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a b s t r a c t 

Multisite machine-learning neuroimaging studies, such as those conducted by the ENIGMA Consortium, need to 

remove the differences between sites to avoid effects of the site (EoS) that may prevent or fraudulently help the 

creation of prediction models, leading to impoverished or inflated prediction accuracy. Unfortunately, we have 

shown earlier that current Methods Aiming to Remove the EoS (MAREoS, e.g., ComBat) cannot remove complex 

EoS (e.g., including interactions between regions). And complex EoS may bias the accuracy. To overcome this 

hurdle, groups worldwide are developing novel MAREoS. However, we cannot assess their effectiveness because 

EoS may either inflate or shrink the accuracy, and MAREoS may both remove the EoS and degrade the data. In this 

work, we propose a strategy to measure the effectiveness of a MAREoS in removing different types of EoS. FOR 

MAREOS DEVELOPERS, we provide two multisite MRI datasets with only simple true effects (i.e., detectable by 

most machine-learning algorithms) and two with only simple EoS (i.e., removable by most MAREoS). First, they 

should use these datasets to fit machine-learning algorithms after applying the MAREoS. Second, they should use 

the formulas we provide to calculate the relative accuracy change associated with the MAREoS in each dataset 

and derive an EoS-removal effectiveness statistic. We also offer similar datasets and formulas for complex true 

effects and EoS that include first-order interactions. FOR MACHINE-LEARNING RESEARCHERS, we provide an 

extendable benchmark website to show: a) the types of EoS they should remove for each given machine-learning 

algorithm and b) the effectiveness of each MAREoS for removing each type of EoS. Relevantly, a MAREoS only able 

to remove the simple EoS may suffice for simple machine-learning algorithms, whereas more complex algorithms 

need a MAREoS that can remove more complex EoS. For instance, ComBat removes all simple EoS as needed for 

predictions based on simple lasso algorithms, but it leaves residual complex EoS that may bias the predictions 

based on standard support vector machine algorithms. 
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. Introduction 

Magnetic resonance imaging (MRI) researchers often pool data from

ifferent sites to achieve more statistical power to detect true differences
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 Albajes-Eizagirre et al., 2019 ). This need for larger sample sizes is also a

eality for machine-learning neuroimaging, where small studies may fail

o predict or fall into overfitting ( Hosseini et al., 2020 ). However, com-

ining data from different sites is not innocuous. Even if consortiums
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uch as ENIGMA use harmonized protocols ( Thompson et al., 2014 ),

here are still differences due to varying scanning devices and acqui-

ition sequence parameters. These differences may introduce effects of

he site (EoS) that bias the analyses ( Solanes et al., 2021 ). 

For instance, imagine we conduct a two-site MRI study to investigate

hether we may use baseline MRI to predict the subsequent response

o a medication. Imagine also that, by chance, 80% of patients in site A

espond to the drug, whereas only 20% in site B. Finally, imagine that

ite A’s MRI device makes the images very bright and site B’s device

ery dark. With these settings, a machine-learning algorithm could pre-

ict whether a patient will respond or not, exclusively using the differ-

nce in images’ brightness between the two MRI devices. In other words,

he machine-learning model would predict that patients with bright im-

ges will respond, whereas patients with dark images will not. And the

achine-learning model would be pretty successful: it would show 80%

ccuracy! However, this accuracy would be false, inflated, artifactual,

xclusively based on an EoS. The balanced accuracy (the average of sen-

itivity and specificity) separately calculated for each site would be just

0%, like tossing a coin. 

Due to the potentially high biases introduced by EoS, researchers

orldwide are developing novel Methods Aiming to Remove the EoS

MAREoS). A common and old MAREoS is covarying for the site in the

inear model, preferably coded as a random-effects factor (i.e., a mixed-

ffects analysis) ( Favre et al., 2019 ). Another usual MAREoS is ComBat

 Johnson et al., 2007 ), a batch adjustment method developed for ge-

omics data. Several groups have recently adapted this MAREoS to MRI

atasets ( Fortin et al., 2018 ; Radua et al., 2020 ). 

However, we have shown previously that current MAREoS do not

ntirely remove all differences between sites. Worryingly, these differ-

nces may either inflate or shrink the accuracy. In other words, machine-

earning algorithms may either use the remaining EoS “fraudulently ”,

hus inflating accuracy rates, or fail to detect true effects due to the

oise associated with EoS, thus shrinking accuracy rates ( Solanes et al.,

021 ). While all MAREoS can remove simple additive differences, we

re not aware of a MAREoS able to remove complex EoS, such as dis-

repancies in covariance (i.e., the interaction between brain regions).

o avoid reporting biased accuracies, we have provided formulas and

n R package to unbiasedly estimate the multisite-corrected accuracy in

he presence of residual EoS ( Solanes et al., 2021 ). This package may be

elpful to ensure that the EoS do not bias the reported accuracy. How-

ver, the goal of the community should be to develop a novel MAREoS

ble to remove complex EoS entirely. 

