reward) cues during an ‘anticipation’ phase. Please note
that ‘anticipation’ in this case refers to the evaluation of prospective e�ortful rewards before
or during decision-making, and does not include anticipatory responses to reward post-e�ort
exertion (e.g., the ‘evaluation’ phase described in Assadi et al., 2009).

To ensure that the selected studies could be meaningfully compared, we limited the final
corpus to those that used experimental paradigms with certain characteristics. First, because
studies have found that loss and gain are asymmetric and partially dissociable (Chen et al.,
2020; Porat et al., 2014; S. C. Tanaka et al., 2014), we excluded studies that used paradigms
with only loss conditions, or that only conducted gain vs loss comparisons. Second, we excluded
studies that only used a single speeded response as its e�ort component (e.g. classical Monetary
Incentive Delay task Knutson et al., 2000), as this was not deemed as a significant e�ort demand,
and other reviews and meta-analyses focusing on reward anticipation with these paradigms can
be found elsewhere (Diekhof et al., 2012; Knutson and Greer, 2008; Wilson et al., 2018). Finally,
we only included those studies which measured activity during the prospective valuation of an
action and its rewards, rather than only at the time of reward outcome, as estimates of previously
expended e�ort can be biased by reward receipt (Pooresmaeili et al., 2015).

We contacted the corresponding authors of 28 candidate studies to request whole-brain sta-
tistical maps for the analyses of interest, and received whole-brain statistical maps or peak
coordinates from 25 studies. In cases where only between-group (e.g. clinical studies) and/or
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Figure 3.1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram.

ROI results were reported, we contacted corresponding authors to inquire about the availabil-
ity of whole-brain results for relevant contrasts in healthy adult subjects. If images were not
available, we requested they provide us with peak foci in stereotactic spatial coordinates (i.e.,
Talairach or MNI space), together with the direction of the e�ect (positive or negative).

3.3.1.3 Data collection and preparation

We performed two analyses of interest. The first examined activity related to the raw e�ort
involved in the option itself. We included analyses that examined high vs. low e�ort demands
(i.e., categorical contrasts) and those that examined continuous changes in e�ort (i.e., paramet-
ric modulation). The second analysis examined activity related to the prospective net value of
an e�ortful reward. Whenever possible, we used the contrast related to the net value of a single
option (i.e., the subjective value of the chosen option discounted by the e�ort required to obtain
it). When this contrast was unavailable, we used the contrast related to the di�erences between
options instead. Studies that only investigated BOLD activity associated with interactions be-
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tween reward and e�ort were excluded, as they did not rely on the same discounting assumptions
as other measures of net value. It should be noted that one study (Nagase et al., 2018) included
two experiments with six common participants, so we selected the experiment with a larger
sample size for the meta-analysis. In another study (Chong et al., 2017), all participants took
part in both cognitive and physical e�ort-based decision-making tasks. Thus, we combined the
statistical maps from both tasks to avoid selection bias. Finally, one study (Seaman et al., 2018)
had a sample that included participants ranging from 22 to 83 years old. However, the authors
of this study provided whole-brain maps that controlled for the e�ect of age, and we chose to
include this data in the net value meta-analysis.

3.3.1.4 Final Corpus

As shown in Figure 3.1, 25 studies were ultimately included in the final corpus of studies,
which were considered in one or both meta-analyses on raw e�ort evaluation and e�ort-reward
integration. The raw e�ort valuation analysis included 15 maps (65%) and 8 coordinates for raw
e�ort processing, resulting in 23 studies, with a total sample of N = 549 (mean = 24.95; median
= 22.5, range = [16-50]). A description of the final corpus of studies can be found in Table 3.1.
The net value analysis included 11 maps (73%) and 4 coordinates, resulting in 15 studies, with
a total sample of N = 428 participants (mean = 28.5; median = 23, range = [16-75]).

3.3.2 Meta-Analytic Procedures

3.3.2.1 Seed-based d Mapping

Because the inclusion of statistical maps can substantially increase the sensitivity of meta-
analyses (Radua et al., 2012), we chose to perform combined image- and coordinate-based meta-
analyses using the software Seed-based d Mapping with Permutation of Subject Images (SDM-
PSI, version 6.21; https://www.sdmproject.com). SDM-PSI preserves the information about
the sign of the e�ect and the methods have been validated in previous studies (Albajes-Eizagirre
et al., 2019; Radua et al., 2012). During preprocessing, SDM-PSI recreated voxel-level maps of
standardized e�ect sizes (i.e., Hedge’s g) and their variances and allowed the incorporation of
both whole-brain t-maps and peak information (i.e., coordinates and t-values). Specifically, in
the case where raw study images were available, e�ect sizes were estimated from the t, Z, or p
values of the map. However, when t-maps were unavailable, SDM-PSI used anisotropic kernels
estimate lower and upper e�ect-sizebounds for each study from reported coordinates and their
respective t-values (Radua et al., 2014).

3.3.2.2 Meta-analysis

Two separate whole-brain meta-analyses were conducted to examine consistent neural correlates
of prospective e�ort and net value processing, respectively. SDM-PSI meta-analysis has been
described in more detail elsewhere (Albajes-Eizagirre et al., 2019). Briefly, after pre-processing,
maximum likelihood estimation (MLE) is used to initially estimate the voxel-wise mean e�ect
sizes and variances. Next, study and subject images were imputed 50 times (Albajes-Eizagirre
et al., 2019; Luijten et al., 2017). Using Rubin’s rules, SDM-PSI then combines subject images
from the di�erent imputations into single combined meta-analysis image. Random-e�ect models
were then used to assess the mean e�ect size of each study, where the weight of a study is the
inverse of the sum of its variance and the between-study variance. SDM Z -maps were generated
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Table 3.1: Summary of Included Studies. Abbreviation: E, e�ort; L, loss; MVC, maximum vol-
untary contraction; Prob, probability; R, reward; RSVP, rapid serial visual presentation; WM, working
memory.
aMaps from separate tasks were combined for all analyses.
bOnly included in supplementary Net Value analysis.

by dividing the voxel-wise e�ect sizes by their standard errors. As these Z -values may deviate
from a normal distribution, a null-distribution was estimated for each meta-analysis from 50
whole-brain permutations, as is standard in SDM-PSI.
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Region-of-Interest (ROI) Analysis. To directly investigate the involvement of key brain
regions in e�ort-related cost processing and value integration, we focused on seven a priori regions
of interest (ROIs) derived from an independent meta-analysis (Bartra et al., 2013) that examined
valuation network in general. Those ROIs included: the vmPFC, right and left VS, ACC, pre-
SMA, and right and left AI, which generally covered the core valuation network and additional
frontal regions of interest. A spherical mask of radius 6mm was created for each ROI centered
on the respective peak coordinates. E�ect sizes and variances of those ROIs were extracted from
each study and plotted as forest plots. We used the metafor package (Viechtbauer, 2010) in
R version 4.0.3 (https://www.r-project.org) to calculate mean e�ect sizes and 95% confidence
intervals for each ROI, as this package allows for specification of variance estimates from each
study.

Whole-Brain Analysis. We also examined the whole-brain results beyond these a priori
ROIs. To reduce the false-positive results due to multiple comparisons, we applied a familywise
error (FWE) correction with 1000 subject-based permutations (Albajes-Eizagirre et al., 2019).
In accordance with SDM-PSI’s recommendations, a threshold-free cluster enhancement (TFCE)
corrected p<0.025 was used (Albajes-Eizagirre et al., 2019).

In addition, we performed a conjunction analysis to identify regions that were associated
with both raw e�ort demand and net value. For exploratory purposes, we created maps using
a voxel-level uncorrected threshold of p<0.001 and a cluster size>20 voxels for both meta-
analyses. Masks were generated from significant clusters scaled positively or negatively with
either raw e�ort demand or net value (i.e., based on absolute values). We then used SPM12
(http://www.fil.ion.ucl.ac.uk/spm) to perform a conjunction analysis to extract overlapping
areas for both processes, regardless of the direction (Cutler and Campbell-Meiklejohn, 2019).

Because of the high level of heterogeneity of task features and parameters between studies,
we were interested in assessing if our findings were driven by a specific design. Specifically, tasks
varied in e�ort type (i.e. cognitive e�ort vs. physical e�ort), probability of e�ort execution
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(online vs o�ine e�ort), and net value parameter (single net value vs. value di�erence between
two options). However, direct comparisons would be underpowered, as too few studies contained
specific task features. Thus, in order to explore if studies with certain task features showed
patterns of activity that were unique and/or overlapping to activations patterns identified in the
main analyses, we conducted 6 supplementary meta-analyses using subgroups of studies (N Ø
10 studies in a subgroup) from the main raw e�ort and net value analyses.

First, in order to identify regions involved in signaling prospective physical e�ort demands
and integration of physical e�ort costs with reward, we repeated both raw e�ort and net value
analyses with a subgroup of studies using physical e�ort tasks (N=16 and N=13, respectively).
Note in the case of studies that had both physical and cognitive e�ort tasks (i.e. Chong et al.
(2017)), only maps from the physical e�ort task were used.

Second, in many e�ort-based decision-making studies, subjects were required to either execute
the e�ort immediately after a choice (i.e., online execution) or execute the e�ort (or a random
sample) at the end of the task (i.e., o�ine execution). Thus, to examine if regions consistently
engaged in raw e�ort valuation overlapped with regions involved in signaling purely immedi-
ate e�ort requirements, we conducted a sub-group analysis that investigated prospective e�ort
signaling in tasks using real online e�ort (N= 16).

Third, because of the possible role of the dorsal ACC and other frontal regions in signaling
choice di�culty, we were interested in assessing if our findings were influenced by studies that
used net value di�erences as the parameter, rather than the net value of the chosen option.
Thus, we repeated the meta-analysis with a subgroup of studies that used parameters only
representing the net value of a single option (N = 11).

Fourth, because net value can also be more broadly defined as an interaction between reward
and e�ort, we repeated the net value meta-analysis by including the coordinates of two additional
studies (Kurniawan et al., 2010; Stoppel et al., 2011) that used interaction parameters (e.g.
Reward X E�ort) as opposed to traditional discounting parameters of net value (e.g. SV).

Finally, although the neural correlates of raw reward have been widely examined in previous
studies (e.g., Bartra et al., 2013; Sescousse et al., 2013), for the confirmatory purpose, we
conducted a raw reward analysis based on studies that examined reward processing (N = 13).
These analyses were conducted using the same procedures described above.

3.3.2.3 Heterogeneity and Publication Bias

Significant clusters were assessed for heterogeneity, or the degree of between-study variance due
to other factors (e.g. di�erences in analytical approaches, subject populations, etc.) aside from
random error. For each meta-analysis, peaks with heterogeneity l2 values >20% were flagged
and inspected. Although it has been suggested that l2 statistics are inflated in small sample
meta-analyses (Von Hippel, 2015), we note any clusters with high l2 values >20%, values, as
results from these clusters may be driven by other factors rather than chance.

Publication bias, or the favoring of publishing significant, as opposed to null, findings, can
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inflate meta-analysis e�ect sizes. In order to assess publication bias, we created funnel plots
for peak voxels of significant clusters in which Hedge’s g e�ect size estimates were plotted
against a measure of precision (i.e. variance of Hedge’s g estimate). Funnel plots for each
cluster were visually inspected for asymmetry, which would suggest that reported e�ect sizes
are related to their statistical significance. For each significant cluster, Egger regression tests
(Egger et al., 1997) were also conducted to quantitatively test if the number of studies with
statistically significant results is larger than expected. Significant results in an Egger regression
would indicate the possible existence of unpublished studies with non-significant e�ects. These
statistics are reported alongside the e�ect sizes for each significant cluster.

3.3.3 Data Availability

The protocol for this study was not pre-registered. However, unthresholded Z -maps of our results
are available at NeuroVault: https://neurovault.org/collections/9286/. The TFCE-corrected
maps as well as publication bias and heterogeneity data are available from the corresponding
authors upon request.

3.4 Results

3.4.1 ROI Analysis

To directly examine the roles of key regions in raw e�ort prospect and e�ort-reward integration,
we focused on seven a priori ROIs. Results are summarized in Table 3.2. The vmPFC con-
sistently showed positive associations with net value and negative associations with raw e�ort.
The bilateral VS showed a similar response pattern, but smaller e�ect sizes for both analyses.
In contrast, the pre-SMA scaled positively with raw e�ort and, albeit more variably, negatively
with net value. The ACC and bilateral AI showed a similar response pattern, but smaller e�ect
sizes for both analyses. Figures 3.2 and 3.3 show the Hedge’s g e�ect sizes for raw e�ort and
net value analyses in the vmPFC and pre-SMA ROIs. The forest plots for other regions were
shown in Figure 3.S1- 3.S10. To statistically test the opposite response patterns of the vmPFC

Table 3.2: Results of ROI Analysis. Abbreviations: ACC, anterior cingulate cortex; AI, anterior
insula; l, left; r, right, vmPFC, ventromedial prefrontal cortex; VS, ventral striatum. The significant
results are indicated in bold font.

and pre-SMA, we focused on studies with both raw e�ort and net value data (N = 13) and con-
ducted a linear mixed-e�ects model with Measure (E�ort and Net Value), Region (vmPFC and
pre-SMA), and their interaction as fixed e�ects, study as a random e�ect, and Hedge’s g e�ect
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sizes as the dependent variable. As expected, the analysis identified a significant interaction
between Measure and Region (b= -0.83, Z = -7.16, p<0.001), such that, for vmPFC, e�ect sizes
were more positive for net value than e�ort. Conversely, for pre-SMA, e�ect sizes more positive
for e�ort than net value (see Table 3.S1 and Figure 3.S11).

Figure 3.2: Forest plot illustrating activation related to e�ort demand in the vmPFC and
pre-SMA ROIs in studies with statistical maps. The pre-SMA is positively associated with raw
e�ort (Hedge’s g= 0.20, 95% CI [0.02, 0.37]), whereas the vmPFC showed a negative association (Hedge’s
g= -0.17, 95% CI [-0.30, -0.03]).

Finally, to explore the hierarchical structure of the seven ROIs during raw e�ort and net value
processing, we examined the correlations between e�ect sizes of these regions across studies. As
shown in Figure 3.S12, the correlation map for the raw e�ort analysis revealed two distinct
networks, with one including the vmPFC and bilateral VS, and the other including the pre-
SMA, ACC, and bilateral AI. The pattern is less clear for the net value analysis (Figure 3.S13),
where the vmPFC activity did not show strong correlations with other regions, possibly due to
its low variance (i.e., high consistency) across studies. Other regions showed high correlations
across studies. These findings further suggest that the vmPFC and pre-SMA may play opposite
roles in e�ort-related cost encoding and net value computation, although the correlation maps
identified here are complex and more evidence is still needed to elucidate how these regions
interact with each other during e�ort-based valuation.
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Figure 3.3: Forest plot illustrating activation related to net value in the vmPFC and pre-
SMA ROIs in studies with statistical maps. The vmPFC is positively associated with net value
(Hedge’s g= 0.22, 95% CI [0.22, 0.44]), whereas the pre-SMA showed a negative association (Hedge’s g=
-0.28, 95% CI [-0.52, -0.03]).

3.4.2 Whole-Brain Analysis

3.4.2.1 Raw E�ort

We first examined brain regions that were consistently associated with raw e�ort processing. As
illustrated in Figure 3.4a, the analysis yielded positive e�ects clustered in the right pre-SMA
and adjacent caudal ACC (see Table 3.3). At a more lenient, uncorrected p<0.001 threshold,
other positive foci were detected in the left SMA, right precuneus, and left middle frontal gyrus,
and negative foci were detected in the bilateral vmPFC/OFC and left middle temporal gyrus.
Heterogeneity I2 statistics, funnel plots and Egger regressions did not detect excess heterogeneity
or publication bias in any significant clusters in the TFCE-corrected findings. However, in the
uncorrected analysis, a cluster in the right precuneus was found to be associated with extreme
heterogeneity (I2 = 59.50%).

3.4.2.2 Net Value

Next, we examined brain regions that were consistently associated with net value encoding. As
illustrated in Figure 3.4b, the analysis yielded a large cluster connecting cortical and subcor-
tical regions of the medial PFC, VS, dorsal striatum (bilateral putamen and left caudate), and
temporal gyrus (see Table 3.3). Moreover, a cluster consisting of the bilateral medial and pos-
terior cingulate cortex and precuneus and a separate cluster in the left middle frontal gyrus also
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showed significantly positive associations. Some small clusters, including the left SMA, right
dorsolateral PFC (dlPFC), and right superior frontal gyrus, scaled negatively with net value,
although these results were only detectable at a lenient uncorrected p<0.001 threshold.

Table 3.3: Results of Whole Brain Analyses. All results survived a statistical threshold of voxel-
level uncorrected p <0.001 and cluster size >20. Abbreviations: BA, Brodmann areas; vm, ventromedial;
dl, dorsolateral; d, dorsal; r, rostral; PFC, prefrontal cortex; NAc, nucleus accumbens; ACC, anterior
cingulate cortex; PCC, posterior cingulate cortex; SMA, supplementary motor area; OFC, orbitofrontal
cortex.
*Regions survived a statistical threshold of TFCE-corrected p <0.025.

In addition, heterogeneity I2 statistics, funnel plots and Egger regressions showed no evidence
of excess heterogeneity or publication bias in any of the significant clusters for the main net value
or single SV subgroup TFCE-corrected results. No evidence of publication bias was detected
in the uncorrected net value analysis, however negative clusters the left SMA and right dlPFC
had I2 statistics of 64.09% and 50.05% respectively, suggesting that findings in these two regions
were highly heterogenous.

3.4.2.3 Conjunction Analysis

Finally, we performed a conjunction analysis to identify areas that are sensitive to both net
value and e�ort requirements. Due to the exploratory nature of this analysis, we used a lenient
threshold of uncorrected p<0.001 at voxel level and k >20 at cluster level. Note that we used
absolute values in the conjunction analysis because of the opposite response pattern found in the
main prospective e�ort and net value meta-analyses. We found that the vmPFC and left lateral
orbitofrontal cortex scaled positively with net value and negatively with e�ort requirement. The
response pattern was reversed in the pre-SMA and caudal ACC (Figure 4c). However, these
findings were not detectable after whole-brain TFCE-correction.

3.4.2.4 Supplementary Analyses

Raw E�ort, Physical E�ort subgroup. Findings generally overlapped with the main raw
e�ort analysis. The analysis yielded one cluster in the bilateral precuneus and PCC and extend-
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Figure 3.4: Whole-brain meta-analytic results. A: neural activity related to pure e�ort cost representa-
tion; B: neural activity related to net value; and C: their conjunction based on absolute values. Display
threshold: uncorrected p<0.005 at voxel level.

ing towards the right supramarginal gyrus, another in the bilateral SMA and dACC, and a third,
small cluster in the right frontal pole and dlPFC that were consistently positively associated
with physical e�ort demands (see Table 3.S2 and Figure 3.S14). However, unlike the original
raw e�ort meta-analysis, negative association in the vmPFC not significant.

Net Value, Physical E�ort subgroup. Similar to the main net value analysis, BOLD
activity in the mOFC, vmPFC, and rostral ACC, PCC and striatum was positively associated
with the net value in studies measuring physical e�ort (see Table 3.S3 and Figure 3.S15).
Negative e�ects were also detected; however, they were associated with high heterogeneity (all
I2

>40%).

Raw E�ort, Online Execution. Similar to the main prospective e�ort analysis, BOLD
activity in the bilateral pre-SMA and ACC was positively associated with e�ort demand in
studies requiring e�ort execution during the task (Table 3.S4 and Figure 3.S16).

Other Metrics of Net Value. To ensure that the results of the net value meta-analysis
were not driven by choice di�culty, we reran our analysis excluding four experiments that used
the value of two options as their net value metric (e.g. di�erence in SV of more vs less e�ortful
option). Importantly, the vmPFC and bilateral VS remained to be the foci with highest e�ect
sizes, and the whole-brain activation pattern was qualitatively similar (see Table 3.S5 and
Figure 3.S17), suggesting that our main findings were not influenced by the cognitive demands
of comparing two options. Moreover, to ensure that our findings were robust when using a
broader definition of net value, we also repeated our analysis including two additional studies
that used reward and e�ort interactions as a measure of net value. Main foci and whole-brain
activation patterns remained qualitatively similar to the initial net value meta-analysis (see Table
3.S6 and Figure 3.S18). However, deactivations associated with net value were not detected
in these supplementary analyses, suggesting that the deactivations in the SMA detected in the
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main meta-analysis were not robust.

Raw Reward. The results showed that the activity of a large cluster, including the vmPFC,
bilateral VS, DS, PCC, ACC, and some occipital regions, was positively associated with raw
reward magnitude. These results largely overlapped with clusters identified in the net value
analysis (Table 3.S7 and Figure 3.S19).

3.5 Discussion

We conducted a series of combined coordinate- and image-based meta-analyses to examine the
neural substrates of e�ort-based valuation. We first investigated neural activity related to raw
e�ort and net value in seven a priori ROIs previously implicated in value-based decision-making.
We found these regions could be broadly divided into two groups that exhibited distinct activ-
ity pattern during these two processes, with the vmPFC and pre-SMA as the central node of
each. Specifically, the vmPFC scaled positively with net value but negatively with raw e�ort,
whereas the pre-SMA displayed the opposite pattern. The exploratory whole-brain and con-
junction analyses further corroborate the ROI analyses. These findings provide strong evidence
for di�erent, yet complementary, roles of the vmPFC and pre-SMA in the valuation of e�ort
costs, and implicate these two regions as core components of a network that drives motivated
behavior.

Our findings provide comprehensive evidence that e�ort-related net value integration is pro-
cessed in a network centered around the vmPFC and VS. Accumulating evidence implicates
the vmPFC as a general hub for value integration, as it has been identified to signal net value
of rewards across di�erent cost domains, such as risk and delay (Croxson et al., 2009; Hogan
et al., 2019; Kable and Glimcher, 2007; I. Levy et al., 2010; Peters and Büchel, 2009; Schmidt
et al., 2012; Westbrook et al., 2019. Additionally, the network including the vmPFC has been
implicated in tracking net values across reward domains (i.e., primary, secondary, and aesthetic
rewards), reward processing phases (Bartra et al., 2013; Clithero and Rangel, 2014; D. J. Levy
and Glimcher, 2012; Sescousse et al., 2013), reward rates, and the value of current and previous
o�ers Mehta et al., 2019. These findings are therefore consistent with prominent neuroeconomic
accounts which propose that the vmPFC represents the net value of an option in a ‘common
currency’, in order to facilitate value comparison during decision making (Padoa-Schioppa, 2011;
Rangel et al., 2008; Westbrook and Braver, 2015).

One would hypothesize that a region involved in representing net value would negatively
scale with e�ort demands. Except for the vmPFC, our study did not find that other net-
value-related regions, such as the VS, meet this requirement. These findings are at odds with
previous reports that the VS activity is negatively modulated by e�ort costs in the presence of
reward information (Westbrook et al., 2019). Moreover, dorsal parts of the striatum have also
been found to track both e�ort costs (“Action controls dopaminergic enhancement of reward
representations.”, 2012; Burke et al., 2013; hua Yang et al., 2016; Klein-Flugge et al., 2016;
Kurniawan et al., 2010; Kurniawan et al., 2013) and net value of prospective e�ortful rewards
(Klein-Flugge et al., 2016; Seaman et al., 2018). However, our results implicate motor-related
regions of the striatum, particularly the putamen, as signaling net value alone. One plausible
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explanation is that the striatum signals reward information during the evaluation of prospective
e�ortful rewards (which we focused on in the current study) and encodes e�ort costs during
the initiation of an e�ortful action (Suzuki et al., 2021). In line with this, studies that have
experimentally isolated prospective e�ort and reward cues showed that the striatum was not
activated by e�ort alone during the anticipation phase (Arulpragasam et al., 2018). However,
future investigations that examine the role of the striatum during di�erent time windows are
needed to directly test this hypothesis.

