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The dynamics of an inviscid and incompressible fluid flow on 
a Riemannian manifold is governed by the Euler equations. 
Recently, Tao [38,39] launched a programme to address the 
global existence problem for the Euler and Navier Stokes 
equations based on the concept of universality. Inspired by 
this proposal, in this article we prove that the stationary 
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Euler equations exhibit several universality features. More 
precisely, we show that any non-autonomous flow on a 
compact manifold can be extended to a smooth stationary 
solution of the Euler equations on some Riemannian manifold 
of possibly higher dimension. The solutions we construct are 
of Beltrami type, and being stationary they exist for all 
time. Using this result, we establish the Turing completeness 
of the steady Euler flows, i.e., there exist solutions that 
encode a universal Turing machine and, in particular, these 
solutions have undecidable trajectories. Our proofs deepen the 
correspondence between contact topology and hydrodynamics, 
which is key to establish the universality of the Reeb flows 
and their Beltrami counterparts. An essential ingredient in 
the proofs, of interest in itself, is a novel flexibility theorem 
for embeddings in Reeb dynamics in terms of an h-principle in 
contact geometry, which unveils the flexible behavior of the 
steady Euler flows. These results can be viewed as lending 
support to the intuition that solutions to the Euler equations 
can be extremely complicated in nature.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

The dynamics of an inviscid and incompressible fluid flow on a Riemannian manifold 
(M, g) is described by the Euler equations

∂tu + ∇uu = −∇p , div u = 0 , (1.1)

where u is the velocity field of the fluid, and p is the pressure function. Here ∇u is the 
covariant derivative along u and the differential operators ∇ and div are computed using 
the Riemannian metric g.

The analysis of the evolution u(·, t) of a smooth initial condition u(·, 0) := u0(·) is 
a notoriously difficult problem where even the existence of a global-time solution is a 
challenging open question (the celebrated blow-up problem for the Euler equations). 
Recently, Terry Tao launched a programme to address the global existence problem, not 
only for the Euler equations, but also for their viscid counterpart, i.e. the Navier-Stokes 
equations, based on the concept of universality [37–39]. This notion concerns the Euler 
equations without fixing neither the ambient manifold M nor the metric g, and roughly 
speaking can be defined as the property that any smooth non-autonomous flow on a 
manifold N may be “extended” to a solution of the Euler equations for some (M, g), 
where the dimension of M is usually much bigger than the dimension of N . In [39], 
Tao introduced a particular way of extending a smooth (non-autonomous) flow on N to 
a solution of the Euler equations on a manifold M which is a product M = N × Tm

endowed with a warped product metric g. In particular, he showed that the set of flows 
that are extendible in the aforementioned sense is the countable union of nowhere dense 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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sets (in the smooth topology), and that there exists a somewhere dense set of flows that 
can be extended provided that N is diffeomorphic to the n-torus, n ≥ 2. This interesting 
result provides further evidence of the universality of the Euler dynamics, but leaves 
open the problem whether the Euler equations on some high-dimensional Riemannian 
manifold can encode the behavior of a universal Turing machine [37,38]. Tao discussed 
in [36,40] that the “Turing completeness” of the Euler equations could be used as a 
route to construct solutions of the Navier-Stokes equations that blow-up in finite time, 
by creating an initial datum that is “programmed” to evolve to a rescaled version of 
itself (as a Von Neumann self-replicating machine).

Motivated by Tao’s proposal, our goal in this paper is to address the study of the 
universality of the Euler equations using stationary solutions, which model fluid flows in 
equilibrium. While at first glance it seems that the steady Euler flows are too restrictive 
to encode arbitrarily complicated dynamics, we shall see that the surprising connection 
between the Euler equations and contact topology, allows us to use the flexibility provided 
by the existence of h-principles in the contact realm to show that the stationary solutions 
exhibit universality features, and in particular they are Turing complete. It is worth 
noting that topological, rather than dynamical, universality properties of steady Euler 
flows were established recently in [4].

