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Aggressive and psychopathic traits are linked to the acquisition
of stable but imprecise hostile expectations
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Individuals with hostile expectations (HEX) anticipate harm from seemingly neutral or ambiguous stimuli. However, it is unclear how
HEX are acquired, and whether specific components of HEX learning can predict antisocial thought, conduct, and personality. In an
online sample of healthy young individuals (n = 256, 69% women), we administered a virtual shooting task and applied
computational modelling of behaviour to investigate HEX learning and its constellation of correlates. HEX acquisition was best
explained by a hierarchical reinforcement learning mechanism. Crucially, we found that individuals with relatively higher self-
reported aggressiveness and psychopathy developed stronger and less accurate hostile beliefs as well as larger prediction errors.
Moreover, aggressive and psychopathic traits were associated with more temporally stable hostility representations. Our study thus
shows that aggressiveness and psychopathy are linked with the acquisition of robust yet imprecise hostile beliefs through

reinforcement learning.
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INTRODUCTION
Forming accurate representations (i.e., beliefs) concerning others is
crucial to navigate the social world [1-3]. The accuracy of these
beliefs may, however, be distorted in the presence of certain
psychopathological traits [4, 5], possibly contributing to the
development of maladaptive and disruptive social behaviour. In
particular, antisocial individuals tend to expect hostile outcomes in
seemingly neutral or ambiguous social encounters [6-10]. Such
Hostile Expectations (HEX) belong to a set of interrelated hostility
biases found across aggressive populations [11]. Yet, it is still
unclear how HEX are acquired, and whether the propensity to
develop HEX relates to various established correlates of antisocial
behaviour, such as aggressiveness, psychopathic traits, risk-taking,
or reward and punishment sensitivity [12]. In the present study, we
set to characterize HEX learning and its concomitants in depth, in
line with the notion that effectively managing antisocial behaviour
requires a thorough understanding of its underlying mechanisms
[13, 14]. Failure to do so comes at a cost: the global economic
expenditure due to interpersonal violence has been estimated to
be as high $14.76 trillion in 2017, which corresponds to 12.4% of
the world’s gross domestic product, or $1988 per person [15].
Here, we propose that the tendency to form HEX reflects a
reinforcement learning disruption in which non-threatening
events are erroneously associated with hostile outcomes. This
notion is well-aligned with a growing body of research showing
reinforcement learning deficits among antisocial individuals
[16-19]. Recent studies have shown that reinforcement learning
in social contexts is partly driven by individuals’ beliefs concerning

the volatility of the environment [3, 20], the belief that a given
outcome will follow [21], the accuracy of this belief [4, 5], and the
discrepancy between actual and expected outcomes, i.e., the
prediction error [22, 23]. From this perspective, alterations in any
of these processes could be linked to the acquisition of HEX. In the
present study, we employed a computational approach to
investigate HEX acquisition in a task that, unlike previous studies,
required the generation of explicit hostile or non-hostile responses
during an interpersonal conflict. Furthermore, we tested whether
HEX acquisition varied in a high- relative to a low-threat context,
as aversive environments may encourage the development of a
hostile mindset [10, 24].

Crucially, we also addressed whether HEX learning was linked to
other domains of hostile and antisocial behaviour, a fundamental
step towards bridging computational quantities and real-world
observations. To this end, associations between the computational
parameters capturing HEX learning, psychopathic personality
traits and multiple correlates of aggression were investigated.
Two structural equation models were built to test these relation-
ships. The first model investigated which HEX learning parameters
(i.e., belief volatility, strength and accuracy of the belief, prediction
error, and exploration readiness) were linked with self-report
measures of physical and verbal aggression, anger, and hostility.
The second model tested whether the same learning parameters
could predict behaviours indexing the interpersonal, affective,
lifestyle-related, and antisocial facets of psychopathy.

Previous work suggested that decreased belief volatility is
associated with paranoid ideation [21, 25], state anxiety [26], better
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emotional coping [27], and psychosis [28] (but see [29]), and that
belief accuracy covaries negatively with psychopathic traits [4].
Furthermore, hallucination-prone individuals generate stronger
beliefs in progressively weaker stimulus-outcome associations
[28]. Building upon these findings, we expected that heightened
and imprecise, but more stable hostility beliefs would be linked
with greater levels of psychopathy and aggressiveness, as
paranoia and suspiciousness are established risk factors for
aggressive behaviour [30]. In addition, we expected that incre-
ments in these variables would correlate with larger prediction
errors, given that antisocial persons show a greater sensitivity to
HEX violations [31, 32]. Importantly, we further tested whether
HEX learning was associated with hostile appraisals of human
faces [33, 34] and ambiguous social situations [35], as antisocial
individuals often perceive these stimuli as threatening and this
might play a role in triggering acts of aggression [11]. Finally, we
investigated whether HEX acquisition was associated with risk-
taking [36] as well as sensitivity to reward and punishment [37],
because people with antisocial tendencies are often impulsive and
risk-prone [38]. We thus aimed to comprehensively delineate the
constellation of constructs associated with HEX acquisition,
ranging from hostile perceptual biases to overt antisocial
behaviour. While previous investigations have relied on standard
Pavlovian [4, 28] or instrumental learning paradigms [20, 26], the
task used here required overt aggressive vs. non-aggressive
responses and thus more directly tapped into participants’ hostile
tendencies. Furthermore, by punishing errors in some blocks of
trials but not in others, we were able to inspect how HEX emerge
under more relative to less threatening contexts.

METHODS

Participants

In this section, we report all data exclusions, experimental manipulations,
and measures in the study as well as the achieved statistical power.
Participants were recruited via the electronic Radboud research participa-
tion system, which is mostly composed of students and former university
students. A total of 256 participants provided complete questionnaire
responses (age =23.39+7.23 [mean + standard deviation], 69% women,
88% right-handed). Most participants were Dutch (68%) or German (16%),
with no more than 3% holding any other specific nationality. A majority of
participants had completed at least secondary education (58% high school
diploma, 21% bachelor’s degree, 17% master’s degree, 1% did not say), few
smoked tobacco (96% non-smokers), most did not consume cannabis
products often (64% never, 8% less than once year, 16% once or twice a
year, 6% once a month, 3% once a week, <1% daily), and predominantly
drank alcohol in moderation (11% never, 1% less than once year, 13% once
or twice a year, 32% once a month, 39% once a week, 1% daily).