The PCC also showed a reliable association with net value, but not e�ort requirement. Along
with the vmPFC, the PCC is a critical node of the default mode network (Acikalin et al.,
2017). It has also been considered as a key component of the valuation system in other cost
domains (Bartra et al., 2013; Clithero and Rangel, 2014; Peters and Büchel, 2009). Its precise
role in e�ort-based valuation remains largely unclear, but it has been implicated in monitoring
temporal changes to the environment (Pearson et al., 2011) or integrating changes to the internal
and external environment (Nakao et al., 2012), Moreover, previous studies have shown that the
activity of the PCC was positively associated with the degree of uncertainty during value-
based decision-making (McCoy and Platt, 2005). Taken together, the PCC may play a role
in transmitting the background information to the vmPFC to guide the net value calculation,
although it remained to be tested by studies that dissociate net value and these components.

Finally, both main and supplementary analyses consistently identified a variety of parietotem-
poral regions as scaling positively and uniquely with net value representations. While these
regions (i.e. intraparietal lobule, intraparietal sulcus, temporal pole, etc.) have been previously
implicated in SV encoding of e�ortful rewards (Chong et al., 2017; Massar et al., 2015), they
also play a critical role in perceptual decision-making (Keuken et al., 2014), attention (Husain,
2019), risk weighting (Mohr et al., 2010), and decision di�culty (Westbrook et al., 2019). Their
notable absence in reward processing (Keuken et al., 2014; Sescousse et al., 2013 may thus
suggest that these parietotemporal regions are involved in high-level perceptual and cognitive
functions associated with task demands as opposed to net value computation.

Previous studies have identified e�ort-related net value signals in other frontal regions, such
as the pre-SMA and ACC, which suggests that these regions may be specifically relevant for
e�ort-reward integration. In the current meta-analysis, however, we found that these regions
—in particular, the pre-SMA and adjacent caudal ACC —all scaled positively with raw e�ort
costs and, albeit less robustly, scaled negatively with net value. Such a pattern suggests that
these regions are more likely to be involved in the processing of e�ort-related costs, rather than
value integration per se. These findings align closely with a previous transcranial magnetic
stimulation study, in which disruption of the SMA led to decreased e�ort perception (Zénon
et al., 2015). The pre-SMA and dorsal ACC are also recruited to process other types of costs,
such as risk (Mohr et al., 2010) and delay (Schüller et al., 2019). A plausible mechanism,
therefore, is that these regions serve as a domain-general hub for cost encoding and transfer
the cost information to the vmPFC for calculation of net value. Alternatively, neuroeconomic
models of e�ort-based decision-making have posited that the ACC, in particular, is involved in
good-to-action transformation (Padoa-Schioppa, 2011). Thus, another plausible mechanism is
that the vmPFC computes and compares the net value of separate options and passes choice
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preference to action selection regions, such as the pre-SMA and ACC, for conversion to motor
output.

Despite strong evidence about the involvement of the caudal ACC, which is close to the
pre-SMA, in e�ort costs processing, it should be noted that the ACC, as a whole, is highly
heterogeneous (Neubert et al., 2015; Yu et al., 2011). Indeed, the whole-brain results showed
distinct response patterns across the ACC, in which the ventral part was mainly involved in
net value computation, whereas the dorsal part in raw e�ort encoding. These findings suggest
that subregions of the ACC could be linked to di�erent aspects of the e�ort-related valuation,
which may also partly explain the fact that some studies identified net value signals in the
ACC (Klein-Flugge et al., 2016; Massar et al., 2015). Moreover, net-value-related activation
may emerge in the dorsal ACC if it is highly correlated with other confounding variables, such
as decision di�culty (Shenhav et al., 2013). It is particularly plausible for studies that have
used the SV di�erence between two options as the net value parameter, as it often approximates
decision di�culty (Klein-Flugge et al., 2016). Notably, studies that have experimentally isolated
net value and decision di�culty showed that the cognitive control network, including the dorsal
ACC and other frontoparietal regions, tracked the latter but not the former (Hogan et al., 2019;
Westbrook et al., 2019).

The current study has some limitations. First, the sample size of the net value analysis is
relatively small. Although the inclusion of statistical images partly o�sets this issue, the num-
ber of included studies did not allow for us to perform meta-regressions, which would have
provided more conclusive answers about the e�ects of potential moderators, such as e�ort type
(i.e., physical vs. cognitive), parameter type (i.e., di�erence in SV vs. SV of one option), and
e�ort execution requirement (i.e., real vs. hypothetical). These secondary analyses could be
particularly relevant for understanding less consistent e�ects, such as the ones detected here in
the pre-SMA ROI. Specifically, it is unclear if the high degree of heterogeneity in our net value
e�ect size estimates in the pre-SMA ROI were due to di�erences in preparatory motor activity
between tasks, selective networks engaged for cognitive vs. physical e�ort, or other unobserved
factors, such as individual di�erences. Furthermore, sub-group meta-analyses investigating ef-
fects of di�erent reward schedules (e.g., cumulative vs. random payout) were underpowered.
Thus, we were unable to disambiguate between pure reward/e�ort integration and encoding of
probabilistic features of the individual tasks. This is particularly important for e�ects observed
in the PCC, OFC, and mPFC, as these regions have been consistently involved in signaling
prospective reward uncertainty (Bailey et al., 2016; Burke et al., 2013; Dreher, 2013; Peters
and Büchel, 2009; Prévost et al., 2010). Given the sensitivity of e�ort-based decisions to both
reward probability (Barch et al., 2014; Soder et al., 2020; M. T. Treadway, Buckholtz, et al.,
2012) and opportunity costs (Otto and Daw, 2019), future research should directly explore the
interaction between e�ort demand and other cost domains and/or task features. Second, the
majority of the included studies focused on physical e�ort. These findings should be treated cau-
tiously when generalizing to other formats of e�ort. Finally, the meta-analytic results reflected
consistent regional neural correlates across studies. Although our study identified critical brain
regions related to e�ort-related value integration or cost encoding, how these regions interact
with each other to achieve the dynamic valuation process remains to be elucidated by studies
using task-based connectivity technique (Hauser et al., 2017) or imaging methods with higher
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temporal resolution (e.g., magnetoencephalography).

In conclusion, this study is the first to use combined image- and coordinate-based meta-
analyses to examine neural activity related to e�ort-related costs and net value. The results
showed the pre-SMA is involved in cost representation of prospective e�ort independent of
rewards. In contrast, the vmPFC and VS, which have been implicated in value integration
in other cost domains, are also involved in e�ort-reward integration. These findings further
clarify the neural mechanisms underlying e�ort-related valuation and may provide candidate
intervention targets for patients with decreased motivation to exert e�ort to obtain rewards.
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Figure 3.S1: Forest plot illustrating results of the raw e�ort analysis in the right VS ROI.

3.6 Supplementary Materials
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Figure 3.S2: Forest plot illustrating results of the net value analysis in the right VS ROI.
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Figure 3.S3: Forest plot illustrating results of the raw e�ort analysis in the left VS ROI.
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Figure 3.S4: Forest plot illustrating results of the net value analysis in the left VS ROI.
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Figure 3.S5: Forest plot illustrating results of the raw e�ort analysis in the ACC ROI.
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Figure 3.S6: Forest plot illustrating results of the net value analysis in the ACC ROI.
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Figure 3.S7: Forest plot illustrating results of the raw e�ort analysis in the right AI ROI.
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Figure 3.S8: Forest plot illustrating results of the net value analysis in the right AI ROI.

52



Figure 3.S9: Forest plot illustrating results of the raw e�ort analysis in the left AI ROI.
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Figure 3.S10: Forest plot illustrating results of the net value analysis in the left AI ROI
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Figure 3.S11: Opposite activity patterns in the vmPFC and pre-SMA ROIs for e�ort and
net value contrasts included in the linear mixed model (N=13). Light blue points correspond to
the Hedge’s g e�ect sizes of each study; light blue lines indicate that e�ect size values come from the same
dataset. Box plots represent the median e�ect size and distribution of the data and are for illustrative
purposes only. Please see Figures 2 and 3 for accurate estimates of 95% confidence intervals for e�ect
sizes.

Figure 3.S12: Study-level correlation map for raw e�ort. The vmPFC and bilateral VS e�ect
sizes were highly correlated across studies. Another network included the pre-SMA, ACC and bilateral
AI.
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Figure 3.S13: Study-level correlation map for net value. The vmPFC appeared to be relatively
independent. Other regions showed high correlations across studies.

Figure 3.S14: Whole-brain meta-analytic results of physical e�ort subgroup analysis. Results
use an uncorrected p<0.001 threshold and represent neural activity consistently related to prospective
physical e�ort demands (N=16). Findings generally replicate activation activity in the supplementary
motor area, as identified in the main e�ort meta-analysis. In addition, physical e�ort demands scale
positively with activity in the bilateral precuneus, supramarginal gyrus, and posterior cingulate cortex.
Unlike the main e�ort meta-analysis, physical e�ort did not scale negatively with any regions.
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Figure 3.S15: Whole-brain meta-analytic results of net value analysis based on studies
measuring physical e�ort (N=13). Results use an uncorrected p<0.001 threshold and represent
neural activity consistently related to the net value of rewards with physical e�ort requirements. Findings
generally replicate results of the main net value meta-analysis. Specifically, activity in the vmPFC,
subgenual ACC, and PCC scaled positively and activity in the dACC/pre-SMA scaled negatively with
higher net value of rewards with physical e�ort requirements.

Figure 3.S16: Whole-brain meta-analytic results of raw e�ort analysis based on studies
requiring e�ort execution during the task (N=16). Results use an uncorrected p<0.001 threshold
and represent neural activity consistently related to prospective e�ort when immediate execution of e�ort
requirements are required. Findings generally replicate results of the main raw e�ort meta-analysis;
specifically, the cluster in the dACC/pre-SMA overlaps with a similar cluster identified in the main raw
e�ort analysis.
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Figure 3.S17: Whole-brain meta-analytic results of single option net value subgroup analysis.
Results use an uncorrected p<0.001 threshold and represent neural activity consistently related to e�ort-
reward integration in studies using parameters that only include the net value of one choice option
(N=11). Findings generally replicate activation activity in the main net value meta-analysis but did not
detect any consistent deactivations.

Figure 3.S18: Whole-brain meta-analytic results of net value supplementary analysis includ-
ing studies with E�ortXReward interaction parameters (N=17). Results use an uncorrected
p<0.001 threshold. Findings generally replicate activation activity in the main net value meta-analysis
but did not detect any consistent deactivations.
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Figure 3.S19: Whole-brain meta-analytic results of raw reward analysis based on studies
that tested reward processing (N=13). An uncorrected p<0.001 threshold is used for the display.
The activity of a large neural network, including the vmPFC, VS, PCC, and some occipital regions, is
positively associated with the reward magnitude.
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3.7 Supplementary Tables

Table 3.S1: Linear Mixed-E�ects Model.

Table 3.S2: E�ect of Prospective Physical E�ort on BOLD. Note: Data from 16 studies, using 8
parametric and 8 categorical parameters of prospective e�ort, were included in this analysis. Note that
data from the physical e�ort task from Chong et al. (2017) was included in this analysis as well. All
results survived a statistical threshold of voxel-level uncorrected p <0.001 and cluster size >20.
*Findings are FWER-corrected with a TFCE threshold of p <0.025.
Abbreviations: d, dorsal; SMA, supplementary motor area.
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Table 3.S3: E�ect of Net Value of Rewards with Physical E�ort Demands on BOLD. Note:
Data from 13 studies, including the physical task from Chong, et al. (2017), from were included in this
analysis. All results survived a statistical threshold of voxel-level uncorrected p <0.001 and cluster size
>20.
*Regions survived FWER-correction with a TFCE threshold of p <0.025.
Abbreviations: BA, Brodmann areas; m, medial; dl, dorsolateral; r, rostral; PFC, prefrontal cortex; OFC,
orbitofrontral cortex; NAc, neural accumbens; ACC, anterior cingulate cortex; SMA, sensory motor area.
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Table 3.S4: E�ect of Prospective E�ort with Online E�ort Execution on BOLD. Note: Data
from 15 studies were included in this analysis. All results survived a statistical threshold of voxel-level
uncorrected p <0.001 and cluster size >20.
* Regions survived FWER-correction with a TFCE threshold of p <0.025.
Abbreviations: BA, Brodmann areas; ACC, anterior cingulate cortex; SMA, sensory motor area.

Table 3.S5: E�ect of One-Parameter Net Value on BOLD. Note: Data from 11 studies were
included in this analysis. All results survived a statistical threshold of voxel-level uncorrected p <0.001
and cluster size >20.
* Regions survived FWER-correction with a TFCE threshold of p <0.025.
Abbreviations: BA, Brodmann areas; vm, ventromedial; dm, dorsomedial; dl, dorsolateral; r, rostral;
PFC, prefrontal cortex; NAc, neural accumbens; ACC, anterior cingulate cortex; PCC, posterior cingulate
cortex; OFC, orbitofrontal cortex.
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Table 3.S6: E�ect of Net Value (with E�ort X Reward interaction) on BOLD. Note: Data
from 17 studies were included in this analysis. All results survived a statistical threshold of voxel-level
uncorrected p <0.001 and cluster size >20.
* Regions survived FWER-correction with a TFCE threshold of p <0.025.
Abbreviations: BA, Brodmann areas; vm, ventromedial; dm, dorsomedial; dl, dorsolateral; r, rostral;
PFC, prefrontal cortex; NAc, neural accumbens; ACC, anterior cingulate cortex; PCC, posterior cingulate
cortex; SMA, sensory motor area.

Table 3.S7: E�ect of Reward on BOLD. Note: Data from 13 studies were included in this analysis.
All results survived a statistical threshold of voxel-level uncorrected p <0.001 and cluster size >20.
* Regions survived FWER-correction with a TFCE threshold of p <0.025.
Abbreviations: BA, Brodmann areas; vm, ventromedial; r, rostral; d, dorsal; PCC, posterior cingulate
cortex; ACC, anterior cingulate cortex.
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Chapter 4

Disentangling E�ort from Probability of
Success: Theta Oscillatory Dynamics Reveal
the Role of Medial Prefrontal Cortex in
E�ort-Based Reward�

4.1 Abstract

The ability to weigh a reward against the cost of acquiring it is critical for decision-making.
While the medial prefrontal cortex (mPFC) has been implicated in tracking both mental ef-
fort demands and net value of rewards, these findings primarily come from choice paradigms
that confound increased task di�culty with decreased reward probability. To resolve this is-
sue, we designed novel tasks that kept probability of success – and therefore probability of
reward – constant between levels of e�ort demand. In two experiments, participants completed
a novel e�ort-based reward task that manipulated e�ort demand and either reward magnitude
or probability of success. Electroencephalogram (EEG) data was recorded to compare an elec-
trophysiological index of mPFC function (frontal midline theta (FMT)) to an index of incentive
salience (component P3) at both cue evaluation and feedback phases. We found no evidence
that FMT tracked e�ort demands or net value during cue evaluation. At feedback, however,
FMT power was enhanced for high compared to low e�ort trials, but not modulated by reward
magnitude or probability. Conversely, P3 was sensitive to reward magnitude and probability
at both cue and feedback phases and only integrated expended e�ort costs at feedback, such
that P3 amplitudes continued to scale with reward magnitude and probability but were also
increased for high compared to low e�ort reward feedback. These findings suggest that, in the
absence of option comparison and unequal likelihood of success, the mPFC does not track net
value of prospective e�ort-based rewards. Instead, expended cognitive e�ort potentiates FMT
power and enhances the saliency of rewards at feedback.

�
This study has been submitted to Cortex and is currently being reviewed.
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4.2 Introduction

Overcoming e�ort costs to obtain a reward is critical for successful goal-directed behavior (West-
brook and Braver, 2015; Zald and Treadway, 2017). In the case of e�ort-based rewards, the
medial prefrontal cortex (mPFC), including the pre-supplementary motor area and the dorsal
anterior cingulate cortex (dACC), has emerged as a key neural hub in tracking net value (Arul-
pragasam et al., 2018; Chong et al., 2017; Croxson et al., 2009; Massar et al., 2015; Skvortsova
et al., 2014) and upcoming e�ort costs (Chong et al., 2017; Klein-Flugge et al., 2016; Prévost
et al., 2010; Vassena, Krebs, et al., 2014).

However, the functions of the mPFC are highly heterogeneous, making it di�cult to determine
if the mPFC is integrating e�ort with reward values or if it is responding to other task-related
variables. Specifically, the mPFC has been linked to a variety of cognitive control functions
that subserve value-based decision-making, such as prediction error signaling (Vassena et al.,
2020; Vassena, Holroyd, et al., 2017), attention (Aarts and Roelofs, 2011; Aarts et al., 2008),
conflict monitoring and response inhibition (Botvinick and Braver, 2015; Botvinick et al., 2001),
invigoration (Kouneiher et al., 2009; Kurniawan et al., 2013), and option comparison (Hogan
et al., 2019; Kolling et al., 2016; Shenhav et al., 2013; Shenhav et al., 2014; Westbrook et al.,
2019). Furthermore, electrophysiological markers of mPFC functioning are sensitive to reward
probability and uncertainty (Bellebaum et al., 2010; B. W. Smith et al., 2009; Yu et al., 2011).
This is critical, as several studies have reported poorer performance for high, compared to low,
e�ort tasks (Aridan et al., 2019; Giustiniani et al., 2020; Grodin et al., 2016; Ma et al., 2014;
Umemoto et al., 2022; Wang et al., 2017; Yi et al., 2020), potentially confounding increased
e�ort demand with reduced reward likelihood. Thus, to adequately investigate the role of the
mPFC in tracking e�ort-based rewards, experimental paradigms must be able to manipulate
e�ort demand while simultaneously ensuring that increases in di�culty are not associated with
reduced reward probability.

To this aim, we designed two novel paradigms that rewarded participants based on task per-
formance but yielded similar reward rates for low and high levels of e�ort demand. Specifically,
we investigated to what degree manipulations in e�ort demand, reward magnitude (Study 1),
and reward probability (Study 2) modulate activity in the mPFC – putatively measured by
frontal midline theta (FMT) – at both cue evaluation and feedback processing phases. FMT is
an EEG oscillatory activity of 4-8 Hz that is distributed over fronto-central areas of the scalp
and has been linked to a range of cognitive control (Cavanagh and Frank, 2014; Cavanagh
and Shackman, 2015) and performance feedback functions (Doñamayor et al., 2012; Li et al.,
2016; Li et al., 2018; Mas-Herrero and Marco-Pallarés, 2014, 2016). Generated in the mPFC
(Mas-Herrero and Marco-Pallarés, 2016), FMT has been hypothesized to reflect e�ortful control
in goal-directed behavior (Cavanagh and Frank, 2014; Holroyd and Umemoto, 2016), improve
behavioral performance via phase-amplitude coupling (Verguts, 2017), track task-relevant fea-
tures (Hajihosseini and Holroyd, 2013), and correlate with trial-by-trial behavioral adjustments
(Cavanagh and Shackman, 2015). Taken together, FMT is a candidate EEG signature for the
allocation of control in e�ort-based reward. We hypothesized that if the mPFC tracks the mo-
tivational value of e�ort-based rewards, FMT activity would reflect an integrated e�ort and
reward signal at both cue and feedback. In parallel, due to the novelty of the task, we tested
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the e�ectiveness of our manipulations using an established index of incentive salience – the P3
event-related potential (ERP; Glazer et al., 2018). Several studies have shown that P3 ampli-
tudes are modulated by reward magnitude and probability at cue and feedback (Giustiniani
et al., 2020; Hajcak et al., 2005; Hajcak et al., 2007; Pfabigan et al., 2014; Vignapiano et al.,
2016), as well as previously expended e�ort at reward feedback (Ma et al., 2014; Schevernels
et al., 2014; Wang et al., 2017). Thus, if our manipulations were e�ective, we expected P3 to
be sensitive to these reward features as well.

4.3 Methods

4.3.1 Study 1

4.3.1.1 Participants

Sensitivity analyses indicated that a sample size of N=27 would provide 80% statistical power to
detect e�ect sizes of ÷

2
p= 0.06 or larger. Subjects were excluded for current psychiatric diagnosis,

color blindness, and lack of fluency in Spanish. 33 healthy adults (20 female, age: M= 27.24,
SD=5.45) participated in the study. One subject was removed for low cue identification rate
(<50%) in the catch questions and three subjects were removed for excessive motion artifacts,
leaving a final sample of N=28.

4.3.1.2 Procedures

Upon arrival, participants reviewed and provided informed consent. Next, participants com-
pleted a series of self-report demographic and COVID-19 health questionnaires and then the
E�ort Valuation Task (see below). After the task, participants completed an end of session
questionnaire (described below) before debriefing. All participants received a baseline payment
of 20Ä for participation, and additional earnings from the E�ort Valuation Task, ranging from 5Ä
to 15Ä. This study was conducted in accordance with the ethical guidelines from the Declaration
of Helsinki and was approved by the University of Barcelona ethics board.

E�ort Valuation Task. The current E�ort Valuation Task comprised of a variant of the
reward e�ortful task used in Croxson et al. (2009), modified to use an e�ort component from
Botvinick et al. (2009). The task was administered using PsychoPy software version 2 (Peirce
et al., 2019). Subjects were seated approximately 50 cm away from the computer monitor
and responded using a standard keyboard and mouse. The schematic of the task is shown in
Figure 4.1a. First, a cue signaling the prospective e�ort and reward of the upcoming trial
was presented for 1.5 seconds. The shape of the cue (circle or square, counterbalanced across
participants) indicated the e�ort requirement (low vs high) and the number of lines indicated the
magnitude of reward on o�er, with 1 line indicating low reward (5 points) and 5 lines indicating
high reward (25 points).

Half of trials were work trials, while the other half were no-work trials. In e�ort trials, cues
were followed by a fixation cross (randomized time of presentation between 1200 and 1500 ms,
with 100 ms steps) and then an e�ort phase, which lasted 8 seconds. During the e�ort phase,
subjects viewed a series of numbers presented one at a time on the screen. Numbers ranged
from one to nine, excluding five. If the number was blue, subjects were instructed to use the
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arrow keys to indicate if the number was even or odd. If the number was yellow, subjects
were instructed to indicate whether the number was higher or lower than 5. In low e�ort
trials, all judgments were of the same type. In the high e�ort trials, number color/judgment
type alternated, requiring e�ortful cognitive set switches (Botvinick, 2007; Lopez-Gamundi and
Wardle, 2018). Participants were instructed to answer as quickly and as accurately as possible
within the 8-second time frame. Immediately after the e�ort phase, another fixation cross
appeared for 2000 to 2500 ms (steps of 100 ms), followed by a reward/performance feedback for
1000 ms. If participants correctly completed the task, a 5 or 25 was presented on the screen,
matching the reward o�er for the trial. If participants made more than 2 errors during the
task or did not meet the calibrated decision threshold (see Training and Calibration for more
detail), an X was presented indicating that the trial was not successful, and no points were being
awarded. Another fixation cross marked the end of the trial. Intertrial intervals (ITIs) ranged
from 2 to 3 seconds (with steps of 200 ms).

