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We present extensive numerical studies of the crossover from three-dimensional to two-dimensional systems
in the nonequilibrium zero-temperature random-field Ising model with metastable dynamics. Bivariate finite-size
scaling hypotheses are presented for systems with sizes L × L × l which explain the size-driven critical crossover
from two dimensions (l = const, L → ∞) to three dimensions (l ∝ L → ∞). A model of effective critical
disorder Reff

c (l,L) with a unique fitting parameter and no free parameters in the Reff
c (l,L → ∞) limit is proposed,

together with expressions for the scaling of avalanche distributions bringing important implications for related
experimental data analysis, especially in the case of thin three-dimensional systems.
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I. INTRODUCTION

In the world of emerging novel technologies thin three-
dimensional systems (ribbons, thin films, layered materials,
etc.) play a prominent role. Having one spatial dimension much
smaller than the remaining two, thin three-dimensional sys-
tems stand between the true three-dimensional (3D) and two-
dimensional (2D) systems. So, the question arises what regu-
larities are shown in their behavior on the 3D to 2D crossover,
which is of considerable significance for proper interpretation
and understanding of experimental (e.g., Barkhausen noise [1])
data, and their usage in future devices.

Such devices (sensors, actuators, coolers, energy harvesting
devices, etc.) have to be designed taking into account the
response to external driving of the embedded thin 3D systems
(ferromagnets, ferroelectrics, ferroelastics, superconductors,
etc). This response depends on the features of phase diagrams
(lines of first-order phase transition and critical points) that
show a crossover as the aspect ratios of linear dimensions vary.

The dimensional crossover has been studied so far both
experimentally [2,3] and in equilibrium models [4–8]; for
some other effects of sample geometry on system behavior, see
[9,10]. Thus, in equilibrium models it has been established that
the systems with constant thickness l, and two diverging spatial
dimensions L → ∞, behave in the asymptotic limit essentially
as 2D systems, showing a critical temperature Tc(l) that shifts
from the critical temperature of the planar 2D system, Tc(l =
1) = T 2D

c , to the critical temperature of the bulk 3D system,
Tc(l → ∞) = T 3D

c . For large l, a first approximation for this
crossover function should be Tc(l) − T 3D

c ∼ l1/ν3D , where ν3D

is the critical exponent that controls the divergence of the
correlation length in three dimensions. Better approximations,
improving the ł range of validity of such an expression, have
been discussed by several authors [2,8].

On the other hand, much less effort has been made in the
understanding of the 3D-2D crossover in out-of-equilibrium
systems. Many such systems with ferroic interactions behave
athermally, i.e., when driven, they evolve following metastable
branches with hysteresis. In many cases, thermal fluctuations
might be irrelevant, preventing such systems from reaching
equilibrium and leading, in the final consequence, to the critical
behavior that is not in the same universality class with that of
the equilibrium athermal random-field Ising model (RFIM)
systems [11].

In this paper we extend the analysis of the size-driven 3D-2D
crossover to metastable out-of-equilibrium critical systems.
For this purpose, we will focus our paper on the T = 0 RFIM
with metastable dynamics (see [12,13] and the references
therein), that displays disorder induced criticality both in three
dimensions [14] and two dimensions [15].

The paper is organized as follows. The considered variant
of the RFIM model is briefly described in Sec. II. In Sec. III,
the scaling of avalanche distributions for equilateral lattices is
given in Sec. III A, and the scaling of avalanche distributions for
nonequilateral lattices is proposed in Sec. III B. Variation of the
critical disorder with system thickness is analyzed in Sec. III C,
and the collapsing of size distributions in Sec. III D. The
main text ends with a discussion of possible consequences on
interpretation of experimental data in Sec. IV, and a conclusion
in Sec. V. Finally, in Appendix A we give a description of
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the details of determination of the number of 2D spanning
avalanches and effective critical disorder, while the collapsing
of the integrated size distributions in the whole l/L = const
range is illustrated in Appendix B, and the scaling of the
distributions of avalanche durations and avalanche energies
is proposed in Appendix C.

