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ARTICLE INFO ABSTRACT
Keywords: Multisite machine-learning neuroimaging studies, such as those conducted by the ENIGMA Consortium, need to
Benchmark remove the differences between sites to avoid effects of the site (EoS) that may prevent or fraudulently help the
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creation of prediction models, leading to impoverished or inflated prediction accuracy. Unfortunately, we have
shown earlier that current Methods Aiming to Remove the EoS (MAREOS, e.g., ComBat) cannot remove complex
EoS (e.g., including interactions between regions). And complex EoS may bias the accuracy. To overcome this
hurdle, groups worldwide are developing novel MAREo0S. However, we cannot assess their effectiveness because
EoS may either inflate or shrink the accuracy, and MAREoS may both remove the EoS and degrade the data. In this
work, we propose a strategy to measure the effectiveness of a MAREOS in removing different types of EoS. FOR
MAREOS DEVELOPERS, we provide two multisite MRI datasets with only simple true effects (i.e., detectable by
most machine-learning algorithms) and two with only simple EoS (i.e., removable by most MAREoS). First, they
should use these datasets to fit machine-learning algorithms after applying the MAREoS. Second, they should use
the formulas we provide to calculate the relative accuracy change associated with the MAREOoS in each dataset
and derive an EoS-removal effectiveness statistic. We also offer similar datasets and formulas for complex true
effects and EoS that include first-order interactions. FOR MACHINE-LEARNING RESEARCHERS, we provide an
extendable benchmark website to show: a) the types of EoS they should remove for each given machine-learning
algorithm and b) the effectiveness of each MAREOoS for removing each type of EoS. Relevantly, a MAREoS only able
to remove the simple EoS may suffice for simple machine-learning algorithms, whereas more complex algorithms
need a MAREOS that can remove more complex EoS. For instance, ComBat removes all simple EoS as needed for
predictions based on simple lasso algorithms, but it leaves residual complex EoS that may bias the predictions
based on standard support vector machine algorithms.

1. Introduction (Albajes-Eizagirre et al., 2019). This need for larger sample sizes is also a
reality for machine-learning neuroimaging, where small studies may fail

Magnetic resonance imaging (MRI) researchers often pool data from to predict or fall into overfitting (Hosseini et al., 2020). However, com-
different sites to achieve more statistical power to detect true differences bining data from different sites is not innocuous. Even if consortiums
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such as ENIGMA use harmonized protocols (Thompson et al., 2014),
there are still differences due to varying scanning devices and acqui-
sition sequence parameters. These differences may introduce effects of
the site (EoS) that bias the analyses (Solanes et al., 2021).

For instance, imagine we conduct a two-site MRI study to investigate
whether we may use baseline MRI to predict the subsequent response
to a medication. Imagine also that, by chance, 80% of patients in site A
respond to the drug, whereas only 20% in site B. Finally, imagine that
site A’s MRI device makes the images very bright and site B’s device
very dark. With these settings, a machine-learning algorithm could pre-
dict whether a patient will respond or not, exclusively using the differ-
ence in images’ brightness between the two MRI devices. In other words,
the machine-learning model would predict that patients with bright im-
ages will respond, whereas patients with dark images will not. And the
machine-learning model would be pretty successful: it would show 80%
accuracy! However, this accuracy would be false, inflated, artifactual,
exclusively based on an EoS. The balanced accuracy (the average of sen-
sitivity and specificity) separately calculated for each site would be just
50%, like tossing a coin.

Due to the potentially high biases introduced by EoS, researchers
worldwide are developing novel Methods Aiming to Remove the EoS
(MAREOS). A common and old MAREOoS is covarying for the site in the
linear model, preferably coded as a random-effects factor (i.e., a mixed-
effects analysis) (Favre et al., 2019). Another usual MAREOS is ComBat
(Johnson et al., 2007), a batch adjustment method developed for ge-
nomics data. Several groups have recently adapted this MAREoS to MRI
datasets (Fortin et al., 2018; Radua et al., 2020).

However, we have shown previously that current MAREoS do not
entirely remove all differences between sites. Worryingly, these differ-
ences may either inflate or shrink the accuracy. In other words, machine-
learning algorithms may either use the remaining EoS “fraudulently”,
thus inflating accuracy rates, or fail to detect true effects due to the
noise associated with EoS, thus shrinking accuracy rates (Solanes et al.,
2021). While all MAREoS can remove simple additive differences, we
are not aware of a MAREOS able to remove complex EoS, such as dis-
crepancies in covariance (i.e., the interaction between brain regions).
To avoid reporting biased accuracies, we have provided formulas and
an R package to unbiasedly estimate the multisite-corrected accuracy in
the presence of residual EoS (Solanes et al., 2021). This package may be
helpful to ensure that the EoS do not bias the reported accuracy. How-
ever, the goal of the community should be to develop a novel MAREo0S
able to remove complex EoS entirely.