After excluding participants with >25% missing trials, data from n = 269
and n=251 participants were available for the Hostile Expectation
Learning Task and the Hostile Interpretation Bias Task, respectively (see
Results for further sensitivity analyses). Twenty-six participants with
computational parameter values above or below two standard deviations
relative to the sample mean were excluded because their estimates
became unrealistically extreme in the data-fitting process. Such deviance
might be driven by these participants’ low shoot percentage, particularly in
low threat blocks (see Fig. S1). Excluded participants did not statistically
differ from the rest in any demographic or self-reported variables (see also
Fig. S1). Analyses relating different measures are based on subsamples
(minimum n = 188) due to participants failing to correctly complete one or
more parts of the study. Using two-tailed tests at p < 0.05, a sample size of
188 affords 78% power to detect correlations of r = 0.2 and 98% power to
correlations of r = 0.3, which can be respectively considered medium and
large true effects according to recent benchmarks for individual
differences research [39]. The study was approved by the Ethics Committee
of the Faculty of Social Sciences, Radboud University (code ECSW-2020-
092) and all participants provided informed consent.

Hostile expectation (HEX) learning task
To measure HEX learning, we incorporated an associative learning
component into a well-validated Go-NoGo shooting task [40, 41] (Fig. 1a
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and b). Participants first saw a man with his hands behind his back and a
policeman in the background (cue phase, 1-25). Then, when a prompt
appeared, participants had to either shoot or withdraw their weapon
depending on whether they expected the man in front of them to draw a
gun or a phone (prompt, 1s). Finally, they received feedback on their
decision (outcome phase, 2 s). Wrong or missing responses resulted in the
participant being shot either by the man (if he drew a gun) or the
policeman in the background (if the man drew a phone). The probability of
each man drawing a gun was either 0.8 or 0.2 and was flipped throughout
the task for a total of 160 trials. Probabilities switched after blocks of 40, 15,
25, 25, 15, and 40 trials. Environmental threat was manipulated by
including high and low threat trial blocks. In high threat blocks,
participants could lose points if they chose the wrong option, whereas
in low threat blocks they could not lose any points. These points allegedly
corresponded to an undisclosed sum to be deducted from participants’
endowment, but in reality, they all received the same amount and were
debriefed regarding the true nature of the task after completing the study.
High and low threat trials were identical in all other respects. These blocks
were regular, predictable, and orthogonal to gun probabilities, and were
indicated in the lower left corner (Figs. 1a and b). Afterwards, participants
completed the Hostile Interpretation Bias Task along with a battery of self-
reports in English language.

Hostile interpretation bias task (HIBT)

In this task, participants must indicate whether they perceived a face as
hostile or not. Both options were displayed in the lower corners of the
screen and participants had up to 4s to respond. Faces varied in the
emotion they depicted (angry, happy, disgusted, or fearful) and in the
intensity (20%, 40%, 60%, 80%, and 100%) of the expression [34]. The
intensity manipulation was crafted by overlaying an actor’s emotional
expression over that same actor’s neutral expression at varying levels of
transparency (Fig. 2a). Each combination of expression and intensity was
presented eight times, in addition to eight neutral trials for a total of 168
plus 16 practice trials. Hostile appraisals in this task correlate with self-
reported aggression [34].

Questionnaires

The 29-item Buss-Perry Aggression Questionnaire (BPAQ) measures four
facets of aggressiveness: physical aggression, verbal aggression, anger and
hostility [42]. Participants had to indicate how characteristic of them each
statement was (e.g., “l get into fights a little more than the average
person”) on a 1 to 5 scale. Reliability was excellent in the present sample
(Cronbach’s alpha =0.90, McDonald's omega = 0.93) and scores were in
line with Dutch norms [43].

The Self-Report Psychopathy Scale-Short Form (SRP-SF) has 29 items
divided in four scales [44]: interpersonal manipulation (e.g., pathological
lying), callous affect (e.g., low empathy, lack of remorse), erratic lifestyle
(e.g., recklessness and impulsivity), and criminal tendencies (e.g., overt
antisociality, criminal activity). Participants had to indicate their agreement
with each statement (e.g., “You should take advantage of other people
before they do it to you”) in a 1 to 5 scale. We excluded one item inquiring
on gang-related activity, following recommendations for community
samples [44]. The SRP-SF displayed excellent reliability in our sample
(Cronbach’s alpha = 0.90, McDonald’s omega = 0.93). Scores were norma-
tive for Dutch speakers [44].

The Word Sentence Association Paradigm — Hostility (WSAP-H) consists
of sixteen short descriptions of ambiguous situations (e.g., “Someone
bumps into you”) presented twice, once followed by a hostile (e.g., “rude”)
and once followed by a benign (e.g., “distracted”) adjective [35].
Participants had to indicate how related they deemed the situation and
the adjective to be on a Likert 1-6 scale. The WSAP-H showed good
reliability (Cronbach’s alpha =0.84, McDonald’s omega=0.87). Scores
were in accordance with the original norms [35]. As one could expect,
hostile attributions were lower in the present community sample
(mean = 2.72) than in Dutch men preselected for high hostility (mean =
3.42) [45].

The Sensitivity to Punishment and Sensitivity to Reward Questionnaire
(SPSRQ) is comprised of 48 dichotomic items assessing reward seeking
(e.g. “Do you sometimes do things for quick gains?”) and punishment
avoidance (“Are you often afraid of new or unexpected situations?”) [37].
Reliability was good in the current sample (Cronbach’s alpha=0.84,
McDonald’s omega = 0.87). Mean values of both scales agreed with
normative scores for adults [37]. There are no adult norms for the SPSRQ in
Dutch-speaking countries.

Translational Psychiatry (2023)13:197
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Fig. 1 Outline of the Hostile Expectation (HEX) learning task and behavioural results. a Hostile Expectation (HEX) learning task. In the cue
phase, participants were first presented with one of two opponents as well as a policeman in the background, with the condition (high or low
threat) indicated by the word “threat” or “safe” in the lower left corner. Then came a prompt, upon which participants had one second to
either shoot or withhold their gun depending on whether they predicted the man to draw a gun or a phone. In the outcome phase they
obtained feedback on their decision. Wrong or missing responses led to the participant being shot by the man (if he drew a gun) or the
policeman in the background (if the man drew a phone). In high threat trials, wrong decisions were punished by a loss of points, which
allegedly corresponded to an undisclosed amount of money. In low threat trials, no points or money were at stake. High and low threat trials
were otherwise identical. b Probability schedule of the task. Gun probability, termed p(gun), was flipped between the two opponents
throughout the task. ¢ Main behavioural results in the HEX learning task. Participants shot more frequently when gun probability was high and
under high threat. Values are mean + standard error. The dashed lined represents chance level. ***p < 0.001 and BF (Bayes Factor)>100. ns not

significant.

Finally, we measured the lifetime frequency of specific risk-taking
behaviours (e.g. “Drove 30mph or faster over the speed limit”) using the
Risky, Impulsive, and Self-Destructive Behaviour Questionnaire (RISQ) [36].
Following authors’ recommendations, we created frequency bins to reduce
skewness (0=0, 1-10=1, 11-50=2, 51-100=3, >100=4, >500 =5).
The instrument showed acceptable reliability in this study (Cronbach’s
alpha =0.78, McDonald's omega = 0.84). There are no published Dutch
norms for this questionnaire. Descriptive statistics for all questionnaires are
provided in Table 1.