To this end, we introduce the concept of Eulerisable flow [33]: a volume-preserving 
(autonomous) vector field u on M is Eulerisable if there exists a Riemannian metric g on 
M compatible with the volume form, such that u satisfies the stationary Euler equations 
on (M, g)

∇uu = −∇p , div u = 0 . (1.2)

When the dimension of M is odd, a particularly relevant class of Eulerisable fields are 
those which are proportional to their curl through a not necessarily constant factor (a 
definition of the curl of a vector field in dimension n > 3, which is a nonlinear differential 
operator which assigns to a vector field another vector field, will be introduced in Sec-
tion 2). These vector fields are known as Beltrami flows, and in recent years they have 
found application as powerful tools to analyze different features of fluid flows, including 
anomalous weak solutions [12], complicated vortex structures [16,17] and reconnections 
in Navier-Stokes [15]. The geometric content of the Beltrami fields was unveiled in [18,34], 
where connections with Reeb fields of a contact structure and with geodesible flows were 
established. This remarkable connection, which will be exploited in this paper, allows one 
to bring tools from (high dimensional) contact topology to the analysis of the stationary 
Euler equations provided that the Riemannian metric is not fixed, which is precisely the 
context where Tao introduced the notion of universality.

To state our main results, we need to provide a geometric definition of extendibility. 
The following is inspired by Tao’s definition in [39] but it is different in two aspects. 
First, the ambient manifold is not a product N × Tm, but a high-dimensional sphere, 
and the metric is not a warped product. Second, since we deal with stationary (i.e., 
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time-independent) solutions of the Euler equations, the time coordinate of the original 
non-autonomous field becomes one of the spatial local coordinates of the Eulerisable 
flow.

Definition 1.1. A non-autonomous time-periodic vector field u0(·, t) on a compact man-
ifold N is Euler-extendible if there exists an embedding e : N × S1 → Sn for some 
dimension n > dim N + 1 (that only depends on the dimension of N), and an Eu-
lerisable flow u on Sn, such that e(N × S1) is an invariant submanifold of u and 
e∗(u0(·, θ) + ∂θ) = u, θ ∈ S1. If the non-autonomous field u0(·, t) is not time-periodic, 
we say it is Euler-extendible if there exists a proper embedding e : N × R → Rn for 
some dimension n > dim N + 1 (that only depends on the dimension of N), and an 
Eulerisable flow u on Rn, such that e(N × R) is an invariant submanifold of u and 
e∗(u0(·, θ) + ∂θ) = u, θ ∈ R.

Next, we introduce the following notion of universality.

Definition 1.2. We say that the stationary Euler flows are universal if any non-
autonomous dynamics u0(·, t) (on any ambient space) is Euler-extendible.

Remark 1.3. In the time-periodic case, the choice of the ambient manifold Sn, where the 
Eulerisable flow u is defined, is made for the sake of concreteness, but all the results we 
state in this paper hold for any other manifold. However, for general non-autonomous 
dynamics, the ambient space where u is defined does not need to be Rn, but it must be 
noncompact (because we need to embed properly N ×R).

Roughly speaking, the extendibility of a non-autonomous dynamics implies that, in 
the appropriate local coordinates, u0 describes the “horizontal” behavior of the integral 
curves of the extended vector field u. We want to emphasize that u0 is not assumed to 
be volume-preserving, although certainly u will be.

We are now ready to present our first main result, which shows that the Eulerisable 
flows are flexible enough to encode any non-autonomous dynamics as above. Since these 
fields are stationary solutions of the Euler equations on some (M, g), they exist for all 
time.

Theorem 1.4. The stationary Euler flows are universal. Moreover, the dimension of the 
ambient manifold Sn or Rn is the smallest odd integer n ∈ {3 dim N +5, 3 dim N +6}. 
In the time-periodic case, the extended field u is a steady Euler flow with a metric g =
g0+δP , where g0 is the canonical metric on Sn and δP is supported in a ball that contains 
the invariant submanifold e(N × S1).

Remark 1.5. The extension of the non-autonomous flow u0 to an Eulerisable flow on, 
say, Sn is not unique. In fact, we prove that given any embedding ẽ : N × S1 → Sn, 
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there exists a smooth embedding e isotopic to ẽ and C0-close to it which gives the Euler 
extension of u0 introduced in Definition 1.1.

A striking corollary of this result, which illustrates the implications of the univer-
sality, is the embeddability of diffeomorphisms. We say that a (orientation-preserving) 
diffeomorphism φ : N → N is Euler-embeddable if there exists an Eulerisable field u on 
Sn (for some n that only depends on the dimension of N) with an invariant submanifold 
exhibiting a cross-section diffeomorphic to N such that the first return map of u at this 
cross section is conjugate to φ.