Conversely, no-work trials started with the same joint reward-e�ort cues but, instead, were
followed by an asterisk (1200 - 1500 ms, with 100 ms steps), indicating no work was required
and that no points would be awarded for that trial. To ensure that participants attended to the
reward/e�ort cue, four no-work trials in each block were followed by an identification question.
Participants had to use the keypad to recall the meaning of the cue that had been presented at
the beginning of the trial; for example, if the cue was a circle with 1 line in it, the participant
had to select the option that read “easy task worth 5 points”. Participants were instructed that
compensation depended partially on how accurate they answered these identification questions.
Identification questions were self-paced and no feedback was provided until the break screen.
No-work trials ended with the same fixation cross and ITI.

There were five blocks with 80 trials (40 work, 36 no-work, and 4 no-work followed by an
identification question) per block, totaling to 400 trials. Reward and e�ort conditions were
intermixed and evenly distributed between work/no-work trials, so that in each block there
were 10 work trials and 10 no-work trials for each of the 4 following cues: high reward/high
e�ort, high reward/low e�ort, low reward/high e�ort and low reward/low e�ort. Trials were
presented in pseudo-random order, such that there were no more than 2 consecutive no-e�ort
trials. Participants were probed for fatigue, cue liking, and task di�culty (see Self-Report) after
calibration, as well as halfway through and at the end of each block, making for 11 ratings total.
After these questions, participants were given a self-paced break and provided with feedback
about their cumulative points and their identification accuracy. Participants were able to earn
up to 3000 points and were informed that 1000 points were equivalent to 5Ä, 2000 points to 10Ä,
and 3000 points to 15Ä.

Self-Report Task Ratings. During the E�ort Valuation Task, participants were probed,
via 11-point Likert scales, for cue liking, task di�culty, and subjective experience of fatigue at
baseline, as well as two times during each block. Participants were instructed to rate to which
degree they liked the 4 reward/e�ort cues (0= did not like at all, 5= indi�erent, 10= liked very
much), how tired they felt (0=not tired at all and 10=very tired), and how di�cult the High
E�ort and Low E�ort tasks were (0=not di�cult at all and 10=very di�cult). Ratings for each
block were composed of the average of the two block ratings.
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Figure 4.1: A) Schematic of E�ort Valuation Task used in Study 1. Note that cues with one line
indicate low reward on o�er (5 points) while cues with five lines indicate high reward on o�er (25 points).
B) Schematic of the Probabilistic E�ort Valuation Task used in Study 2. Note that cues with one line
indicate that the trial has high probability of success (less responses are required). Cues with five lines
indicate low probability of success (more responses are required).

Training and Calibration. Before beginning the E�ort Valuation task, the participants
were instructed on the di�erent cue types, trial types, e�ort task rules, and compensation scheme.
Next, participants completed a series of practice trials in blocks for each of the three trial types
(e.g. low e�ort with all blue numbers, low e�ort with all yellow numbers, and high e�ort).
Participants were told that they needed to correctly complete a minimum of 5 trials before
they could move on to the real task. Although e�ort phases for practice trials were locked to
8 seconds, the cue and feedback presentation were self-paced in order to ensure that subjects
understood the meaning of the presented stimuli.
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In practice trials, e�ort tasks were considered unsuccessful if participants a) made more than
2 errors or b) were less than 85% accurate on their decisions in the 8-second window. Data from
the practice trials was used to set the initial di�culty of high and low e�ort tasks. The number
of correct decisions for each successful practice trial was stored in an array specific to each of the
trial types. The number of correct decisions required to successfully complete a trial (“decision
thresholds”) for each trial type were then calculated by taking correct number of decisions above
the lower 20th percentile. This method e�ectively fixed success rates of low and hard e�ort trials
to 80%, making it equally probable to obtain reward under both levels of e�ort demands and
minimizing the e�ect of probability discounting. These arrays were continuously updated during
the task so that decision thresholds were recalculated for each trial based on performance on
the previous 5 trials of that same trial type. Thus, decision thresholds decreased and increased
based on poor or improved performance, respectively, on recent trials. This allowed our task
to mitigate the e�ects of fatigue, which could diminish performance and reduce probability of
reward, and learning of the e�ort task, which would improve performance and thereby increase
(di�erentially) the probability of reward.

End of Session Questionnaire. At the end of the experiment, participants completed a
6-item survey to help us assess their understanding of the paradigm. Specifically, participants
had to identify which cue signaled a 5- or 25-point o�er and which cue signaled an upcoming
high or low e�ort trial. We also asked participants to rate their perceived accuracy (from 0% to
100%) on the low and high e�ort tasks, separately.

4.3.1.3 Electroencephalographic activity recording and preprocessing

EEG data was continuously recorded from 33 standard scalp sites (Fp1/2, Fz, F3/4, F7/8, FCz
(reference), FC1/2, FC5/6, FT9/10, Cz, C3/4, T7/8, CP1/2, CP5/6, Pz, P3/4, P7/8, O1/2,
L/R Mastoids, ground at Fpz electrode) using active electrodes mounted on an ActiCap (Brain
Products©). EEG signal was amplified using BrainAmp amplifier, with a continuous sampling
at a rate of 250 Hz, with a 0.01 Hz high-pass filter and 50 Hz notch filter. Eye movements were
recorded with an electrode at the infraorbital ridge of the right eye. All electrode impedances
were kept below 10k�.

EEG data were preprocessed and analyzed in MATLAB©using EEGLAB toolbox (Delorme
and Makeig, 2004). EEG signals were first re-referenced to the average activity of the two
mastoids (L/R). The EEG data were bandpass filtered between 0.01 Hz to 45 Hz. To analyze
activity associated with cue and feedback phases, the signals were epoched from -2000 to 2000
ms relative to cue and feedback onset, respectively, with the activity from -200 to 0 ms serving as
the baseline. All epoched data were screened manually for artifacts (e.g., spikes, channel-jumps,
and non-biological signals). Independent components analysis (ICA) was then applied to the
data and components reflecting motion artifacts (i.e. blinks/eye movement) were removed.

Finally, data were visually inspected again and remaining artifacts were removed. Analyses
were then conducted on the remaining N=28 subjects (17 female, age: M= 27.89, SD=5.20) with
viable EEG data. Due to unequal reward rates in Block 1 (see Behavioral results), analyses were
conducted with Block 1 trials removed, resulting in an average of 299.25 trials (SD=10.99) for
the cue phase and 117.79 trials (SD=9.45) for the feedback phase.
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4.3.2 Study 2

4.3.2.1 Participants

Results from Study 1 suggested that a sample size of N=27 was adequate for detecting medium
e�ect sizes in cue and feedback. However, to ensure that our final sample size was large enough,
we recruited 37 healthy adults (20 female, age: M= 24.00, SD=5.77) to participate in Study 2.
Two subjects were excluded due to low accuracy (<30%) on the catch identification trials and
3 participants were excluded for excessive motion artifacts, leaving a final sample of N=32.

4.3.2.2 Procedures

The behavioral paradigm and procedures for were similar to Study 1 except for the di�erences
noted below.

Probabilistic E�ort Evaluation Task. The paradigm was very similar to the task used
in Study 1, but with a few key di�erences (see Figure 4.1b). First, instead of manipulating
reward magnitude, we directly manipulated probability of success. Thus, potential rewards
were fixed to 15 points per e�ort trial, but e�ort trials either had a high or low probability of
success. Probability of success was manipulated by setting the decision threshold higher for low
probability trials and lower for high probability trials. Specifically, decision thresholds for High
Probability trials were set as in Study 1 (by taking correct number of decisions above the lower
20th percentile from the past 5 trials), while decision thresholds for Low Probability trials were
to the number of correct decisions above the 60th percentile. This e�ectively locked probability
to success to above 80% on High Probability trials and below 60% on Low Probability trials.

Second, we simplified the design of the task in the following ways. First, we set the Low
E�ort task to only one decision type (greater than/less than 5). This was done to simplify
instructions and save time on the initial training/calibration. We selected the greater than/less
than 5 decision rule because this task was rated as less di�cult than the even/odd task, thereby
allowing us to maximize the di�erence between low and high e�ort demand. Second, since
FMT is hypothesized to signal the need to implement control (Cavanagh and Frank, 2014), it is
possible that FMT activity in Study 1 was locked to the pre-e�ort fixation cross instead of the
reward/e�ort cue since the pre-e�ort fixation was deterministic of future e�ort. To address this
concern, we removed the pre-e�ort fixation cross from the task in Study 2. Instead, we extended
the cue presentation to 2 seconds, which was then directly followed by either the corresponding
e�ort task (work trials) or the next trial (no-work trials). Third, we shortened the pre-feedback
ISI to 1000 to 1500 ms (steps of 100ms). All other trial and block structures remained the
same as in Study 1. Fourth, we simplified the identification questions by asking participants to
identify which cue image (as opposed to the meaning of the cue) was presented in the previous
trial.

Self-Report Task Ratings. As in Study 1, participants were probed, via 11-point Likert
scales, for cue liking and subjective experience of fatigue at baseline, as well as two times during
each block. However, because we expected that probability of success would impact di�culty
ratings, we decided to probe participants regarding how much e�ort was required to complete
each task (0=No E�ort, 10=Extreme E�ort). Further, although participants were explicitly told
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which cues would signal high vs low probability of success, we also asked participants to rate
how likely (0-100%) they were to correctly complete each task. As in Study 1, participants were
asked for their ratings after the initial practice phase and twice during each block.

Training and Calibration. In Study 1 we saw that the calibration mechanism took longer
than expected in stabilizing probability rates. In order to avoid tossing out the first trials, we
extended the practice sessions so that participants had to correctly complete a minimum of at
least 15 (as opposed to 5) trials of each e�ort type. We also interweaved the one-color and
two-color tasks (as opposed to practicing in blocks) to better simulate the real task. Initial
decision thresholds were based on the last five correct trials.

End of Session Questionnaire. At the end of the experiment, participants completed a 2-
item survey to help us assess their understanding of cues and their e�ort demand contingencies.
Specifically, participants had to identify which cue signaled an upcoming high or low e�ort
trial.

4.3.2.3 Electroencephalographic activity recording and preprocessing

EEG data was continuously recorded from 32 standard scalp sites (Fp1/2, Fz (reference), F3/4,
F7/8, FC1/2, FC5/6, FT9/10, Cz, C3/4, T7/8, CP1/2, CP5/6, Pz, P3/4, P7/8, O1/2, L/R
Mastoids, ground at Fpz) using active electrodes mounted on an ActiCap (Brain Products ©).
EEG signal was amplified using BrainAmp amplifier, with a continuous sampling at a rate of 500
Hz, with a 0.01 Hz high-pass filter and 50 Hz notch filter. Eye movements were recorded with
an electrode at the infraorbital ridge of the right eye. As in Study 1, all electrode impedances
were kept below 10k�.

EEG data were preprocessed and analyzed in MATLAB©using EEGLAB toolbox (Delorme
and Makeig, 2004). EEG signals were first re-referenced to the average activity of the two
mastoids (L/R). The EEG data were bandwith filtered with a bandpass of 0.01 Hz to 45 Hz. To
analyze activity associated with cue and feedback phases, the signals were epoched from -2000
to 2000 ms relative to cue and feedback onset, respectively. All epoched data were screened
manually for artifacts (e.g., spikes, channel-jumps, and non-biological signals). Independent
components analysis (ICA) was then applied to the data and components reflecting motion
artifacts (i.e. blinks/eye movement) were removed.

Finally, data were again visually inspected and remaining artifacts were removed. Three
subjects were removed for excessive motion artifacts. Analyses were performed on the remaining
N=32 subjects (28 female, age: M= 23.93, SD=5.24) with an average of 354.47 trials (SD=33.99)
for the cue phase and 130.16 trials (SD=10.37) for the feedback phase.

4.3.3 Data Analysis

4.3.3.1 Event-Related Potentials

EEG data was again low-pass filtered at 20 Hz o�ine. Components in the cue phase and feedback
phase were studied by epoching data time-locked to 200 ms before and 1000 ms after cue and
feedback onset, respectively. Time windows and electrode sites for ERP components for each
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phase were selected by exploring waveforms and topographic maps across all conditions for each
study separately. Cue-P3 was defined as the average amplitude from 350 and 500 ms after cue
onset for Study 1 and 450 to 550ms after cue onset for Study 2. In Study 1, FB-P3 was defined
as the mean activity between 300 and 400 ms following feedback onset, and 350 to 450ms in
Study 2.

4.3.3.2 Time Frequency Analysis

Time-frequency analysis was performed per trial in 4 second epochs for cue and feedback phases
(2 sec before cue/feedback through 2 sec after). In order to find the induced time-frequency
activity, we convoluted single-trial activity using a complex Mortlet wavelet from 1 Hz to 40 Hz
using 1Hz steps. We then computed the mean change in power with respect to baseline for each
phase, defined as the 400 to 200ms before cue or feedback onset. To compare di�erent conditions,
trials associated with a specific Reward/E�ort condition were averaged for each participant
before performing a grand average. The mean increase/decrease in power for each condition
was computed at Fz, Cz and Pz. Based on previous studies implicating theta in both e�ortful
control (Cavanagh and Frank, 2014; Cavanagh and Shackman, 2015), we specifically focused on
theta (4-8 Hz) in time windows where the e�ect of our manipulations appeared maximal (100
to 400 ms after cue and 200 to 550ms after feedback onset for both experiments).

4.3.3.3 Statistical Analysis

Time-frequency analysis was performed per trial in 4 second epochs for cue and feedback phases
(2 sec before cue/feedback through 2 sec after). In order to find the induced time-frequency
activity, we convoluted single-trial activity using a complex Mortlet wavelet from 1 Hz to 40 Hz
using 1Hz steps. We then computed the mean change in power with respect to baseline for each
phase, defined as the 400 to 200ms before cue or feedback onset. To compare di�erent conditions,
trials associated with a specific Reward/E�ort condition were averaged for each participant
before performing a grand average. The mean increase/decrease in power for each condition
was computed at Fz, Cz and Pz. Based on previous studies implicating theta in both e�ortful
control (Cavanagh and Frank, 2014; Cavanagh and Shackman, 2015 ), we specifically focused on
theta (4-8 Hz) in time windows where the e�ect of our manipulations appeared maximal (100
to 400 ms after cue and 200 to 550ms after feedback onset for both experiments).

Behavioral Data. The novelty of the E�ort Valuation and Probabilistic E�ort Valuation
tasks were that e�ort demands were continuously calibrated so that e�ort could be fully disasso-
ciated from reward probability. Thus, it was important for us to confirm that participants had
similar success rates between high and low e�ort trials across the task. Thus, we used linear
mixed-e�ects models (LMM) with Block, E�ort, Reward (Study 1)/Probability (Study 2), and
their interactions as fixed e�ects, Subject as a random e�ect, and trial success as the outcome
to test if our calibration mechanism e�ectively locked success rates throughout the tasks. For
our task to be valid, we also needed to confirm that high e�ort trials were more cognitively
demanding than low e�ort trials. Thus, we used the same fixed and random e�ects structure to
fit two LMMs to the number of decisions made per trial and average speed of decision. Although
we expected self-report fatigue to increase with time on task, we designed our calibration mecha-
nism to adjust for declines in reward probability due to fatigue-related diminished performance.
Thus, we first fit an LMM with self-report fatigue ratings at the dependent variable, Block as
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a fixed e�ect and subject as a random e�ect to see how fatigue changed throughout the task.
We also used another LMM, with fatigue ratings, Block, and their interactions as fixed e�ects,
subject as random e�ects, to predict block-wise mean trial accuracy.

With respect to self-report ratings, we expected that e�ort, reward probability, and time on
task would a�ect appetitive responses to the cues (cue-liking) and subjective experience of task
di�culty/e�ort. Again, we used two LMMs, with Block, E�ort, Reward (Study 1)/Probability
(Study 2), and their interactions as fixed e�ects and Subject as a random e�ect, to explore if self-
report cue-liking and task di�culty/e�ort were modulated by our experimental manipulations.
In the case of Study 2, we were interested in seeing how our probability manipulation impacted
participants’ perceived probability of successfully completing a trial. Thus, we first fit an LMM
with the same fixed and random e�ects structure to the self-report probability of success data.

EEG Data. To study the e�ect of reward magnitude and probability and e�ort demands on
midline ERP amplitudes and theta power, we conducted separate repeated-measures ANOVA
with E�ort (high and low), Reward Magnitude (high and low; Study 1) or Probability (high and
low; Study 2) and Sensor (Fz, Cz, and Pz) as within-participant factors and time-locked ERP
components and theta power as dependent measures. The Greenhouse-Geisser correction was
applied in cases where the sphericity assumption was violated. Paired sample t-tests with Tukey
HSD corrections for multiple comparisons were used to explore significant e�ects post-hoc. In
the case where normality assumptions were violated, Wilcoxon signed rank tests were used.

As discussed below, we detected null e�ects of E�ort, Reward Magnitude, and Reward Prob-
ability on cue-related theta power. However, a “non-significant” p-value (p<.05) alone does not
meaningfully support a null e�ect (Gelman and Stern, 2012). Bayesian approaches would be
better suited to quantify the amount of evidence in favor of the null hypotheses that E�ort
and Reward Magnitude/Probability do not have e�ects on theta power at cue. Specifically, we
first replicated our original analysis using Bayesian rmANOVA in JASPv0.17.1. In our case, we
expected to replicate our original findings such that theta power during the cue phase would be
best predicted by a model with only Sensor as a predictor. Bayes Factors (BFs) are computed
to compare the probability of an alternative model relative to the probability of the null model.
Inclusion Bayes factor (BFincl), which contrasts the performance of a model with a given pre-
dictor against the performance of all models that exclude that predictor, were used to quantify
the importance of a given predictor. Finally, we conducted Bayesian paired-sample t-tests to
quantify the relative strength of evidence in favor of the simple null hypotheses (H0) that 1)
E�ort and 2) Reward Magnitude/Probability do not have an e�ect on theta power at cue. A
BF01>3 (or BF10<1/3) is interpreted as moderate evidence in support of the null hypothesis
(Wagenmakers et al., 2011).
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4.4 Results

4.4.1 Study 1

4.4.1.1 Behavioral and Self-Report Data

The primary aim of our paradigm was to experimentally isolate e�ort demand from reward prob-
ability. Thus, we had to first confirm that the likelihood of successfully completing the task,
and therefore obtaining the reward, was equivalent for high and low e�ort trials throughout the
task. LMM revealed significant Reward Magnitude (b=0.19, p<0.001) and E�ort and Block
interaction (b=-2.05, p=0.008; see Table 4.S1). As can be seen in Figure 4.2a, this interaction
e�ect was driven by di�erential success rates in high vs low e�ort trials in Block 1. After ex-
ploring cumulative success rates in each subject, we concluded that the calibration mechanism
created similar reward rates between high and low e�ort trials starting in Block 2. Thus, we
decided to repeat the analysis excluding trials from Block 1. This LMM yielded non-significant
e�ects of E�ort (b= -0.18, p=0.883), Block (b=0.00, p=1.00), and E�ort and Block interaction
(b= 0.39, p=0.715), suggesting that reward rates were quantitatively similar between high e�ort
(M=78.25%, SD=5.77) and low e�ort (M=78.44%, SD=5.04) trials. Therefore, trials from the
first block were excluded from all remaining EEG analyses (see Study 1 Methods). Further, a
significant positive e�ect of Reward Magnitude was found (b= 0.22, p<0.001), such that partic-
ipants were overall slightly more accurate on high reward trials (M=80.6%, SD=9.3) than low
reward (M=76.1%, SD=9.6) trials. All other E�ort, Reward Magnitude, and Block interaction
e�ects were non-significant (all p-values >0.3; see Table 4.S1).

Behavioral indices also indicate that our e�ort manipulation was e�ective. For example, if
high e�ort trials were truly more di�cult, we would expect that participants would make less
judgements in the 8-second time window in high compared to low e�ort trials. As expected,
LMMs revealed that participants were able to make less decisions (b=-2.84, p<0.001), and
decide less quickly (b=0.30, p<0.001) in high e�ort vs low e�ort trials (see Figure 4.2b and
4.2c; Tables 4.S2 and 4.S3). Furthermore, a significant e�ect of Block suggests that participants
were able to make more decisions (b=0.35, p<0.001) in later blocks. Similarly, reaction times
for decisions decreased with more time on task (Block: b=-0.05, p=<0.001), however this drop
was more steep for high compared to low e�ort trials (BlockXE�ort: b=-0.03, p=0.015). These
data suggest that although probability of success remained relatively fixed in Blocks 2 to 5,
participants improved with practice.

In addition to behavioral indices, participants also rated the high e�ort task as more di�-
cult than the low e�ort task (b=3.31, p= 0.163). Further, both high and low e�ort tasks were
rated as less di�cult as time went on (b=-0.218, p<0.001), presumably due to practice e�ects
(Table 4.S4). Conversely, we were concerned that despite practice-related improvements in the
task, participants would perform worse in later trials due to fatigue. The calibration method,
however, was designed to mitigate the e�ect of fatigue on e�ort performance, so that reward
probability would not be dependent on current fatigue state. LMMs revealed that although
participants reported increased fatigue with time on task (b=0.73, p<0.001), there was no rela-
tionship between fatigue ratings and average block accuracy (b=-0.002, p=0.707; Table 4.S5).
Thus, taken together, these findings suggest that our paradigm successfully manipulated e�ort
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Figure 4.2: E�ort Valuation Task adequately manipulates mental e�ort demands and disas-
sociates it from reward probability. A) Mean percentage of successful trials between high and low
e�ort trials across the task. Success rates for low e�ort trials are significantly lower in Block 1 than those
for high e�ort trials, but become statistically equivalent in later blocks. B) Average number of decisions
made in the 8-second time window for high and low e�ort trials. C) Average response time (in seconds)
for each decision made in the high vs low e�ort cue set-switching tasks. D) Subjective reports of di�-
culty for the 2 color (high e�ort) and 1 color (low e�ort) task; larger values indicate increased self-report
di�culty ratings. Please note that in Study 1, participants were not asked to consider potential reward
magnitude when giving di�culty ratings. E) E�ect of reward and e�ort on subjective ratings of cue
liking; higher values indicate higher appetitive responses to cue. Error bars represent the standard error
of the mean. F) Self-report ratings of fatigue at each block; larger values indicate increased self-report
fatigue ratings.

demand while keeping reward probability constant throughout the task.

As shown in Figure 4.2e, participants also reported liking cues for high reward trials more
than low reward trials (b=0.12, p<0.001) and low e�ort cues significantly more than high e�ort
cues (b=-0.79, p<0.001; Table 4.S1). Moreover, we detected a significant interaction between
Reward Magnitude and Block (b=0.01, p=0.003), indicating that high reward cues are liked
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Figure 4.3: FMT during
cue evaluation and feedback
phases of the E�ort Valua-
tion Task. A) Time course
(in milliseconds) of theta power
(µV2) during cue presentation.
Shaded regions about the lines
represent 95% confidence inter-
vals while the shaded panel rep-
resents the time window selected
for analysis. Inset shows the to-
pographic distribution of theta
power across all cues 100 to
400ms after cue onset. B) Time
course (in milliseconds) of theta
power (µV2) during correct feed-
back. Shaded regions about
the lines represent 95% confi-
dence intervals while the shaded
panel represents the time win-
dow selected for analysis. In-
sets show the topographic dis-
tribution of theta power 200
to 300ms after correct feed-
back onset. HR=High Reward,
LR=Low Reward, HE=High
E�ort, LE=Low E�ort, HE-
LE= Di�erence between High
E�ort and Low E�ort conditions.

more as the task progresses, while liking for low reward cues diminishes with time (see Figure
E).