Unfortunately, MAREoS developers may face a paradox. To our

nowledge, there is no straightforward way to measure the EoS-removal

ffectiveness. For example, in data with EoS and true effects, a MAREoS

ay yield higher accuracy than another MAREoS for two opposite rea-

ons. It may either reduce the noise associated with EoS (improving the

etection of true effects) or fail to remove the EoS (leading to higher ac-

uracy inflation). On the other hand, in data with only EoS and no true

ffects, a MAREoS may yield a lower accuracy than another MAREoS for

wo opposite reasons again. It may either remove the EoS better (mini-

izing the accuracy inflation) or degrade the data more (worsening the

etection of true effects). 

To overcome this problem, we designed an approach to objectively

easure the removal of EoS and the degradation of the data of a given

AREoS. Furthermore, we also provide: a) datasets to conduct these

easurements and b) a benchmark website to allow machine-learning

esearchers readily know the most appropriate MAREoS depending on

he situation. 

. Methods 

The strategy presented in this paper builds on the study of the change

n accuracy associated with a MAREoS. This accuracy change has oppo-

ite meanings depending on whether the dataset has only EoS (i.e., no

rue effects) or only true effects (i.e., no EoS). In datasets with only true
2 
ffects, an accuracy decrease should only be due to data degradation, a

ide effect of the MAREoS. Conversely, an accuracy decrease in datasets

ith only EoS should be due to a correct EoS-removal (plus some poten-

ial data degradation). We have noted above that accuracy increases are

ossible in datasets with both true effects and EoS since the noise associ-

ted with EoS may shrink the accuracy ( Solanes et al., 2021 ). However,

o simplify the following calculations, we tried to avoid datasets mixing

rue effects and EoS. 

We first describe the datasets and the specific machine-learning al-

orithm that MAREoS developers should apply to achieve that differ-

nces between MAREoS depend only on the MAREoS (while not on the

atasets or machine-learning algorithms). Afterward, we present the for-

ulas to measure the effectiveness of a MAREoS. Finally, we show an

xample with the Johnson-Fortin-Radua version of the ComBat MAREoS

 Fortin et al., 2018 ; Johnson et al., 2007 ; Radua et al., 2020 ) (script

vailable at http://enigma.ini.usc.edu/protocols/statistical-protocols/).

eaders only interested in the strategy may directly read the section

bout measuring the EoS-removal effectiveness of a MAREoS. 

.1. Description of the datasets and the machine-learning algorithm 

Each simulated dataset includes the baseline MRI data (cortical

hickness, cortical surface area, or subcortical volumes) from ∼1000 pa-

ients from 8 scanner sites, two baseline clinical covariates, and the sub-

equent responses to a given treatment. The simulated studies would aim

o predict the response to the treatment (response vs. no response) from

he baseline MRI data ( Figure 1 ). The latter follow normal distributions

ike those returned by FreeSurfer ( Radua et al., 2020 ) and have linear

elationships with two simulated clinical covariates. In this section, we

rst describe the datasets (along with the machine-learning algorithm)

o familiarize developers with them. Afterward, we briefly report how

e created the MRI data for interested readers. 

Two datasets have only simple EoS (i.e., neither true effects nor

omplex EoS). The lack of true effects means no relationship between

he MRI data and the response. Therefore, machine-learning algorithms

hould not predict the response. Accuracy should be around 50%, like

ossing a coin. However, there are substantial simple differences across

ites in response probability and MRI data (e.g., the cortex is systemat-

cally measured thicker in some devices). Most machine-learning algo-

ithms may use these simple EoS to “fraudulently ” predict the response,

nflating the accuracy. These simple EoS should be removable by most

AREoS. 

Two other datasets have only simple true effects (i.e., neither EoS nor

omplex true effects). Thus, there are significant simple relationships

etween MRI data and the response to treatment (e.g., responders have

hicker cortices). Therefore, most machine-learning algorithms should

redict the response with > 50% accuracy. 

To predict the treatment response using the brain imaging data,

AREoS developers should conduct a ten-fold cross-validation us-

ng our specific fold distribution. Within each fold, they should

t a lasso algorithm in which the variable to predict is the re-

ponse to the treatment (coded binarily), and the predictors are the

RI data. For instance, in R, we could use the “glmnet ” library

 Friedman et al., 2010 ). Developers may download the specific R scripts

rom https://www.imardgroup.com/mareos-benchmark/ 

We chose the simple lasso because we assumed it can only detect

imple effects. We reasoned that it is a kind of linear model, and lin-

ar models cannot detect complex effects (e.g., interactions or unknown

thers) unless they are specifically modeled. 

We also created datasets with complex true effects or EoS, including

rst-order interactions between two brain regions or nuclei. To assess

he effectiveness of a MAREoS in removing first-order interaction-based

omplex EoS, we propose using a lasso algorithm with a design matrix

hat includes the first-order interactions. We chose the lasso with first-

rder interactions algorithm because, again, we assumed that, being a
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Figure 1. Location of the cortical regions and subcortical nuclei whose thickness, surface area, or volume we provide in the datasets. 
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inear model, it can only detect simple or first-order interaction-based

ffects. 

We encourage other researchers to describe other complex EoS, cre-

te the respective datasets, and add them to the MAREoS benchmark

ebsite. 