Corollary 1.6. Let N be a compact manifold and φ an orientation-preserving diffeomor-
phism on N . Then φ is Euler-embeddable in dimension n, where n is the smallest odd 
integer n ∈ {3 dim N + 5, 3 dim N + 6}.

Let us mention a few words on the ideas of the proof of Theorem 1.4. The Eulerisable 
field u that we construct on Sn (or Rn) is nonvanishing and of Beltrami type with con-
stant proportionality factor (notice that n is an odd number). Using the correspondence 
between these fields and contact forms, the universality problem is then tantamount 
to studying the universality features of high-dimensional Reeb flows. A first difficulty 
is that the Reeb flows are geodesible, so their restriction to any invariant submanifold 
must be geodesible as well. Introducing the concept of Reeb embedding of a compact 
manifold into a contact manifold, and using the flexibility (existence of an h-principle) 
of the isocontact embeddings, we prove that in fact geodesibility is the only obstruction 
for a vector field to be extendable to a Reeb flow on some contact manifold. A second 
difficulty is that the field u0 that we want to extend is not generally geodesible, a problem 
that we address considering the suspension of the field.

A consequence of our methods of proof, which is of interest in itself, is an almost sharp 
novel embedding theorem for manifolds endowed with a geodesible flow into a contact 
manifold, so that the Reeb field of the ambient manifold for some contact form extends 
the geodesible field on the submanifold.

Definition 1.7. Let (N, X) be a geodesible field on a compact manifold. An embedding 
e : (N, X) → (M, ξ) of N into a contact manifold M is called a Reeb embedding if there 
is a contact form α defining ξ such that its Reeb vector field R satisfies e∗X = R (in 
particular e(N) is an invariant submanifold of R).

The following result is the main flexibility theorem in this article:

Theorem 1.8. Let e : (N, X) → (M, ξ) be a embedding of N into a contact manifold 
(M, ξ) with X a geodesible vector field on N . Then:

• If dimM ≥ 3 dimN +2, then e is isotopic to a (small) Reeb embedding ẽ, and ẽ can 
be taken C0-close to e.
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• If dimM ≥ 3 dimN and M is overtwisted, then e is isotopic to a Reeb embedding.

In view of the connection between Reeb and Beltrami fields which will be stated in 
Section 2.2, this theorem shows the flexible character of the steady Euler flows. The no-
tion of small Reeb embedding in this statement will be introduced in Section 5. Moreover, 
we also obtain a full h-principle for what we call iso-Reeb embeddings (Reeb embeddings 
with certain fixed data) into overtwisted manifolds (Theorem 5.7) and into general con-
tact manifolds (Theorem 5.9). We believe that these ideas may be useful to attack some 
purely geometric problems in Contact Topology.

Since Tao introduced the concept of universality to analyze the Turing completeness 
of the Euler equations [36,37], we want to finish this introduction with an application of 
Theorem 1.4 in this setting. We say that an Eulerisable flow on Sn is Turing complete if 
the halting of any Turing machine with a given input is equivalent to a certain bounded 
trajectory of the flow entering a certain open set of Sn (what is known as the “reachability 
problem”, see Section 4.2 for more details). This implies, in particular, that the flow has 
undecidable trajectories. Our second main result is the following.

Theorem 1.9. There exists an Eulerisable flow on S17 which is Turing complete.

The solution of the Euler equations that encodes a universal Turing machine provided 
by this theorem is stationary. We do not know if it gives rise to a global-time solution 
when it is considered as the initial condition for the Navier-Stokes equations on S17 with 
the corresponding Riemannian metric.

Remark 1.10. In two sequels to this work [8,7], we construct Turing complete steady Euler 
flows on a Riemannian three-dimensional sphere and in Euclidean 3-space, respectively. 
These results are obtained by combining different techniques from contact geometry, 
symbolic dynamics and partial differential equations. Even taking into account that these 
constructions produce lower dimensional examples, the method of proof of Theorem 1.9
gives a machinery to construct Turing complete Eulerizable flows from initial Turing 
complete data in lower dimensions. This is done by converting the initial data into 
geodesible vector fields and using the fact that the h-principle in the construction of 
Theorem 3.1 is algorithmic. In the proof of Theorem 1.9 the initial datum is a Turing 
complete diffeomorphism of the 4-dimensional torus (see Proposition 4.4) but it could 
be replaced by other Turing complete black boxes.