In the end of session questionnaire, 100% of participants correctly identified which cues sig-
naled 5-point, 25-point, low e�ort, and high e�ort trials. Overall, participants reported having
higher success rates on low (M=75.62%, SD=9.11) compared to high e�ort trials (M=66.72%,
SD=10.46). Wilcoxon signed-rank tests revealed that participants reported being more accurate
on low vs high e�ort trials (Z= -3.13, p= 0.002, r=0.58), despite the fact that real accuracy
rates were not di�erent between these conditions.
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4.4.1.2 Cue Evaluation Phase

Repeated measures ANOVA revealed a significant e�ect of sensor at cue (F(1.38, 37.18)=19.82,
p<0.001), such that theta was maximal at Fz. However, contrary to our hypothesis, we found
no e�ect of either Reward (F(1, 27)=1.85, p=0.185, ÷

2
p=0.0) or E�ort (F(1, 27)=3.15, p=0.087,

÷
2
p=0.10) on cue theta (see Figure 4.3a and Table 4.S8). This finding was replicated by

model comparison of Bayesian rmANOVAs, which identified that the data was best predicted
by a model with Sensor as the sole predictor variable. Averaging across all models there is
strong evidence in favor of including Sensor (BFincl=16396.45) and weak evidence of including
E�ort, Reward Magnitude, and their interactions (all BFincl<0.494; Table 4.S7). Nevertheless,
Bayesian pairwise t-tests revealed only anecdotal evidence in favor of a null e�ect of E�ort
(BF01= 0.34) and Reward Magnitude (BF01= 2.17). Thus, while FMT was generally present
and no e�ect of E�ort or Reward Magnitude were detected, we cannot conclusively deduce that
FMT power was not modulated by our task features during the cue evaluation phase.

ERP data, however, suggests that P3 signals reward magnitude of upcoming trial. Specifically,
repeated-measures ANOVA detected a significant e�ect of Reward (F(1, 27)= 43.47, p<0.001,
÷

2
p=0.62), such that cue-P3 amplitudes were significantly larger for High Reward (M= 4.78,

SD=2.34) compared to Low Reward cues (M=3.40, SD=1.87). We also detected significant
e�ects of Sensor (F(1.30, 35.06)= 112.85, p<0.001, ÷

2
p=0.81), and a significant Reward and

Sensor interaction (F(1.32, 35.58)= 18.92, p<0.001, ÷
2
p=0.41; Table Table 4.S9). As shown

in Figure 4.4A, post-hoc pairwise t-tests indicate that cue-P3 amplitudes were significantly
larger for High compared to Low Reward cues in parietal and central midline sensors (Cz:
t(28)= 5.44, p<0.001, p-adj.<0.001; Pz: t(28)=6.36, p<0.001, p-adj.<0.001), but that this
di�erence decreased as it approached frontal Fz (t(28)=4.14, p<0.001, p-adj.=0.11) Notably, no
e�ect of E�ort (F(1,27)=0.24, p=0.63, ÷

2
p=0.01) or e�ort-related interactions (E�ortXReward:

F(1, 27)=0.22, p=0.65, ÷
2
p=0.01, E�ortXSensor: F(1.46, 39.49)=0.12, p=0.82, ÷

2
p=0.01) were

detected, suggesting that expected e�ort did not enhance cue-related salience.

4.4.1.3 Feedback Phase

In contrast to the cue evaluation phase, both FMT and P3 tracked expended e�ort at feed-
back (see Tables 4.S10 and Table 4.S11). Specifically, repeated-measures ANOVA revealed
a significant e�ect of Sensor (F(1.20, 32.35)=9.22, p=0.003, ÷

2
p=0.26) and an E�ort and Sen-

sor interaction (F(1.73, 46.83)=6.18, p=0.006, ÷
2
p=0.19) on FMT, such that theta power was

significantly enhanced for rewards after high compared to low e�ort at Fz (Z=-2.90, p=0.004,
p-adj.=0.046, r=0.55), but not Cz (Z=-2.42, p= 0.016, p-adj.=0.68, r=0.46) or Pz (Z= -0.91,
p=0.362, p-adj.=0.99, r=0.17). Figure 4.3b illustrates the e�ect of e�ort on theta power at
Fz.

Repeated-measures ANOVA also revealed a significant e�ect of E�ort (F(1,27)= 31.95, p<0.001,
÷

2
p=0.54) and Reward (F(1,27)= 43.94, p<0.001, ÷

2
p=0.62) on fb-P3. As seen in Figure 4.4B,

P3 amplitudes were larger after receiving positive feedback for High (M=13.16, SD=5.13) vs
Low E�ort (M=10.49, SD=4.00) and for High (M=13.10, SD=4.84) vs Low Reward (M=10.55,
SD=4.23). We also detected significant e�ects of Sensor (F(1.26,33.99)= 35.81, p<0.001, ÷

2
p=0.57)

and a significant Reward and Sensor interaction (F(1.26,34.10)= 9.95, p<0.001, ÷
2
p=0.27). Post-

hoc paired t-tests revealed that although fb-P3 amplitudes were enhanced for high vs low re-
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Figure 4.4: P3 during cue evaluation and feedback phases of the E�ort Valuation Task. A)
Time course of grand averages of P3 amplitudes from sensor Fz in each of the four conditions during
the cue evaluation phase. B) Time course of grand averages of P3 amplitudes from sensor Fz in each
of the four conditions during the feedback phase. Cue and feedback onset occurred at 0 ms. Shaded
regions about the line reflect 95% confidence intervals using between-subjects standard error. Gray
shaded regions in the ERP plots indicate the time window used for analysis. Topographic plots reflect
the di�erence in grand averages between conditions in said time regions. HR=High Reward, LR=Low
Reward, HE=High E�ort, LE=Low E�ort, HR-LR= Di�erence between High Reward and Low Reward
conditions, HE-LE= Di�erence between High E�ort and Low E�ort conditions.

wards across all midline sensors, this di�erence was maximal at Pz (t(27)=8.18, p<0.001, p-
adj.<0.001). Finally, we also detected a significant e�ect three-way interaction between E�ort,
Reward and Sensor (F(1.37, 36.88) = 5.269, p=0.018, ÷

2
p=0.16), however post-hoc 2x2 repeated

measures ANOVAs for each sensor did not yield any significant e�ect of E�ort and Reward (all
p-values>0.4), thus we concluded that this interaction was driven by slight di�erences in the
magnitude – but not direction – of reward- and e�ort-related e�ects in each sensor.

4.4.2 Study 2

4.4.2.1 Behavioral and Self-Report Data

As in Study 1, we were interested in making sure that success rates were similar between high
and low e�ort trials. In Study 2 however, we also needed to make sure that success rates were
significantly higher for high compared to low probability trials. LMM revealed no significant
e�ect of E�ort (b=0.16, p=0.869) or E�ort and Block interaction (b= -0.30, p=0.658) on success
rates (Table 4.S1). As shown in Figure 4.5a, we found a significant positive e�ect of Probability
(b=36.28, p<0.001), such that, on average, participants correctly completed 86.8% (SD=7.2) of
high probability trials and 50.5% (SD=11.1) of the low probability trials. Thus, we concluded
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Figure 4.5: Probabilistic E�ort Valuation Task adequately manipulates mental e�ort, but
probability of success modulates subjective ratings of di�culty and liking. A) Mean percentage
of successful trials between high and low probability trials across the task. B) Average number of decisions
made in the 8-second time window for the di�erent trial types across the task. Participants made more
decisions in the high vs low e�ort trials, and slightly more decisions in low vs high probability trials. C)
E�ect of e�ort on average response time (in seconds) for each decision made in the di�erent trial types.
D) E�ect of e�ort and probability of success on subjective reports of task di�culty; larger values indicate
increased self-report di�culty. E) E�ect of e�ort and probability of success on subjective estimates of
the percentage of trials (based on each E�ortXProbability condition) that were successfully completed
in a given block. F) Average self-report ratings of fatigue at each block; larger values indicate increased
self-report ratings of fatigue. G) E�ect of probability and e�ort on subjective ratings of cue liking; higher
values indicate higher appetitive responses to cue. Error bars represent the standard error of the mean.

that 1) the extended practice phase stabilized reward probabilities early in the Probabilistic
E�ort Valuation Task, thus eliminating the need to exclude trials from the EEG analyses,
and 2) that success rates were substantially di�erent between low and high probability trials,
regardless of e�ort type.

We also detected a significant e�ect of e�ort type on number of decisions and response time, so
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that participants in Study 2 made more decisions (b=-3.43, p<0.001) and decided more quickly
(b=0.27, p<0.001) in low compared to high e�ort trials (Figures 5b and c; Tables 4.S2 and Table
4.S3). LMMs also revealed significant Block e�ects such that participants chose more quickly
(b=-0.03, p<0.001) and made more decisions in the 8-second time window (b=0.27, p<0.001)
across trial types as the task went on. However, there was a significant e�ect of Probability
(b=-0.13, p=0.04) on number of decisions, such that lower probability of succeeding actually
invigorated e�ortful responding instead of diminishing it.

The high e�ort task was also rated as more di�cult than the low e�ort task (b=2.42, p<0.001;
see Figure 4.5d and Table 4.S4). Probability of success also impacted subjective ratings of
di�culty, such that low probability tasks were rated as more di�cult than high probability tasks
(b=-1.53, p=<0.001). We also detected a significant Probability and Block interaction (b= -0.23,
p=0.001), such that high and low probability trials were rated as equally di�cult at baseline
(before participants experienced the di�erential success rates), but low probability trials were
reported as increasingly e�ortful throughout the task. We were also interested in knowing if
participants were accurately perceiving their probability of success. As expected, participants
also reported feeling more likely to succeed in high vs low probability trials (b= 1.45, p<0.001),
but only after the baseline period as there were no di�erences in success probability during the
calibration (see Figure 4.5e). Despite having equal success rates across both levels of e�ort,
LMM revealed that participants reported feeling less likely to successfully complete high e�ort
trials than low e�ort trials (b=-1.43, p<0.001; see Table 4.S7). Subjective ratings of probability
of success also significantly decreased with time on task (b=-0.18, p<0.001). This decrease was
steeper for low probability (b=0.28, p<0.001) and low e�ort trials (b=0.12, p=0.011).

As in Study 1, participants reported feeling more fatigued with time on task (b=0.69, p<0.001;
see Figure 4.5f and Table 4.S5), but no relationship between fatigue ratings and average block
accuracy was detected (b=-0.004, p=0.06). Thus, taken together, these findings suggest that
our paradigm successfully manipulated e�ort demand while keeping reward probability constant
throughout the task.

However, unlike Study 1, cue liking ratings in Study 2 generally decreased with time on
task (b=-0.16, p=0.001; see Table 4.S6). Probability of successfully completing the task also
modulated cue liking, so that high probability cues were generally liked more than low probability
cues (b=1.61, p=.137). We also detected a significant Probability and Block interaction (b=0.34,
p<0.001). Figure 4.5F illustrates how, despite being explicitly told which cues indicated lower
vs higher probabilities of success before baseline measurement, participants initially based cue
liking on e�ort demands alone. With more time on task however, liking for cues indicating lower
success ratings began to decline. Finally, 100% of participants correctly identified which cues
were associated with high and low e�ort trials in the end of session questionnaire.

4.4.2.2 Cue Evaluation Phase

ERP and oscillatory patterns in Study 2 are qualitatively similar to those in Study 1. With
respect to cue-related theta, repeated measures ANOVA detected a significant e�ect of sensor at
F(1.35, 41.85)=24.85, p<0.001, ÷

2
p=0.42), but again no e�ects related to E�ort (F(1, 31)= 0.007,

p=0.933, ÷
2
p<0.00), Probability (F(1, 31)=0.68, p=0.417, ÷

2
p=0.02), or their interactions (Table
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Figure 4.6: FMT during
cue evaluation and feedback
phases of the Probabilistic
E�ort Valuation Task. A)
Time course (in milliseconds) of
theta power (µV2) during cue
presentation. Shaded regions
about the lines represent 95%
confidence intervals while the
shaded panel represents the time
window selected for analysis. In-
set shows the topographic distri-
bution of theta power across all
cues 100 to 400ms after cue on-
set. B) Time course (in millisec-
onds) of theta power (µV2) dur-
ing correct feedback. Shaded re-
gions about the lines represent
95% confidence intervals while
the shaded panel represents the
time window selected for analy-
sis. Insets show the topographic
distribution of theta power 200
to 300ms after correct feedback
onset. HP=High Probability,
LP=Low Probability, HE=High
E�ort, LE=Low E�ort, HE-
LE= Di�erence between High
E�ort and Low E�ort conditions.

4.S12). Figure 4.6a shows cue-related theta power activation. Bayesian rmANOVA confirmed
that the data best supports a model with only a main e�ect of Sensor (BF10= 38828.24). Averag-
ing across all models there is strong evidence in favor of including Sensor (BFincl= 413136.71) and
weak evidence of including E�ort, Reward Magnitude, and their interactions (all BFincl<0.169).
Bayesian pairwise t-tests revealed strong evidence in favor of a null e�ect of E�ort (BF01= 12.35)
and moderate evidence in favor of a null e�ect of Probability (BF01= 5.13). Thus, we conclude
that although FMT was generally present during the cue evaluation phase, it was not modulated
by our task manipulations.

Cue-P3 however showed a significant e�ect of Probability (F(1, 30)= 17.40, p=0.001, ÷
2
p=0.37),
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such that cue-P3 amplitudes were significantly greater for Low Probability (M=2.47, SD=2.67)
compared to High Probability cues (M=1.82, SD=2.26; see Figure 7a and Table 4.S13). We
also detected significant e�ects of Sensor (F(1.23, 36.78)= 136.51, p<0.001, ÷

2
p=0.82), and a

significant Probability and Sensor interaction (F(1.27, 38.21)= 11.81, p<0.001, ÷
2
p=0.28). Post-

hoc Wilcoxon signed-rank tests and pairwise t-tests indicated that cue-P3 amplitudes were
significantly larger for Low compared to High Probability cues in Pz (Pz: Z= -4.31, p<0.001,
p-adj.<0.001, r=0.76), but that this di�erence diminished in more frontal sensors (Fz: t(31)=-
2.51, p=0.017, p-adj.=0.73; Cz: Z= -3.12, p=0.002, p-adj.=0.053, r=0.55). Cue-P3 was not
modulated by E�ort (F(1,30)=0.44, p=0.51, ÷

2
p=0.01) or e�ort-related interactions (E�ortX-

Probability: F(1, 30)=0.02, p=0.90, ÷
2
p<0.00, E�ortXSensor: F(1.22, 36.63)=0.12, p=0.79,

hp2=0.28), replicating previous results from Study 1.

4.4.2.3 Feedback Phase

In Study 2, repeated measures ANOVA revealed a main e�ect of Sensor (F(1, 31)=11.59,
p=0.001, ÷

2
p=0.27) and E�ort in FMT (F(1, 31)=11.594, p=0.003, ÷

2
p=0.272), such that FMT

was significantly more enhanced across all electrodes for rewards received after exerting High
(M=228.03, SD=194.66) compared to Low E�ort (M=159.65, SD=156.45). Figure 4.6b displays
the e�ect of e�ort on FMT power at feedback (see Table 4.S14).

Similarly, repeated-measures ANOVA detected a significant main e�ect of E�ort (F(1, 31)=73.96,
p<0.001, ÷

2
p=0.71), such that fb-P3 amplitudes were significantly greater for rewards after com-

pleting High E�ort (M=10.89, SD=4.30) compared to a Low E�ort trials (M=8.31, SD=4.25;
see Figure 4.7b and Table 4.S15). The data also revealed a significant main e�ect of Probability
(F(1, 31)=4.78, p=0.036, ÷

2
p=0.13) and Sensor (F(1.37, 42.33)=8.95, p<0.001, ÷

2
p=0.22). Fb-

P3 amplitudes were larger when receiving rewards from Low Probability (M=8. 92, SD=4.49)
compared to High Probability trials (M=9.59, SD=4.62).

4.5 Discussion

Most goal-directed behavior is mentally costly. Previous studies have implicated the mPFC as
a critical structure for tracking both costs and net value representations of e�ort-based rewards.
However, these studies have typically explored the neural correlates of e�ort-based reward in the
context of option comparison (e.g. binary choice paradigms) and without controlling for unequal
reward probabilities between e�ort conditions. The current studies aimed to explore the role
of the mPFC in the processing of e�ort-based reward in the absence of probability discounting.
To this end, we used an EEG signal related to cognitive control and reward processing in the
mPFC – the FMT – and qualitatively compared this response pattern to an EEG index of
incentive salience (P3). Across two studies, we were able to show that our novel paradigm
experimentally isolated e�ort demands from reward probability. EEG data revealed that FMT
power was generally enhanced during cue evaluation but did not selectively track upcoming
e�ort demands, reward magnitude or reward probability. At feedback, however, FMT power
was sensitive to expended e�ort, but did not track other reward features. By contrast, during
cue presentation, P3 was sensitive to reward magnitude and reward probability, but not e�ort.
At feedback however, P3 amplitudes scaled positively with e�ort demands, suggesting that
expended e�ort demands increased the salience of reward, but only during the consummatory
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Figure 4.7: P3 during cue evaluation and feedback phases of the Probabilistic E�ort Val-
uation task. A) Time course of grand averages of P3 amplitudes from sensor Fz in each of the four
conditions during the cue evaluation phase. B) Time course of grand averages of P3 amplitudes from
sensor Fz in each of the four conditions during the feedback phase. Cue and feedback onset occurred at 0
ms. Shaded regions about the line reflect 95% confidence intervals using between-subjects standard error.
Gray shaded regions in the ERP plots indicate the time window used for analysis. Topographic plots
reflect the di�erence in grand averages between conditions in said time regions. HP=High Probability,
LP=Low Probability, HE=High E�ort, LE=Low E�ort, LP-HP= Di�erence between Low Probability
and High Probability conditions, HE-LE= Di�erence between High E�ort and Low E�ort conditions.

phase. These findings suggest that when reward probabilities are equal between high and low
e�ort conditions, the mPFC does not track net value of prospective e�ort-based rewards and
that expended e�ort enhances, instead of discounts, the salience of reward at feedback.

Although the mPFC has been repeatedly implicated in the signaling of e�ort-based rewards,
we did not find any relationship between mPFC function – putatively measured by FMT – and
prospective e�ort demands during the cue evaluation phase. One plausible explanation for this
is that the mPFC is only recruited when the environment requires a comparison between more
than one option. Previous studies have observed that BOLD in the mPFC/ACC scales positively
with e�ort demands and negatively with the subjective value of e�ort-based rewards (Chong et
al., 2017; Klein-Flugge et al., 2016; Massar et al., 2015; Prévost et al., 2010; Skvortsova et al.,
2014). However, these studies used paradigms that required participants to decide between two
e�ort-based rewards, making it di�cult to disentangle whether the ACC was signaling net value
or exerting cognitive control to facilitate decision-making and action selection. Notably, studies
that have experimentally isolated decision di�culty have shown that mPFC/ACC activity scales
positively with decision di�culty and single o�er net value (Westbrook et al., 2019), but not
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e�ort demand (Hogan et al., 2019) or foraging value (Shenhav et al., 2014). Similarly, increased
phasic FMT was associated with greater probability of selecting the high-e�ort choice in physical
e�ort-based reward task, but only in di�cult decision trials (Umemoto et al., 2022). The two
studies that used paradigms without choice reported mixed results: only one reported that ACC
activity scaled with net value (Croxson et al., 2009) and neither detected a relationship between
ACC BOLD and prospective e�ort (Croxson et al., 2009; Stoppel et al., 2011). In our studies,
FMT was enhanced during cue evaluation, but was not sensitive to net value or any of the
features of prospective e�ortful reward. The absence of a net value signal in cue-FMT, however,
cannot be attributed to a lack of saliency in our e�ort or reward manipulations. In fact, across
both of our studies, increased e�ort demands attenuated self-report cue liking, suggesting that
prospective e�ort was indeed integrated into estimates of subjective value. Nevertheless, in the
absence of alternative options and the need for action selection, FMT did not signal subjective
value. Thus, our findings indirectly lend support to a growing body of evidence that suggests
that the mPFC/ACC tracks cognitive control requirements of weighing options (Kolling et al.,
2016) or guiding action selection (Holroyd and McClure, 2015) rather than net value per se.

At feedback, however, FMT selectively tracked expended e�ort, but not reward magnitude
or probability. This finding is consistent with a previous findings that BOLD activity in the
ACC is augmented for increased attentional and cognitive e�ort demands, but not integrated
net value, at reward feedback (Hernandez Lallement et al., 2014; Stoppel et al., 2011). Our
findings are also in line with proposals that the mPFC/dACC responds selectively to the value
of events that are specifically relevant to the allocation of control (Shenhav et al., 2013). In
our paradigm, the di�culty of the e�ort demands was continuously calibrated through the task.
Because reward magnitude and probability of successful outcome were fixed, feedback was only
informative about the degree to which previously expended e�ortful control adequately met the
e�ort demand for that specific trial. Thus, FMT power in positive feedback could feasibly reflect
performance monitoring or action value updating, both functions that have been previously
attributed to theta band oscillations generated in the ACC (Luft, 2014; Ullsperger et al., 2014).
Alternatively, self-report ratings in Study 2 suggest that despite equal reward probabilities
across e�ort conditions, participants generally perceived having a higher probability of success
on low compared to high e�ort trials. Since FMT has been shown to index unsigned prediction
errors (Cavanagh et al., 2012; Mas-Herrero and Marco-Pallarés, 2014; Rawls et al., 2020), one
possible explanation for enhanced FMT at high e�ort feedback could be that rewards obtained
through more e�ort are perceived as less likely and therefore unexpected. However, if this were
the case, we would expect theta power to have been potentiated for reward feedback in low
probability trials as well. To conclusively test the role of theta in e�ort-based prediction error
and performance monitoring, future experiments should use paradigms that directly manipulate
reward likelihood as a function of e�ort demand.

Our findings also show that FMT signals are distinct and separable from signals of incentive
salience (cue-P3). Unlike FMT, cue-P3 amplitudes were sensitive to prospective reward magni-
tude and probability. This is consistent with previous studies that show that cue-P3 amplitudes
are modulated not only by reward magnitude, but also reward probability (Schutte et al., 2019),
and task e�cacy (Frömer et al., 2021), which were controlled in our paradigm. At feedback,
however, increased e�ort demand enhanced P3 responses for positive outcomes, suggesting that
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expended e�ort increased the incentive salience of received rewards. These findings are in line
with previous findings that suggest that exerted e�ort amplifies reward saliency signals in hu-
man (Ma et al., 2014; Schevernels et al., 2016; Schevernels et al., 2014; Wang et al., 2017) and
non-human primates (S. Tanaka et al., 2019). Furthermore, unlike previous studies, the tasks
used in the current experiments equalized performance outcomes and reward likelihood between
e�ort conditions. Therefore, we can conclude that e�ort-related di�erences in fb-P3 were driven
primarily by expended e�ort and not by other factors, such as reward expectancy or likelihood,
which modulate P3 amplitudes (Hajcak et al., 2005; Hajcak et al., 2007; Wu and Zhou, 2009).