Behavioural and self-report data analysis

For the HEX task, we tested whether participants shot more often and
faster when gun probability was high and/or in a threat context. To do so,
we ran a repeated-measures analyses of variance (ANOVA) with within-
subject factors Gun probability (high, low) and Threat (high, low) on the
percentage of shoot decisions and reaction times. These analyses were
based on all n = 269 participants who correctly completed the task. For the
HIBT, we also ran a repeated-measures ANOVA with factors emotion
(anger, disgust, fear, and joy) and intensity (1 to 5) on the percentage of
hostile responses and reaction times. We discarded the eight neutral faces
to have the same number of faces in each category. These analyses were
based on n =251 participants with complete data.

We next inspected for a potential latent hostility factor common to both
HEX and HIBT tasks. Since the sizeable multicollinearity precluded a reliable
exploratory factor analysis, we adopted a two-stage approach: first, we ran
a principal component analysis (PCA) on all task scores to uncover the
latent structure of the data; second, we defined a structural equation
model (SEM) to extract error-free scores for the identified latent factors,
following previous work [46]. The PCA revealed that the data were most
parsimoniously accounted for by a two-factor solution (see Fig. S3), each
corresponding to one task. We then fit a SEM with a latent factor derived
from the four HEX task conditions and a factor stemming from the four
HIBT conditions, and we extracted individual scores on these latent factors
to be used in subsequent analyses. Next, we correlated average shoot

Translational Psychiatry (2023)13:197

percentage in each condition of the HEX task (high and low gun
probability and high and low threat) with the percentage of hostile
appraisals for each emotion in the HIBT (anger, disgust, fear, and joy) for
exploratory purposes (n = 207). A False Discovery Rate (FDR) threshold of
g < 0.05 was applied to this group of comparisons to control for multiple
testing. Finally, correlations were computed between questionnaire scores
and the two task-derived latent factor loadings (n=192) (for a similar
procedure see [46]). These tests were FDR corrected at g < 0.05 as well. We
also tested for gender differences in self-reports and behavioural
performance by means of independent-samples t-tests.

Bayes Factors (BF) for the alternative hypothesis computed with default
flat priors are reported alongside standard p-values. Effects were flagged as
significant if both indices (p < 0.05, and BF > 3) supported the alternative
hypothesis [12]. All analyses described in this section were performed
using the ezANOVA package (https://cran.r-project.org/web/packages/ez/
index.html) as well as the built-in stats package running on R version
4,05 [47] and R Studio version 1.4.1106 [48]. BFs were calculated
using the BayesFactor package (https://cran.r-project.org/web/packages/
BayesFactor/index.html).

Computational modelling

The first goal was to test which reinforcement learning algorithm could
best account for HEX learning. Drawing on previous work [3, 27], the
following models were defined: a Rescorla-Wagner model, a K1 Sutton
model, a Kalman filter [49] as well as 3- and 2-level Hierarchical Gaussian
Filter (HFG) models [50]. All models were fitted using the HGF toolbox
(https://tnu.ethz.ch/tapas), which estimates parameters using a Variational
Bayes approach. This method shows a comparable performance to other
popular optimization procedures such as the Nelder-Mead simplex
algorithm or Markov Chain Monte Carlo estimation [50]. We used default
priors to avoid biasing model selection, and compared models using
Bayesian model selection [51], as implemented in the Statistical Parametric
Mapping 12 toolbox (https://www fil.ion.ucl.ac.uk/spm/) running on Matlab
2017b. A 2-level HGF was the best-fitting model (see Fig. 3a and b). The
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Fig. 2 Outline of the Hostile Interpretation Bias Task (HIBT) and behavioural results. a Face stimuli used in the Hostile Interpretation Bias
Task (HIBT). Angry, disgusted, fearful, and happy expressions were overlaid on the same actor’s neutral face to generate progressively more
intense emotions. b Percentage of faces interpreted as hostile as a function of emotion and intensity. Values are mean + standard error.
c Hostile appraisals of angry faces were correlated with shoot decisions under high threat in the Hostile Expectation (HEX) learning task. r:
Pearson correlation coefficient, p: p-value, BF Bayes Factor for the alternative hypothesis.

Table 1. Means (M) and standard deviations (SD) for all self-report
scales (n = 256).

Questionnaire

Aggression (BPAQ)
Psychopathy (SRP-SF)

Hostile attributions (WSAP-H)
Benign attributions (WSAP-H)
Punishment sensitivity (SPSRQ)
Reward sensitivity (SPSRQ) 14.91 + 4.23 [0-24]
Risky behaviors (RISQ) 2.64 % 1.55 [0-5]

BPAQ Buss-Perry Aggression Questionnaire, SRP-SF Self-Report Psychopathy
Scale-Short Form, WSAP-H Word Sentence Association Paradigm-Hostility,
SPSRQ Sensitivity to Punishment and Sensitivity to Reward Questionnaire.
M mean, SD standard deviation, Min Minimum, Max Maximum.

M £ SD [Min-Max]
65.37 £ 16.51 [29-145]
45.45 + 12.62 [28-140]
2.72+0.68 [1-6]
4.13+0.71 [1-6]

11.57 £ 5.18 [0-24]

winning model was fitted again using the wider priors employed by Brazil
et al. (2017) to better capture interindividual variability (note we had not
altered the priors before to avoid influencing model selection). Next, a
belief trajectory was simulated per participant using the final estimated
parameters as priors. We inspected for correlations between estimated and
simulated parameters as well as between actual and simulated percentage
of shoot decisions to test how well the model could reproduce the real
data.

The 2-level HGF for binary outcomes used here assumes that first-level
beliefs x} reflect the estimated likelihood a given outcome (in this case,
pulling a gun vs. a phone) at time t. The probability is x! is given by a
Bernoulli distribution mapped to the current second-level belief x5:

p(x} = gun) ~ Bernoulli(x};s(x5))
p(x} = phone) ~ Bernoulli(x}; 1 — s(x}))
Where s(x}) is a sigmoid transform of current second-level belief x&:

1
t) .
%) = o)

Second-level beliefs x5 are drawn from a Gaussian random walk defined
by its own previous value, and its step size (i.e, its variance) is mapped to

SPRINGER NATURE

the exponentiated volatility parameter w:
X5 ~ N, exp(w))

As new inputs u are observed, the value of x is given by the following
Gaussian posterior:

xlu ~ N(ux\u) 77;\31)

These quantities are then updated as follows:
. { 1if u=gun

= 0 if u = phone
B =45+ €
with
1
g =—6
2
1
P S ST
2 2 +f[§
where
i = s(uy)
& =k =i
1
Al == —
V(- i)
1
At —
2 o+ev

Higher values of u thus reflect a stronger belief that the next outcome
will be a gun. Prediction errors are &' at the first level (discrepancy between
current belief and prediction), and & at the second (&' weighted by
precision estimate 1/m1). Parameter 1 reflects the precision of the mean or
prediction, and is determined by mean beliefs at the first level and by the
variance (i.e., uncertainty) parameter o at the second. Predictions {1} stem
from a sigmoid transform of mean second-level beliefs in the previous trial,
ie., s(u§’1 ) Finally, predictions are converted to action probabilities with a

Translational Psychiatry (2023)13:197



M. Buades-Rotger et al.

r=.879, p<.001, BF>100

Posterior probability
o
Observed shoot %

e
3L 2L RW K1 KF
Model

40 60 80
Simulated shoot %

d -sw 2 e m W

(=]
@

-8.25

o
N

-8.50

(=
=

Mean value (a.u.)
Mean value (a.u.)