II. MODEL

The RFIM describes ferromagnetically coupled classical
spins Si = ±1, located at the sites i of some underlying
lattice. The spins are subjected to a homogeneous external
magnetic field H , and to a quenched local magnetic field hi ,
varying randomly from site to site. Its values hi are chosen
from some distribution, in our case the Gaussian distribution
ρ(h) = 1√

2πR
exp(− h2

2R2 ), so that at each site i the expected
value of the random field is 〈hi〉 = 0, while the correlation
between the values of the random field taken at any two
sites i and j is 〈hihj 〉 = R2δi,j ; the width R = 〈h2

i 〉1/2
of the

distribution of the random field characterizes the amount of
disorder in the system, and from now on will be simply referred
to as disorder.

The RFIM Hamiltonian in the simplest case reads

H = −
∑
〈i,j〉

SiSj − H
∑

i

Si −
∑

i

hiSi, (1)

where
∑

〈i,j〉 denotes summation over all pairs of nearest
neighbors 〈i,j 〉. Thus, each Si is subjected to the effective
magnetic field heff

i = ∑
j Sj + H + hi , which includes the

contribution
∑

j Sj from the nearest neighbors of Si .
In the nonequilibrium model at T = 0, all spins follow

the local dynamical rule: when externally driven by H , each
spin Si aligns with the sign of heff

i . This gives rise to a
hysteretic, out-of-equilibrium, avalanchelike response of the
system. In the adiabatic regime, H is infinitely slowly varied
(here increased) until only the least stable spin is triggered,
and subsequently kept constant during the emerging avalanche.
Regarding initial and final conditions, each simulation (like
ours) may start from H = −∞, when all Si = −1, and stop
when all Si = +1. The simulations are repeated many times
with different configurations of local magnetic field hi taken
from the same distribution.

III. SCALING OF AVALANCHE DISTRIBUTIONS

A. Equilateral lattices

During the past 25 years, extensive simulations of the T = 0
nonequilibrium RFIM have been performed on d-dimensional
cubic lattices Ld which are equilateral (i.e., have the same
size L along each of the lattice spatial dimensions). These
simulations have shown that the model exhibits the mean-field
criticality for d � 6 [13,16], and a critical non-mean-field
behavior for 2 � d � 5, described by a set of critical exponents
and critical parameters that depend on system dimensionality
[13–15,17].

The criticality of the RFIM on Ld lattices is controlled in
the adiabatic regime by the distance to the critical disorder
R(d)

c , separating the ferromagnetic R < R(d)
c from paramag-

netic R > R(d)
c phase in the L → ∞ limit. For finite L, the

distributions of various avalanche parameters follow finite size
scaling (FSS) and power laws. In the case of avalanche size
S (i.e., number of spins flipped during the avalanche), its
distribution D(int)(S; r,1/L) integrated along the external field
H fulfills

D(int)(S; r,1/L) = S−(τ+σβδ)D̄(int)
± (Sσ |r|,Sσν/L) . (2)

Here, τ , σ , β, δ, and ν are the critical exponents, the reduced
disorder r = 1 − R(d)

c /R measures the distance to R(d)
c , while

D̄(int)
+ is the universal scaling function for the size distribution

D(int)(S; r,1/L) for r > 0, and D̄(int)
− is the universal scaling

function for the size distribution D(int)(S; r,1/L) for r < 0, see
[13,14]; like R(d)

c , the values of all exponents and the shape
of D̄(int)

± that appear in (2) depend on system dimension d,
but this is omitted for simpler notation. Note that the scaling
variable r is normalized by R and not by R(d)

c . This nonstandard
choice is known to be very adequate for such zero-temperature
disorder induced critical points [13,18]. First order expansions
in r allow an accurate description of the system properties very
far from Rc. This feature, which is not fully understood, is
clearly different from what happens in thermal critical points.

B. Nonequilateral lattices

If the system is not equilateral, but has different sizes
L1,L2, . . . ,Ld along its spatial dimensions, then the FSS of
size distribution (2) should instead be given by the expression

D(int)(S; r,1/L1,1/L2, . . . ,1/Ld ) = S−(τ+σβδ)

×D̄(int)
± (Sσ |r|,Sσν/L1,S

σν/L2, . . . ,S
σν/Ld ) , (3)

having the same scaling along all spatial dimensions due to
model isotropy.