.2. Creation of the datasets 

For the interested reader, we will briefly report how we created each

f these MRI datasets. We first generated normally distributed random

ata for each FreeSurfer region/nucleus, with means and standard de-

iations similar to real data ( Radua et al., 2020 ). Then, to create simple

oS, we added differences between sites: 

 

∗ 
𝑟,𝑖,𝑗 

= 𝛿𝑟,𝑖 ⋅
(
𝑦 𝑟,𝑖,𝑗 − 𝑦 𝑟,𝑖, ⋅

)
+ 𝑦 𝑟,𝑖, ⋅ + 𝛾𝑟,𝑖 

here y r,i,j is the cortical thickness, cortical surface area, or subcorti-

al volume of the r th ROI from the j th individual of the i th site, and 𝛿r,i 

nd 𝛾r,i are the multiplicate and additive EoS of the i th site in the r th 

OI. We set both 𝛿r,i and 𝛾r,i to follow normal distributions across the

egions of a site, and 𝛿·,i and 𝛾 ·,i to follow normal distributions across the

ites. For further information about normally distributed multiplicative
3 
nd additive effects, please see ( Radua et al., 2020 ). To create interac-

ions between ROIs, we swapped (between patients) the cortical thick-

ess, cortical surface area, or subcortical volume of an ROI of a site to

reate positive or negative correlations with another ROI. For instance,

magine a site with only five patients where we aim to create a positive

orrelation between ROIs A and B. If the patient values in ROI A were

12,13,14,15,16], and the patient values in ROI B were [6,9,10,8,7], the

orrelation would be nearly null (r = 0.1). However, after swapping pa-

ient values 10 and 7 in ROI B (i.e., [6,9,7,8,10], the correlation would

e 0.7. Finally, we added some value to the responders to create true

ffects. After conducting these transformations, we added the effects of

he covariates (adding some value multiplied by the covariate), trun-

ated the resulting values to avoid outliers, and rescaled the data to be

ike FreeSurfer again. 

We created many datasets, but we chose some that effectively only

howed EoS or only showed true effects and were varied in features

nd BAC. To know which only showed EoS or only showed true ef-

ects, we used a logistic regression model to predict the response and

alculated the accuracy using both standard formulas and the “mul-

isite.accuracy ” R package, which corrects for the site ( Solanes et al.,

021 ). We considered “datasets with only EoS ” those with ∼50% mul-
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Table 1 

Example of measuring the simple effects of the site (EoS)-removal effectiveness 

for ComBat using the “simple ” datasets. 

Algorithm: lasso without interactions 

Dataset Balanced accuracy 

Relative accuracy 

change (RAC) 

Without 

MAREoS With ComBat 

“Simple EoS #1 ” 74% 50% 100% 

“Simple EoS #2 ” 75% 48% 107% 

Average RAC [simple EoS] : 
(a) 100% 

“Simple true 

effects #1 ”

73% 73% 0% 

“Simple true 

effects #2 ”

82% 82% 0% 

Average RAC [simple true effects] : 
(a) 0% 

Simple EoS-removal effectiveness: (a) 100% 

MAREoS: Method Aiming to Remove the EoS. 
(a) Average RAC s and EoS-removal effectiveness are limited to 0- 

100%. These numbers may differ slightly from those reported at 

https://www.imardgroup.com/mareos-benchmark/ because the latter are 

based on a parallel collection of datasets for which the variable “response ” is 

not public. 
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isite accuracy – even if they showed high raw accuracy. Similarly, we

onsidered “datasets with only true effects ” those that showed similar

high) raw and multisite accuracies ( Solanes et al., 2021 ). 

.3. Measurement of the EoS-removal effectiveness of a MAREoS for 

imple EoS 

As detailed above, each dataset contains baseline multisite MRI

ata from patients and the subsequent responses to a given treatment.

irst, separately for each dataset and within a ten-fold cross-validation

cheme, the developers must use the training subset to fit and apply a

AREoS to remove the EoS, find and remove the linear effects of two

linical covariates, fit the simple machine-learning algorithm, and use

ll these models to predict whether patients in the test subset respond

o treatment. Second, again separately for each dataset, the developers

ust calculate the predictions’ sensitivity, specificity, and balanced ac-

uracy (BAC). The sensitivity is the percentage of responders correctly

redicted to respond. The specificity is the percentage of non-responders

orrectly predicted not to respond. The BAC is the average of sensitiv-

ty and specificity. Relevantly, the developers must calculate the BAC

sing these basic formulas. In other words, they cannot correct the site

ith the “multisite.accuracy ” R package ( Solanes et al., 2021 ) that we

ould otherwise recommend. The reason is that we need uncorrected

ccuracies to measure the EoS-removal effectiveness of a MAREoS.

evelopers may download the specific R scripts to conduct all these

teps from https://www.imardgroup.com/mareos-benchmark/. After-

ard, they must perform the following calculations to measure the EoS-

emoval effectiveness of the MAREoS. 