-8.75

o

High Low High Low
Threat Threat

- *kk -
3 .040 3 3 1 &
& & o
[} [} ®
% .035 ‘_?’ 0005 S 10
> > [ 9
c [ =
§ .030 S 3
o o 3 8
= = =
i -.001
o High Low High Low 7 High Low
Threat Threat Threat

Fig. 3 Computational modeling results. a Schematic depiction of the two-level Hierarchical Gaussian Filter (HGF) model. The first level (X;)
represents the likelihood at trial t that a hostile outcome u (i.e, a gun) will ensue, whereas the second level (X,) encompasses the current
perceived rate of hostile outcomes. Within this model there were five free parameters of interest estimated from participants’ responses r (i.e.,
shoot or withhold): volatility w (speed of belief updates), mean second-level belief |1 (average expected likelihood of hostile outcomes),
uncertainty parameter o (accuracy of the belief), precision-weighted prediction errors € (contrast between expected and observed outcomes),
and exploration parameter { (propensity to switch responses and thus deviate from the current belief level). Green diamonds represent the
observed inputs (responses r and stimuli u), orange circles depict the five free parameters (w, i, 0, € and () estimated from the inputs, and
white ovals correspond to the model’s output, namely, trial-wise values of the current first- (X;) and second-level beliefs (X;). b Model
comparison results. 3 L: 3-level HGF, 2 L: 2-level HGF, RW: Rescorla-Wagner, K1: Sutton K1 model, KF: Kalman Filter. ¢ The winning model could
successfully reproduce participants’ behaviour. d Mean volatility estimates w were higher under high relative to low threat. e Mean value of
the second-level belief u parameter was higher under high relative to low threat. f Mean value of the second-level uncertainty parameter o
was higher under high relative to low threat. g Mean precision-weighted prediction errors € were reduced under high relative to low threat.
h Mean exploration readiness parameter { was reduced under high relative to low threat. *p < 0.05, BF Bayes Factor < 1; **p < 0.01, BF > 3;
***n < 0.001 and BF > 100.

unit square sigmoid function to allow for decision noise, which is captured

by the free parameter ¢ Table 2. Parameters of interest from the winning model.

Interpretation

. ¢
= H])( Parameter
Belief updating as changes occur

p(shoot) = | - — +( - -
B =)t) g+ =)

Within this model we were fundamentally interested in five free
parameters that indexed different aspects of HEX learning, namely: w, y, o,
g and (. These are detailed in Table 2 (along with an illustrative example)
and depicted in Fig. 3. We tested whether the mean value of these

Mean belief in hostile outcomes
Uncertainty/inaccuracy surrounding the belief
Discrepancy between expected and actual outcome

~ m™ QT g

Exploration readiness

parameters differed between the high- and low-threat conditions using
paired t-tests.

Structural equation modelling

Following Brazil et al. (2017), we inspected whether latent learning
parameters were associated with antisocial behaviour and personality
traits using structural equation modelling (SEM). Antisocial traits were
expected to be associated with reduced volatility estimates, higher mean
hostile beliefs, elevated variance/uncertainty in such estimates, larger
prediction errors. Variables were converted to z-scores to normalize the
data before running the analyses. The four aggression subscales were
defined to load on a latent trait aggression factor, which was regressed on

Translational Psychiatry (2023)13:197

The parameters can be exemplified as follows. Imagine that a person goes
often to a bar where brawls happen frequently. An individual with higher »
values would be quicker to assume a decrease in the level of danger when
there are no fights, whereas lower w values would indicate perseverance in
expecting brawls. Larger u values would indicate a higher estimated fight
rate. Uncertainty parameter o would index the accuracy of this perception,
such that a person with higher ¢ values would be more unsure about the
overall braw! likelihood. Higher ¢ values would indicate stronger surprise
when there is no fight. Finally, exploration readiness parameter ¢ underlies
how much a person’s responses deviate from the estimated brawl
likelihood, i.e., whether their behavior explores options inconsistent with
the inferred danger level.
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average participant-wise w, 4, 0, € and { values in high threat blocks. The
same model was fitted with mean parameter values from low threat blocks
to test whether links between antisocial traits and learning parameters
were general or rather condition-specific. We proceeded identically for
psychopathy, namely, the four psychopathy subscales were loaded on a
general latent factor [52], which was regressed on model-derived
parameters separately for high and low threat blocks. Because trait
aggression and psychopathic traits were highly correlated (r=0.639, see
Fig. S4), two alternative SEMs were tested: one with correlated psycho-
pathy and aggressiveness factors and one in which all aggression and
psychopathy subscales were loaded onto a single factor. The computa-
tional parameters were regressed on the latent variables in each model.

All SEM analyses were based on the n = 188 participants from whom we
had complete HGF and self-report data. To examine the robustness of our
findings, both standard estimation using lavaan [53] and Bayesian
estimation using blavaan [54] were performed on R version 4.0.5 [47]
and R Studio version 1.4.1106 [48]. Standard estimates were obtained with
lavaan’s default maximum likelihood estimator, whereas Bayesian esti-
mates were produced using blavaan’s Markov Chain Monte Carlo estimator
with 5 chains at 10,000 samples each (the first 5000 samples were
discarded as burn-in trials) and default wide normal priors (mean =0,
standard deviation = 10). Model fit indices and parameter estimates are
reported for both methods. As fit measures we provide chi-square (2, cut-
off for good fit p>0.05), Comparative Fit Index (CFl, cut-off for good
fit>0.95), root mean squared error of approximation (RMSEA, cut-off for
good fit < 0.05) and root mean squared residual (SRMR, cut-off for good
fit < 0.08) as recommended in SEM guidelines [55], as well as the Bayesian
Posterior Predictive p-values (PPP, cut-off for good fit > 0.15, best fit when
near 0.50) [56]. We report standardized regression coefficients and factor
loadings alongside 95% Credible Intervals (Crl) resulting from Bayesian
estimation as well as p-values derived from classical SEM. A result was
considered statistically significant when the 95% Crl did not include zero
and the p-value was below 0.05, i.e., only when both approaches yielded
converging results [12].