In our study of 3D to 2D crossover we have performed
extensive simulations on cubicL × L × l lattices, having equal
length L (in what follows, simply span) along two spatial
dimensions (say, x and y), and a different thickness l along
the third, i.e., z dimension. Values of L range from 256 to
16 384, and values of l range from 2 to 1024 [19]. We
used periodic boundary conditions along x and y, and open
boundary conditions along the z dimension. Thus, spins in the
upper and lower layers have only five neighbors.

In Fig. 1(a), we show the integrated size distributions
for 3D systems with same span L = 8192, same disorder
R = 2.3, but various thickness l. As R exceeds the critical
disorder R3D

c = 2.16 for equilateral 3D cubic lattices [14], the
distributions show a clear exponential damping, corresponding
to the paramagnetic regime with only small avalanches.

The shape of distributions becomes, however, qualitatively
different for disorders below R3D

c and small thicknesses l

[see Fig. 1(b)]. In this case many avalanches reach the linear
size la > l and, being squeezed between the top and the
bottom system’s surface, effectively behave as if they are 2D
avalanches spreading over a 2D lattice. On the other hand,
avalanches of small linear size (<l) are not affected by the
lattice thickness and behave like ordinary 3D avalanches.

Therefore, one can see two portions in the shape of
distributions: The left part resembling the distribution of small
3D avalanches and the right tail which, containing quasi-2D
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FIG. 1. (a) Integrated size distributions D
(int)
R (S) vs avalanche size

S obtained for the same disorder R = 2.3 and same span L = 8192,
but various thickness l, shown in the legend. (b) The same as in (a),
but for disorders slightly above the effective critical disorder Reff

c (l,L)
for L × L × l systems. Inset: When shown vs S/lDf , the foregoing
distributions partially collapse showing branching tails because the
values of R and L are not adjusted as is required by (5).

avalanches, becomes more and more similar to the 2D distri-
butions as the system becomes thinner and thinner.

The linear size of the largest small avalanche in thin 3D
systems is proportional to the system thickness l. So, the
maximum size S of such avalanches, see inset in Fig. 1(b),
should be

Smax ∝ lDf , (4)

where Df = 1/σν = 2.78 is the fractal dimension of non-
spanning avalanches in three dimensions [18], suggesting the
scaling

D(int)(S; r,1/L,1/L,1/l)

= l−(τ+σβδ)Df D(int)(S/lDf ; rl1/ν,l/L,l/L,1) (5)

of the integrated size distribution with all critical exponents
(namely, τ , σ , β, δ, and ν) for the 3D model [13,14].

This equation indicates that, in order to obtain a proper
collapsing of the integrated size distributions for different
thicknesses l, one should adjust the values of reduced disorders
r and spansL so as to keep the terms rl1/ν and l/L constant. The
adjustment of r is not as simple, because here one encounters
the question of what should be the critical disorder. In fact, in
3D to 2D crossover, we are dealing with a family of systems
specified by their thickness l. Our data corroborate that each
such family has its own critical disorder Rc(l), necessary to
find the reduced disorder r .

C. Critical disorder

The critical disorder Rc(l) characterizes L × L × l systems
when they become infinite in the L → ∞ limit. In the fer-
romagnetic phase of such infinite systems infinite avalanches
appear, causing a jump in magnetization 	MR that vanishes
when R → Rc(l). For finite L, the role of infinite avalanches
is played by spanning avalanches, which are in the case of Ld

lattices defined as the avalanches that span the system along at
least one of its dimensions (see [12–14,18,20]). This definition
ceases, however, to be appropriate for thin L × L × l systems
where avalanches are more likely to span the system along the
(small) z dimension, and improbably along the remaining two
(large) dimensions. Therefore, we will consider an avalanche
as 2D spanning in the L × L × l case if it spans the system
along one or both of the first two (large) dimensions x and y.

Now, let N (R; l,L) be the average number (per run) of 2D
spanning avalanches on L × L × l systems with disorder R.
For fixed l and L, this number, taken as a function of disorder
R, has a transition region in which N (R; l,L) can be described
by the two-parameter model function

NR0,W (R) = 0.5 × erfc[(R − R0)/W ] , (6)

with the position of the inflection point R0 being an estimation
of the effective critical disorder Reff

c (l,L) for finite systems
(see details in Appendix A). In Fig. 2 the dots show the so
obtained values of Reff

c (l,L) versus thickness l and span L of
the L × L × l lattice.