The first calculation, also performed separately for each dataset, is

he relative accuracy change ( RAC ): 

𝐴𝐶 = 

[ 𝐵𝐴𝐶 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝐴𝑅𝐸𝑜𝑆 ] − [ 𝐵𝐴𝐶 ] 
[ 𝐵𝐴𝐶 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝐴𝑅𝐸𝑜𝑆 ] − 50% 

To illustrate the idea, Table 1 shows the RAC calculations in the

Simple EoS #1 ” and “Simple true effects #1 ” datasets using a standard

upport vector machine (SVM) algorithm and ComBat (see details later).

n the dataset with simple EoS, BAC was 74% when we fitted the SVM

ithout applying any MAREoS. Using a MAREoS, the (EoS-inflated) BAC

ecreased to 50%. Then, RAC [simple EoS] in this dataset would be 100%

i.e., the accuracy is 100% closer to 50%). We could naively interpret

hat the MAREoS has reduced the bias by 100%. However, in the dataset

ith simple true effects, BAC decreased from 73.05% to 73.02% when

sing a MAREoS due to an undesirable potential side effect: data degra-
4 
ation. Then, RAC [simple true effects] in this dataset would be 0.14% (i.e.,

ue to data degradation, the accuracy is 0.14% closer to 50%). 

At a theoretical level, it might be interesting to note that the for-

ula of the RAC would also work for accuracy increases – possible in

atasets with both true effects and EoS. In such datasets, the EoS might

revent the machine-learning algorithm from fully detecting the true

ffects. For instance, BAC could be 70% before a MAREoS, while 75%

fter the MAREoS, for what RAC would be -25%, now meaning that the

ccuracy is now 25% farther from 50%. However, this RAC would be

ittle informative because we would know neither the amount of EoS

emoved nor whether there was also data degradation. 

Turning to the measurement of the EoS-removal effectiveness, the

econd calculation consists of adjusting the average RAC [simple EoS] (i.e.,

he naïve bias reduction) with the average RAC [simple true effects] (i.e., due

o data degradation) to derive the EoS-removal effectiveness: 

oS − removal effectiveness 

= 

mean 
(
𝑅𝐴𝐶 [ simple EoS ] 

)
− mean 

(
𝑅𝐴𝐶 [ simple true effects ] 

)

100% − mean 
(
𝑅𝐴𝐶 [ simple true effects ] 

)

Limiting the average RAC s and the EoS-removal effectiveness to 0-

00% may be sensible. 

Going back to Table 1 , if a MAREoS shows RAC [simple EoS] = 100%

a naïve 100% reduction in bias) and RAC [simple true effects] = 0.14% (a

.14% decrease due to data degradation), then the simple EoS-removal

ffectiveness was 100%. In the datasets with only simple EoS, we may

ssume that the MAREoS would first remove simple EoS, reducing the

ccuracy. And afterward, it would degrade the data leading to (mini-

ally) decreasing the remaining accuracy ( Figure 2 , A1 ). Or vice versa,

e may assume that the MAREoS would first degrade the data, (mini-

ally) decreasing the accuracy. And afterward, it would remove simple

oS, reducing the remaining accuracy ( Figure 2 , A2 ). Data degradation

ay seem negligible in this example, but it might be relevant in others.

.4. Measurement of the EoS-removal effectiveness of a MAREoS for 

omplex EoS 

The overall strategy for measuring how well a MAREoS removes

omplex EoS is the same as for measuring how well a MAREoS removes

imple EoS. However, datasets with complex EoS may also include sim-

le true effects or simple EoS, and the MAREoS may remove both simple

nd complex EoS. Therefore, we may wish to subtract the part of the BAC

ttributable to simple effects as follows: 

 𝐴𝐶 [ 𝑐 𝑜𝑚𝑝𝑙𝑒𝑥,𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑒𝑑 ] = 𝐵 𝐴𝐶 [ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ] − 

(
𝐵 𝐴𝐶 [ 𝑠𝑖𝑚𝑝𝑙𝑒 ] − 0 . 5 

)

here BAC [complex] is the BAC obtained with the complex machine-

earning algorithm (e.g., a lasso with first-order interactions), BAC [simple] 

s the BAC obtained with the simple machine-learning algorithm (i.e.,

he lasso without interactions), and BAC [complex,corrected] is the BAC [complex] 

fter “subtracting ” the simple effects. 

One way to see this subtraction from a different perspective is to

ecompose the accuracy of the complex machine-learning algorithm.

magine that we have a sample of 100 patients, half responders. Suppose

e predict randomly, simply tossing a coin. In that case, we will guess

orrectly by chance half of the time for what we expect to predict about

0 individuals correctly. Now imagine that a simple machine-learning

lgorithm correctly predicts 70 individuals. However, we can decom-

ose this number as 50 + 20, with the 50 corresponding to the number

f individuals that we can correctly predict tossing a coin and the 20

orresponding to the extra accuracy provided by the simple effects de-

ected by the simple machine-learning algorithm. Finally, imagine that a

omplex machine-learning algorithm correctly predicts 85 individuals.

gain, we can decompose this number as 50 + 20 + 15, with the 20 corre-

ponding to the extra accuracy provided by the simple effects detected

y the complex machine-learning algorithm and the 15 corresponding
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Figure 2. Example of the relative accuracy changes ( RAC ) measurement in datasets with only simple effects of the site (EoS) and only simple true effects, and their 

relationship with naïve EoS-removal, data degradation, and EoS-removal. 