RESULTS

Task performance

Hostile expectation (HEX) learning task results. We first inspected
participants’ performance in the HEX learning task. There were
main effects of gun probability (F; ,6s = 74.37, p < 0.001, BF > 100)
and threat (F,63 = 16.92, p < 0.001, BF > 100) which were qualified
by an interaction between the two factors (F;,s=10.94,
p <0.001, BF > 100). As shown in Fig. 1c, participants shot most
frequently under high (59.71% + 0.86% [mean + standard error])
relative to low threat (55.29% + 0.87%) when gun probability was
high (tyes = 5.36, p < 0.001, BF > 100). Nevertheless, they shot at
near-chance level irrespective of the threat condition (high threat:
52.28% + 0.82%, low threat: 51.03% =+ 0.88%) when gun probability
was low (tyeg = 1.46, p = 0.144, BF = 0.019).

Regarding reaction times, there was no conclusive evidence for
effects of gun probability (Fi,65=21.68, p<0.001, BF=0.10),
threat (Fi65 =0.41, p=0.521, BF=0.06), or an interaction
(F1268 = 6.88, p < 0.001, BF < 0.01). This pattern was confirmed by
post-hoc t-tests, which revealed only marginally faster reaction
times when gun probability was low (t;sg=2.02, p=0.043,
BF=0.511) and no difference when it was high (tyeg =1.20,
p = 0.206, BF = 0.150). Thus, despite the apparently large F values,
Bayesian analyses indicated that there were no substantial
differences between conditions in reaction times (see Fig. S2).

Hostile interpretation bias task (HIBT) results

In the HIBT, there were main effects of emotion (F3 ;50 = 275.94,
p <0.001, BF > 100), intensity (F41000 = 94.30, p <0.001, BF > 100)
and their interaction (Fj33000 = 100.29, p <0.001, BF >100). As
shown in Fig. 2b, participants judged angry faces to be the most
hostile as function of intensity, followed by those showing disgust,
fear, and joy. There were also differences between categories in
reaction times, with main effects of emotion (F3;50= 16.69,
p <0.001, BF > 100), intensity (F4 1000 =38.91, p <0.001, BF > 100)
and, again, the interaction between both (Fi3000=5.87,

SPRINGER NATURE

p <0.001, BF > 100). Participants were quickest to judge happy
faces, followed by angry, disgusted, and fearful ones (see Fig. S5).

Correlations between task-based measures of hostile biases
We inspected for linear relationships between hostile biases as
assessed with the HEX and HIBT tasks (see Fig. S4 for all within-
and between-task correlations). There were positive correlations
between total percentage of shoot decisions and hostile
interpretations of angry (r=0.207, p=0.002, g=0.005 BF =
13.12) and disgusted facial expressions (r=0.188, p =0.006,
BF =5.88), but not of happy (r=0.040, g=0.643, p=0.557,
BF =0.19) or fearful ones (r=0.065 g=0.421, p=0.346, BF =
0.24). The strongest correlation was between shoot decisions
under high threat and hostile appraisals of angry faces (r = 0.238,
p<0.001, g=0.001, BF =54.49). Most crucially, the two latent
hostility factors were positively correlated (r=0.238, p <0.001,
BF = 54.98; Fig. 2¢).

Correlations between latent hostile factors and self-reported
antisocial tendencies

The latent factor derived from the HEX learning task was positively
correlated with self-reported aggressiveness (r=0.201, p = 0.004,
g=0.011, BF=7.72) and psychopathy (r=0.178, p=0.013,
g = 0.026, BF = 3.25), but not with hostile or benign attributions
in ambiguous situations, sensitivity to punishment or reward, or
risk-taking (all r < 0.146, p > 0.042, g > 0.072, and BF < 1.24; see Fig.
S6 for all correlations between task scores and self-reports). The
latent factor derived from the HIBT task was associated with lower
punishment sensitivity (r=—0.189, p=0.008, q=0.019, BF =
4.84), more hostile attributions in ambiguous scenarios (r = 0.246,
p <0.001, g=0.001, BF=53.91), and marginally lower benign
attributions (r=—0.165, p =0.021, g = 0.038, BF = 2.18), but not
with other self-report measures (all r<0.116, p>0.108, g > 0.163,
and BF <0.68). The HEX-derived factor was thus more closely
linked with overt manifestations of antisocial behaviour (aggres-
sion and psychopathy), whereas the one extracted from HIBT
scores was linked with social-cognitive (hostile attributions) and
motivational (reduced punishment sensitivity) factors associated
with aggressive and psychopathic traits. Hence, the observed
pattern of associations generally supports the validity of the HEX
and HIBT tasks.

Gender differences in task performance and self-reports

As reported in Table S1, men had higher scores than women in
the latent HEX factor (t=3.90, p<0.001, BF=38.79), likely
reflecting more shoot decisions across conditions. Nonetheless,
there were no gender differences in hostile interpretations of
human faces as indexed by the latent factor derived from the HIBT
task (t=0.28, p=0.779, BF=0.17). Men scored higher than
women in self-reported aggression (t =2.92, p = 0.003, BF = 8.72)
and psychopathy (t =4.49, p <0.001, BF > 100), whereas women
displayed more benign attributions in ambiguous scenarios
(t=2.74, p=10.006, BF =7.05). Men also reported to engage in
more risk-taking behaviours than women (t=2.72, p=0.007,
BF = 4.54). Women and men did not differ in hostile attributions,
or in punishment or reward sensitivity (all p > 0.039 and BF < 1.32).

Computational modelling results

A 2-level Hierarchical Gaussian Filter (HGF) model (Fig. 3a)
provided the best fit to the data (Fig. 3b). Although the HGF
model family had more free parameters than the other models,
the finding that the winning model was a 2- rather than a 3-level
HGF speaks against overfitting. We ran simulations with each
participant’s mean parameter estimates as priors to assess how
well the 2-level HGF could reproduce the observed values. The
total percentage of simulated and observed shoot decisions were
highly correlated (r=0.879, Fig. 3c). The average correlation
between estimated and simulated parameter trajectories were
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r=10.896 = 0.006 for the u parameter, r=0.997 £ 0.001 for the o
parameter, and r=0.933 £ 0.003 for the & parameter, suggesting
excellent parameter recovery (see also Fig. S7). Simulated
parameters w and { converged on their prior and thus showed a
perfect correlation with their estimated values.

We subsequently extracted average estimated parameter values
from the high and low threat conditions and compared them with
paired t-tests. Participants evinced greater (i.e, less negative)
volatility w (ty40 = 6.49, p <0.001, BF > 100; Fig. 3d), higher mean
beliefs u (t;40 =6.49, p<0.001, BF>100; Fig. 3e), increased
uncertainty o (ty40 = 6.55, p < 0.001, BF > 100; Fig. 3f) and stronger
(i.e., less negative) precision-weighted prediction errors in high
relative to low threat (g, ty40 = 12.25, p <0.001, BF > 100; Fig. 3g).
High threat also elicited lower exploration readiness (, albeit the
difference was substantially smaller than for all other parameters
and not supported by the Bayesian analysis (to40 = 2.21, p = 0.027,
BF = 0.799; Fig. 3h). Of note, there were no differences between
women and men in HGF-derived parameters (all p>0.281, all
BF < 0.27; Table S2).