Besides Reff
c (l,L), Fig. 2 also shows the surface that is our

theoretical FSS prediction of how the effective critical disorder
should depend on thickness l and span L:

Rth
c (l,L) = R3D

c

[
1 − 	

l1/ν3D
− (A − 	)l1/ν2D

L1/ν2D l1/ν3D

]−1

. (7)

Here, 1/ν3D = 0.71 [14] and 1/ν2D = 0.19 [15] are the ex-
ponents controlling the divergence of the correlation lengths
in three and two dimensions, 	 ≡ 1 − R3D

c /R2D
c

∼= −3.0 mea-
sures the relative distance between the critical disorders R3D

c =
2.16 [14] and R2D

c = 0.54 [15] for equilateral 3D and 2D cubic
lattices, respectively, while A is the only adjustable parameter.

The physical reasoning behind Eq. (7) is based on the
following two arguments.

(i) First, when considering the systems with a fixed aspect
ratio a = l/L, one gets

1 − R3D
c

Reff
c (aL,L)

= a−1/ν3D

L1/ν3D
[	 + (A − 	)a1/ν2D ]. (8)

This corresponds to the expected FSS expansion for 3D
systems when L → ∞ with an amplitude that depends only
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FIG. 2. Numerical estimations of the effective critical disorder
Reff

c (l,L) vs thickness l and span L (black balls; error bars are
magnified by a factor of 5 for better visibility). The surface shows our
theoretical prediction (7). Arrows show three types of characteristic
directions that are used for the FSS analysis: l/L = const, l = const
(variable L), and both l,L constant (but variable R).

on the aspect ratio a. Note that for a = 1 the term in the square
brackets becomes A, and that similar dependence has been
found in a recent study of the influence of aspect ratio on the
2D RFIM [9].

(ii) Second, for a system with a fixed thickness l, and after
some algebra, one can rewrite expression (7) as

1 − R3D
c

/(
1 − 	

l1/ν3D

)
Reff

c (l,L)
= 1

L1/ν2D

[
(A − 	)l1/ν2D

l1/ν3D − 	

]
(9)

and identify the numerator of the second term on the left-hand
side as Rc(l):

Rc(l) = R3D
c

1 − 	

l1/ν3D

=⇒ Rc(l) − R3D
c

Rc(l)
= 	

l1/ν3D
. (10)

Note that this relation, being independent of any free
parameter, is not a FSS hypothesis but a prediction for the
crossover behavior of Rc(l) that satisfies Rc(1) = R2D

c and
Rc(l → ∞) = R3D

c .
By plugging (10) into (9), one can immediately check

that our hypothesis is compatible with the expected 2D FSS
behavior for fixed l and large L:

Reff
c (l,L) − Rc(l)

Reff
c (l,L)

= A(l)

L1/ν2D
, (11)

with A(l) being the amplitude of the FSS expansion for a
system with fixed thickness l:

A(l) = (A − 	)l1/ν2D

l1/ν3D − 	
. (12)

The fit of Reff
c (l,L) data gives A = 0.63 ± 0.18 for the

unique fitting parameter in (7). The fitting surface is shown in
Fig. 2, and equals all the values ofReff

c (l,L) within their original
error bars. Sections of this surface at constant l, showing a good
quality of the fit, are presented in Appendix A.