Remark 1.11. In this article we study the dynamics (integral curves) of the velocity field 
of a stationary solution of the Euler equations, which physically can be understood as 
the labels-to-particles map from Lagrangian coordinates to Eulerian coordinates. This 
map certainly has relevance in understanding the dynamics of the (time-dependent) 
Euler equations; for instance, the Lyapunov exponents of a steady Euler flow on T 3

(flat metric) are related to the linear instability of these flows [20]. Since generically 
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a Reeb field exhibits hyperbolic periodic orbits, one expects that the steady solutions 
we construct are linearly unstable for the evolution of the Euler equations in Sobolev 
spaces (a proof, however, would involve an extension of the theory in [20] to arbitrary 
Riemannian manifolds, which is not available). The universality properties of the time-
dependent Euler equations are investigated by Tao [38,39], and more recently by Torres 
de Lizaur [41]. In a subsequent work [6] we answered the initial question posed by Tao [38]
by constructing time-dependent Turing complete solutions to the Euler equations in a 
manifold of high dimension.

The paper is organized as follows. In Section 2 we review some classical results on 
contact geometry and h-principle, Beltrami flows and geodesible fields that will be in-
strumental in the next sections. In Section 3 we study the extendibility properties of the 
geodesible fields to Reeb fields for some contact manifold and state several Reeb em-
bedding theorems that will be used in the proof of the theorems above. For the benefit 
of the reader, the proof of the most technically demanding Reeb embedding theorem, 
which gives an “almost optimal” dimension for the ambient manifold, is postponed to 
Section 5. In Section 4 we apply the previous results to the Euler equations to prove 
Theorems 1.4 and 1.9, and Corollary 1.6. Combining the results in Section 3 with a 
number of h-principles for embeddings into contact manifolds [14,3], in Section 5 we 
establish a fairly general h-principle for iso-Reeb embeddings. Finally, in Section 6 we 
provide some examples and generalizations of the iso-Reeb embedding theorems proved 
in Section 3, in particular depicting the space of iso-Reeb embeddings. Unless otherwise 
stated, all the manifolds and submanifolds in this paper are orientable, connected and 
have no boundary.

2. Preliminaries

In this section we review some concepts and results that will be instrumental in the 
forthcoming sections. In Subsection 2.1, we recall the definition of a contact manifold 
and state some classical flexibility theorems for isocontact embeddings. The definition of 
a Beltrami field and its connection with the Reeb flows of a contact form is presented in 
Subsection 2.2. Finally, in Subsection 2.3 some basic facts about geodesible vector fields 
are introduced.

2.1. Contact geometry and h-principle for isocontact embeddings

Let M2m+1 be an odd dimensional manifold equipped with a hyperplane distribution 
ξ. Assume that there is a 1-form α ∈ Ω1(M) with kerα = ξ and α ∧ (dα)m > 0
everywhere. Then we say that (M2m+1, ξ) is a (cooriented) contact manifold.

The 1-form α is called a contact form. Of course, the contact structure ξ does not 
depend on the choice of the defining 1-form α. It is well known that dα induces a sym-
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plectic structure on the hyperplane distribution ξ (of even dimension 2m). The unique 
Reeb vector field R associated to a given contact form α is defined by the equations

ιRα = 1 , ιRdα = 0 . (2.1)

The world of contact geometry exhibits a lot of flexibility which usually enables to use 
arguments from differential topology to prove geometric properties. The pioneering work 
of Gromov [24] shows that there exists a parametric h-principle for contact structures on 
open manifolds. For general manifolds, a parametric and relative h-principle was proved 
in [3] using overtwisted disks, see also [13] and [9] for previous results.