Unfortunately, MAREoS developers may face a paradox. To our
knowledge, there is no straightforward way to measure the EoS-removal
effectiveness. For example, in data with EoS and true effects, a MAREo0S
may yield higher accuracy than another MAREOoS for two opposite rea-
sons. It may either reduce the noise associated with EoS (improving the
detection of true effects) or fail to remove the EoS (leading to higher ac-
curacy inflation). On the other hand, in data with only EoS and no true
effects, a MAREoS may yield a lower accuracy than another MAREoS for
two opposite reasons again. It may either remove the EoS better (mini-
mizing the accuracy inflation) or degrade the data more (worsening the
detection of true effects).

To overcome this problem, we designed an approach to objectively
measure the removal of EoS and the degradation of the data of a given
MAREOS. Furthermore, we also provide: a) datasets to conduct these
measurements and b) a benchmark website to allow machine-learning
researchers readily know the most appropriate MAREoS depending on
the situation.

2. Methods

The strategy presented in this paper builds on the study of the change
in accuracy associated with a MAREoS. This accuracy change has oppo-
site meanings depending on whether the dataset has only EoS (i.e., no
true effects) or only true effects (i.e., no EoS). In datasets with only true
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effects, an accuracy decrease should only be due to data degradation, a
side effect of the MAREOS. Conversely, an accuracy decrease in datasets
with only EoS should be due to a correct EoS-removal (plus some poten-
tial data degradation). We have noted above that accuracy increases are
possible in datasets with both true effects and EoS since the noise associ-
ated with EoS may shrink the accuracy (Solanes et al., 2021). However,
to simplify the following calculations, we tried to avoid datasets mixing
true effects and EoS.

We first describe the datasets and the specific machine-learning al-
gorithm that MAREoS developers should apply to achieve that differ-
ences between MAREoS depend only on the MAREoS (while not on the
datasets or machine-learning algorithms). Afterward, we present the for-
mulas to measure the effectiveness of a MAREoS. Finally, we show an
example with the Johnson-Fortin-Radua version of the ComBat MAREoS
(Fortin et al., 2018; Johnson et al., 2007; Radua et al., 2020) (script
available at http://enigma.ini.usc.edu/protocols/statistical-protocols/).
Readers only interested in the strategy may directly read the section
about measuring the EoS-removal effectiveness of a MAREOS.

2.1. Description of the datasets and the machine-learning algorithm

Each simulated dataset includes the baseline MRI data (cortical
thickness, cortical surface area, or subcortical volumes) from ~1000 pa-
tients from 8 scanner sites, two baseline clinical covariates, and the sub-
sequent responses to a given treatment. The simulated studies would aim
to predict the response to the treatment (response vs. no response) from
the baseline MRI data (Figure 1). The latter follow normal distributions
like those returned by FreeSurfer (Radua et al., 2020) and have linear
relationships with two simulated clinical covariates. In this section, we
first describe the datasets (along with the machine-learning algorithm)
to familiarize developers with them. Afterward, we briefly report how
we created the MRI data for interested readers.

Two datasets have only simple EoS (i.e., neither true effects nor
complex EoS). The lack of true effects means no relationship between
the MRI data and the response. Therefore, machine-learning algorithms
should not predict the response. Accuracy should be around 50%, like
tossing a coin. However, there are substantial simple differences across
sites in response probability and MRI data (e.g., the cortex is systemat-
ically measured thicker in some devices). Most machine-learning algo-
rithms may use these simple EoS to “fraudulently” predict the response,
inflating the accuracy. These simple EoS should be removable by most
MAREOS.

Two other datasets have only simple true effects (i.e., neither EoS nor
complex true effects). Thus, there are significant simple relationships
between MRI data and the response to treatment (e.g., responders have
thicker cortices). Therefore, most machine-learning algorithms should
predict the response with >50% accuracy.

To predict the treatment response using the brain imaging data,
MAREo0S developers should conduct a ten-fold cross-validation us-
ing our specific fold distribution. Within each fold, they should
fit a lasso algorithm in which the variable to predict is the re-
sponse to the treatment (coded binarily), and the predictors are the
MRI data. For instance, in R, we could use the “glmnet” library
(Friedman et al., 2010). Developers may download the specific R scripts
from https://www.imardgroup.com/mareos-benchmark/

We chose the simple lasso because we assumed it can only detect
simple effects. We reasoned that it is a kind of linear model, and lin-
ear models cannot detect complex effects (e.g., interactions or unknown
others) unless they are specifically modeled.

We also created datasets with complex true effects or EoS, including
first-order interactions between two brain regions or nuclei. To assess
the effectiveness of a MAREO0S in removing first-order interaction-based
complex EoS, we propose using a lasso algorithm with a design matrix
that includes the first-order interactions. We chose the lasso with first-
order interactions algorithm because, again, we assumed that, being a
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Figure 1. Location of the cortical regions and subcortical nuclei whose thickness, surface area, or volume we provide in the datasets.

linear model, it can only detect simple or first-order interaction-based
effects.

We encourage other researchers to describe other complex EoS, cre-
ate the respective datasets, and add them to the MAREoS benchmark
website.