Structural equation modelling results

Next, we inspected for relationships between learning-related
parameters in high threat blocks and the latent aggressiveness
factor (Fig. 4a). The resulting SEM had excellent fit to the data
(Frequentist: x3, =11.846, p=0.809, CFI=1, RMSEA < 0.001,
SRMR = 0.024 / Bayesian: PPP = 0.720) and converged successfully
(see Fig. S8 and Fig. S9). Aggressiveness was associated with lower
volatility values w (B=—0.240, p=0.014, 95% Crl=[—0.445,
—0.045]), greater mean beliefs y (B=0.723, p=0.001, 95%
Crl=[-0.489, —0.087]), higher uncertainty estimates o
(B=0.446, p <0.001, 95% Crl=1[0.245, 767]), and greater second
level precision-weighted prediction errors € (B =0.777, p =0.001,
95% Crl = [0.405, 1.382]), but not with the exploration parameter
(B=—-0.012, p=0.838, 95% Crl =[—0.137, 0.105]). Classical (i.e.,
non-Bayesian) regression coefficients were highly similar to
Bayesian ones and are reported in Table S3. We observed no
associations between the latent aggressiveness factor and average
learning parameters in the low threat condition (all p > 0.156 and
all 95% Crl including 0; see Table S4).

We then tested whether the same learning-related parameters
showed associations with the latent psychopathy factor (Fig. 4b).
The model fit the data excellently (Frequentist: x2, =16.157,
p=0513, CFl=1, RMSEA<0.001, SRMR=0.024 / Bayesian:
PPP = 0.546) and converged satisfactorily (see Fig. S10 and Fig.
S11). Psychopathy was related to lower volatility estimates w
(B=—0.235, p =0.044, 95% Crl = [—0.484, —0.003]), higher mean
beliefs u (B =10.633, p =0.010, 95% Crl =[0.127, 1.141]), increased
uncertainty estimates o (B=0.393, p=0.007, 95% Crl =[0.097,
712]), and higher second-level precision-weighted prediction
errors € (B=0.571, p=0.036, 95% Crl=[0.012, 1.138]). Psycho-
pathic traits also failed to show an association with the exploration
readiness parameter { (B =—0.009, p = 0.893, 95% Crl =[—0.155,
0.141]). Again, Bayesian and frequentist estimates were similar
(Table S5). There were no relationships between the latent
psychopathy factor and mean parameter values in the low threat
condition (all p>0.294 and all 95% Crl including 0O, see Table S6).

Alternative models had substantially worse fit, i.e., one with
correlated latent aggressiveness and psychopathy factors (Fre-
quentist: x2, =106.285, p<0.001, CFl=0909, RMSEA =0.079,
SRMR = 0.044 / Bayesian: PPP =0.001) and one with a general
antisocial factor (Frequentist: 2. = 151.407, p < 0.001, CFl = 0.848,
RMSEA = 0.097, SRMR = 0.054 / Bayesian: PPP <0.001). We did
thus not inspect these models further.

Sensitivity analyses showed that the main results held when
rerunning the analyses with 10 additional participants who missed
up to 50% of trials (see Table S7 and Table S8). Additionally, we fit
the same SEMs to women and men separately to inspect for
potential gender differences in the associations of aggressive and
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psychopathic traits with computational parameters in high threat
blocks (see Tables S9 to S12 for complete results). In women, all
effects remained significant (| B| =[0.426, 0.720], all p < 0.006 and
95% Crl not including zero) except for volatility w, which was not
associated with either trait aggression (B = —0.170, p = 0.070, 95%
Crl =[—0.366, 0.022]) or psychopathy (B = —0.138, p = 0.240, 95%
Crl =[-0.381, 0.097]). In men, effects of learning parameters on
aggressiveness failed to reach significance (all p > 0.101) but were
medium in size (|Bs|=[0.370, 0.515]), whereas associations
between these same parameters and trait psychopathy were
substantially lower (| Bs|=1[0.003, 0.424]). Regression coefficients
for exploration readiness { remained non-significant in all models
(| Bs|=10.036, 0.179], all p> 414, 95% Crl including zero). Factor
loadings of each questionnaire subscale on the corresponding
construct (aggression or psychopathy) remained substantial across
subsamples (|B|=1[0.553, .907], all p<0.001 and 95% Crl not
including zero). Finally, post-hoc power analyses for the structural
equation models revealed over 92% (aggression model) and 98%
power to falsify the fitted models in the event they were
misspecified (see Power Analyses in Supplementary Material).

DISCUSSION

In the present study we set out to test whether hierarchical
reinforcement-learning could account for the acquisition of
Hostile Expectations (HEX) in a task that required participants to
decide between aggressive and non-aggressive actions. We also
addressed whether HEX were more easily learned in a high-
relative to a low-threat context [41]. Finally, we inspected for
relationships between HEX and other forms of antisocial
behaviour and cognition. Specifically, we expected that aggressive
and psychopathic traits would be associated with higher and
more uncertain hostile beliefs, slower HEX updating (i.e., lower
volatility), and more pronounced prediction errors. There were
three key findings. First, HEX learning was best captured by a
Bayesian learning model that incorporated both specific outcome
expectations and their overall likelihood. Therefore, individuals did
not merely come to expect hostile outcomes but also estimated
the rate at which they ensued. Second, threat facilitated HEX
learning by virtue of stronger, increasingly variable, and more
volatile beliefs as well as through increased prediction errors.
Hence, a threatening context seems to induce more imprecise and
malleable hostility representations, which facilitates aggressive
responding. Third, aggressive and psychopathic personality traits
were linked with stronger and more uncertain hostile beliefs,
increased prediction errors, and reduced volatility estimates.
These results supported our hypotheses, demonstrating that
individuals with higher levels of aggression and/or psychopathy
are likely to develop solid but inexact hostility beliefs which then
become resistant to change.

Our findings indicate that participants shot more often in the
high relative to the low threat condition. This observation
agrees with previous studies using the shooting task, wherein
participants were more accurate under the prospect of punish-
ment [40, 41]. However, in these investigations participants did
not need to predict the opponent’s behaviour but had to react to
it, in line with other studies reporting a threat-boosted improve-
ment in accuracy in reaction time tasks [57-59]. Here, we show
that this effect extends to instrumental learning, so that the
presence of threat ultimately improves the prediction of hostile
behaviour. Computational modelling attributed this pattern to
elevated, uncertain, and quickly evolving hostility representations
under high relative to low threat, as well as stronger surprise when
these beliefs were contradicted. In the following we comment on
each of these findings.