D. Collapsing of size distributions

Having found the values of Rc(l), we return to the collapsing
of size distributions predicted by (5), where the product rl1/ν3D

and the ratio l/L have to be fixed. In Fig. 3(a) we show the
collapse obtained for small l/L = 1/256, i.e., for lattices that

FIG. 3. Data collapsing of the integrated size distributions D(int)(S) predicted by (a, b) (5), (c, d) (13), and (e, f) (14). (a) l/L = 1/256. (b)
l/L = 1/2. (c) l = 1, Rc = 0.54. (d) l = 4,Rc = 1.02. (e) l = 8, L = 4096. (f) l = 32, L = 4096. Three-dimensional exponents are used in
(a) and (b) because l = aL, and 2D exponents are used elsewhere.
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FIG. 4. (a) Duration distributions for several RFIM systems having same the disorder R = 2.00 and thickness l = 16, but different span
L, given in the legend. (b) Overlapping of the distributions, which are shown in (a), is achieved by the spurious values of L exponents (−0.3
along the horizontal axis and 0.95 along the vertical axis). These values just provide deceptive collapsing, and are neither stable (i.e., depend
on the range of L) nor related to some true exponents.

are almost planar, while in Fig. 3(b) the collapse is shown
for large l/L = 1/2 corresponding to almost equilateral 3D
lattices; for intermediate cases see Appendix B.

The scaling of size distributions can be also tested along l =
const direction (see Fig. 2), in which case the scaling prediction
reads

D(int)(S; r,1/L,1/L,1/l)

= L−(τ+σβδ)Df D(int)(S/LDf ; rL1/ν,1,1,L/l). (13)

Two examples of such collapsing are shown in Figs. 3(c) and
3(d), where Df is the fractal dimension of the 2D spanning
avalanches in the 2D model [20], and all exponents are also
for the 2D model [15,17], because here the system behaves
effectively as a 2D system due to constant thickness l. Finally,
in Figs. 3(e) and 3(f), we present the most usual collapses (see,
for instance, [13,15]) given by

D(int)(S; r,1/L,1/L,1/l)

= S−(τ+σβδ)D̄(int)
± (Sσ |r|,Sσν/L,Sσν/L,Sσν/ l), (14)

and corresponding to l = const and L = const in each set. For
similar statements that hold for distributions of other avalanche
parameters, like avalanche durations or avalanche energies, see
Appendix C.

IV. DISCUSSION

In the studies of the 3D-2D crossover for the Ising model
in thermal equilibrium, expressions similar to Eq. (10) were
proposed. The exponent accompanying l was initially called
the shift exponent, but it was later found to be equal to 1/ν3D

[6]. Nevertheless the proposed expressions always had some
corrections when l was not large enough. Surprisingly, in our
out-of-equilibrium case, we see that (7) is valid in the entire
range l � 2.

Our findings, presented so far, may be relevant for the
experimental data analysis. In experiments, some relevant
parameters can be hardly controllable (or even unaccessible)
like, for example, the amount of disorder in the samples that are
used in Barkhausen noise (BN) measurements [21–23]. More

specifically, a lot of BN experimental analyses are performed
on the sets of samples, each containing specimens that are cut
at different lengths (5–30 cm) from the same commercial thin
ribbon (25–50 μm thick). We expect that such thin samples
should give distributions (see Fig. 3 in [24]) that are a mixture
of small 3D avalanches, continued by quasi-2D avalanches
characterized not by 3D but by 2D critical exponents, like those
from our simulations shown in Fig. 4(a). We further expect
that the length of tails of these distributions is dominantly
influenced by the sample geometry, and less through the
(very small) demagnetization factor, inversely proportional to
the sample length. Finally, regarding the data collapsing, we
mention that according to our predictions the distributions of
BN from the samples differing only in length cannot be, strictly
speaking, collapsed because that would require their disorders
to be different. More problematically, one may even achieve
a “reasonable” collapsing of the data pertaining to the same
disorder, but at the price of using some spurious exponents, as
is illustrated in Fig. 4(b).

Finally, regarding the variation of the size exponents τ that
was reported in the theoretical study of the 3D to 2D crossover
in Barkhausen noise [25], based on the single-interface model
originally proposed in [26], let us note that, at the current
numerical precision, we were not been able to detect with
certainty analogous variation in the RFIM, due to limited
computational facilities. Nevertheless, this could be a subject
of our future studies.

V. CONCLUSION

In this paper we have presented the regularities found in 3D
to 2D crossover in the case of nonequilibrium zero-temperature
the random-field Ising model with metastable dynamics. We
have proposed a finite-size scaling hypothesis for the systems
with sizes L × L × l, leading to expressions for the effective
critical disorder Reff

c (L,l) and the scaling of the avalanche
distributions that explain the size-driven critical crossover
from two dimensions (l = const, L → ∞) to three dimensions
(l ∝ L → ∞). Our model has a unique fitting parameter for
the whole surface Reff

c (l,L), has no free parameters for the
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behavior of Reff
c (l,L → ∞), and introduces prerequisites for

data collapsing which could be particularly important for
proper analysis of experimental data for thin 3D systems.