2.2. Creation of the datasets

For the interested reader, we will briefly report how we created each
of these MRI datasets. We first generated normally distributed random
data for each FreeSurfer region/nucleus, with means and standard de-
viations similar to real data (Radua et al., 2020). Then, to create simple
EoS, we added differences between sites:

B

y,‘,"j = §r.i : (yr,i,j - yr,i,~) + Vi, + Yri

where y,;; is the cortical thickness, cortical surface area, or subcorti-
cal volume of the r! ROI from the j* individual of the i" site, and 6, ;
and y,; are the multiplicate and additive EoS of the i site in the rth
ROL We set both 6,; and y,; to follow normal distributions across the
regions of a site, and é.; and y. ; to follow normal distributions across the
sites. For further information about normally distributed multiplicative

and additive effects, please see (Radua et al., 2020). To create interac-
tions between ROIs, we swapped (between patients) the cortical thick-
ness, cortical surface area, or subcortical volume of an ROI of a site to
create positive or negative correlations with another ROI. For instance,
imagine a site with only five patients where we aim to create a positive
correlation between ROIs A and B. If the patient values in ROI A were
[12,13,14,15,16], and the patient values in ROI B were [6,9,10,8,7], the
correlation would be nearly null (r=0.1). However, after swapping pa-
tient values 10 and 7 in ROI B (i.e., [6,9,7,8,10], the correlation would
be 0.7. Finally, we added some value to the responders to create true
effects. After conducting these transformations, we added the effects of
the covariates (adding some value multiplied by the covariate), trun-
cated the resulting values to avoid outliers, and rescaled the data to be
like FreeSurfer again.

We created many datasets, but we chose some that effectively only
showed EoS or only showed true effects and were varied in features
and BAC. To know which only showed EoS or only showed true ef-
fects, we used a logistic regression model to predict the response and
calculated the accuracy using both standard formulas and the “mul-
tisite.accuracy” R package, which corrects for the site (Solanes et al.,
2021). We considered “datasets with only EoS” those with ~50% mul-
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Table 1
Example of measuring the simple effects of the site (EoS)-removal effectiveness
for ComBat using the “simple” datasets.

Algorithm: lasso without interactions
Relative accuracy

Dataset Balanced accuracy change (RAC)
Without
MAREo0S With ComBat
“Simple EoS #1” 74% 50% 100%
“Simple EoS #2” 75% 48% 107%
Average RAC simpe gos): 100%
“Simple true 73% 73% 0%
effects #1”
“Simple true 82% 82% 0%
effects #2”
Average RAC[simplz true effects]” @ 0%
Simple EoS-removal effectiveness: (V) 100%

MAREoS: Method Aiming to Remove the EoS.

@ Average RACs and FoS-removal effectiveness are limited to O-
100%. These numbers may differ slightly from those reported at
https://www.imardgroup.com/mareos-benchmark/ because the latter are
based on a parallel collection of datasets for which the variable “response” is
not public.

tisite accuracy — even if they showed high raw accuracy. Similarly, we
considered “datasets with only true effects” those that showed similar
(high) raw and multisite accuracies (Solanes et al., 2021).

2.3. Measurement of the EoS-removal effectiveness of a MAREoS for
simple EoS

As detailed above, each dataset contains baseline multisite MRI
data from patients and the subsequent responses to a given treatment.
First, separately for each dataset and within a ten-fold cross-validation
scheme, the developers must use the training subset to fit and apply a
MAREOS to remove the EoS, find and remove the linear effects of two
clinical covariates, fit the simple machine-learning algorithm, and use
all these models to predict whether patients in the test subset respond
to treatment. Second, again separately for each dataset, the developers
must calculate the predictions’ sensitivity, specificity, and balanced ac-
curacy (BAC). The sensitivity is the percentage of responders correctly
predicted to respond. The specificity is the percentage of non-responders
correctly predicted not to respond. The BAC is the average of sensitiv-
ity and specificity. Relevantly, the developers must calculate the BAC
using these basic formulas. In other words, they cannot correct the site
with the “multisite.accuracy” R package (Solanes et al., 2021) that we
would otherwise recommend. The reason is that we need uncorrected
accuracies to measure the EoS-removal effectiveness of a MAREoS.
Developers may download the specific R scripts to conduct all these
steps from https://www.imardgroup.com/mareos-benchmark/. After-
ward, they must perform the following calculations to measure the EoS-
removal effectiveness of the MAREoS.

The first calculation, also performed separately for each dataset, is
the relative accuracy change (RAC):

RAC = BAC without MARE0S] — [BAC]
" [BAC without MARE0S] — 50%

To illustrate the idea, Table 1 shows the RAC calculations in the
“Simple EoS #1” and “Simple true effects #1” datasets using a standard
support vector machine (SVM) algorithm and ComBat (see details later).
In the dataset with simple EoS, BAC was 74% when we fitted the SVM
without applying any MAREOoS. Using a MAREoS, the (EoS-inflated) BAC
decreased to 50%. Then, RAC e rosy In this dataset would be 100%
(i.e., the accuracy is 100% closer to 50%). We could naively interpret
that the MAREoS has reduced the bias by 100%. However, in the dataset
with simple true effects, BAC decreased from 73.05% to 73.02% when
using a MAREoS due to an undesirable potential side effect: data degra-
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dation. Then, RAC smpie rrue effects; 10t this dataset would be 0.14% (i.e.,
due to data degradation, the accuracy is 0.14% closer to 50%).