Table 2 

Example of measuring the simple effects of the site (EoS)-removal effectiveness for ComBat 

using the “interaction ” datasets. 

Algorithm: lasso without interactions 

Dataset Balanced accuracy 

Relative accuracy 

change (RAC) 

Without MAREoS With ComBat 

“Interaction EoS #1 ” 63% 50% 100% 

“Interaction EoS #2 ” 66% 50% 100% 

Average RAC [simple EoS] : 
(a) 100% 

“Interaction true 

effects #1 ”

64% 64% -1% 

“Interaction true 

effects #2 ”

60% 60% -4% 

Average RAC [simple true effects] : 
(a) 0% 

Simple EoS-removal effectiveness: (a) 100% 

MAREoS: Method Aiming to Remove the EoS. For “Interaction true effects #2 ”, note that 

the balanced accuracy is indeed 60.0% without MAREoS and 60.4% with ComBat. 
(a) Average RAC s and EoS-removal effectiveness are limited to 0-100%. 
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o the extra accuracy offered by the complex effects beyond the simple

ffects. 
To exemplify the method, we report the calculations for the “Inter-

ction EoS #2 ” and “Interaction true effects #2 ” datasets using SVM
 Table 6 , see details later). In the dataset with complex EoS, BAC [complex] 

as 87% when we fitted the SVM without applying any MAREoS. How-
ver, SVM predictions were likely not exclusively based on complex
ffects but also simple effects. To quantify these simple effects, we
sed a simple lasso, which showed a BAC [simple] of 66% ( Table 2 ), i.e.,

6% more than tossing a coin. Removing the part of accuracy due
o simple effects with the formula above, we estimated that SVM’s
e  

5 
AC [complex,corrected] was 87% - 16% = 71%. Using a MAREoS, SVM’s

AC [complex] decreased to 66% and lasso’s BAC [simple] to 50% (i.e., 0%

ver tossing a coin, Table 2 ). We thus estimated that using a MAREoS,
VM’s BAC [complex,corrected] was 66% - 0% = 66%. Finally, we could esti-

ate that RAC [complex EoS] was 21% using the same formula as for simple

ffects: 

𝐴𝐶 [ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ] = 
[ 𝐵𝐴𝐶 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝐴𝑅𝐸𝑜𝑆 ] [ 𝑐 𝑜𝑚𝑝𝑙𝑒𝑥,𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑒𝑑 ] − [ 𝐵𝐴𝐶 ] [ 𝑐 𝑜𝑚𝑝𝑙𝑒𝑥,𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑒𝑑 ] 

[ 𝐵𝐴𝐶 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝐴𝑅𝐸𝑜𝑆 ] [ 𝑐 𝑜𝑚𝑝𝑙𝑒𝑥,𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑒𝑑 ] − 50% 

We did the same calculations for the dataset with complex true

ffects. Before applying any MAREoS, SVM’s BAC [complex] was 67%
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 Table 6 ) and lasso BAC [simple] 60% (i.e., 10% over tossing a coin,

able 2 ), resulting in SVM’s BAC [complex,corrected] = 67% - 10% = 57%.

sing a MAREoS, SVM’s BAC [complex] was 67% ( Table 6 ), and lasso’s

AC [simple] was 60% (i.e., 10% over tossing a coin, Table 2 ), result-

ng in SVM’s BAC [complex,corrected] = 67% - 10% = 57%. We could

hen estimate RAC [complex true effects] = 0.25%. Finally, if RAC [complex EoS] 

as 21% (a naïve 21% reduction in complex EoS-related bias) and

AC [complex true effects] = 0.25% (a 0.25% decrease due to complex EoS-

elated data degradation), then the complex EoS-removal effectiveness

as (minimally lower than) 21%. 

.5. Example: ComBat 

To exemplify how to measure the EoS-removal effectiveness of a

AREoS, we applied ComBat to the public datasets provided. We then

onducted the calculations needed to measure the EoS-removal effec-

iveness. 

First, we downloaded the public datasets from

ttps://www.imardgroup.com/mareos-benchmark/ . Each dataset

s a table with the following columns: the identification of the

imulated individual, the MRI data (cortical thickness or sur-

ace area or subcortical volumes), the site, the values of the two

linical covariates, and the distribution in folds. We also down-

oaded the Johnson-Fortin-Radua version of the ComBat MAREoS

 Fortin et al., 2018 ; Johnson et al., 2007 ; Radua et al., 2020 ) from

ttps://enigma.ini.usc.edu/protocols/statistical-protocols/ 

The following analyses refer to one dataset. For fold 1, we defined the

raining subset as individuals in folds 2-10 and the test subset as the set

f individuals in fold 1. In the training subset: a) we fitted the ComBat

odel with the function “combat_fit ”; b) we removed the EoS according

o the ComBat model with the function “combat_apply ”; c) we fitted re-

ressions to estimate the linear effects of the two clinical covariates (a

eparate linear regression per each brain region); d) we removed the lin-

ar effects of the clinical covariates according to these linear regressions;

) and we fitted the lasso algorithm (without interactions when assessing

imple effects, or with first-order interactions when assessing complex

ffects including first-order interactions). Afterward, in the test subset:

) we removed the EoS according to the ComBat model (fitted with the

raining subset) with function “combat_apply ”; b) we removed the lin-

ar effects of the clinical covariates according to the linear regressions

fitted with the training subset); c) and we applied the lasso algorithm

fitted with the training subset) to predict the individual responses. After

epeating the same procedure for folds 2-10, we had predicted the re-

ponse in all individuals. We then proceeded to calculate the sensitivity,

pecificity, and BAC. Finally, we combined the BACs with and without

omBat to calculate the RAC . We provide the R scripts to conduct such

alculations at https://www.imardgroup.com/mareos-benchmark/ 

After conducting these analyses for each “Simple ” dataset ( Table 1 ),

e had a RAC for each of the “Simple EoS ” datasets (100% and 107%),

hich we averaged (and limited to 0-100%) to obtain an average

AC [simple EoS] of 100%. Similarly, we had a RAC for each of the “Simple

rue effects ” datasets (0% and 0%), which we averaged to obtain an av-

rage RAC [simple true effects] of 0%. Finally, we calculated the EoS-removal

ffectiveness (100%). Therefore, we should conclude that ComBat en-

irely removes the bias related to simple EoS (100%) and has negligible

ata degradation (0%). 

The results were nearly identical when we used a lasso algorithm

ithout interactions for the “Interaction ” datasets ( Table 2 ). The RAC s

or the “Interaction EoS ” datasets were 100% and 100% (average

AC [simple EoS] = 100%), and the RAC s for the “Interaction true effects ”

atasets were -1% and -4% (average RAC [simple true effects] = 0%), lead-

ng to EoS-removal effectiveness = 100%. Therefore, we should conclude

gain that ComBat entirely removes the bias related to simple EoS

100%) and has negligible data degradation (0%). These datasets had

omplex effects (e.g., the multiplication of pairs of brain regions dif-

ered between groups). However, these effects are not detectable by the
6 
asso algorithm without interactions; thus, they did not influence these

alculations. 

The results were very different when we analyzed the same “In-

eraction ” datasets using a lasso algorithm with first-order interactions

 Table 3 ). First, all BAC were substantially higher (e.g., 80% instead of

3% for “Interaction EoS #1 ” without MAREoS). This increase is be-

ause this machine-learning algorithm could detect the first-order inter-

ctions present in these datasets. However, we must highlight here that,

s we saw in the previous paragraph, these datasets also included simple

ffects, which we had to subtract before specifically studying the com-

lex effects. For instance, for “Interaction EoS #1 ” without MAREoS,

AC was 80%, but we subtracted 13% (i.e., the BAC of the simple

lgorithm, 63%, minus 50%) for what the corrected BAC was 80% -

3% = 67%. Once we corrected all BACs, we proceeded as before. The

AC s for the “Interaction EoS ” datasets were -5% and -13% (average

AC [complex EoS] = 0%), and the RAC s for the “Interaction true effects ”

atasets were 3% and 5% (average RAC [complex true effects] = 4%), leading

o EoS-removal effectiveness = 0%. Therefore, we should conclude that

omBat does not remove the bias related to complex EoS (0%) and may

how minor data degradation (4%). 

.6. Other machine-learning algorithms 

We repeated the above calculations with standard random forest

 Liaw and Wiener, 2002 ), support vector machine ( Meyer et al., 2021 ),

nd gaussian processes ( Karatzoglou et al., 2004 ) algorithms to provide

nsights on the use of MAREoS with these machine-learning algorithms.

e used the default options of the "", "", and "" R packages, which in-

olve radial basis function kernels for support vector machine and gaus-

ian processes. We show again the R code to conduct such calculations

t https://www.imardgroup.com/mareos-benchmark/. 

With the “simple ” datasets, BACs, RAC s, and simple EoS-removal ef-

ectiveness were similar when using lasso, random forest, support vector

achine, or gaussian processes algorithms ( Table 4 ). There were differ-

nces between algorithms, but they were small and likely due to chance.

The analysis of the “interaction ” datasets showed that the random

orest (and, to a lesser extent, the support vector machine) algorithm

etects the complex effects in these datasets ( Table 5 ). In contrast, the

aussian processes algorithm only detects some. We thus repeated the

alculations of complex EoS-removal effectiveness for the random forest

nd support vector machine algorithms. 

Table 6 shows that random forests and support vector machine algo-

ithms yielded RAC [complex EoS] substantially different from the 0% cal-

ulated using the lasso algorithm with first-order interactions. As intro-

uced earlier, we assumed that lasso with first-order interactions could

etect only one type of complex EoS: those based on first-order interac-

ions. Thus, a RAC [complex EoS] of 0% meant that ComBat does not remove

hese complex EoS. However, RAC [complex EoS] were 34-52% for random

orest and support vector machine algorithms. Therefore, we should con-

lude that random forest and support vector machine algorithms detect

 mixture of complex EoS, some of which are removable by ComBat and

thers are not. 