We found that the presence of threat led to quicker belief
updates (i.e., higher volatility estimates) in response to changes in
the environment. Our results parallel previous reports of faster
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Fig. 4 Structural equation modeling results. a Linear relationships between the latent aggression factor and learning parameters in high
threat blocks (left) and loadings of the aggression factor on its four observed facets (right). b Linear relationships between the latent
psychopathy factor and mean learning parameters in high threat blocks (left) and loadings of the psychopathy factor on its four observed
facets (right). Solid lines denote regression coefficients, dashed lines denote factor loadings, and bold numbers denote statistically significant
associations between variables (p < 0.05 and 95% Bayesian Credible Interval not including zero).

belief updating when forming moral impressions of antisocial
individuals -who constitute a potential threat- relative to altruistic
ones [3, 60]. The present findings further show that swift updating
of beliefs is not only adaptive when dealing with threatening
individuals, but also in potentially harmful contexts. Therefore,
hostility representations are learned more quickly but are more
malleable under high threat.

We also observed increased hostile beliefs in the high as
compared to the low threat condition. In a high threat situation,
this pattern can be interpreted as a proneness to overlearn from
aversive events and thus establish hostile associations. Partici-
pants also formed more uncertain (i.e., less accurate) beliefs in
high relative to low threat contexts. Higher uncertainty estimates
improve associative learning as a function of pupil dilation and
subjective stress, indicating that physiological arousal facilitates
the acquisition of aversive associations [20]. The combination of
elevated and uncertain hostility beliefs thus resulted in a more
robust acquisition of hostile expectations, perhaps due to a threat-
dependent increase in arousal and alertness. This notion is further
supported by the finding that blocking the action of acetylcholine
(a key neurotransmitter for arousal maintenance) disrupts learning
under uncertainty by slowing belief updating and reducing
prediction errors [61]. In contrast, in the present study high threat
led to increased precision-weighted prediction errors, which
reflect sensitivity to unexpected events and have been shown to
engage midbrain dopaminergic structures assumed to underlie
social and sensory learning [22, 62]. Therefore, a potentially
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threatening environment partly potentiates HEX acquisition by
means of a greater sensitivity to changes in outcome probability.
The threat manipulation also led to a slight decrease in
exploration readiness, suggesting that participants engaged in
less exploration under high threat, i.e.,, responded more consis-
tently depending on the opponent’s perceived level of hostility.
Note that this effect should be interpreted with caution as it was
not supported by the Bayesian analysis. Still, such a notion concurs
with the reduction in random responding observed when
individuals learn probabilistic associations to benefit someone
(themselves or others) as compared to when no money is at stake
[63]. To sum up, a high threat context facilitates the acquisition of
aggressive responses by eliciting stronger, more variable, and
volatile hostility representations as well as an enhanced reactivity
to mismatching feedback.

We further inspected for a common hostile bias across learning
and perception using principal component analysis on scores from
the HEX and Hostile Interpretation Bias task (HIBT). Aggressive
individuals prioritize the processing of threatening over neutral
information, allocating more attentional resources to these stimuli
[64]. Such preferential threat processing has been proposed to
partly underlie hostile intent attribution [30, 65], and to facilitate
anger perception [66, 67]. It has been suggested that all hostile
biases tap onto a common mechanism, which will be expressed
differently depending on the cognitive process, be it perception
(interpreting ambiguous sensory cues as hostile), prediction
(expecting hostile outcomes in ambiguous situations), or
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attribution (assuming hostile intent behind neutral or ambiguous
acts) among others [11]. Yet, because this proposal is relatively
new and these phenomena have been studied in isolation,
support for a unified hostile bias is still preliminary. Although a
two-factor solution emerged from the analysis, the correlation
between the two latent factors could be indicative of separate,
albeit related hostile biases in the learning and perceptual
domains. This dissociation is corroborated by the observation
that more hostile and less benign attributions in ambiguous
scenarios were only associated with the HIBT -but not the HEX-
latent factor. The latent HIBT factor was further correlated with
lower punishment sensitivity but not with aggressive or psycho-
pathic traits, unlike previous research [34]. Rather, aggressiveness
and trait psychopathy were most strongly linked with the latent
HEX factor. These discrepant findings might be reconciled by the
notion that aggressiveness can bias threat processing in some
domains (e.g. excessively hostile appraisals of social situations
[11]) but sharpen it in others (e.g., anger perception [66, 67]). Our
results thus show that hostile tendencies in the perceptual and
social-cognitive domains partly extend to the instrumental
acquisition of aggressive responses during interpersonal confron-
tations. Future studies should test whether HEX acquisition also
generalizes to other cognitive functions, such as memory
(preferential encoding and retrieval of hostile information [68])
or perception in other sensory modalities (e.g., hostile interpreta-
tions of ambiguous vocalizations [69]). To that end, experimental
designs could be optimized so that tasks are more readily
comparable to each other. For instance, one could employ the
same stimuli to measure different cognitive processes (e.g.,
finding hostile words in a list vs keeping the same list in working
memory), or, complementarily, by measuring the same cognitive
process with different stimuli (e.g., selective attention to auditory
vs visual hostile cues).

We also uncovered multiple associations between the cognitive
processes involved in HEX acquisition with psychopathic person-
ality traits and aggression. First, aggressive and psychopathic traits
covaried with less volatile hostility representations, in line with
one of our main hypotheses. This finding suggests that the
environment was estimated to remain more stable by participants
as the level of trait aggression and psychopathy increased. It
should be noted that volatility is beneficial to learning, as it allows
for quicker adaptation [3]. Indeed, while volatility was higher in
the high threat condition, aggressive and psychopathic traits were
linked with lower volatility. Such a pattern is broadly consistent
with the well-documented impairments in reinforcement-learning
displayed by psychopathic individuals, who fail to flexibly adapt to
changes in the environment [16-19]. This deficit might be partially
due to an “exaggerated attentional bottleneck”, i.e., a tendency to
distribute attentional resources suboptimally and filtering out too
much relevant information when multiple streams of information
need to be processed [70]. It is possible that the presence of an
excessively active attentional bottleneck in individuals with
stronger psychopathic tendencies could have hampered the
monitoring of multiple sources of information in our task (i.e.,
the officer and the man), ultimately resulting in smaller belief
updates regarding volatility as part of the information required for
optimal belief updating is filtered out. Also, paranoid ideation -a
well-known risk factor for aggression [30]- has been linked to
lower volatility estimates during reversal learning, indicating more
rigid beliefs [21]. State anxiety has been similarly reported to
impair learning by reducing perceived volatility [26]. In contrast,
volatility overestimation has been rather associated with inter-
nalizing traits such as autism [71], deficits in emotional coping
[27], or chronic stress levels [20]. Therefore, externalizing
symptomatology seems to be characterized by an insufficient
adaptation to changes in the environment, whereas internalizing
symptoms would instead be linked with excessive belief updating.
In sum, the current results postulate volatility underestimation as a
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promising cognitive marker for aggressive and psychopathic
personality profiles.