At a theoretical level, it might be interesting to note that the for-
mula of the RAC would also work for accuracy increases — possible in
datasets with both true effects and EoS. In such datasets, the EoS might
prevent the machine-learning algorithm from fully detecting the true
effects. For instance, BAC could be 70% before a MAREoS, while 75%
after the MAREOoS, for what RAC would be -25%, now meaning that the
accuracy is now 25% farther from 50%. However, this RAC would be
little informative because we would know neither the amount of EoS
removed nor whether there was also data degradation.

Turning to the measurement of the EoS-removal effectiveness, the
second calculation consists of adjusting the average RAC inpie gosy (i-€.5
the naive bias reduction) with the average RAC simpie rue effects) (i-€-, due
to data degradation) to derive the EoS-removal effectiveness:

EoS — removal effectiveness

mean ( RAC[simple EoS] ) — mean (RAC[simple true effects] )

100% — mean (RAC[simpletrue effects] )

Limiting the average RACs and the EoS-removal effectiveness to 0-
100% may be sensible.

Going back to Table 1, if a MAREOS shows RAC simpie gos7 = 100%
(a naive 100% reduction in bias) and RACgmple true effectsy = 0-14% (a
0.14% decrease due to data degradation), then the simple EoS-removal
effectiveness was 100%. In the datasets with only simple EoS, we may
assume that the MAREoS would first remove simple EoS, reducing the
accuracy. And afterward, it would degrade the data leading to (mini-
mally) decreasing the remaining accuracy (Figure 2, A1). Or vice versa,
we may assume that the MAREoS would first degrade the data, (mini-
mally) decreasing the accuracy. And afterward, it would remove simple
EoS, reducing the remaining accuracy (Figure 2, A2). Data degradation
may seem negligible in this example, but it might be relevant in others.

2.4. Measurement of the EoS-removal effectiveness of a MAREoS for
complex EoS

The overall strategy for measuring how well a MAREoS removes
complex EoS is the same as for measuring how well a MAREoS removes
simple EoS. However, datasets with complex EoS may also include sim-
ple true effects or simple EoS, and the MAREoS may remove both simple
and complex EoS. Therefore, we may wish to subtract the part of the BAC
attributable to simple effects as follows:

BAC[compleXA,corrected] = BAC[complex] - (BAC[sfmpIe] - 0'5)

where BAC | ,mpiexj 1S the BAC obtained with the complex machine-
learning algorithm (e.g., a lasso with first-order interactions), BAC gimpie;
is the BAC obtained with the simple machine-learning algorithm (i.e.,
the lasso without interactions), and BAC jcomplex corrected] 15 the BAC compiex
after “subtracting” the simple effects.

One way to see this subtraction from a different perspective is to
decompose the accuracy of the complex machine-learning algorithm.
Imagine that we have a sample of 100 patients, half responders. Suppose
we predict randomly, simply tossing a coin. In that case, we will guess
correctly by chance half of the time for what we expect to predict about
50 individuals correctly. Now imagine that a simple machine-learning
algorithm correctly predicts 70 individuals. However, we can decom-
pose this number as 50+20, with the 50 corresponding to the number
of individuals that we can correctly predict tossing a coin and the 20
corresponding to the extra accuracy provided by the simple effects de-
tected by the simple machine-learning algorithm. Finally, imagine that a
complex machine-learning algorithm correctly predicts 85 individuals.
Again, we can decompose this number as 50+20+15, with the 20 corre-
sponding to the extra accuracy provided by the simple effects detected
by the complex machine-learning algorithm and the 15 corresponding
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A. Datasets with EoS (and no true effects)
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B. Datasets with true effects (and no EoS)
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Figure 2. Example of the relative accuracy changes (RAC) measurement in datasets with only simple effects of the site (EoS) and only simple true effects, and their

relationship with naive EoS-removal, data degradation, and EoS-removal.

Table 2

Example of measuring the simple effects of the site (EoS)-removal effectiveness for ComBat

using the “interaction” datasets.

Algorithm: lasso without interactions

Dataset Balanced accuracy

Relative accuracy
change (RAC)

Without MAREoS

With ComBat

“Interaction EoS #1” 63%
“Interaction EoS #2” 66%
Average RAC gpe gos) @

“Interaction true 64%
effects #1”
“Interaction true 60%
effects #2”

Average RAC[simple true effects] s @
Simple EoS-removal effectiveness: (

50% 100%
50% 100%
100%
64% -1%
60% -4%
0%
100%

MAREOS: Method Aiming to Remove the EoS. For “Interaction true effects #2”, note that
the balanced accuracy is indeed 60.0% without MAREoS and 60.4% with ComBat.
@ Average RACs and EoS-removal effectiveness are limited to 0-100%.

to the extra accuracy offered by the complex effects beyond the simple
effects.