Despite the strengths of our paradigm, there were some limitations to the design. As stated
earlier, analyses were limited to successful trials due to the relatively high success rate (achieved
via the calibration), thus we could not explore the role of FMT in tracking performance in the
context of failure or non-reward. Second, the mPFC is a highly heterogenous region that has
been linked to a variety of cognitive control and outcome-processing functions (Clithero and
Rangel, 2014; Domenech and Koechlin, 2015; Vassena, Holroyd, et al., 2017). Although the
high temporal resolution of EEG was useful for the purposes of our study, combined fMRI-
EEG or magnetoencephalography would be well-suited for exploring how the specific subregions
of the mPFC contribute to e�ort-based reward processing. In summary, in two studies we
showed that in the absence of alternative options/choice and di�erent reward probability rates,
the FMT did not track features of prospective e�ort-based reward. Instead, FMT power was
only enhanced for successful high e�ort outcomes, which suggests that the mPFC plays a more
general performance-monitoring role as opposed to tracking pure cognitive control demands or
integrated net value representations. Further, we showed that P3 amplitudes were sensitive to
reward magnitude and probability, but not e�ort, during cue evaluation and that e�ort enhanced
P3 amplitudes to reward at feedback, again suggesting that e�ort increased the incentive salience
of a reward. Understanding how e�ort-based reward is processed is crucial for understanding
psychopathological conditions marked by altered reward motivation, such as Parkinson’s dis-
ease (Chong et al., 2015; McGuigan et al., 2019), depression (Hammar et al., 2011; M. T.
Treadway, Bossaller, et al., 2012; M. T. Treadway et al., 2015), schizophrenia (Barch et al.,
2014; Cooper et al., 2019), substance use disorders (Leventhal et al., 2008), and attention-
deficit/hyperactivity disorder (Egeland et al., 2010). However, these states of amotivation can
be caused by deficits in one or several components of e�ort-based reward processing, such as
reduced salience of prospective and obtained rewards, dysfunctional weighing of prospective
cognitive control demands, misallocation of control, and/or deficits in performance monitoring.
Thus, novel paradigms are needed to reduce the influence of confounds when investigating the
key processing stages e�ort-based reward. This study paves the way towards that goal.

86



4.6 Supplementary Tables

Table 4.S1: E�ects of reward/probability, e�ort, and block on average success rate (%).

Table 4.S2: E�ects of reward/probability, e�ort, and block on number of choices per trial.
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Table 4.S3: E�ects of reward/probability, e�ort, and block on average choice speed.

Table 4.S4: E�ects of e�ort (and probability) on self-report ratings of di�culty.
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Table 4.S5: E�ects of self-report fatigue on accuracy

Table 4.S6: E�ects of reward/probability, e�ort, and block on self-report cue liking.

89



Table 4.S7: E�ects of probability, e�ort, and block on self-report probability of success.

Table 4.S8: Results of rmANOVAs for cue theta power (Study 1).
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Table 4.S9: Results of rmANOVA for cue-P3 amplitudes (Study 1).

Table 4.S10: Results of rmANOVAs for FB theta power (Study 1).
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Table 4.S11: Results of rmANOVA for FB-P3 amplitudes (Study 1).

Table 4.S12: Results of rmANOVAs for cue theta power (Study 2).

92



Table 4.S13: Results of rmANOVA for cue-P3 amplitudes (Study 2).

Table 4.S14: Results of rmANOVA for FB theta amplitudes (Study 2).
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Table 4.S15: Results of rmANOVA for FB-P3 amplitudes (Study 2).
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Chapter 5

Performance Feedback, but Not Cognitive
E�ort, Modulates Reward Learning

5.1 Abstract

The tracking of reward prediction and learned reward values recruits the same neural circuitry
as the processing of e�ort-based rewards. E�ort demands have been shown to positively shift
reward prediction errors and potentiate the learning of stimulus-reward associations (Jarvis et
al., 2022; S. Tanaka et al., 2019). These findings contradict accounts that rewards that are more
costly are less subjectively valuable, and therefore less reinforcing than rewards that require less
e�ort to obtain. Furthermore, these studies were either used non-human primates or physical
e�ort costs, and did not account for the role of performance feedback in learning. To address
this gap, participants (N=28) completed a behavioral paradigm in which they learned stimulus-
reward contingencies through experience and received rewards only after successfully completing
a cognitively e�ortful task. Behavioral performance and self-report measures suggest that our
task e�ectively manipulated cognitive e�ort demands and that participants were able to adapt
their choice preferences based on shifting values of reward-predicting cues. However, the study
found no evidence that learning rates were modulated by paid e�ort costs. Instead, learning rates
were influenced by performance feedback, such that reward values were updated more e�ciently
based on successful task execution and actual reward attainment, rather than unsuccessful task
execution. These findings suggest that positive performance outcomes, rather than e�ort costs,
may potentiate reward value and that this in turn guides action-outcome learning.

5.2 Introduction

Prominent models of cognitive neuroscience posit that e�ort is costly and that humans and
animals prefer pursuing rewards that require less e�ort to obtain (Salamone et al., 2018; Zald
and Treadway, 2017). In contrast, several studies have shown that more value is allocated
to rewards earned from exerting more e�ort (Alessandri et al., 2008; Clement et al., 2000;
Hernandez Lallement et al., 2014; Ma et al., 2014). This “e�ort paradox” (Inzlicht et al.,
2018) highlights the dissociation between how rewards are valued and represented at the time
of prediction and choice versus how they are valued upon delivery. While significant advances
have been made in elucidating the neural substrates implicated in the processing of e�ort-based
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rewards, it remains unclear how e�ort modulates the learned value of rewards.

The mesocorticolimbic circuit has been consistently implicated in reward learning (RL) and
prediction. Dopaminergic midbrain neurons encode reward prediction errors (RPE), or the
di�erence between expected and actual rewards, which serve as a teaching signal in the learning
of reward-outcome contingencies (Bayer and Glimcher, 2005; Schultz et al., 2015; Tobler et al.,
2005). In rodents, midbrain projections to the striatum have been shown to be important for
generating both stimulus–outcome and stimulus–response associations (Balleine et al., 2007;
Cox and Witten, 2019; Saunders et al., 2018).These results have been mirrored in humans, with
several studies showing that dopamine-dependent mechanisms enhance reinforcement learning
signals in the striatum (Cox and Witten, 2019; Diederen et al., 2017; Jocham et al., 2011).
Striatal projections to prefrontal areas, particularly the medial prefrontal cortex (mPFC) and
anterior cingulate cortex (ACC), have been shown to play a critical role in the learning of
stimulus-reward associations. In non-human primates, populations of neurons in the mPFC
have been shown to respond to stimuli or actions as a function of reward expectation (Amiez
et al., 2006) and encode for RPEs (Kennerley et al., 2011). In humans, EEG signals originating
in the mPFC are modulated by the degree of discrepancy between expected and real outcomes
(Cavanagh et al., 2012; Chase et al., 2011; Mas-Herrero and Marco-Pallarés, 2014; Oliveira et
al., 2007). In the context of reward, electrophysiological and blood oxygenation level dependent
(BOLD) activity in the mPFC have been shown to signal reward prediction at cue and prediction
errors at feedback (Silvetti et al., 2014; Talmi et al., 2013; Vassena, Krebs, et al., 2014), as well
as correlate with degree of learning of stimulus-reward associations (Mas-Herrero and Marco-
Pallarés, 2014). Taken together, these findings suggest that the VS and mPFC/ACC play crucial
roles in outcome and reward prediction, both functions that subserve reward-related behavioral
adaptation.

However, one critical observation is that the neural substrates that underpin reward learning
are also recruited for signaling the subjective value of e�ort-based rewards. Activity in the VS
has been shown to scale positively with the subjective value of rewards across di�erent reward
domains and phases of reward processing (Bartra et al., 2013; Mas-Herrero et al., 2021; Sescousse
et al., 2013). Furthermore, disruptions to striatal dopamine have been consistently shown to
alter preferences for e�ort-based rewards (Assadi et al., 2009; Salamone et al., 2009; Salamone
et al., 2012). With regard to cortical structures, neural substrates within the mPFC appear to
be functionally specialized, such that the vmPFC codes reward features (i.e. subjective value)
of reward stimuli at both cue and outcome (Bartra et al., 2013; Lopez-Gamundi et al., 2021;
Sescousse et al., 2013; Vassena, Krebs, et al., 2014), while the ACC is more associated with option
comparison and decision value at cue (Hogan et al., 2019; Shenhav et al., 2014; Westbrook et
al., 2019), and prediction error coding and performance monitoring at feedback (Jessup et al.,
2010; Silvetti et al., 2013; Vassena, Krebs, et al., 2014). With respect to predicted rewards,
BOLD activity in the ACC has been repeatedly shown to scale positively with increasing e�ort
demands and negatively with subjective value (Chong et al., 2017; Klein-Flugge et al., 2016;
Prévost et al., 2010). Furthermore, the relationship of the ACC with expected subjective value
appears to be specific to rewards with e�ort costs, but not delay or probability costs (Bailey
et al., 2016). Thus, it appears that the VS and mPFC/ACC are also key nodes in representing
reward value alongside the e�ort costs required to obtain them.
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Critically, e�ort itself is a strong reinforcer (Palidis and Gribble, 2020; Skvortsova et al.,
2017; Skvortsova et al., 2014) and e�ort and reward prediction errors have been shown to
originate in the dopaminergic midbrain but project to functionally distinct regions (Hauser et
al., 2017). Moreover, RPEs are modulated by the subjective value or utility of rewards (Lak
et al., 2014; Roesch et al., 2007; Schultz et al., 2015; Stau�er et al., 2014) and have been
shown to be sensitive to e�ort costs required to obtain them (Jarvis et al., 2022; S. Tanaka
et al., 2019). In non-human primates, it has been shown that cue-reward contingencies are
acquired more quickly when rewards are earned by exerting more, as opposed to less, cognitive
e�ort. However, in this paradigm, reward rates between high and low e�ort conditions were
controlled by randomly aborting some low e�ort trials (S. Tanaka et al., 2019). Thus, it is
unclear if cue-reward contingencies were learned more quickly under high e�ort because rewards
were more valued or because rewards were more certain than those in the low e�ort condition.
Furthermore, the few studies that have tested the e�ect of e�ort in the context of reinforcement
learning have limited their analyses to cases where e�ort expenditure was successfully executed
(Jarvis et al., 2022; S. Tanaka et al., 2019). Since several of the brain regions involved in reward
and e�ort prediction are also implicated in performance monitoring functions (Drueke et al.,
2015; Ferdinand and Opitz, 2014; Luft et al., 2013; Ullsperger and von Cramon, 2003; Vassena,
Krebs, et al., 2014), it would be of key interest to understand how reward predictive cues are
updated in the context of failure as well as success.

Here, we seek to fill this gap by studying how cognitive e�ort demands modulate reward
learning in humans. To this aim we designed a behavioral paradigm where stimulus-reward
contingencies were learned only though experience and reward feedback was received only after
completing a cognitively e�ortful task. Due to the exploratory nature of this study, we had two
opposing hypotheses. On one hand, there is growing body of evidence which suggests that paid
cost increases the saliency and/or value of rewards (Inzlicht et al., 2018). This is in line with
our results from Chapter 4, where more attentional resources were allocated to rewards received
under greater e�ort costs. Following this potentiation hypothesis, we predict that stimulus-
reward contingencies will be learned more quickly when rewards require greater e�ort to attain,
as has been found in previous studies (Jarvis et al., 2022; S. Tanaka et al., 2019). However, the
traditional neuroeconomic framework posits that e�ort costs discount the value of rewards, as
evidenced by decreased preference and dampened brain activity for rewards with higher e�ort
costs (Westbrook and Braver, 2015; Zald and Treadway, 2017). Thus, based on the discounting
hypothesis, we would expect that rewards received under high e�ort would have lower subjective
values and be less reinforcing than rewards received under low e�ort. Finally, it is possible
that e�ort performance feedback modulates the e�ect of e�ort on reward prediction updating,
however due to the lack of studies investigating this e�ect, our hypothesis remains open.

5.3 Methods

5.3.1 Participants and Procedure

32 adults were recruited through the University of Barcelona SONA systems subject pool. Par-
ticipants were required to be 1) between the ages of 18 and 45, 2) have normal or corrected-
to-normal vision, 3) have no current diagnosis or treatment for a psychological condition and

97



4) not currently receiving treatment for a chronic illness. Participants completed a brief video
call with the research assistant to review the informed consent and give instructions for com-
pensation procedures. Participants were paid 5Ä for completing the task and could earn up to
an additional 4Ä based on task performance. Two participants were excluded based on e�ort
task performance that suggested inattention to the overall task (<60% accuracy on e�ort trials).
Participants with extremely little variance in responses to reward cue stimuli (selecting the same
cue regardless of reward cue in over >90% of trials) were also excluded (N=2). All remaining
participants scored well above chance on attention checks (M=98.2%, SD= 4.5). Three partic-
ipants were identified as having low model fits (pseudo-R2

<.104) across both e�ort levels (see
model fitting procedure below). All analyses were then repeated excluding these participants.
Results remained quantitatively similar, thus we report findings with all 28 participants (20
females, age: M=23.75, SD=3.62).

5.3.1.1 E�ort-Based Reward Learning (ERL) Task

Participants first completed a training session where they practiced the di�erent e�ort tasks.
During the training phase, an e�ort cue would appear for 1500ms, indicating the demand of the
upcoming e�ort task (high or low e�ort), followed by another fixation cross (1 second) signaling
the start of the e�ort phase. Next, a series of numbers were presented one at a time on the
screen for 6 seconds. Numbers ranged from one to nine, excluding five. If the number was yellow,
subjects were instructed to use the number keys (1 and 2) to indicate whether the number was
higher or lower than 5. If the number was blue, subjects were instructed to use the number
keys to indicate if the number was even or odd. In low e�ort trials, all numbers were yellow,
so judgements were always of the same type. In the high e�ort trials, number color/judgment
type alternated, requiring e�ortful cognitive set switches (Botvinick, 2007; Lopez-Gamundi and
Wardle, 2018). Participants were instructed to answer as quickly and as accurately as possible
within the 6-second time frame. After the e�ort task, a fixation cross was presented for 500 ms
and then reward feedback for 1 second. Participants were awarded 2 points for successful trials
and 0 points for unsuccessful trials. There were 40 trials (20 high and 20 low e�ort trials) in the
practice session.

Participants were told that there was no fixed number of correct responses required within the
6-second time frame. However, they were warned that too few responses and/or too many errors
would result in an unsuccessful trial, and that they would not receive the reward for that trial.
Unbeknownst to them, thresholds for correct responses for both high and low e�ort trials were
set by looking at the number of correct responses in a moving window of the previous 5 trials of
each type. The number of correct decisions required to successfully complete a trial (“decision
thresholds”) for each trial type are then calculated by taking correct number of decisions above
the lower 20th percentile. This locks success rates between high and low e�ort trials to about
80%, thereby ensuring reward rates do not di�er based on e�ort demand. However, based on
previous pilot tests and a previous experiment, basic response standards were set to ensure that
participants are investing at least a bare minimum of e�ort. Specifically, response thresholds
could not drop below 4 and 3 correct responses in the low and high e�ort task, respectively.
Trials with more than two errors in the 6-second time window were counted as unsuccessful.
The first five trials of the practice were used to set the initial threshold; after this, decision
thresholds were updated using the dynamic calibration method.
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Upon finishing the practice, participants started the reward learning portion of the task (see
Figure 5.1), which was a modified version of the reversal learning task (Cools et al., 2002) where
rewards were contingent on both selecting the correct shape and also successful completion of
the e�ort task. In each trial, participants were given 5 seconds to select between two shape
stimuli, which were randomly selected at the beginning of each block. One shape was more
rewarding, resulting in 5 points in 75% of trials and in 0 points in 25% trials; the other shape
was less rewarding (0 points in 75% of trials, 5 points in 25% of trials). If an option was
not made within the 5-second time window, a message telling the participant to choose faster
appeared for 1-second and then the trial was terminated. Otherwise, a fixation cross appeared
for 500ms followed by the e�ort phase. As in the practice, the numbers task was executed for
6 seconds and decision thresholds were set by a sliding window of the last 5 trials. Once the
e�ort phase ended, another fixation cross appeared for 500ms followed by performance feedback
(1000ms) and reward feedback (1000ms). Performance feedback consisted of a thumbs down for
unsuccessful e�ort tasks and a thumbs up for successful e�ort tasks. During reward feedback,
the previously selected shape stimulus was displayed, along with the points earned in either
green or red. If the e�ort task had been successfully completed, the points were green and were
added to the total. If the e�ort task was unsuccessful, the points were shown in red and were not
added to the cumulative total; that is, the points in red represented what the participant would
have won had they correctly completed the trial. This reward feedback allowed for learning of
the stimulus-reward contingencies even in trials where participants were unsuccessful. There
were two e�ort-based reward learning blocks (one low and one high e�ort, counterbalanced)
with 5 sub-blocks with a randomly jittered length of 12 to 18 trials each, totaling to 75 trials per
block. At the start of each sub-block, the shape rule was reversed (referred to here as reversal
trials) so that the less rewarding shape stimuli suddenly became the more rewarding stimuli.
During the first five trials following the contingency reversal, selecting the previously more
rewarding stimulus resulted in no points. Participants were explicitly informed of the existence
of two probabilities of winning and losing (75% and 25%, respectively) associated with each
stimulus and that this probability would be reversed after some unspecified period. Importantly,
participants were explicitly instructed to start choosing the other stimulus alternative only when
they were completely sure that the rule had changed. Participants were encouraged to accrue
as many points as possible on the task and were reminded that payo� was contingent not only
on how accurately they selected the stimuli, but also on how well they performed the numbers
game.

5.3.1.2 Self-Report Task Ratings

During the ERL task, participants were probed, via 11-point Likert scales, for e�ort cue liking,
reward cue liking, task di�culty, and perceived success rate. At the beginning of the task,
participants were instructed to rate the degree they liked the e�ort cues from the practice and
the shape stimuli that would be used in the reversal learning task (0= did not like at all, 5=
indi�erent, 10= liked very much). After the practice, they were again probed for e�ort cue
liking, but also asked how e�ortful the High E�ort and Low E�ort tasks were (0=No E�ort,
10=Extreme E�ort) and how likely they were to complete each task (0-100%). At the end of
each e�ort-based reversal learning block, participants were probed for their di�culty ratings,
perceived success rate, and for how much they liked the shape stimuli used in that block (0=
did not like at all, 5= indi�erent, 10= liked very much).

99



Figure 5.1: Schematic of ERL task. Participants had 5 seconds to choose between the two reward
cues. Once selected, the 6-second e�ort exertion phase began. The degree of e�ort depended on whether
the block was a high or low e�ort block. After a 500 ms fixation cross, participants received performance
feedback followed by reward feedback. Reward feedback, regardless of the magnitude (5 or 0 points)
was in green if the participant had correctly completed the e�ort trial. Conversely, reward feedback was
presented in red following negative performance feedback.

5.3.2 Data Analysis

5.3.3 Statistical Analyses

First, we examined if our paradigm e�ectively manipulated e�ort demand. Paired samples t-
tests were performed to compare the average number of decisions made and the average reaction
time for choices in the high e�ort and low e�ort numbers task. Self-report ratings of task e�ort
and perceived probability of success were modelled using linear mixed models (LMMs), with
e�ort, task block (baseline vs. task), and their interaction as fixed e�ects and participant as a
random e�ect. The task was designed so that participants would have an equal probability of
correctly completing the high and low e�ort tasks. However, due to the nature of the task, we
also expected that the order of e�ort blocks could influence success rates. Thus, we used an
LMM with e�ort as a fixed within-subject e�ect, block order as a fixed between-subjects e�ect,
and participant as a random e�ect to predict average success rate. Success rates for high and
low e�ort trials on the training were included as a covariate to control for any practice e�ect.

Next, we analyzed several behavioral events to quantify the degree to which stimulus-reward
associations were acquired and if they were preserved. Specifically, individuals who learn the
rule quickly should commit a behavioral switch following incorrect negative feedback (negative
feedback with the current incorrect action) relatively few trials after a rule reversal. Conversely,
once an association is acquired, individuals should shift to a di�erent behavioral policy only when
they believe that a rule reversal is likely. Thus, spurious negative feedback should result in more
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loss-shift errors, or switches to the other, incorrect stimuli, only when participants are expecting
a rule reversal (i.e., towards the end of a sub-block). To this end, we computed probability of a
behavioral switch following both incorrect negative feedback and spurious negative feedback in
the first half (1th to 7th trial) and second half (8th to 18th trial) of the sub-blocks. Probability of
behavioral switch as a result of incorrect negative feedback and spurious negative feedback was
then assessed via LMMs, with E�ort, Block Half, their interaction as fixed e�ects, and participant
as a random e�ect. Additionally, if participants were learning cue-reward associations, they
should be sensitive to previous reward feedback and more likely to make a correct cue choice in
later trials (i.e., after receiving more feedbacks after a rule reversal) than in earlier trials. We
used a binomial generalized linear mixed e�ects model (GLMM) with a logit link function to
model the dichotomous variable of cue choice (cue with high reward probability vs. cue with
low reward probability) as a function of number of trials after reversal, e�ort, their interaction,
and reward feedback on previous trial as fixed e�ects and participant as a random e�ect.

Because responses to performance feedback have been shown to be associated with individual
di�erences in learning (Luft et al., 2013), we were also interested in exploring if correct selection
of reward cues was influenced by performance feedback on the previous trial. Thus, we used
a GLMM to model cue choice as a function of the fixed e�ects of performance feedback on
previous trial, reward feedback from previous trials, as well as their interactions, and including
participant as a random e�ect. E�ort demand and trial number were also included as fixed
e�ects. Categorical variables were contrast coded and continuous variables were mean centered
and scaled for all analyses.

5.3.3.1 RL Model

We quantified the reward choice data using a Rescorla-Wagner learning rule (Rescorla and
Wagner, 1972; Sutton and Barto, 1998; Watkins and Dayan, 1992). Specifically, the stimulus
value W(t) for the selected choice were updated as follows:

W (t + 1) = W (t) + – · (R(t) ≠ W (t))

where – indicates the learning rate (constrained between 0 and 1) and R(t) indicates the
reward amount (1: reward, 0: no reward) at trial t. In our paradigm, reward feedback was
given on every trial, but rewards were only delivered on successful e�ort trials. Thus, we
expected that reward information after a positive performance feedback would be more salient
than reward information received after negative performance feedback, since these rewards would
be hypothetical. To better capture individual di�erences in weighing of reward feedback received
under the two feedback conditions, we used a dual learning rate reinforcement model (Collins
and Frank, 2014; Garrett and Daw, 2020) with two learning rates: a+ and a-. This model allows
updates to occur di�erently based on the performance outcome on the e�ort task. Specifically,
updates to the stimulus value W(t) apply a+ if positive performance feedback was received on
trial t and apply a- if a given trial was not successfully completed. Models were fit independently
to the data for high and low e�ort blocks such that there were two separate learning rates for high
(a+

H
, a-

H
) and low (a+

L
, a-

L
) e�ort. Softmax action selection was used to compute the probability

of choosing one of the following two stimuli (A or B):
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PA(t) = e
—W · A(t)

e—W · A(t) + e—W · B(t)

where — is the inverse temperature parameter. — was constrained from 0 to 100 and determines
the degree to which choices are made in a more deterministic or stochastic manner. The model
was run 10 times, using random initial values for each subject by maximizing the log likelihood
estimate with the fmincon function of MATLAB R2021. The parameters – and — with the best
log likelihood estimate were selected.

Once identified, we used LMM to identify if any variables of interest accounted for di�erences
in learning rate or inverse temperature parameter estimates. Specifically, we used LMM to model
learning rate and as a function of the within-subject fixed e�ect of e�ort demand and performance
feedback, between-subject fixed e�ect of block order, and participant as a random e�ect. Within-
subject task success rates we also included as fixed covariates to control for performance-related
di�erences in reward rates. Inverse temperature — estimates were log-transformed to correct for
right-skewness. These values were then also modeled with an LMM of the same structure as
that used for learning rates, except performance feedback was dropped as a fixed e�ect since
inverse temperature parameters were not calculated on the basis of successful vs unsuccessful
e�ort expenditure.