Grosso modo, the general philosophy of the h-principle leans on the idea of deforming 
formal solutions into honest solutions of an equation (PDE or, more generally, a partial 
differential relation). When this is possible, finding a solution is simplified to a homotopic-
theoretical problem. A reincarnation of this principle in the contact set-up requires a 
fine inspection of the notion of formal contact structure. Specifically, the topological 
information given by the contact distribution consists of the codimension one distribution 
ξ and the symplectic structure on it induced by dα. In fact, only the conformal class is 
determined because a rescaling α′ = fα is a contact form for the same contact structure. 
This allows one to introduce the concept of a formal contact structure that is defined 
as a cooriented hyperplane distribution and a conformally symplectic class on it. In the 
literature this structure has been usually called almost contact structure, however in 
the last few years the term formal has become standard since it implements the formal 
condition for the h-principle. We can find a 2-form ω on M such that (ξ, ω|ξ) is a 
conformal symplectic vector bundle: we say that two formal contact structures defined 
as (ξ, ω|ξ) and (ξ, ω̂|ξ) are equivalent if ω and ω̂ are conformally equivalent. So a formal 
contact structure is described by a codimension one conformal symplectic vector bundle.

The flexibility statements that we need in this paper concern isocontact embeddings. 
Recall that a map f : (N, ξN ) → (M, ξM ) between contact manifolds is called isocontact 
if f∗ξN = ξM . In the formal level, a monomorphism F : TN → TM is called isocontact 
if ξN = F−1(ξM ) and F induces a conformally symplectic map with respect to the 
conformal symplectic structures CS(ξN ) and CS(ξM ). The following h-principle was 
proved in [14, Section 12.3.1]. We recall that N0 is called a core of an open manifold 
N if for an arbitrarily small neighborhood U of N0, there is an isotopy which sends 
diffeomorphically U to N .

Theorem 2.1 ([24]). Let (N, ξN ) and (M, ξM ) be contact manifolds of dimension 2n +
1 and 2m + 1 respectively. Let f0 =: (N, ξN ) → (M, ξM ) be an embedding such that 
its differential F0 := df0 is homotopic (via monomorphisms Ft : TN → TM , with 
projections onto the base given by f0) to a conformal symplectic monomorphism F1. 
Then

• If N is open and n ≤ m − 1 then there is an isotopy ft : N → M such that the 
embedding f1 is isocontact and df1 is homotopic to F1 through conformal symplectic 
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monomorphisms. Given a core N0 of N , ft can be chosen arbitrarily C0-close to f0
near N0.

• If N is closed and n ≤ m − 2 then the above ft exists. Moreover, one can choose ft
to be arbitrarily C0-close to f0.

In [3], the authors showed that every formal contact structure is deformable to a 
genuine contact structure, thus proving the long standing conjecture of the existence of 
contact structures in every formal contact manifold. Restricting to a particular class of 
contact structures called overtwisted, a full h-principle was proved, thus implying a result 
stronger than Theorem 2.1 for isocontact embeddings into overtwisted manifolds. This 
result, which holds for codimension 0 isocontact embeddings of open manifolds, can be 
summarized as follows:

Theorem 2.2 ([3]). Let (M2m+1, ξ) be a connected overtwisted contact manifold and 
(N2m+1, ζ) an open contact manifold of the same dimension. Let f : N → M be a 
smooth embedding covered by an isocontact bundle homomorphism ϕ : TN → TM , that 
is such that ϕ(ζx) = ξf(x) and ϕ preserves the conformal symplectic structures on the 
distributions. If df and ϕ are homotopic as injective bundle homomorphisms then f is 
isotopic to an isocontact embedding f̃ .

2.2. The correspondence between Beltrami fields and Reeb flows

The stationary Euler equations (1.2) can be written equivalently using differential 
forms as

ιudα = −dB , dιuμ = 0 , (2.2)

where α := ιug is the metric dual 1-form of u and μ is the Riemannian volume form. 
The function B is called the Bernoulli function, and is defined as B := p + 1

2g(u, u). 
When the dimension of M is odd, i.e. dim M = 2m + 1, one can introduce the concept 
of vorticity, which is a vector field that plays a fundamental role in fluid mechanics. It is 
defined as the curl of u, i.e. ω := curlu, where the curl of a vector field in odd dimensions 
is computed as the only field that satisfies the equation

ιωμ = (dα)m .

Notice that when m > 1, the curl is a nonlinear differential operator.
A landmark in the study of the steady Euler flows in odd dimensional manifolds is 

Arnold’s structure theorem [1,2], which is based on the following dichotomy: a stationary 
solution either has a nontrivial first integral (the Bernoulli function) or it is a Beltrami 
field. We recall that a Beltrami field u is a vector field that satisfies

curlu = fu , div u = 0 , (2.3)
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for some smooth function f . These fields are stationary solutions of the Euler equations 
with constant Bernoulli function. Even if in this case the Bernoulli function is a trivial 
first integral, a Beltrami field might as well have another first integral, i.e. both situations 
are not mutually exclusive.