To exemplify the method, we report the calculations for the “Inter-
action EoS #2” and “Interaction true effects #2” datasets using SVM
(Table 6, see details later). In the dataset with complex EoS, BAC ompiex]
was 87% when we fitted the SVM without applying any MAREoS. How-
ever, SVM predictions were likely not exclusively based on complex
effects but also simple effects. To quantify these simple effects, we
used a simple lasso, which showed a BAC g,y of 66% (Table 2), i.e.,
16% more than tossing a coin. Removing the part of accuracy due
to simple effects with the formula above, we estimated that SVM’s

BAC [complex, corrected) Was 87% - 16% = 71%. Using a MAREoS, SVM’s
BAC compiex) decreased to 66% and lasso’s BAC impe; to 50% (i.e., 0%
over tossing a coin, Table 2). We thus estimated that using a MAREOoS,
SVM’s BAC complex,corrected] WaS 66% - 0% = 66%. Finally, we could esti-
mate that RAC omplex gos] Was 21% using the same formula as for simple
effects:

[BAC without MAREOS][complex.currecfed] - [BAC][cumpIex.correL‘led]

[BAC without M AREoS] 1 —50%

RAC[cumpchJ =

complex,corrected

We did the same calculations for the dataset with complex true
effects. Before applying any MAREOS, SVM’s BAC compiex; Was 67%
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(Table 6) and lasso BACp; 60% (i.e., 10% over tossing a coin,
Table 2), resulting in SVM’s BAC compiex,correctedy = 67% - 10% = 57%.
Using a MAREOS, SVM’s BAC ynpiex; Was 67% (Table 6), and lasso’s
BAC[sim.ple] was 60% (i.e., 10% over tossing a coin, Table 2), result-
ing in SVM’s BAC|complex,corrected) = 67% - 10% = 57%. We could
then estimate RAC complex true effectsj=0-25%. Finally, if RAC,mplex Fos7
was 21% (a naive 21% reduction in complex EoS-related bias) and
RAC [complex true effects = 0-25% (a 0.25% decrease due to complex EoS-
related data degradation), then the complex EoS-removal effectiveness
was (minimally lower than) 21%.

2.5. Example: ComBat

To exemplify how to measure the EoS-removal effectiveness of a
MAREOoS, we applied ComBat to the public datasets provided. We then
conducted the calculations needed to measure the EoS-removal effec-
tiveness.

First, we downloaded the  public datasets from
https://www.imardgroup.com/mareos-benchmark/ Each dataset
is a table with the following columns: the identification of the
simulated individual, the MRI data (cortical thickness or sur-
face area or subcortical volumes), the site, the values of the two
clinical covariates, and the distribution in folds. We also down-
loaded the Johnson-Fortin-Radua version of the ComBat MAREoS
(Fortin et al., 2018; Johnson et al., 2007; Radua et al., 2020) from
https://enigma.ini.usc.edu/protocols/statistical-protocols/

The following analyses refer to one dataset. For fold 1, we defined the
training subset as individuals in folds 2-10 and the test subset as the set
of individuals in fold 1. In the training subset: a) we fitted the ComBat
model with the function “combat _fit”; b) we removed the EoS according
to the ComBat model with the function “combat_apply”; c) we fitted re-
gressions to estimate the linear effects of the two clinical covariates (a
separate linear regression per each brain region); d) we removed the lin-
ear effects of the clinical covariates according to these linear regressions;
e) and we fitted the lasso algorithm (without interactions when assessing
simple effects, or with first-order interactions when assessing complex
effects including first-order interactions). Afterward, in the test subset:
a) we removed the EoS according to the ComBat model (fitted with the
training subset) with function “combat_apply”; b) we removed the lin-
ear effects of the clinical covariates according to the linear regressions
(fitted with the training subset); c¢) and we applied the lasso algorithm
(fitted with the training subset) to predict the individual responses. After
repeating the same procedure for folds 2-10, we had predicted the re-
sponse in all individuals. We then proceeded to calculate the sensitivity,
specificity, and BAC. Finally, we combined the BACs with and without
ComBat to calculate the RAC. We provide the R scripts to conduct such
calculations at https://www.imardgroup.com/mareos-benchmark/

After conducting these analyses for each “Simple” dataset (Table 1),
we had a RAC for each of the “Simple EoS” datasets (100% and 107%),
which we averaged (and limited to 0-100%) to obtain an average
RAC simpie Eos7 ©f 100%. Similarly, we had a RAC for each of the “Simple
true effects” datasets (0% and 0%), which we averaged to obtain an av-
erage RAC gimpie rue effectsy Of 0%. Finally, we calculated the EoS-removal
effectiveness (100%). Therefore, we should conclude that ComBat en-
tirely removes the bias related to simple EoS (100%) and has negligible
data degradation (0%).