5.4 Results

High E�ort Task is More Cognitively Demanding than Low E�ort Task. For e�ort
demand to be e�ectively manipulated in the ERL task, the high e�ort condition must be ob-
jectively and subjectively more di�cult than the low e�ort condition. The data suggests that
participants made significantly more choices in the low e�ort task (M= 7.64, SD=0.85) than
on the high e�ort task (M=5.49, SD=0.77; t(27)=20.81, p<0.001). Response times were also
significantly faster for low e�ort numbers task (M= 0.56, SD=0.10) compared to high e�ort
trials (M=0.85, SD=0.16; t(27)=-15.21, p<0.001), which suggests that decisions in the high
e�ort task were more cognitively demanding than those in the low e�ort task. Self-report data
revealed that participants also rated the high e�ort task (M=7.54, SD=1.58) as more e�ortful
than the low e�ort task (M=4.95, SD=2.50; b=1.30, p<0.001) overall. However, there was a
significant interaction of e�ort and task block (b=0.67, p=0.008) such that the low, but not the
high, e�ort task was rated as more e�ortful after completing the task block than compared to
baseline.

The task was designed so that participants would have an equal probability of correctly
completing the high and low e�ort tasks. However, due to the nature of the task, we also
expected that the order of e�ort blocks, as well as e�cacy in the training sessions, could influence
success rates. In line with previous results from this task, overall accuracy rates on the e�ort
task were about 75% on each block (Low E�ort: M=75.8%, SD=2.9; High E�ort: M=72.5%,
SD=4.2). LMM models revealed that e�ort demand indeed had a significant e�ect on success
rates (b=-0.016, p=0.005), suggesting that participants were less likely to successfully complete
high e�ort trials despite our dynamic calibration mechanism. On average, participants had 5%
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(SD=8.7%) di�erence in success rate between low and high e�ort blocks. These di�erences were
not driven by order e�ects (b= -0.009, p=0.152) or success rates during the training session (b=
0.021, p=0.774) but, since learning rates have been shown to be sensitive to outcome probability,
we included block success rates as covariates in all relevant analyses.

Successful Learning of Cue-Reward Associations. Choice behavior suggests that par-
ticipants’ choices were sensitive to rule reversals. Participants presented, on average, a cue
selection accuracy rate (proportion of correctly selecting the more rewarding cue divided by the
total number of choices) of 77.7% (SD=6.4%) and earned 7.85Ä(SD=0.44). If participants were
learning the structure of the task, they should be more likely to switch from the current correct
response to the current incorrect response following a spurious negative feedback towards the
end of the block, when reversals are more likely. As expected, we detected a significant e�ect
of block half (b=0.015, p<0.001) on loss-shift error rate, such that individuals switched more
following a spurious negative feedback at the end of the block (M=0.11, SD=0.05) than at the
beginning of the block (M=0.07, SD=0.05). However, we did not detect any significant e�ect of
e�ort (b= -0.003, p=0.330) or the interaction of e�ort and block half (b=0.002, p=0.596), which
suggests that loss-shift error rates were not a�ected by e�ort demands (see Figure 5.2A). Sim-
ilarly, participants should be more likely to switch following negative feedback with the current
incorrect action at the beginning of the block, when a reversal recently occurred, compared to
the end of the block once the rule has been acquired. Again, as expected, we found a significant
e�ect of block half (b= 0.015, p<0.001), such that participants made correct behavioral switches
more frequently at the beginning (M=0.19, SD=0.06) compared to the end (M=0.16, SD=0.06)
of the block (see Figure 5.2B). The e�ect of e�ort (b= -0.006, p=0.156) and the e�ort-block
half interaction (b= -0.002, p=0.690) were not significant.

If participants were learning cue-reward associations, they should be increasingly likely to
select the correct reward cue as they receive more feedback after a rule reversal. As seen in
Figure 5.2C, the odds of selecting the correct reward cue increased as a function of num-
ber of trials after reversal (b=0.165, p=0.004) and previous correct reward feedback (b=0.687,
p<0.001). However, we did not detect a significant e�ect of e�ort demand (b= -0.056, p=0.441)
or interaction between e�ort and trial (b=0.013, p=0.821) on probability of selecting the correct
cue, suggesting that learning occurred but was not clearly modulated e�ort demand. Finally,
if participants understood the relationship between cues and rewards, they should not develop
an overall preference for a cue since the cue-reward association switches over the course of the
task. In line with this theory, we found no significant e�ect of task block (b= -0.142, p=0.230)
or cue shape on self-report ratings of cue liking. Furthermore, we found no e�ect of e�ort,
or significant interactions (all p’s>0.230), suggesting that self-report cue ratings did not di�er
significantly from baseline and were not modulated by e�ort demands or simple preference for a
cue image. Finally, we expected that delivered rewards (rewards presented after positive perfor-
mance feedback) would be more salient than undelivered rewards (after negative feedback), and
that this may impact cue selection. Thus, we tested the e�ect that e�ort performance outcomes
had on probability of selecting the more rewarding cue. GLMM revealed a significant e�ect of
previous reward outcome, such that negative reward feedback on the previous trial increased
the odds of correctly selecting the correct cue on the current trial. As expected, GLMM also
detected a significant main e�ect of previous performance feedback (b=0.619, p<0.001) and

103



Figure 5.2: Results for ERL Task. A) The average rate of behavioral switches after receiving a
spurious negative feedback. Participants were less likely switch to the less rewarding cue after receiving
a spurious negative feedback in the beginning of a sub-block, but were more likely to switch at the end of
the sub-block in anticipation of a rule reversal. B) The average rate of switching to the more rewarding
cue in response to a negative feedback from the less rewarding cue. Participants were more likely to
switch to the more rewarding cue at the beginning of the sub-block when they are acquiring a new rule
compared to the end of a sub-block. C) The average cumulative percentage of high-reward cue choices
after a rule reversal. By the third trial, subjects were generally discriminating between cues at above
chance level. Points represent sample means and error bars represent the standard error. D) The e�ect
of performance feedback on learning rates. Positive and negative signs on the x-axis signify positive
and negative performance feedback, respectively. Overall, participants had higher aestimates for positive
performance feedback. Lines connect each participants a+ and a- estimates for high and low e�ort.

previous performance and reward feedback interaction (b=1.843, p<0.001), such that successful
completion of the e�ort task increased the odds of selecting the more rewarding cue, especially
when previous reward outcomes were positive. No significant e�ect of e�ort demand (b=-0.057,
p=0.506) was detected.

Learning Rates Modulated by Performance Feedback, but Not E�ort. In order to
formalize the impact of performance feedback and e�ort demand on the learning of cue-reward
associations, we fit participants’ choices to a dual learning rate model where reward predic-
tions were adjusted on the bases of both e�ort demand and performance feedback (High E�ort
pseudo-R2: M=0.35, SD=0.20; Low E�ort pseudo-R2: M=0.33, SD=0.20). Across feedback
types, participants had a mean learning rate of 0.69 (SD=0.34) and median inverse temperature
value of 2.79 (SD=19.80) on high e�ort blocks and a mean learning rate of 0.76 (SD=0.32) and
median inverse temperature value of 2.25 (SD=25.63) on low e�ort blocks. Our LMM revealed
a significant e�ect of performance feedback (b=0.084, p<0.001) on learning rate estimates. As
shown in Figure 5.2D, learning rates were higher after positive (M=0.806, SD=0.261) compared
to negative (M=0.637, SD=0.366) performance feedback. Contrary to our hypothesis, but con-
sistent with the previous behavioral findings, we found no significant e�ects of e�ort demand
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(b= -0.043, p=0.116) on a estimates. Moreover, we found no significant e�ect of e�ort demand
and performance feedback interaction (b=0.020, p=0.402), or average trial accuracy (b= -0.364,
p=0.680). Taken together, these findings suggest that the reward values were updated on the
basis of performance feedback, but not e�ort, even when we controlled for performance-related
success rates. Conversely, LMM did not detect any significant e�ect significant e�ect of ef-
fort (b= -0.050, p=0.660), block order (b= -0.180, p= 0.403), or task success rates (b= -1.402,
p=0.705) on estimates of inverse temperature parameter, suggesting that choice selection was
not guided by e�ort demands, order e�ects, or average performance.

5.5 Discussion

Learning which actions lead to rewarding outcomes is critical to all goal-directed behavior.
In the present study we investigated the e�ect of cognitive e�ort on shaping reward learning
behavior. Our results indicate that cognitive e�ort demand was e�ectively manipulated and that
participants were able to adapt choice preferences based on shifting values of reward-predicting
cues. However, we found no evidence that learning rates were modulated by paid e�ort costs.
Instead, learning rates were modulated by performance feedback, which suggests that reward
values are more e�ciently updated as a function of successful execution of task – and therefore
real attainment of reward – as opposed to unsuccessful execution of task.

In the current study, e�ort demand was e�ectively manipulated but did not measurably impact
the value of reward-predictive cues. Behaviorally, participants were able to make more choices
with faster reaction times in the low e�ort cued set-switching task. This aligns with subjective
reports which indicated that our participants reliably rated the high e�ort task as more di�cult
and less likely to successfully complete than the low e�ort task. However, if rewards had been
devalued by increasing e�ort demands, we would expect that reward-predicting cues in the high
e�ort block would be less subjectively valued than cues in the low e�ort block. We found no
evidence that e�ort discounted or, alternatively, potentiated the net value of reward. Specifically,
participants in our sample did not rate liking reward-predictive cues di�erently based on the
e�ort demands associated with them. Furthermore, we did not find any e�ect of e�ort on
learning rate, which implicitly suggests that the subjective value of reward was not su�ciently
modulated by e�ort demands to alter the learning of stimulus-outcome associations. Thus, our
findings fail to support both the e�ort discounting and potentiating hypotheses.

There are several potential explanations for why we did not detect an e�ect of e�ort. First,
the block nature of the task could make it so that net values of rewards were not being computed
based on relative e�ort costs. Several frameworks have proposed that the net value of an option
is computed in service of option comparison (Kolling et al., 2016; D. J. Levy and Glimcher, 2012;
Shenhav et al., 2014). Thus, it is plausible that converting rewards into a “common currency”
may be irrelevant in contexts where e�ort demands are locked, as occurs in paradigms where
trials of varying e�ort demands are not interweaved. However, this rationale would not explain
findings from other studies that demonstrate neural signals of e�ort discounting at cue and
feedback in studies with block designs (Botvinick et al., 2009; Porter et al., 2019).

Second, it is possible that our paradigm captured the paradoxical e�ects of e�ort by sep-
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arating cue choice from reward feedback. Specifically, choices about reward cues were made
before e�ort exertion while feedback about those choices was received after. Thus, it could
be that prospective e�ort devalues reward at cue when a choice is being made but increases
saliency at feedback, when reward is delivered after successful e�ort expenditure (Inzlicht et
al., 2018). If this were the case, we would expect that cue-outcome contingencies would be
more e�ciently updated for rewards received under greater e�ort cost, but that this information
may not guide later decisions, where prospective e�ort costs presumably attenuate expected
net value of reward-predictive cues. This postulation is partially in line with reports from pre-
vious voltammetry (Gan et al., 2009; Wanat et al., 2010) and electrophysiology (Pasquereau
and Turner, 2013) studies in animals which found that e�ort costs guide behavioral preferences
but are weakly incorporated into cue-evoked dopamine-associated signals, suggesting a partial
dissociation between stored value representations and action selection (Hollon et al., 2014). Fur-
ther, it is worth noting that the e�ort-based reward learning paradigm used in Tanaka et al.
(2019) required subjects to choose between reward cues only after execution of response costs,
thereby eliminating any potential distortions to reward value that could occur when expecting
prospective e�ort costs. This dovetails with recent findings that participants are e�ort averse
during the time of choice, but that increased e�ort expenditure positively shifts RPEs, suggest-
ing an increased subjective value for rewards received through more e�ort (Jarvis et al., 2022)
Critically, the degree to which e�ort costs shifted RPEs was related to the degree of e�ort dis-
counting, such that participants who are more e�ort averse later allocated more value to rewards
gained through more e�ort (Jarvis et al., 2022), thereby highlighting the dissociation between
how e�ort is represented at choice versus feedback. Future studies will be needed to study the
opposing e�ects of e�ort on net value and how these e�ects influence behavioral adaptation to
rewards.

Alternatively, one of the strengths of our paradigm was that we orthogonalized the e�ect of
e�ort expenditure from performance feedback. Our findings indicate that reward values were
updated as a function of performance feedback irrespective of e�ort demands, such that learning
rates in our sample were enhanced by positive performance feedback. This finding is in line with
the observation that neural activity associated with reward prediction violation is also respon-
sive to performance feedback. For example, the VS, a region critical for reward saliency and
prediction signaling (Schultz, 2016), is also sensitive to positive performance feedback (Drueke
et al., 2015; Ullsperger and von Cramon, 2003). BOLD activity and EEG signals generated in
the ACC are enhanced for unlikely rewards (Hajihosseini and Holroyd, 2013) and scale with un-
signed reward prediction error (Mas-Herrero and Marco-Pallarés, 2014), but are also enhanced
for unexpected positive (and negative) performance feedback (Ferdinand and Opitz, 2014; Luft
et al., 2013; Vassena, Krebs, et al., 2014). Similarly, amplitudes of the component P3, which
have been shown to scale with better-than-expected rewards (Glazer et al., 2018; Hajcak et al.,
2007), are also larger following correct performance feedback (Kirsch et al., 2022; Luft et al.,
2013). Thus, it is plausible that a common network subserves both reward prediction and
performance monitoring functions and that rewards received from successful performance are
upregulated when informing future action policies.

It is also worth noting that the reward-sensitive component P3, has also been shown to be
responsive to the degree to which e�ortful responses lead to reward (e.g., reward e�cacy), such
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that feedback-evoked P3 tracks the magnitude of unsigned e�cacy prediction errors (Grahek et
al., 2022). Furthermore, greater control is allocated when task performance is more predictive
of reward, as demonstrated by better behavioral performance and enhanced EEG indices of
cognitive control (Frömer et al., 2021; Grahek et al., 2022). This is critical when interpreting
our findings alongside the results reported in Tanaka et al. (2019). Reward rates in the Tanaka
et al. (2019) were equalized between conditions by randomly aborting low e�ort trials, resulting
in lower e�cacy in the low e�ort condition since likelihood of receiving reward on these trials was
less contingent on performance than it was on high e�ort trials. Therefore, it is plausible that
cue-reward contingencies in the Tanaka et al. (2019) study were learned more quickly under the
high e�ort condition because e�ort expenditure was simply more predictive of reward than in
the low e�ort condition. Although we were unable to equalize success rates in the present study,
average success rates were controlled for statistically and rewards were wholly contingent on
performance, allowing us to rule out any confounding e�ects between e�ort demand and reward
likelihood and e�cacy.

Despite the strengths of our paradigm, there were also several limitations. As mentioned
before, success rates were not completely equal between e�ort conditions. Although we controlled
for this statistically and by providing reward feedback even in negative trials, we could not
control for prediction errors driven by di�erences in performance-related reward expectancy.
However, due to the block nature of the task, it is unlikely that this contributed to the lack of
e�ort e�ects since the di�erence in reward rates between conditions was relatively small could
not be estimated on the fly. Second, our sample size was too small to explore personality traits
that may moderate the impact of e�ort on reward. For example, di�erences in the degree to
which individuals find cognitively demanding tasks pleasurable has been shown to impact the
subjective weight of e�ort costs (Viola et al., 2015; Westbrook et al., 2019). Similarly, individual
di�erences in consummatory and anticipatory anhedonia are also linked to behavioral and brain
neural correlates of e�ort discounting and responsiveness to reward feedback (Gradin et al., 2011;
Huang et al., 2016; Liu et al., 2014; Padrão et al., 2013; M. T. Treadway et al., 2009). It has also
been demonstrated that individual di�erences in e�ort discounting directly modulate the e�ect
of e�ort on RPEs (Jarvis et al., 2022). Thus, it is possible that e�ort acts as a positive reinforcer
for some individuals and a negative reinforcer for others, such that e�ort-related e�ects exist
but are not detectible when averaged at the group level. The exploration of how individual
di�erences in reward and e�ort costs sensitivity impact learning aspects of reward processing is
critical for future studies in goal-directed behavior.

In conclusion, the present study we developed a new paradigm to investigate the impact
of cognitive e�ort on reward learning behavior. While participants were able to adapt their
choice preferences based on shifting values of reward-predicting cues, no evidence was found
that learning rates were influenced by paid e�ort costs. Instead, learning rates were modulated
by performance feedback, suggesting that reward values are more e�ciently updated based on
successful task execution and the attainment of rewards. Many psychopathological conditions,
such as schizophrenia (Barch et al., 2014; Cooper et al., 2019; Gradin et al., 2011), depression
(Hammar et al., 2011; Liu et al., 2014; M. T. Treadway, Bossaller, et al., 2012; M. T. Treadway
et al., 2015), and substance use disorders (Goldstein and Volkow, 2011; Leventhal et al., 2008),
are characterized by abnormal reward sensitivity, prediction, and motivation. Although these
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symptoms frequently occur simultaneously, these di�erent goal-directed processes are oftentimes
studied in isolation, making it di�cult to understand how these reward features are integrated
and altered in di�erent psychopathological conditions. This study provides the first step towards
developing a paradigm that can answer these questions.
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Chapter 6

Discussion

The three studies presented in this thesis aimed to empirically address how e�ort demands im-
pact reward value across di�erent phases of reward processing. Primarily, we sought to answer
which brain regions consistently signal e�ort demands and net value of prospective rewards,
elucidate the neural mechanisms underlying the assessment of cognitive e�ort demands during
cue evaluation and reward delivery, and examine how e�ort demands influence the updating
of reward-predictive cues. To achieve these goals, a range of methodologies, including fMRI
meta-analysis, EEG, and novel behavioral measures, were employed, with careful consideration
of controlling for confounding factors. By employing a diverse set of techniques and examining
e�ort and net value across various stages of reward processing, this research provides a com-
prehensive understanding of how e�ort cost a�ects the neural and behavioral representations of
reward value while also shedding light on the circumstances under which e�ort cost is relevant
to the representation of net value.

In the following sections, we will discuss the results of these three studies and evaluate to which
extent our research aims were accomplished. The theoretical contributions of this thesis to the
neuroscience of cost/benefit decision-making will also be discussed, along with the strengths
and limitations of the methodologies employed. Furthermore, we will also discuss new research
questions that can be derived from our findings and future directions for this field of research,
given the current results and obstacles we encountered.

6.1 Research Aims and Experimental Results

As discussed earlier, previous findings suggested that the net value of e�ort-based rewards may
be represented in regions outside of the common valuation network. Motivated by these findings,
we aimed to identify areas consistently involved in e�ort valuation and net value signaling. In
Study 1, we answered this question by meta-analytically analyzing imaging data from most of
the imaging studies exploring cue-related signals of e�ort-based reward and decision-making.
This method permitted us to directly compare data from strikingly diverse e�ort-based reward
paradigms, including tasks with di�erent e�ort manipulations (i.e., cognitive and physical e�ort),
reward types (i.e., monetary, attractive pictures, etc.), decision-making schema (i.e., no choice,
options presented sequentially, two options presented simultaneously, etc.), reward delivery and
e�ort expenditure procedures (i.e., cumulative reward, randomly selected trials, etc.), and net
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value metrics (i.e., single o�er SV, e�ort-reward interaction, di�erence in SV, etc.). Furthermore,
by using a hybrid image- and coordinate-based approach, we were able to maximize the amount of
data included in our analysis, which allowed us to more confidently identify the brain regions that
are consistently recruited in signaling prospective e�ort demands and net value in incentivized
e�ort tasks.

Results from our region-of-interest (ROI) analyses revealed a double dissociation between the
pre-SMA and the vmPFC, such that across studies, the pre-SMA was consistently activated
for increasing prospective e�ort costs and deactivated for increased net value. In contrast, the
vmPFC showed the opposite e�ect. ROI analyses also indicated that the VS was uniquely
involved in net value signaling, such that the VS was consistently positively activated for net
value but not for prospective e�ort. These findings were confirmed by whole-brain analyses,
and overlap with results from previous meta-analyses (Bartra et al., 2013; Clithero and Rangel,
2014). Several meta-analyses have identified the vmPFC and VS as central nodes in representing
the subjective value of rewards across reward domains and reward processing phases (Bartra et
al., 2013; Clithero and Rangel, 2014; D. J. Levy and Glimcher, 2012; Mas-Herrero et al., 2021;
Sescousse et al., 2013). Furthermore, the clusters we identified in the pre-SMA and dACC as
positively tracking e�ort and negatively tracking net value coincide with findings from Bartra
et al. (2013), which identified a large cluster in the mPFC that was deactivated in response to
increasing subjective value. While the contrasts used in Bartra et al. (2013) were mainly from
the outcome phase, the study also included studies with probabilistic outcomes and learning
paradigms, as well as a variety of reward domains. Thus, our findings suggest that the pre-
SMA/dACC is critical to tracking the subjective values of rewards across a variety of di�erent
paradigms and modalities.

ROI findings, however, were only partially supported by supplementary analyses which tested
the extent to which our results were robust to di�erent features of e�ort-based reward paradigms.
For example, when studies that used choice di�culty metrics as markers for SV (e.g., SV dif-
ference) were removed from the analyses, activation patterns in the VS and vmPFC remained
largely the same. However, we no longer detected net value deactivations in the pre-SMA. This
result partially supports other reports that the pre-SMA and posterior ACC is recruited pri-
marily for comparison between close alternatives, while the vmPFC seems to be more reliably
recruited for SV encoding, especially for single o�ers (Hogan et al., 2019; Shenhav et al., 2014;
Westbrook et al., 2019). Furthermore, when studies with cognitive e�ort were removed from
the analysis, we no longer detected a consistent e�ect of prospective e�ort in the vmPFC, and
we found a very unreliable e�ect of the dACC/pre-SMA in signaling net value, which partially
supports the idea that certain domain-dependent regions are recruited for specific types of e�ort
demands (Schmidt et al., 2012). Finally, we conducted another supplementary analysis which
only included studies where e�ort requirements were certain and executed online during scan-
ning. This analysis replicated findings that BOLD activity in the bilateral pre-SMA and ACC
was positively associated with e�ort demand but failed to detect a negative association between
raw e�ort and activity in the vmPFC.

Taken together, we can reach two conclusions from this study. First, the pre-SMA and dACC
robustly and consistently signaled raw prospective e�ort while the vmPFC and bilateral VS
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robustly and consistently signaled net value. Second, although supplementary analyses lacked
su�cient statistical power to fully explore these hypotheses, their findings suggest that the
robustness of our e�ects was partially sensitive to features of the experimental paradigms.

After identifying the dACC/pre-SMA as a central node for encoding prospective e�ort and net
value of e�ort-based rewards, we were interested in exploring how, in the absence of confounders,
mPFC signals of e�ort and net value evolve over time. Specifically, once we had identified the
neural substrates involved in signaling e�ort-based reward processing, we were also interested in
identifying potentially separable and distinct e�ort, reward, and net value signals in the absence
of choice and in a context where other confounds, such as di�erential reward probability between
e�ort conditions, were experimentally controlled. To this end, we designed two novel e�ort-
based reward paradigms that varied cognitive e�ort demand while holding success rates, and
therefore reward rates, constant between e�ort conditions. Participants completed this task
while we recorded scalp EEG. Specifically, we were interested to what degree theta oscillations
captured raw e�ort and net value signals since frontal midline theta (FMT) has been shown to
be generated in the midcingulate cortex and pre-SMA, regions which coincide with the clusters
identified in Study 1 (Cavanagh and Frank, 2014; Mas-Herrero and Marco-Pallarés, 2016). Cue-
and feedback-related component P3 amplitudes were also measured in order to ensure that our
e�ort and reward manipulations were e�ective and to provide an index of saliency.