Second, we discovered that beliefs about hostility were stronger
and less accurate in individuals scoring high in trait psychopathy
and/or aggression, supporting our hypotheses. In line with our
results, impulsive-irresponsible psychopathic traits have been
positively associated with uncertainty representations in the
insula and amygdala during threat conditioning [4]. In the present
investigation, we complement these findings by showing that
inaccuracy in the generated beliefs also potentiates instrumentally
acquired aggressive behaviour in persons with relatively higher
levels of aggression and psychopathy. Such a pattern might
render aggressive and psychopathic individuals more prone to
expect harm from others and thus respond in an indiscriminately
aggressive manner to ambiguous cues. Supporting this tenet,
psychopathic traits have been associated with enhanced risk-
taking under uncertainty [38] and trait aggression correlates with
more impulsive judgements of others’ hostility [72]. Similarly, a
study showed that aggressive individuals more readily deliver
electric shocks to persons whose face had been previously
coupled with an aversive stimulus [73]. The latter observation
suggests that aggressive and psychopathic traits ease the
translation of acquired aversive associations into overt aggressive
behaviour. Here, we extend this phenomenon to an instrumental
learning context, so that individuals with higher levels of
aggressiveness and psychopathy readily generalize aggressive
responses in threatening social encounters. Though such a
tendency might be adaptive when facing potentially harmful
individuals, it might result in maladaptive behaviour in most other
situations. Indeed, while a majority of studies reported learning
deficits in antisocial individuals [16], our correlation analyses relate
better HEX acquisition with higher levels of aggressiveness and
psychopathy. Note that this benefit occurred despite the under-
estimation of environmental volatility observed as a function of
trait aggression and psychopathy, which resulted in a more
sluggish belief actualization. In other words, persons with high
levels of aggressiveness and psychopathy formed more robust
and imprecise hostility representations, and adapted less to
changes in the environment. The present findings are consistent
with the notion that learning in psychopathy is dominated by
general valence encoding but inaccurate value estimation [74].
According to this view, psychopathic individuals can learn
whether a cue predominantly predicts good or bad outcomes
but fail to correctly approximate the true reinforcement or
punishment rates. Here, we additionally show that aggressiveness
similarly contributes to an inflexible consolidation of hostile
beliefs.

Third, the discrepancy between expected and obtained out-
comes (i.e, the prediction error) was larger as the level of
aggressive and psychopathic traits increased in our sample, in
accordance with our last hypothesis. This pattern reflects greater
surprise to the violation of expectancies in individuals with high
levels of these traits [61]. Previous studies have shown that
aggressive individuals display enhanced surprise-like neural
activity when HEX are violated [31, 32]. Our results agree with
these reports and further show how such a heightened deviance
monitoring facilitates hostility learning. These findings concur as
well with the above-mentioned link between psychopathy and
inaccurate associative learning. More recent proposals further
suggest that individuals with high levels of psychopathy use
relatively longer time windows to acquire stimulus-outcome
associations [75]. Our results expand this view by showing that
psychopathy is tied with a tendency to develop strong, noisy, and
slowly-evolving associations in threatening contexts and thus
show an enhanced sensitivity to hostile expectation violation.

It may be apparently puzzling that psychopathy and aggres-
siveness showed such a similar pattern of covariation with other
variables, considering the differences between both constructs.
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Nevertheless, pooled evidence indicates a substantial association
between psychopathy and aggression, which share features such
as impulsivity or poor behavioural control [76, 77]. Indeed,
although psychopathy has been traditionally linked to proactive
or instrumental aggression, it is now clear that psychopathic traits
also increase the risk for reactive or impulsive aggression [76-78].
Yet, the antisocial or criminal dimension of the psychopathy
questionnaire was only weakly to moderately -though signifi-
cantly- correlated with the verbal aggression (r=0.14), hostility
(r=0.18), and anger (r=0.23) scales of trait aggression (see Fig.
S12 for all scale intercorrelations). This might partly explain why
psychopathy and aggression did not load onto a single latent
factor, despite the correlation between questionnaire-derived
scores and the similar associations that both latent factors showed
with learning-related variables. Our results therefore add to the
literature by suggesting a computational substrate common to
both aggressive and psychopathic tendencies, and point towards
learning processes as a promising intervention target. A previous
study suggested that interventions based on attention to context
(e.g., reversal learning tasks) work best for individuals with
psychopathy, whereas persons with high reactive aggression
benefit most from affective cognitive control training (eg.
response inhibition tasks) [79]. Our findings tentatively suggest
that reinforcement learning tasks using more explicit hostile cues
might prove useful in the assessment and treatment of both
aggressiveness and psychopathic traits. This could potentially
improve not only the valence (i.e., less negative judgements) but
also the accuracy (i.e., correctly estimating danger) of the social
inferences made by individuals with high levels of psychopathy
and trait aggression.

All in all, we were able to demonstrate that the acquisition of
HEX can be linked to real-world indices of aggression and
psychopathy. The generalizability of our findings is nonetheless
curtailed by the use of a predominantly female community
sample, which is not readily comparable to clinical or forensic
populations, and of self-reports, which are notoriously affected by
social desirability [80]. Thus, it should be determined whether the
computational mechanisms outlined here can also aid the
prediction of overt antisocial behaviour in applied settings using
more extensive multi-method assessments, such as interviews or
reports from close others. Notably, computational parameters did
not differ by gender but were more strongly associated with
aggressive and psychopathic traits in women than in men.
However, the differing size of the female and male subsamples
hinders gender comparisons. Our behavioural measures may also
suffer from a lack of ecological validity. This is especially true for
the HIBT paradigm, as its superimposed face images are less
realistic than morphed expressions [66]. Moreover, the HIBT does
not allow to disentangle bias from accuracy [66, 67]. Finally, we
used a cross-sectional design and thus it is unclear how HEX are
maintained across the lifespan. Longitudinal and developmental
studies are required to characterize the long-term evolution of
cognitive hostility biases [8] and how it is shaped by certain life
events such as exposure to violence [60].

CONCLUSION

Taken together, our results shed light on the architecture of
hostile thought. We demonstrate that HEX acquisition can be
understood as a reinforcement-learning process that is sharpened
under high threat. Further, we report a link between instrumental
learning of aggressive responses and hostile appraisals of human
faces [11]. Finally, we show that aggressive and psychopathic traits
are linked with the development of strong, imprecise, and
temporally stable hostility beliefs as well as with increased
sensitivity to events that deviate from such representations. Our
findings thus provide a refined characterization of cognitive

SPRINGER NATURE

markers that might prove valuable in the understanding and
prediction of antisocial behaviour.
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