The results were nearly identical when we used a lasso algorithm
without interactions for the “Interaction” datasets (Table 2). The RACs
for the “Interaction EoS” datasets were 100% and 100% (average
RAC simpie Fos] = 100%), and the RACs for the “Interaction true effects”
datasets were -1% and -4% (average RAC smpie true effectsy = 0%), lead-
ing to EoS-removal effectiveness = 100%. Therefore, we should conclude
again that ComBat entirely removes the bias related to simple EoS
(100%) and has negligible data degradation (0%). These datasets had
complex effects (e.g., the multiplication of pairs of brain regions dif-
fered between groups). However, these effects are not detectable by the
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lasso algorithm without interactions; thus, they did not influence these
calculations.

The results were very different when we analyzed the same “In-
teraction” datasets using a lasso algorithm with first-order interactions
(Table 3). First, all BAC were substantially higher (e.g., 80% instead of
63% for “Interaction EoS #1” without MAREoS). This increase is be-
cause this machine-learning algorithm could detect the first-order inter-
actions present in these datasets. However, we must highlight here that,
as we saw in the previous paragraph, these datasets also included simple
effects, which we had to subtract before specifically studying the com-
plex effects. For instance, for “Interaction EoS #1” without MAREoS,
BAC was 80%, but we subtracted 13% (i.e., the BAC of the simple
algorithm, 63%, minus 50%) for what the corrected BAC was 80% -
13% = 67%. Once we corrected all BACs, we proceeded as before. The
RACs for the “Interaction EoS” datasets were -5% and -13% (average
RAC [ complex Fos) = 0%), and the RACs for the “Interaction true effects”
datasets were 3% and 5% (average RAC complex true effects] = 4%), leading
to EoS-removal effectiveness = 0%. Therefore, we should conclude that
ComBat does not remove the bias related to complex EoS (0%) and may
show minor data degradation (4%).

2.6. Other machine-learning algorithms

We repeated the above calculations with standard random forest
(Liaw and Wiener, 2002), support vector machine (Meyer et al., 2021),
and gaussian processes (Karatzoglou et al., 2004) algorithms to provide
insights on the use of MAREoS with these machine-learning algorithms.
We used the default options of the "', ", and " R packages, which in-
volve radial basis function kernels for support vector machine and gaus-
sian processes. We show again the R code to conduct such calculations
at https://www.imardgroup.com/mareos-benchmark/.

With the “simple” datasets, BACs, RACs, and simple EoS-removal ef-
fectiveness were similar when using lasso, random forest, support vector
machine, or gaussian processes algorithms (Table 4). There were differ-
ences between algorithms, but they were small and likely due to chance.

The analysis of the “interaction” datasets showed that the random
forest (and, to a lesser extent, the support vector machine) algorithm
detects the complex effects in these datasets (Table 5). In contrast, the
Gaussian processes algorithm only detects some. We thus repeated the
calculations of complex EoS-removal effectiveness for the random forest
and support vector machine algorithms.

Table 6 shows that random forests and support vector machine algo-
rithms yielded RACcompiex rosy Substantially different from the 0% cal-
culated using the lasso algorithm with first-order interactions. As intro-
duced earlier, we assumed that lasso with first-order interactions could
detect only one type of complex EoS: those based on first-order interac-
tions. Thus, & RAC compiex rosy Of 0% meant that ComBat does not remove
these complex EoS. However, RAC complex fos7 Were 34-52% for random
forest and support vector machine algorithms. Therefore, we should con-
clude that random forest and support vector machine algorithms detect
a mixture of complex EoS, some of which are removable by ComBat and
others are not.

2.7. Benchmark website

For machine-learning researchers, the website
(https://www.imardgroup.com/mareos-benchmark/) includes informa-
tion about the types of effects detectable by different machine-learning
algorithms and the effectiveness of MAREOS in removing different types
of EoS. See Figure 3 for a diagram of the steps to choose an appropriate
MAREOS for a specific study. Note that the numbers in the website may
be slightly different from those in the manuscript because the former
are based on a parallel collection of datasets for which the variable
“response” is not public. We created the latter datasets to keep objective
ranks of the effectiveness of the different MAREOS for different types of
EoS.
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Example of measuring the “complex effects of the site (EoS) including interactions”-removal effectiveness for ComBat using the “inter-

action” datasets.

Algorithm: lasso with first-order interactions

Relative accuracy

Dataset Balanced accuracy Corrected balanced accuracy change (RAC)
Without MAREoS With ComBat Without MAREoS With ComBat

“Interaction EoS #1” 80% 68% 67% 68% -5%

“Interaction EoS #2” 85% 71% 69% 71% -13%

Average RAC compiex pos)’ 0%

“Interaction true 81% 81% 67% 67% 3%

effects #1”

“Interaction true 76% 75% 66% 65% 5%

effects #2”

AVerage RACompiex e sy’ %

“Complex EoS including interactions”-removal effectiveness: 0%

MAREO0S: Method Aiming to Remove the EoS.

@ Subtracting the simple effects, estimated as BAC with lasso without interactions minus 50%.