Contrary to our hypothesis, FMT power was generally enhanced at cue presentation but
was not sensitive to reward magnitude, reward probability, or e�ort demands, nor did this
signal reflect integrated net value. These findings were consistent across both EEG samples.
Furthermore, at cue, P3 amplitudes were only sensitive to reward magnitude and probability, but
not upcoming e�ort demands. These findings suggest that in the absence of di�erential reward
rates, upcoming e�ort demands and net values were not indexed by these two EEG signals.
However, e�ort enhanced reward-related and probability-related P3 amplitudes at feedback.
Moreover, FMT power was enhanced for rewards gained under high compared to low e�ort but
was not sensitive to reward magnitude or probability, again suggesting a lack of integrated net
value signal. Taken together, these findings reveal that more attentional resources are allocated
to reward feedback after high e�ort expenditure and that the salience of larger or less probable
rewards scales positively with increased paid cost.

The finding that more attention and salience is allocated to rewards earned through high
compared to low cognitive e�ort falls in line with several reports that e�ort costs potentiate,
as opposed to attenuate, the value of rewards at feedback. Since reward prediction errors have
been shown to be sensitive to the subjective value of reward (Jarvis et al., 2022; Lak et al., 2014;
Roesch et al., 2007; Schultz et al., 2015; Stau�er et al., 2014), we decided to explore if the e�ect
of cognitive e�ort demand on reward value could be captured by how e�ort costs alter learning of
cue-reward contingencies. There were two competing hypotheses. First, since greater attention
is being given to high e�ort outcomes, we hypothesized that the value of reward predictive cues
would be updated more e�ciently for rewards gained through more e�ort expenditure, such
that individuals would have better learning rates for high e�ort rewards. Conversely, if e�ort
discounted the value of reward, we would expect that individuals would learn stimulus-reward
contingencies less e�ciently for rewards with higher e�ort requirements, since these rewards
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are deemed less subjectively valuable. To test these competing hypotheses, we designed a novel
behavioral paradigm where participants had to learn cue-reward associations through experience
but could only obtain said rewards by successfully executing a high or low cognitive e�ort task.
Results revealed that participants were able to learn cue-reward associations but that the rate
of learning was not modulated by cognitive e�ort demand. Instead, we found that learning rates
were sensitive to performance feedback, such that the value of reward-predictive cues were more
accurately updated after successful e�ort outcomes. Thus, while we were not able to replicate
previous results showing that learning speeds in non-human primates were higher when there
was a higher cost required to obtain a reward (S. Tanaka et al., 2019), we provide a variety
of suggestions of why di�erences between our adapted paradigm and the one used in animal
research yielded di�erent results.

Overall, the empirical results of this thesis suggest that e�ort costs are represented di�erently
across the stages of reward processing. The majority of the studies used in Study 1 involved
choices between high e�ort/high reward options and less e�ortful/less rewarding options, thereby
subjective value was generally observable through behavioral data. Here, we detected neural
regions whose activation patterns correlated with classic e�ort discounting accounts (i.e., scaled
positively with subjective value and negatively with e�ort demands – and vice versa). While
in Study 2 we failed to detect these net value signals during the cue phase, we saw that e�ort
indeed enhanced the saliency of received rewards. These findings partially fall in line with other
reports that more value is allocated to rewards earned through e�ort (Inzlicht et al., 2018).
However, since salience is distinct from net value (Kahnt and Tobler, 2017), a more conservative
interpretation of our findings would be that rewards received via high e�ort costs are attended
to more, and that paid cost has an additive e�ect on the salience of high magnitude and unlikely
rewards. Finally, in Study 3, performance feedback, but not e�ort demands, modulated reward
learning, suggesting that e�ort demands are not relevant when updating the value of reward-
predictive cues in a context where reward receipt depends more on general performance and
selection of stimuli than on demand-driven di�erences in success rate.

6.1.1 Theoretical Implications

6.1.1.1 Common valuation network only partially involved in e�ort valuation

The activation patterns in the vmPFC identified in Study 1 are consistent with integrated
cost/benefit signaling specifically for e�ort-based rewards. As part of the common valuation
network, meta-analytic results have shown that activity in the vmPFC consistently reflects not
only the subjective value of rewards across reward processing phases and incentive types, but
also for di�erent cost requirements associated with said reward (Bartra et al., 2013; Clithero and
Rangel, 2014; D. J. Levy and Glimcher, 2012; Mas-Herrero et al., 2021; Sescousse et al., 2013).
However, the same activation pattern was not detected for the VS, which is also considered to be
a central node of the common valuation network. In our meta-analysis, VS activity correlated
exclusively with net value and did not reliably scale with prospective e�ort costs. This finding is
surprising given the substantial evidence showing that VS regulates e�ort-based decision-making
behavior via modulation of e�ort cost weighting (Salamone et al., 2001; Salamone and Correa,
2012; Salamone et al., 2018; Salamone et al., 2016) and that VS activity signals prospective
e�ort costs (Croxson et al., 2009; Kurniawan et al., 2013; Schmidt et al., 2012; Schouppe et al.,
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2014).

One plausible explanation could be that the striatum holds both e�ort activation and e�ort-
discounted net value representations, but the opposing nature of these signals hampers detection,
as demonstrated by Suzuki et al., (2021). This interpretation is consistent with meta-analytic
findings which demonstrated that striatal activations associated with subjective value at cue were
primarily accounted for by studies that used the Monetary Incentive Delay Tasks, a paradigm
which requires an incentivized response at cue (Bartra et al., 2013). Furthermore, while it
is possible that these opposing signals cancel each other out completely, it is also plausible
that they are weighed asymmetrically, resulting in detection of one signal but not the other.
Specifically, in a paradigm where e�ort-based valuation was isolated from production demands
and outcome resolution, BOLD activity in the vmPFC tracked both prospective e�ort costs
and discounted net value during choice, while the VS only tracked net value (Aridan et al.,
2019). Thus, in our meta-analysis, it is possible that these conflicting signals obscured detection
of e�ort cost signal, but not activity related to net value. However, this would not explain
why supplementary meta-analyses did not reveal any consistent e�ort-related signaling in the
VS when analyses were limited only to studies with online e�ort exertion, a condition where
we would assume invigoration functions of the VS would be more present (“Action controls
dopaminergic enhancement of reward representations.”, 2012).

Alternatively, it could be that VS receives e�ort and motor demand input from other regions
and integrates this with reward value and reward rate input from the SN/VTA (Viviani et al.,
2020) to generate net value signals. For example, the VS may receive e�ort input from more
dorsal regions of the striatum, which has been shown to track e�ort costs (“Action controls
dopaminergic enhancement of reward representations.”, 2012; Burke et al., 2013; hua Yang et
al., 2016; Klein-Flugge et al., 2016; Kurniawan et al., 2010; Kurniawan et al., 2013), and integrate
this with reward value inputs from the SN/VTA to generate net value signals. However, this
hypothesis seems unlikely since dorsal regions of the striatum have also been shown to track
the net value of e�ortful rewards (Klein-Flugge et al., 2016; Seaman et al., 2018) and results
from Study 1 identified consistent net value, but not raw e�ort cost, signaling in the DS, even
in motor-related areas of the striatum, such as the putamen.

Another alternative is that the VS receives information about raw e�ort demands from more
cortical regions and incorporates this information into a net value signal. The basal ganglia
has strong connections with cortical structures that are key for subjective value representation,
such as the OFC and vmPFC, as well as regions more involved in cognitive control and motor
functions, such as the SMA, pre-SMA, and cingulate cortex (Isaacs et al., 2018). With regard to
incentive e�ort task, it has been shown that activity in the dACC during cognitive e�ort exertion
was related to the feedback-related subjective value signal in the nucleus accumbens (Botvinick
et al., 2009). However, interpretation of this finding is complicated by the fact that reward
outcomes were randomly generated and not contingent on e�ort expenditure (Botvinick et al.,
2009), thus it remains unclear to what degree VS response at reward delivery was representative
of e�ort-discounted subjective value or reward prediction. By separating e�ort and reward
valuation from e�ort production or by using methods with higher spatial and temporal resolution
(e.g., intracranial recordings), future studies could dissociate the roles of cortical structures,

113



primarily the ACC and vmPFC, and striatal contributions to e�ort-based decision-making.

6.1.1.2 Coherence with Predominate Frameworks of Incentivized E�ort
Allocation

Several theories have been proposed to explain how e�ort and reward drive goal-directed be-
havior. These accounts generally use reinforcement learning principles and/or cognitive control
frameworks to provide mechanistic descriptions of adaptive e�ortful behavior and implicate the
mPFC in various aspects of this process (Vassena, Holroyd, et al., 2017). Although a com-
prehensive review of these models is outside of the scope of the current work, we will briefly
describe some of the predominate theories of reward-related e�ort-allocation and evaluate how
our findings contribute to these theories.

One of the first unifying accounts of the role of the mPFC in signaling response-outcome
predictions in the service of goal-directed behavior was the predicted-response outcome (PRO)
model (Alexander and Brown, 2010, 2011). Specifically, the PRO model suggests that the mPFC
uses reinforcement learning systems to support the motivation of extended, e�ortful behaviors.
By this account, the mPFC simultaneously monitors multiple potential outcomes and generates
signals to update response outcome predictions. These signals take the form of prediction
errors which represent surprising events, such as “unexpected occurrence and “unexpected non-
occurrences” as opposed to reward expectancy violations per se (Alexander and Brown, 2010;
Vassena, Holroyd, et al., 2017). Thus, in contexts where errors are the more likely outcome, the
PRO model would predict that mPFC activity would be enhanced for positive outcomes since
these outcomes are more surprising (Alexander and Brown, 2019; Vassena et al., 2020).

In the second experiment of Study 2, success rates were at about 50% in the low probability
condition and about 85% in the high probability condition. Thus, it follows that under the
PRO model, oscillatory activity generated in the mPFC, such as frontal midline theta, would be
enhanced for successful low probability trials compared to high probability trials. Yet, we found
no probability-related di�erences in FMT power at outcome. It is worth noting, however, that
participants in Study 2 were explicitly told which cues indicated lower probability of success.
Therefore, it is possible that although trial success was unlikely in the low probability condition,
the mPFC did not register this outcome as surprising since reward probabilities were explicitly
described at the beginning of the task. Conversely, participants were not told that probability
of success was independent of e�ort demands. Thus, it is possible that in our paradigm, the
mPFC relied more on information about e�ort performance to shape outcome expectancies.
This would result in enhanced theta power for rewards received under high e�ort, but also for
failure to receive reward in low e�ort trials, a condition which we were not able to analyze in
the current study.

The PRO framework was later extended to encompass e�ort-based behavior using hierarchical
error representation (HER; Alexander and Brown, 2015). Like the PRO model, the HER (or
PRO-e�ort) model also posits that the mPFC tracks outcome-related information (such as e�ort
and reward) via predictions and violations (Alexander and Brown, 2015; Vassena, Deraeve,
et al., 2017). However, this model additionally provides a mechanistic understanding of how
changing environmental information might a�ect decision-making and task performance in e�ort-
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based choices (Vassena, Deraeve, et al., 2017, 2020). In the context of e�ort-based decision-
making, the mPFC monitors prospective reward and e�ort (via cues and outcomes) with the
same mechanisms used to monitor the occurrence of any other stimulus and response outcome.
However, the HER model does not propose that e�ort costs are computed directly in the mPFC,
nor does it suggest that the mPFC necessarily drives decisions to engage in a proposed task or,
once engaged, to maintain performance levels su�cient to achieve successful completion of a
task (Vassena, Deraeve, et al., 2017; Vassena, Holroyd, et al., 2017). Rather, signals generated
by mPFC are incorporated into decision processes occurring outside of the mPFC/ACC, such
as the dorsolateral PFC and basal ganglia (Brown and Alexander, 2017).

Under this framework, we would expect that mPFC activity increases as a function of in-
creased e�ort requirements while also tracking relevant environmental variables, reflected by net
value. This hypothesis is in line with our findings from Study 1. However, the lack of FMT
power activity related to reward prediction in the cue valuation phase of Study 2 would appear
to contradict this interpretation. Alternatively, under this framework, we would also expect
mPFC activity to be sensitive to surprise at cue and scale with the absolute deviation of current
reward o�er from overall average reward (Vassena et al., 2020). The static reward environment
used in our paradigms was not suited to generate surprise signals in FMT, thus, this hypothesis
could not be directly tested.

Although both the PRO and HER models rely on reinforcement learning mechanisms to
update the value of e�ort-based rewards, it is unclear what quantitative predictions these models
would make regarding to the e�ort reward learning paradigm used in Study 3. For example,
it seems reasonable to predict that mPFC activity during choice would be sensitive to e�ort
and reward predictions based on previous feedback. However, we would expect that feedback-
locked mPFC activity should be highest for surprising outcomes, such as negative performance
outcomes after the calibration mechanism increased decision thresholds, or spurious negative
feedback after stimulus-outcome associations were acquired. Combining neuroimaging with this
new e�ort-reward learning paradigm would allow researchers to more clearly disentangle how
e�ort demands are incorporated into surprise signals.

The PRO and HER models overlap greatly with another neurocomputational account by Hol-
royd and Yeung (2012) that posits that the ACC not only monitors predictions and outcomes,
but is also responsible for selection and maintenance of coherent goal-directed behaviors over ex-
tended periods of time (HRL-ACC model). This framework relies on hierarchical reinforcement
learning mechanisms and the actor-critic computational architecture to model these behaviors
(Cohen and Frank, 2009). Under this framework, the ACC is charged with selecting an action
policy. The actor, which is implemented by the dorsal striatum and dorsolateral PFC, then
performs the individual actions required to carry out the task, while the critic, which is imple-
mented by the orbital frontal cortex and ventral striatum, monitors those actions by computing
the value of ongoing events and prediction errors (Holroyd and McClure, 2015; Holroyd and
Yeung, 2012). Phasic dopamine encodes these signals and then utilizes principles of reinforce-
ment learning to adjust and optimize performance on the task (actor) and to optimize reward
predictions (critic) (Holroyd and Umemoto, 2016). This model relies on three key assumptions:
1) the actor is e�ort averse, 2) the ACC control signal attenuates costs so that the actor can
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generate the behaviors to execute the task, and 3) the level of control is initially high during the
early stages of task execution but gradually diminishes to a minimum level required to maintain
the reward rate (Holroyd and Umemoto, 2016).

According to the HRL-ACC model, FMT should index ACC control output, and this control
signal should attenuate e�ort costs and be sensitive to reward rate. This theory may explain some
of the e�ects observed in cue theta in the first block Experiment 1 in Study 2. Specifically, we
detected enhanced theta power for high e�ort/high reward cues in the first block (unreported),
where success rates (and therefore reward rates) between high and low e�ort trials remained
unequal. Once we removed this block, we no longer detected di�erences in theta power. Thus, it
could be that cue-related FMT power in Study 2 was initially higher for high e�ort tasks because
more control was needed to maintain a high reward rate, but this di�erence diminished later on
once reward rates were equal between e�ort conditions and minimal control was necessary to
support adequate task performance. In addition to e�ort-driven e�ects of FMT, this framework
would also predict general task-wide variations in cognitive control allocation, as indexed by
FMT. For example, in a cognitive e�ort task that had a duration similar to the tasks used
in Study 2, Umemoto et al. (2019) observed that FMT power was characterized by an early
phase in which enhanced control levels fostered improved task performance, and a later phase in
which enhanced FMT power was also needed to maintain stable task performance, potentially
combating reduced valuation of rewards and mental fatigue (Umemoto et al., 2019). Imaging
techniques that can capture subcortical activity would be needed to fully test the actor-critic
architecture of the HRL-ACC theory and to comprehensively examine how control allocation
varies throughout the course of a task.

Another theory that explains e�ort allocation through the framework of reinforcement learning
is the adaptive e�ort allocation model (Verguts et al., 2015). In this model, the mPFC/ACC
plays the dual role of evaluating the potential benefits of expending e�ort and signaling potential
rewarding outcomes. However, this model explicitly modulates e�ort through a mechanism
called ”boosting.” Verguts and colleagues (2015) propose that the mPFC/ACC computes the
value of energizing and exerting e�ort in order to successfully execute an action; this value is
referred to as “boosting”. However, exerting e�ort (boosting) comes with an intrinsic cost, such
that an individual will only choose the more e�ortful option if the value of boosting outweighs
the cost (Verguts, 2017; Verguts et al., 2015). Reward and cost feedback is used for learning
stimulus-action mapping (via the motor loop) and choosing when and whether to invest e�ort
(via the limbic loop).

Following this theory, mPFC activity will be generally higher for larger rewards, increase
with task di�culty as long as the reward justifies the e�ort, and decrease for tasks that are too
challenging to be successfully completed (Vassena, Holroyd, et al., 2017; Verguts et al., 2015).
Assuming that all experimental e�ort tasks were deemed feasible, this model would predict
more ACC activation for options with high reward and low cost, consistent with a typical
discounting model. However, in Study 1 we found that ACC activity decreases with increasing
subjective value. Conversely, the model also explicitly predicts that when task di�culty is low-
to-moderate, ACC is more active for (moderately) di�cult than for easy tasks. This prediction
is in line with the activity detected in Study 1 where ACC activity consistently scaled positively
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with increasing e�ort demands. However, FMT power in Study 2 did not display a pattern
consistent with a traditional boosting signal. It is also worth noting that Verguts et al. (2015)
also described task di�culty as a modulation in accuracy, not solely e�ort demand. Although
the authors did not explicitly distinguish between these two features of di�culty, it would be of
interest to explore how the boosting signal responds to isolated variations in both probability of
success and e�ort demands. In addition to the adaptive e�ort allocation model, which describes
how the cortico-striato-pallido-thalamo-cortical pathway regulates e�ortful behavior, Verguts
(2017) also proposed another model which explains how the mPFC synchronizes theta-gamma
oscillatory activity in the service of cognitive control. Although theta-gamma phase coupling was
not explored in the current work, it could be a potential avenue for future studies on behavioral
adaptation in e�ort-based reward.

In line with the adaptive e�ort allocation framework, the expected value of control (EVC)
theory posits that the mPFC, particularly the dACC, calculates the value of exerting cognitive
control (Shenhav et al., 2013). In order to compute the expected value of control, the dACC
integrates a variety of signals, including reward magnitude, reward probability, costs, e�ort,
choice di�culty, e�cacy, and so on, to determine the optimal control signal (Grahek et al.,
2020; Shenhav et al., 2013; Shenhav et al., 2017). In this framework, dACC activity should
directly reflect the intensity of the specified control signal, and this intensity should index the
amount of control that was deemed worth the expected reward. This model assumes that
exerting control is intrinsically costly but does not specify the exact nature of this cost function.
In this context, e�ort demands can alter the EVC signal in two key ways. First, increased e�ort
demands require a larger control signal since more control will be needed to successfully execute
the task. Second, in many cases, one is less likely to successfully complete a more e�ortful task,
and this reduced probability contributes to judgements of di�culty. In Figure 6.1 , we can see
how reward incentives and task di�culty, which in this case reflects the joined value of e�ort
demand and probability of completion, a�ect the EVC curve.

While we could not explicitly test EVC hypotheses in Study 1, the paradigms in Study 2
should have been aptly designed to capture this activity, especially at cue. Specifically, one
of the strengths of the paradigm we used in Study 2 was that we fully disentangled separate
features of task di�culty by orthogonalizing e�ort demand from probability of success. However,
we saw no pattern of activity in the second study that resembled patterns hypothesized by the
EVC. Specifically, we would have expected control signals to be most intense (enhanced FMT
power) for cues signaling high e�ort/high rewards and potentially for high e�ort/low probability,
depending to what degree the reward is deemed worthy of control. Note that these predictions
are also sensitive to individual di�erences in probability distortion and e�ort weighting, as well
as a�ective states (Grahek et al., 2020), which are measures that we did not include in our
study.

Taken together, the findings of the current work partially align with neurocomputational
accounts that mPFC holds representations of e�ort prediction and the expected value of available
options. While the di�erent theories elucidate various mechanisms by which the mPFC/ACC
tracks e�ort predictions and uses these expectations to guide e�ort allocation, several lines
of empirical evidence also suggest that the mPFC (and FMT) tracks e�ort and performance
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Figure 6.1: E�ect of reward (payo�s) and task di�culty on EVC curve and control signal
intensity. A) Increasing reward magnitude alters the payo� curve. In this example, monetary reward
increases from a low value (dashed green line) to higher value (solid green line). When combined with
the cost function (red curve), the EVC curve is altered. As a result, the maximal point of the EVC curve
shifts to the right and the control intensity signal increases. B) Increasing task di�culty also alters the
payo� curve. In this example, task di�culty increases (green dashed line to solid green line) by reducing
the probability of success. Combined with the cost function (red curve), this change induces a shift in
the EVC function from its initial curve (dashed blue line) to its new shape (solid blue line), As a result,
the maximal point of the EVC curve shifts to the right and control intensity signal increases. This figure
was adapted from Shenhav et al. (2013).

as opposed to encoding raw e�ort values. Specifically, it has been argued that the FMT is
not an axiomatic RPE signal since its activity does not reflect an interaction between reward
and expectancy (Caplin and Dean, 2008; Cavanagh et al., 2012; Hajihosseini and Holroyd,
2013). Instead, FMT is mainly modulated by the unpredictability of events in general and could
represent the amount of control needed to obtain a goal of certain subjective value (Holroyd and
Umemoto, 2016; E. H. Smith et al., 2015). This is in line with a recent study which reported
that the ACC did not correspond to the magnitude of required e�ort, but in fact reflected a
subjective value prediction error comprised of integrated reward and e�ort cost expectations
(Arulpragasam et al., 2018).

This proposal is very consistent with our findings in Study 2, where FMT was insensitive
to both reward magnitude and probability at cue and feedback, potentially because reward
magnitudes and probabilities were clearly signaled and were almost deterministic. However, the
probability of reward based on e�ort expenditure was not fully deterministic, since e�ort-related
success rates were not explicitly stated and decision thresholds were dynamically adjusted based
on current performance and had to be learned through feedback. Therefore, reward feedback
—which was also informative of performance feedback —could reflect an updating of future
performance predictions, especially under the condition that required more control (high e�ort).
Furthermore, it would explain why e�ort demands did not modulate learning rates in Study
3, since predictions about e�ort did not meaningfully influence reward expectancy (i.e., similar
success rates between conditions and the block design). Further research is needed to fully
elucidate the complex relationship between incentivized e�ort expenditure and allocation of
cognitive control as well as understand how these functions are reflected in mPFC activity and
FMT power.
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6.1.1.3 Implications for Methodology

Another key focus of the present work has been paradigm development. Specifically, we had
three aims: 1) to experimentally disentangle e�ort demands from reward probability, 2) have
rewards be fully contingent on performance and 3) use online e�ort execution. The first and
second aims are critical, since the few e�ort-based reward paradigms that equalize success rates
between e�ort conditions (Botvinick et al., 2009; Frömer et al., 2021; S. Tanaka et al., 2019) have
used methods (e.g. random reward, forced abort, etc.) which reduces the degree to which e�ort
results in reward, which can also impact reward prediction (Grahek et al., 2022). While we were
able to successfully accomplish these aims in Study 2, we encountered significant complications
when expanding this method to dual-option choice paradigms. Seeing that the few studies that
have controlled for probability of success (and reward) have all used passive e�ort-based reward
paradigms (Botvinick et al., 2009; Frömer et al., 2021; S. Tanaka et al., 2019), we believe that
these complications merit consideration.