.7. Benchmark website 

For machine-learning researchers, the website

https://www.imardgroup.com/mareos-benchmark/) includes informa-

ion about the types of effects detectable by different machine-learning

lgorithms and the effectiveness of MAREoS in removing different types

f EoS. See Figure 3 for a diagram of the steps to choose an appropriate

AREoS for a specific study. Note that the numbers in the website may

e slightly different from those in the manuscript because the former

re based on a parallel collection of datasets for which the variable

response ” is not public. We created the latter datasets to keep objective

anks of the effectiveness of the different MAREoS for different types of

oS. 
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Table 3 

Example of measuring the “complex effects of the site (EoS) including interactions ”-removal effectiveness for ComBat using the “inter- 

action ” datasets. 

Algorithm: lasso with first-order interactions 

Dataset Balanced accuracy Corrected balanced accuracy (a) 

Relative accuracy 

change (RAC) 

Without MAREoS With ComBat Without MAREoS With ComBat 

“Interaction EoS #1 ” 80% 68% 67% 68% -5% 

“Interaction EoS #2 ” 85% 71% 69% 71% -13% 

Average RAC [complex EoS] : 
(b) 0% 

“Interaction true 

effects #1 ”

81% 81% 67% 67% 3% 

“Interaction true 

effects #2 ”

76% 75% 66% 65% 5% 

Average RAC [complex true effects] : 
(b) 4% 

“Complex EoS including interactions ”-removal effectiveness: (b) 0% 

MAREoS: Method Aiming to Remove the EoS. 
(a) Subtracting the simple effects, estimated as BAC with lasso without interactions minus 50%. 
(b) Average RAC s and EoS-removal effectiveness are limited to 0-100%. These numbers may differ slightly from those reported at 

https://www.imardgroup.com/mareos-benchmark/ because the latter are based on a parallel collection of datasets for which the variable 

“response ” is not public. 

Table 4 

Alternative measurement with standard random forests (RF), support vector machine (SVM), and Gaussian processes (GP) algorithms of the simple effects 

of the site (EoS)-removal effectiveness for ComBat using the “simple ” datasets. 

Algorithms: random forests (RF), support vector machine (SVM), and Gaussian processes (GP) 

Dataset Balanced accuracy Relative accuracy change (RAC) 

Without MAREoS With ComBat 

RF SVM GP RF SVM GP RF SVM GP 

“Simple EoS #1 ” 77% 78% 78% 54% 54% 52% 84% 85% 92% 

“Simple EoS #2 ” 75% 75% 75% 55% 52% 51% 81% 92% 94% 

Average RAC [simple EoS] : 
(a) 82% 88% 93% 

“Simple true effects #1 ” 74% 72% 71% 74% 72% 71% 0% 1% 2% 

“Simple true effects #2 ” 84% 83% 81% 83% 83% 81% 1% 1% -1% 

Average RAC [simple true effects] : 
(a) 0% 1% 0% 

“Simple-based EoS ”-removal effectiveness: (a) 82% 88% 93% 

MAREoS: Method Aiming to Remove the EoS. 
(a) Average RAC s and EoS-removal effectiveness are limited to 0-100%. These numbers may differ slightly from those reported at 

https://www.imardgroup.com/mareos-benchmark/ because the latter are based on a parallel collection of datasets for which the variable “response ”

is not public. 

Table 5 

Detection of complex effects including interactions by standard random forests (RF), support vector machine (SVM), and Gaus- 

sian processes (GP) algorithms in the “interaction true effects ” datasets. 

Algorithms: lasso with first-order interactions (LFOI), random forests (RF), support vector machine (SVM), and Gaussian processes (GP) 

Dataset Balanced accuracy 

Observed 

Extra accuracy compared to lasso without 

interactions 

Lasso 

without 

interac- 

tions LFOI RF SVM GP LFOI RF SVM GP 

“Interaction true 

effects #1 ”

64% 81% 84% 73% 65% + 17% + 20% + 9% 1% 

“Interaction true 

effects #2 ”

60% 76% 77% 67% 62% + 16% + 17% + 7% 2% 

Average extra accuracy: (a) + 16% + 18% + 8% 2% 

MAREoS: Method Aiming to Remove the EoS. 
(a) These numbers may differ slightly from those reported at https://www.imardgroup.com/mareos-benchmark/ because the 

latter are based on a parallel collection of datasets for which the variable “response ” is not public. 

 

l  

d  

m  

n  

t  

t  

i  

t  

t  
Developers wanting to add a MAREoS to the website should down-

oad these datasets and conduct calculations analogous to the ones

escribed in the example, except for not fitting/applying the simple

achine-learning algorithm because the response to the treatment is

on-public. Instead, they must save the pre-processed MRI data of the
7 
raining and test subsets of each fold, along with an identification of

hese sets (e.g., “train_fold1 ”, “test_fold1 ”, "train_fold2", etcetera). For

nstance, in the first fold of the cross-validation, users should: a) find

he EoS and the linear effects of the covariates using individuals labeled

o be in folds 2 to 10; b) remove these effects from these individuals and
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Table 6 

Alternative measurement with random forests (RF) and standard support vector machine (SVM) algorithms of the “complex effects of the 

site (EoS) including interactions ”-removal effectiveness for ComBat using the “interaction ” datasets. 