® Average RACs and EoS-removal effectiveness are limited to 0-100%. These numbers may differ slightly from those reported at
https://www.imardgroup.com/mareos-benchmark/ because the latter are based on a parallel collection of datasets for which the variable

“response” is not public.

Table 4

Alternative measurement with standard random forests (RF), support vector machine (SVM), and Gaussian processes (GP) algorithms of the simple effects
of the site (EoS)-removal effectiveness for ComBat using the “simple” datasets.

Algorithms: random forests (RF), support vector machine (SVM), and Gaussian processes (GP)

Dataset Balanced accuracy Relative accuracy change (RAC)

Without MAREoS With ComBat

RF SVM GP RF SVM GP RF SVM GP
“Simple EoS #1” 77% 78% 78% 54% 54% 52% 84% 85% 92%
“Simple EoS #2” 75% 75% 75% 55% 52% 51% 81% 92% 94%
Average RAC simpie pos) 82% 88% 93%
“Simple true effects #1” 74% 72% 71% 74% 72% 71% 0% 1% 2%
“Simple true effects #2” 84% 83% 81% 83% 83% 81% 1% 1% -1%
Average RAC simpe tue effects)” 0% 1% 0%
“Simple-based EoS”-removal effectiveness: () 82% 88% 93%

MAREO0S: Method Aiming to Remove the EoS.
@ Average RACs and EoS-removal effectiveness are limited to 0-100%. These numbers may differ slightly from those reported at
https://www.imardgroup.com/mareos-benchmark/ because the latter are based on a parallel collection of datasets for which the variable “response”

is not public.

Table 5

Detection of complex effects including interactions by standard random forests (RF), support vector machine (SVM), and Gaus-
sian processes (GP) algorithms in the “interaction true effects” datasets.

Algorithms: lasso with first-order interactions (LFOI), random forests (RF), support vector machine (SVM), and Gaussian processes (GP)
Balanced accuracy

Dataset

Extra accuracy compared to lasso without

Observed interactions

Lasso

without

interac-

tions LFOI RF SVM GP LFOI RF SVM GP
“Interaction true 64% 81% 84% 73% 65% +17% +20% +9% 1%
effects #1”
“Interaction true 60% 76% 77% 67% 62% +16% +17% +7% 2%
effects #2”
Average extra accuracy: +16% +18% +8% 2%

MAREO0S: Method Aiming to Remove the EoS.
@ These numbers may differ slightly from those reported at https://www.imardgroup.com/mareos-benchmark/ because the
latter are based on a parallel collection of datasets for which the variable “response” is not public.

Developers wanting to add a MAREoS to the website should down-
load these datasets and conduct calculations analogous to the ones
described in the example, except for not fitting/applying the simple
machine-learning algorithm because the response to the treatment is
non-public. Instead, they must save the pre-processed MRI data of the

training and test subsets of each fold, along with an identification of
these sets (e.g., “train_fold1”, “test_fold1”, "train_fold2", etcetera). For
instance, in the first fold of the cross-validation, users should: a) find
the EoS and the linear effects of the covariates using individuals labeled
to be in folds 2 to 10; b) remove these effects from these individuals and
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Table 6
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Alternative measurement with random forests (RF) and standard support vector machine (SVM) algorithms of the “complex effects of the
site (EoS) including interactions”-removal effectiveness for ComBat using the “interaction” datasets.

Algorithms: random forests (RF) and support vector machine (SVM)

Relative accuracy

Dataset Balanced accuracy Corrected balanced accuracy @ change (RAC)
Without MAREoS With ComBat Without MAREoS With ComBat
RF SVM RF SVM RF SVM RF SVM RF SVM
“Interaction EoS #1” 82% 73% 54% 55% 69% 60% 54% 55% 81% 47%
“Interaction EoS #2” 86% 87% 65% 66% 70% 71% 65% 66% 22% 21%
Average RAC ompiex posy® 52% 34%
“Interaction true effects 84% 73% 84% 74% 70% 59% 70% 60% -1% -4%
#17
“Interaction true effects 77% 67% 77% 67% 67% 57% 66% 57% 3% 0%
#27
Average RAC[complex true effects]* ® 1% 0%
“Complex EoS including interactions”-removal effectiveness: ® 51% 34%

MAREO0S: Method Aiming to Remove the EoS.
@ Subtracting the simple effects, estimated as BAC with the lasso algorithm without interactions minus 50%.
® Average RACs and EoS-removal effectiveness are limited to 0-100%. These numbers may differ slightly from those reported at
https://www.imardgroup.com/mareos-benchmark/ because the latter are based on a parallel collection of datasets for which the variable
“response” is not public.

| am a researcher. How do | choose an appropriate MAREoS for my study?

1. Choose one ML
algorithm appropriate for

your study and your
experience/resources

Look at “Detection of complex

effects including interactions”.

Does the ML algorithm detect
these effects?

2. Open the benchmark tab (@)

Based on the benchmark
information:
How many MAREoS are
effective in removing the
EoS?

3. Decide

Look at both “Removal of simple
EoS” and “Removal of complex EoS
including interactions”:
Which MAREOS are effective in
removing both simple and
complex EoS?