Specifically, we developed and extensively piloted the same cued set-switching task from Study
2 but adapted to the COGED e�ort-based decision-making paradigm by Westbrook et al. (2013).
Before starting the e�ort-based decision-making portion of the task, participants were required
to practice the di�erent levels of e�ort and make several judgements between a low e�ort /
low reward option and high or medium e�ort option for a greater reward (see Westbrook et al.
(2013, 2019) for details). Critically, these judgements were used to calculate indi�erence points;
low e�ort reward options for the e�ort-based decision-making task were then set based on these
indi�erence points according to a proximity parameter (⁄), which is a ratio that describes the
percent increase (or decrease) of a reward o�er relative to the indi�erence point (Westbrook
et al., 2013; Westbrook et al., 2019). Small absolute values of ⁄ indicated that alternatives were
close to the indi�erence point and therefore close in subjective value. Positive values indicated
higher subjective value for the low e�ort / low reward o�ers, and low e�ort o�ers were the same
value as their more e�ortful alternatives when ⁄=1. Alternatively, negative values indicated
higher subjective values for the more costly options, and low e�ort options were worth 0 points
when ⁄=-1. The purpose of setting reward values with the proximity parameter was to balance
choices between high e�ort and low e�ort options, as achieved in previous studies (Westbrook
and Braver, 2016; Westbrook et al., 2013; Westbrook et al., 2019). Once participants selected
one of the two options, they were required to execute the selected cue set-switching task to
win the reward. Response requirements were set using the same calibration methods described
in Studies 2 and 3, such that participants had equal probability of success across all levels of
e�ort demand. Several versions of the task were tested, with small variations in fixed reward
magnitudes, proximity parameters, number of catch trials (trials where ⁄=-1 or 1) and an average
of 108.16 trials (SD=16.13).

Results from the first 87 pilot participants revealed that once probability of success was equal-
ized between conditions, choice patterns were not consistent with e�ort discounting behavior.
For example, Figure 6.2A shows how participants were biased towards selecting the high e�ort
option, even in cases where the reward for low e�ort option was larger than the indi�erence
point, which was set a priori. We also observed that participants were generally accepting more
high/medium e�ort options in later trials, which suggested that indi�erence points were not
static and shifted throughout the course of the task. To explore if indi�erence points varied
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Figure 6.2: Caveats of designing an e�ort-based decision-making paradigm. A) Rate of
selecting the higher e�ort (HE) option as function of proximity parameter. Participants prefer the more
demanding option when the low e�ort option has no reward (proximity parameter = -1) and prefer
the less demanding option when it o�ers the same reward as the more demanding option (proximity
parameter Ø 1). However, as the reward value approaches a proximity parameter of 0 (or the individual
indi�erence point), selection of the higher e�ort options should approach .50. Instead, the data reveals
that participants’ preferences are generally biased towards the high e�ort option. B) Indi�erence points
increase progressively throughout the task. C) Di�erence in cumulative success rates between high and
low e�ort trials and medium and low e�ort trials throughout the task. Black bars signify the standard
error of the mean.

across time, we modified the task by dynamically adjusting the indi�erence points throughout
the task using a staircase procedure. In this sample (N=31), we saw that indi�erence points
generally increased throughout the task, such that participants discounted higher e�ort rewards
less with more time on task (see Figure 6.2B). As shown on Figure 6.2C, we also observed
that the di�erence between the probability of success in low e�ort trials and higher e�ort trials
was greater in earlier blocks than in later blocks. One plausible explanation, therefore, was that
changes in indi�erence points were being driven by the reduction in di�erences in success rates,
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such that the more time on task, the better the calibration mechanism equalizes reward rates
between e�ort levels, resulting in less discounting.

These preliminary findings from the behavioral pilot highlight several important considera-
tions when developing e�ort-based decision-making paradigms. One consideration is that al-
though performing e�ort online allows for experimental control of success rates, one needs to
account for the shift in subjective values (i.e., indi�erence points) that occur as a consequence
of these variations in reward rates. This is more manageable in passive e�ort paradigms, like
the ones implemented in Studies 2 and 3 of the present work; however, in decision-making
paradigms, shifting subjective values for e�ort-based preferences may generate choice patterns
that are highly biased towards rewards with higher e�ort requirements, which can complicate
the statistical modeling of choice data later on. Conversely, this also reveals an advantage for
performing e�ort demands o�ine, after decision-making: although estimates of reward likelihood
may di�er between e�ort demand levels, at least subjective value estimates are not influenced
by fluctuations in performance. To our knowledge, though, neuroimaging studies that have used
paradigms with o�ine e�ort exertion have not accounted for the e�ect of success rate and/or re-
ward probability in subjective value estimates (Aridan et al., 2019; Bernacer, Martinez-Valbuena,
Martinez, Pujol, Luis, et al., 2019; Chong et al., 2017; Hogan et al., 2019; Massar et al., 2015;
Suzuki et al., 2021, but see Arulpragasam et al., 2018), meriting consideration in future studies
implementing these designs.

6.2 Limitations

Certain methodologies employed in this thesis unintentionally introduced limitations. Although
the utilization of diverse methodologies facilitated the exploration of various facets of e�ort-based
reward processing, it also restricted our ability to interpret the results in light of our previous
findings. Notably, it would have been valuable to examine whether specific sub-regions of the
mPFC were selectively involved in signaling di�erent components of prospective net value and
reward feedback. This investigation is particularly pertinent considering that the findings from
Study 1 partially support the existence of a posterior-to-anterior gradient in value representation,
as proposed elsewhere (Clithero and Rangel, 2014). While we had compelling reasons to employ
EEG in addressing the research questions posed in Study 2, an exciting avenue for future research
would be to pair paradigms that disentangle e�ort from probability costs with techniques with
higher spatial resolution (e.g., EEG-fMRI) to explore how substrata of the mPFC signal specific
features of net value.

An additional limitation is that several of our analyses may have su�ered from lack of statis-
tical power. Although we had su�cient power to test the main hypotheses of Study 1, we were
unable to implement several of the desired supplementary analyses because too few studies met
the constraints of these sub-analyses. Naturally, this limitation was outside of our control, since
we were limited to available, published data from extant studies. Regardless, due to the number
of studies included and the variety of paradigms used, we were forced to run supplementary
analyses with a subgroup of studies that met a certain condition, instead of contrasting activa-
tion patterns in two conditions. Consequently, we could only make inferential conclusions about
the robustness of the original findings instead of directly identifying di�erences in activation
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patterns between two conditions (e.g., physical vs cognitive e�ort, single o�er vs di�erence in
SV, etc.). Similarly, recent studies using EEG to study allocation of control for rewards have
reported significant, but quantitatively small, e�ects for cue-related ERPs (Frömer et al., 2021;
Grahek et al., 2022). These studies used similar passive e�ort paradigms to the ones utilized in
Study 2 and report significant di�erences of 1 microvolt in late event-related potentials (i.e., P3b
and CNV) with a sample of at least 40 participants (Frömer et al., 2021; Grahek et al., 2022).
Had e�ect sizes from these studies been included in our a priori sample size estimation, we may
have opted for a larger sample size in Study 2. However, another recent study which investi-
gated cue-evoked FMT power during e�ort-based decision-making (Umemoto et al., 2022) also
detected very modest e�ects with a relatively large sample size (N=77), thus it seems unlikely
that increasing sample size would have truly allowed us to detect any e�ect in theta.

Another limitation of the present work is that we could not directly test any hypothesis of
performance monitoring or behavioral adaptation. Due to the relatively small number of failed
e�ort trials in Study 2, we were unable to look at the e�ects of negative performance outcomes.
This would have been of crucial interest, since theta power has been repeatedly implicated in
conflict and error monitoring, signaling of unexpected events, and translating prediction errors
into behavioral shifts (Cavanagh et al., 2010; Luft et al., 2013; Mas-Herrero and Marco-Pallarés,
2014; van de Vijver et al., 2014). Furthermore, several theories suggest that ACC output, as
marked by theta power, indexes need for control (Holroyd and Yeung, 2012; Shenhav et al., 2013).
In Study 2, we explored relationships between theta power at cue and accuracy and reaction
time in the e�ort tasks (not reported), however no e�ect was observed, presumably because
accuracy was locked in our paradigm. Furthermore, because accuracy rates were deliberately
high, we did not have enough unsuccessful trials after pre-processing to adequately analyze the
e�ect of performance feedback on EEG signals. One potential solution would be to shorten the
duration and demand of the e�ort manipulation so that we could have more e�ort trials. For
example, recent studies that use a Stroop task as an e�ort manipulation adjust response time
limits in order to render an 80% success rate (Frömer et al., 2021; Grahek et al., 2022), allowing
for more e�ort trials with EEG data. Even within narrow ranges of success rates and reaction
times, these studies were able to detect robust, albeit small, e�ects of EEG signals on accuracy
and response times (Frömer et al., 2021; Grahek et al., 2022).

One additional limitation was our inability to isolate performance feedback from reward feed-
back in Study 2. This complicated the interpretation of findings, as both FMT and, albeit to a
lesser extent, P3 has been shown to be sensitive to performance feedback (Glazer et al., 2018;
Luft, 2014). To our knowledge the only study using e�ort-based reward with EEG experimentally
isolated performance feedback from reward feedback by adding a probabilistic component to re-
ward (Ma et al., 2014). While this strategy e�ciently disentangled neurophysiological responses
to each type of feedback, it also added another variable – reward uncertainty – that was outside
the scope of the current work. Notwithstanding, results from Study 3 suggest that performance
feedback maybe be more relevant than e�ort expenditure when learning stimulus-outcome as-
sociations. Therefore, developing paradigms where rewards remain contingent on performance
but dissociate performance feedback from reward delivery will be particularly crucial for future
research.
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6.3 Future Directions

The findings presented throughout this thesis leave a number of open questions. One of the
predominate hypotheses regarding the role of the ACC in e�ort-based decision-making is that it
is involved in option comparison and action selection (Shenhav et al., 2013; Vassena, Holroyd,
et al., 2017). Specifically, the ACC has been suggested to track choice di�culty as opposed
to foraging value (Shenhav et al., 2014), the net value of rewards (Westbrook et al., 2019), or
the subjective value of e�ort (Hogan et al., 2019). Furthermore, the pre-SMA, rostral ACC,
and other frontoparietal areas have higher BOLD activity when choosing between high and low
cognitive e�ort tasks voluntarily, as opposed to when the choice is predetermined (Schouppe et
al., 2014), again suggesting a very important role for this network in comparison and selection
of e�ortful options. Thus, one of the main goals of future research should be to identify to what
degree the mPFC/ACC encodes for pure value representation and to what extent it is recruited
for option comparison and action selection.

As described above, we designed and piloted an e�ort-based decision-making paradigm to
accomplish these aims. Although we were forced to drop certain features (i.e., parametric
measure of e�ort, proximity parameters, etc.), we were able to generate an e�ort-based decision-
making paradigm that replicated discounting behavior while also controlling for unequal success
rates between e�ort conditions (Figure 3). This paradigm is currently being adapted for EEG
with the intent to identify to what extent FMT is recruited for single o�er subjective value
representation, option comparison, and action selection.

Figure 6.3: Behavioral results from simplified version of e�ort-based decision-making task.
Data was collected from 105 participants. Participants that had no variance in their choices were removed,
leaving a a final sample of N=96. A) Overall, there was no significant di�erence between success rates in
the Low and High e�ort tasks (t(95)=1.28, p=0.20). However, there is a reasonable amount of individual
variance in success rates overall which would need to be controlled statistically. B) The figure represents
the percentage of high e�ort (HE) choices as a function of the ratio between the low e�ort reward o�er
and the high e�ort reward o�er. In this version of the paradigm, there were two levels of fixed high e�ort
reward (1 and 5 points). Bars represent the standard error of the mean.

Similarly, another open question from Study 3 is the degree to which e�ort modulates reward
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prediction errors. Although we did not identify any e�ects of e�ort on behavioral adaptation
and learning rates, it is possible that cognitive e�ort had more subtle e�ects on cue prediction
updating that were not captured in our indices of learning. For example, a recent study re-
vealed that e�ort positively shifted RPEs, such that positive RPEs were enhanced and negative
RPEs were attenuated by increasing physical e�ort demands (Jarvis et al., 2022). However,
this e�ect in RPEs was coupled with a modest relationship between increased e�ort and higher
cue selection accuracy (Jarvis et al., 2022). Specifically, improvements in cue selection accuracy
were only detected in the high e�ort condition; in fact, cue selection accuracy was equivalent
between medium e�ort and control condition and reduced for rewards that required low e�ort.
Taken together, these findings suggest that e�ort may influence the mechanism by which reward
outcomes are evaluated without resulting in large, detectable shifts in reward learning behavior.
Thus, future research should focus on computational analyses that can parse apart the contri-
butions of e�ort to reward prediction and pair these with neuroimaging techniques (e.g., EEG)
to better elucidate the neural underpinnings of these processes.

Another highly relevant question is the extent to which probability of success influences per-
ceptions of task di�culty and how this subsequently alters net value estimates of e�ort-based
rewards. Self-report findings from Study 2 suggest an interactive e�ect between e�ort demands
and reward probability: probability of success influenced participants’ perceptions of task de-
mand, and e�ort demands influenced their perceptions of likelihood of success, despite compa-
rable success rates between conditions. This observation highlights the notable influence that
perception of success has on the weight assigned to e�ort costs and suggests an interaction be-
tween these two factors. Both e�ort- and probability-discounting rely on similar brain circuitry
(Bailey et al., 2016; Seaman et al., 2018) and are sensitive to DA-ergic manipulations, such that
DA agonists enhance willingness to tolerate low reward probability (Floresco and Whelan, 2009;
St. Onge and Floresco, 2009) and exert e�ort for reward (Salamone et al., 2012), while DA
antagonists attenuate these tendencies. Furthermore, in humans, pharmacological enhancement
of DA increases the willingness to exert e�ort for reward, specifically for low probability rewards
(Soder et al., 2020; Wardle et al., 2011). This dopamine-dependent e�ect could be mediated by
various factors, including as a reduction in the cognitive distortion of high and low probabilities
(Ojala et al., 2018; Webber et al., 2020), diminished weight assigned to e�ort costs (Soder et al.,
2020), or increased benefit of reward (Le Bouc et al., 2016; Skvortsova et al., 2017; Westbrook
et al., 2020). Collectively, these findings suggest that e�ort and probability costs interact when
evaluating e�ort-based rewards. Therefore, to better understand the contribution of e�ort costs
and task di�culty to goal-directed behavior, future research must actively consider subjective
estimates of probability of success in their paradigms.

Elucidating the unique and integrative e�ects of probability and e�ort on goal-directed behav-
ior would also facilitate the identification of therapeutic targets for abnormal reward processing
in di�erent psychopathologies. Specifically, reduced willingness to exert e�ort for reward is a
behavioral marker across a variety of psychopathologies, including major depressive disorder
(Cooper et al., 2018; D. H. Treadway, 2011), schizophrenia (Cooper et al., 2019; Reddy et al.,
2015), and Parkinson’s disease (Chong et al., 2015; Le Heron et al., 2018). However, a growing
body of work suggests that extent to which willingness to exert e�ort is altered in psychiatric
and neurological conditions depends on the probability of reward, with some studies reporting
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reduced willingness to exert e�ort in clinical groups when rewards are less likely (Cooper et al.,
2019; Reddy et al., 2015; M. T. Treadway, Bossaller, et al., 2012), while others report the op-
posite (Barch et al., 2014; hua Yang et al., 2014; M. T. Treadway et al., 2015). In Parkinson’s
disease, treatment with D3 and D2 agonists is associated with amelioration of motivational
deficits (Chong et al., 2015; Le Heron et al., 2018; McGuigan et al., 2019) but the develop-
ment of impulse control disorders, including increased risk-taking and excessive gambling (Voon
et al., 2011; Voon et al., 2014), suggesting receptor- and circuitry-specific modulation of e�ort
and probability costs. Furthermore, this altered sensitivity to reward probability information
in e�ort-based rewards has been shown to be related to cognitive impairment in schizophrenia
(Cooper et al., 2019) and associated with altered brain activity in patients with major depression
(hua Yang et al., 2016). Willingness to exert e�ort for intermediate to high probability rewards,
but not low probability rewards, was related to anhedonic symptoms in healthy subjects (M. T.
Treadway et al., 2009), suggesting that altered integration of e�ort and probability costs may
extend to subclinical populations as well. Thus, it is possible that cognitive and motivational
impairments may contribute to maladaptive e�ort allocation in psychopathology and that the
weighing of probability costs may be an important factor in those abnormalities. Hence, further
research is needed to explore this aspect of e�ort-based decision-making.

Similarly, another important target for future clinical research is exploring how e�ort demands
are evaluated throughout the distinct phases of reward processing, such as reward motivation,
learning, and hedonic capacity. One of the main findings of the current work is that the impact
of e�ort demand on reward value varies across stages of reward processing. This has implications
for understanding e�ort-based behavior in both health and disease. Broadly speaking, in healthy
humans, dopamine appears to di�erentially impact reward processing, such that pharmacolog-
ically enhancing DA (in a neurochemically non-specific manner) reliably increases willingness
to exert e�ort and anticipatory responses to reward, but has an unclear impact on hedonic re-
sponses and learning (Webber et al., 2020). Conversely, in psychopathology, some aspects of
e�ort and reward processing are impaired, while other functions remain largely preserved (Zald
and Treadway, 2017). For example, in bipolar disorder, reward learning and hedonic responses
appear relatively normal, while pursuit of goals and the willingness to work for rewards appear
heightened even in remission (Alloy et al., 2015; Johnson et al., 2012). Therefore, an interesting
proposal for future research would be to explore how e�ort is weighed throughout the stages of
reward processing with the aim of identifying potential targets for treatment.

6.4 Conclusion

The aim of this thesis was to investigate the impact of e�ort demands on reward value. To
achieve this, we conducted three studies that explored the e�ect of e�ort demands on di�erent
stages of reward processing. The first study categorically examined brain regions that were
consistently involved in signaling e�ort demands and net value of prospective rewards. A meta-
analysis of coordinate- and image-based fMRI data revealed that the pre-SMA is consistently
activated for increasing prospective e�ort costs and deactivated for increasing net value, while
the vmPFC shows the opposite pattern. This double dissociation suggests that the net values
of e�ort-based rewards are integrated and signaled in the common valuation network and that
the mPFC/ACC is also responsible for these functions.
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To further explore the involvement of the mPFC/ACC in tracking the value of e�ort, we
designed a second study that aimed to identify raw e�ort and net value signals across the stages
of reward processing by fully dissociating reward probability from cognitive e�ort costs. Using
scalp EEG recordings in two separate experiments, we observed that FMT power did not exhibit
sensitivity to e�ort or net value during cue presentation. However, FMT power was found to
be enhanced for rewards obtained through high levels of e�ort. These findings suggest that
prospective e�ort demands have a limited impact on the evaluation of prospective rewards, but
indicate an allocation of increased cognitive resources towards rewards earned through higher
costs. Since rewards gained under higher e�ort were more salient at feedback, it followed that
e�ort expenditure may modulate the learning of stimuli-outcome contingencies. In a third
study, we found that learning rates are not a�ected by cognitive e�ort demands but, instead,
that performance feedback influenced cue-value updating.

Together, these findings implicate that e�ort is generally weighed against prospective rewards
at the cue phase, and that this occurs to a limited degrees in the striatum, but primarily in
the vmPFC and mPFC/ACC. However, in the absence of option comparison and when reward
probability is experimentally isolated from cognitive e�ort demand, the e�ect of e�ort was
only detectable at feedback. Instead of reducing outcome-related EEG indices of attention and
reward salience, e�ort expenditure enhanced these signals, suggesting that e�ort may actually
augment as opposed to discount the salience of reward during feedback processing. This finding
falls in line with proposed models that posit that the ACC is involved in e�ort prediction
in service of adaptive e�ort allocation, although the current experiments were not adequately
designed to directly test these hypotheses. Interestingly, the potentiating e�ect of e�ort at
reward feedback did not translate to enhanced learning of stimuli-reward associations, suggesting
that only performance feedback was used to guide behavioral adaptation. Future research will
need to develop novel experimental paradigms to fully control for confounding variables that
plague the current study of e�ort-based reward processing. With careful design, future studies
will be able to fully elucidate how the weighing of e�ort demands di�erentially impacts reward
value during the various stages of reward processing, potentially to better treat maladaptive
e�ort allocation in psychopathology.
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Doñamayor, N., Schoenfeld, M. A., & Münte, T. F. (2012). Magneto- and electroencephalo-
graphic manifestations of reward anticipation and delivery. NeuroImage, 62 (1), 17–29.

Dreher, J.-C. (2013). Neural coding of computational factors a�ecting decision making. Progress
in brain research, 202, 289–320.

Drueke, B., Weichert, L., Forkmann, T., Mainz, V., Gauggel, S., & Boecker, M. (2015). Neural
correlates of positive and negative performance feedback in younger and older adults.
Behavioral and brain functions, 11 (1), 17.

Egeland, J., Nordby Johansen, S., & Ueland, T. (2010). Do Low-E�ort Learning Strategies
Mediate Impaired Memory in ADHD? Journal of learning disabilities, 43 (5), 430–440.

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by
a simple, graphical test. British Medical Journal, 315 (7109), 629–634.

Ennis, G. E., Hess, T. M., & Smith, B. T. (2013). The impact of age and motivation on cognitive
e�ort: Implications for cognitive engagement in older adulthood.

Faure, A., Haberland, U., Conde, F., & Massioui, N. E. (2005). Lesion to the Nigrostriatal
Dopamine System Disrupts Stimulus-Response Habit Formation. The Journal of neuro-
science, 25 (11), 2771–2780.

Ferdinand, N. K., & Opitz, B. (2014). Di�erent aspects of performance feedback engage di�er-
ent brain areas: disentangling valence and expectancy in feedback processing. Scientific
reports, 4 (1), 5986.

Floresco, S. B., & Ghods-Sharifi, S. (2007). Amygdala-prefrontal cortical circuitry regulates
e�ort-based decision making. Cerebral cortex (New York, N.Y. : 1991), 17 (2), 251–260.

Floresco, S. B., & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions:
beyond working memory. Psychopharmacology, 188 (4), 567–585.

Floresco, S. B., Onge, J. R. S., Ghods-Sharifi, S., & Winstanley, C. A. (2008). Cortico-limbic-
striatal circuits subserving di�erent forms of cost-benefit decision making. Cognitive,
a�ective, & behavioral neuroscience, 8 (4), 375–389.

Floresco, S. B., West, A. R., Ash, B., Moore, H., & Grace, A. A. (2003). A�erent modulation of
dopamine neuron firing di�erentially regulates tonic and phasic dopamine transmission.
Nature Neuroscience, 6 (9), 968–973.

Floresco, S. B., & Whelan, J. M. (2009). Perturbations in di�erent forms of cost/benefit decision
making induced by repeated amphetamine exposure. Psychopharmacologia, 205 (2), 189–
201.

Foti, D., Weinberg, A., Bernat, E. M., & Proudfit, G. H. (2015). Anterior cingulate activity to
monetary loss and basal ganglia activity to monetary gain uniquely contribute to the
feedback negativity. Clinical Neurophysiology, 126 (7), 1338–1347.

132



Foti, D., Weinberg, A., Dien, J., & Hajcak, G. (2011). Event-related potential activity in the
basal ganglia di�erentiates rewards from nonrewards: Temporospatial principal compo-
nents analysis and source localization of the feedback negativity. Human brain mapping,
32 (12), 2207–2216.

Fouragnan, E., Retzler, C., & Philiastides, M. G. (2018). Separate neural representations of
prediction error valence and surprise: Evidence from an fMRI meta-analysis. Human
brain mapping, 39 (7), 2887–2906.
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