ACKNOWLEDGMENTS

This paper was supported by the Serbian Ministry of Sci-
ence Project No. 171027; by the Spanish Ministry of Economy
and Competitiveness (Spain) Projects No. MAT2016-75823-
R, No. MAT2015-69777-REDT, and No. FIS2015-71851-P;
and by Agencia de gestió d’Ajuts Universitaris i de Recerca
(Catalonia) Project No. 2014SGR-1307. V.N. received funding
from La Caixa Foundation and acknowledges financial support
from the Spanish Ministry of Economy and Competitiveness,
through the “María de Maeztu” Programme for Units of
Excellence in R&D (Project No. MDM-2014-0445).

APPENDIX A: DETAILS OF DETERMINATION
OF N(R; l,L) AND Reff

c (l,L)

In our simulations we found that, like in 2D systems [20],
at most one 2D spanning avalanche appears in a single run
(recall that we consider as the 2D spanning avalanche an
avalanche that spans the system at least in one of the two
large dimensions L). The average number per single run of
such spanning avalanches N (R; l,L) on L × L × l systems
with disorder R is, for fixed l and L, a function of disorder R,
shortly denoted as N (R). In its transition region, this function
decays from 1 to 0, see Fig. 5, and can be described by formula
(6), where erfc(x) ≡ (2/

√
π )

∫ ∞
x

e−t2
dt is the complementary

error function centered at inflection point R = R0, and W is the
width of the transition disorder region in which N (R) falls from
N ≈ 0.76025 to≈ 0.23975. AsW tends to zero whenL → ∞,
one may say that the central value R0 defines the effective

FIG. 5. N (R) vs disorder R, where N (R) is the average number
per single run of 2D spanning avalanches triggered in L × L × l

systems with disorder R. Symbols show N (R) obtained in our
simulations for l = 16 and L = 256. The full curve shows the model
function NR0,W (R) of type (6) that best fits simulation data when
R0 = 1.954 ± 0.001 and W = 0.074 ± 0.002. The position of R0 is
indicated by the full vertical line, and the width W of the transition
region is indicated by dashed lines.

FIG. 6. Critical disorder Rc(l) for the the L × L × l family of
lattices in the L → ∞ limit, shown vs lattice thickness l. Inset:
Symbols show the values of effective critical disorder Reff

c (l,L) vs
L−1 for l fixed to 8, 16, and 64; error bars are smaller than symbol size.
For the same fixed values of l, solid lines show the curves Rth

c (l,L),
converging to Rc(l) when 1/L → 0.

critical disorderReff
c (l,L), such that if L is large enough then

the 2D spanning avalanches appear, roughly speaking, only at
disorders R � Reff

c (l,L).
For fixed l, the effective critical disorder Reff

c (l,L) decreases
when L increases, and when L becomes infinitely large tends
to some limit which can be rightly identified as the critical
disorder Rc(l) for the the L × L × l family of lattices.

The values of Rc(l), defined as

Rc(l) = lim
L→∞

Reff
c (l,L) ,

are to be determined from the Reff
c (l,L) data with the aid of

some extrapolating function. We found that for fixed l our
prediction Rth

c (l,L), see Eq. (7), is suitable for this purpose,
as is illustrated in the inset of Fig. 6. The values of Rc(l),
obtained from Rth

c (l,L) in the L → ∞ limit, are shown in the
main panel of Fig. 6, and are given by Eq. (10) containing no
free parameters.