Algorithms: random forests (RF) and support vector machine (SVM) 

Dataset Balanced accuracy Corrected balanced accuracy (a) 

Relative accuracy 

change (RAC) 

Without MAREoS With ComBat Without MAREoS With ComBat 

RF SVM RF SVM RF SVM RF SVM RF SVM 

“Interaction EoS #1 ” 82% 73% 54% 55% 69% 60% 54% 55% 81% 47% 

“Interaction EoS #2 ” 86% 87% 65% 66% 70% 71% 65% 66% 22% 21% 

Average RAC [complex EoS] : 
(b) 52% 34% 

“Interaction true effects 

#1 ”

84% 73% 84% 74% 70% 59% 70% 60% -1% -4% 

“Interaction true effects 

#2 ”

77% 67% 77% 67% 67% 57% 66% 57% 3% 0% 

Average RAC [complex true effects] : 
(b) 1% 0% 

“Complex EoS including interactions ”-removal effectiveness: (b) 51% 34% 

MAREoS: Method Aiming to Remove the EoS. 
(a) Subtracting the simple effects, estimated as BAC with the lasso algorithm without interactions minus 50%. 
(b) Average RAC s and EoS-removal effectiveness are limited to 0-100%. These numbers may differ slightly from those reported at 

https://www.imardgroup.com/mareos-benchmark/ because the latter are based on a parallel collection of datasets for which the variable 

“response ” is not public. 

Figure 3. Steps to choose an appropriate MAREoS for a specific study – for machine-learning researchers. 
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p  
ave the resulting data with the set identification "train_fold1"; and c)

emove these effects from individuals labeled to be in fold 1 and save

he resulting data with the set identification "test_fold1". See Figure 4 for

 diagram of the steps to add a MAREoS to the extendable benchmark

ebsite. 

Developers wanting to add a new type of EoS to the website may

ontact us directly. We also welcome researchers and developers wish-

ng to add the effectiveness of an already investigated MAREoS using an

lternative machine-learning algorithm. 

. Discussion 

This work presents a strategy to measure the EoS-removal effective-

ess of a MAREoS in multisite machine-learning studies. We provide

atasets with only simple true effects, datasets with only simple EoS,
8 
atasets with complex true effects, datasets with complex EoS, and for-

ulas to measure the EoS-removal effectiveness from the BAC obtained

hen fitting prediction models in these datasets. We also provide a

enchmark website to rank the EoS-removal effectiveness of the differ-

nt MAREoS and a relationship of the types of EoS that may bias accu-

acy for different machine-learning algorithms. For instance, we report

hat ComBat removes all simple EoS as needed for predictions based

n simple lasso algorithms while it leaves residual complex EoS that

ay bias the predictions based on standard support vector machine al-

orithms. In other words, the extendable benchmark website provides

he types of EoS that researchers should remove for a given machine-

earning algorithm and the effectiveness of each MAREoS for removing

ach type of EoS. 

The most important limitation of the present work is that it encom-

asses only one type of complex EoS: those due to first-order interactions
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Figure 4. Steps to add a MAREoS to the extendable benchmark website – for MAREoS developers. 
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etween brain regions. Other complex EoS could potentially derive from

igher-order interactions or other regional relationships. However, we

elieve that the investigation of new types of complex EoS, along with

he (challenging) development of methods to measure them (e.g., creat-

ng specific datasets), should be the work of future studies. We created

n extendable benchmark website for this reason. Another potential lim-

tation of this work is that we only created binary outcomes (response

s. no response). We chose this distribution for the simplicity of its def-

nition of accuracy (percentage of correct predictions). The definitions

f accuracy in other distributions may be less straightforward. For in-

tance, for continuous outcomes, there may be several metrics (absolute

r squared difference between observed and predicted, correlation be-

ween observed and predicted, etcetera). However, MAREoS remove dif-

erences between sites independently of the outcomes; thus, the bench-

arking should be similar using binary or other outcomes. 

We want to finish by highlighting other exciting approaches to han-

ling EoS. We believe that, when possible, researchers should use them

long with our approach to providing richer complementary insights.

or instance, a small set of individuals may volunteer to be scanned in

he different devices used in a multisite MRI study ( Kurokawa et al.,

021 ; Noble et al., 2017 ; Tanaka et al., 2021 ; Tong et al., 2020 ). The

ata from these individuals, known as “traveling subjects ”, have two

aluable characteristics. First, they are real data and thus very likely

ave hidden features that our datasets may not have. Indeed, some data

ndicate that the traveling-subject outperforms ComBat ( Maikusa et al.,

021 ). Second, these data allow an excellent study of the differences

etween MRI devices. In this scenario, differences between sites unre-

ated to MRI devices should be negligible. Together, these characteris-

ics enable the development of promising deep learning-based MAREoS

 Tian et al., 2022 ). However, the traveling-subject approach also has

ts drawbacks. For instance, it can only be done prospectively (i.e., it is

ot helpful for mega-studies based on previously acquired data, such as

hose in the ENIGMA consortium ( Dima et al., 2022 )). Also, it may be

ostly (requires traveling) for which the set of subjects is usually tiny,

hough new projects such as the BMB-HBM aim to overcome this hurdle

 Koike et al., 2021 ). 
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