Note: do not choose among
MAREOoS based on minor

differences, which may be
likely random

Look only at “Removal of simple
EoS”:
Which MAREOoS are effective in
removing simple EoS?

Consider using another ML

algorithm Start again...

Consider selecting this MAREoS

We hope we have
helped you!

Consider selecting one MAREoS
appropriate for your

experience/resources

Figure 3. Steps to choose an appropriate MAREOS for a specific study — for machine-learning researchers.

save the resulting data with the set identification "train_fold1"; and c)
remove these effects from individuals labeled to be in fold 1 and save
the resulting data with the set identification "test_fold1". See Figure 4 for
a diagram of the steps to add a MAREOS to the extendable benchmark
website.

Developers wanting to add a new type of EoS to the website may
contact us directly. We also welcome researchers and developers wish-
ing to add the effectiveness of an already investigated MAREoS using an
alternative machine-learning algorithm.

3. Discussion

This work presents a strategy to measure the EoS-removal effective-
ness of a MAREoS in multisite machine-learning studies. We provide
datasets with only simple true effects, datasets with only simple EoS,

datasets with complex true effects, datasets with complex EoS, and for-
mulas to measure the EoS-removal effectiveness from the BAC obtained
when fitting prediction models in these datasets. We also provide a
benchmark website to rank the EoS-removal effectiveness of the differ-
ent MAREOoS and a relationship of the types of EoS that may bias accu-
racy for different machine-learning algorithms. For instance, we report
that ComBat removes all simple EoS as needed for predictions based
on simple lasso algorithms while it leaves residual complex EoS that
may bias the predictions based on standard support vector machine al-
gorithms. In other words, the extendable benchmark website provides
the types of EoS that researchers should remove for a given machine-
learning algorithm and the effectiveness of each MAREoS for removing
each type of EoS.

The most important limitation of the present work is that it encom-
passes only one type of complex EoS: those due to first-order interactions
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| have developed a new MAREoOS. How do | add it to the benchmark website?

1. Open the Public Datasets
tab ()

Download the public datasets

Remove the EoS using the new
MARE0S

2. Follow the instructions

Conduct the ML calculations
and estimate the EoS-removal
effectiveness

4. Is the EoS-removal
effectiveness of the new
MAREOS comparable or higher
to the other MAREOS?

3. Decide

Note: for your convenience, the ZIP file also
includes a version of the scripts we used to
remove the EoS using ComBat, conduct the ML
calculations, estimate the EoS-removal
effectiveness.

Note: you might adapt the script we used for
removing the EoS using ComBat

Note: you might adapt the script we used for ML
and estimating the EoS-removal effectiveness

Consider improving the new

MAREOS Start again...

Consider opening the Upload tab
to download the private datasets,
remove the EoS, and upload the
results to the benchmark website.

We will answer you
promptly. Thank you!

Figure 4. Steps to add a MAREOS to the extendable benchmark website — for MAREoS developers.

between brain regions. Other complex EoS could potentially derive from
higher-order interactions or other regional relationships. However, we
believe that the investigation of new types of complex EoS, along with
the (challenging) development of methods to measure them (e.g., creat-
ing specific datasets), should be the work of future studies. We created
an extendable benchmark website for this reason. Another potential lim-
itation of this work is that we only created binary outcomes (response
vs. no response). We chose this distribution for the simplicity of its def-
inition of accuracy (percentage of correct predictions). The definitions
of accuracy in other distributions may be less straightforward. For in-
stance, for continuous outcomes, there may be several metrics (absolute
or squared difference between observed and predicted, correlation be-
tween observed and predicted, etcetera). However, MAREoS remove dif-
ferences between sites independently of the outcomes; thus, the bench-
marking should be similar using binary or other outcomes.

We want to finish by highlighting other exciting approaches to han-
dling EoS. We believe that, when possible, researchers should use them
along with our approach to providing richer complementary insights.
For instance, a small set of individuals may volunteer to be scanned in
the different devices used in a multisite MRI study (Kurokawa et al.,
2021; Noble et al., 2017; Tanaka et al., 2021; Tong et al., 2020). The
data from these individuals, known as “traveling subjects”, have two
valuable characteristics. First, they are real data and thus very likely
have hidden features that our datasets may not have. Indeed, some data
indicate that the traveling-subject outperforms ComBat (Maikusa et al.,
2021). Second, these data allow an excellent study of the differences
between MRI devices. In this scenario, differences between sites unre-
lated to MRI devices should be negligible. Together, these characteris-
tics enable the development of promising deep learning-based MAREoS
(Tian et al., 2022). However, the traveling-subject approach also has
its drawbacks. For instance, it can only be done prospectively (i.e., it is
not helpful for mega-studies based on previously acquired data, such as
those in the ENIGMA consortium (Dima et al., 2022)). Also, it may be
costly (requires traveling) for which the set of subjects is usually tiny,
though new projects such as the BMB-HBM aim to overcome this hurdle
(Koike et al., 2021).
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