APPENDIX B: COLLAPSING OF INTEGRATED SIZE
DISTRIBUTIONS IN THE WHOLE l/L = const RANGE

The collapsing of integrated distribution D(int)(S; r,1/L,

1/L,1/l) of avalanche size S follows from the scaling (5),
which we repeat for the reader’s convenience:

D(int)(S; r,1/L,1/L,1/l)

= l−(τ+σβδ)Df D(int)(S/lDf ; rl1/ν,l/L,l/L,1). (B1)

Here, all critical exponents and the fractal dimension of
nonspanning avalanches Df = 2.78 are for the 3D model on
equilateral lattices, and the values of rl1/ν and l/L have to
be maintained constant for all collapsing distributions. This
collapsing was shown in Fig. 3 only for two extreme cases in
our simulations: l/L = 1/256 (almost planar lattices) in part
(a), and l/L = 1/2 (almost equisized lattices) in part (b).

Now, in Fig. 7 we show the same type of collapsing for
almost all intermediate values of l/L, indicating that prediction
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FIG. 7. Data collapsing of the integrated size distributions D(int)(S) predicted by (5). The data are obtained in simulations of systems
containing up to ≈1.7×1010 spins. Parts (a) and (f) are already shown in the main text as parts (a) and (b) of Fig. 5, and are repeated here for
the sake of completeness. (a) l/L = 1/256. (b) l/L = 1/32. (c) l/L = 1/16. (d) l/L = 1/8. (e) l/L = 1/4. (f) l/L = 1/2.

(5) holds throughout the entire 3D to 2D crossover region.
Regarding this range, we remark that the ratio of l/L smaller
than 1/256 would exceed our computational (and time) limits
(e.g., for l/L = 1/512 we would need L = 32 768, so the
system would contain ≈7×1010 spins).

APPENDIX C: SCALING OF THE DISTRIBUTIONS OF
AVALANCHE DURATIONS AND AVALANCHE ENERGIES

Like for the size distributions, the 3D to 2D crossover is
also manifested in distributions of other avalanche parameters.

FIG. 8. Data collapsing of the integrated duration distributions D(int)(T ) predicted by (C2). The range of l/L, and the values of disorder,
are the same as in Fig. 7.
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FIG. 9. Data collapsing of the integrated energy distributions D(int)(E) predicted by (C5). The range of l/L, and the values of disorder, are
the same as in Figs. 7 and 8.

Avalanche duration T (i.e., time taken for the avalanche to
occur) and avalanche energy E (sum of S2

t , where St is
the number of spins flipped at time t , with 1 � t � T ) are
important avalanche parameters that are often measured in
RFIM studies. Thus, in the case of avalanche duration, its
maximum value Tmax for small avalanches should be

Tmax ∝ lz , (C1)

where z is the dynamical critical exponent in the 3D model.
The scaling of avalanche duration distributions reads

D(int)(T ; r,1/L,1/L,1/l)

= l−zαint D(int)(T/lz; rl1/ν,l/L,l/L,1), (C2)

where αint = α + σβδ(α − 1)/(τ − 1) is the critical exponent
for integrated duration distribution, and α is the critical expo-
nent for avalanche duration distribution, D(T ) ∝ T −α . In (C1)
and (C2), the exponents z, αint, and ν are the 3D exponents,
and their values (together with the values of the 3D exponents
α, σ , β, δ, and τ used to calculate αint) are from [14]. The
scaling collapse, predicted by (C2), is shown in Fig. 8 in the
same range of l/L, and the same values of disorder as in Fig. 7.

Similarly, one should expect that the maximum value Emax

of energy of small avalanches should scale as

Emax ∝ lze , (C3)

where

ze ≡ τ − 1

σν(ε − 1)
(C4)

is the dynamical critical exponent for avalanche energy, and
that the energy distribution should scale as

D(int)(E; r,1/L,1/L,1/l)

= l−zeεint D(int)(E/lze ; rl1/ν,l/L,l/L,1). (C5)

Here, εint is the critical exponent for integrated energy distribu-
tion, D(int)(E) ∝ E−εint , which expressed via other exponents
reads εint = ε + σβδ(ε − 1)/(τ − 1), where ε is the critical
exponent for avalanche energy distribution, D(E) ∝ E−ε,
the value of which stems from the scaling relation ε = 1 +
(τ − 1)/(1 − σνz), see (18) in [17], and the values for 3D
exponents τ , σ , ν, and z from [14]. The scaling collapse,
predicted by (C5), is shown in Fig. 9 in the same range of
l/L, and the same values of disorder as in Figs. 7 and 8.
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