When the function f does not vanish, say f > 0, there is a remarkable correspondence 
between nonvanishing Beltrami fields and Reeb flows for a certain contact structure sug-
gested by Sullivan and proved by Etnyre and Ghrist in [18] (see also [5] for an extension 
to Beltrami fields on manifold with cylindrical ends and b-contact structures). This result 
paves the way to study the stationary Euler equations using contact geometry techniques. 
The proof presented in [18] is in dimension 3, but it can be readily extended to any higher 
odd dimension. We include it here for the sake of completeness.

Theorem 2.3. Any nonvanishing Beltrami field with positive proportionality factor is a 
reparametrization of a Reeb flow for some contact form. Conversely, any reparametriza-
tion of a Reeb vector field of a contact structure is a nonvanishing Beltrami field for 
some Riemannian metric.

Proof. Let u be a Beltrami field and α its metric-dual 1-form. As dimM = 2m + 1, the 
Beltrami equation reads as

(dα)m = fιuμ .

Since f > 0 and u does not vanish, it then follows that α satisfies the contact condition

α ∧ (dα)m = fα ∧ ιuμ > 0.

Moreover, ιu(dα)m = 0 so u ∈ ker dα. Accordingly, u is a reparametrization of the Reeb 
field R, that is R = u

g(u,u) .
To prove the converse implication, consider a contact form α and its associated Reeb 

flow R. Let u := R/h where h > 0 is a reparametrization of R, and take an almost-
complex structure J on kerα = ξ adapted to dα, i.e. dα(·, J ·) is a positive definite 
quadratic form on ξ. Define the metric

g(u, v) := h(α(u) ⊗ α(v)) + h̃ dα(u, Jv) , (2.4)

where h̃ is any positive function. It then follows that ιug = α. It is clear that the function 
h̃ can be chosen so that the Riemannian volume form is μ = hα ∧ (dα)m. Therefore, u
is a Beltrami field (with factor f = 1) with respect to the metric g because ιuμ = (dα)m
and dιuμ = 0. �
Remark 2.4. The (non-unique) Riemannian metric (2.4) is called an adapted metric to 
the contact form α.
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2.3. Geodesible vector fields

We say that a vector field X on a manifold M is geodesible if there exists a Riemannian 
metric g on M making the orbits geodesics. It can be shown [22,35] that the geodesibility 
condition is equivalent to the existence of a 1-form β such that β(X) > 0 and ιXdβ = 0. 
If we also assume that the 1-form can be taken so that β(X) = 1, we say that X is of unit 
length. Unless otherwise stated, all along this paper we shall assume that a geodesible 
field has unit length. A similar characterization for Eulerisable flows was introduced 
in [33].

Another characterization that we shall use later is that X is geodesible of unit length if 
and only if it preserves a transverse hyperplane distribution. The necessity is immediate 
from the aforementioned result. To prove that it is sufficient, let η be the hyperplane 
distribution and β a defining 1-form such that kerβ = η and β(X) > 0. Dividing β by 
the function β(X) we can safely assume that β(X) = 1. The condition that X preserves 
kerβ is tantamount to saying that

LXβ = fβ ,

for some function f ∈ C∞(M). Cartan’s formula implies that ιXdβ = fβ, and contract-
ing with the vector field X we finally conclude that f = 0.

In the next sections we shall usually denote a geodesible field by (N, X) or (N, X, η), 
where N is the ambient manifold, X is the field and η is the transverse hyperplane 
distribution preserved by X. In particular we might fix the 1-form β, and hence the 
hyperplane distribution η = kerβ preserved by X.

3. Reeb-embeddability and geodesible fields

The goal of this section is to prove the following theorem:

Theorem 3.1. Let (N, X) be a compact manifold endowed with a geodesible field X. Then 
there is a smooth embedding e : N → Sn with n = 4 dim N − 1 and a 1-form α defining 
the standard contact structure ξstd on Sn such that e(N) is an invariant submanifold of 
the Reeb field R defined by α and e∗X = R. Moreover, α is equal to the standard contact 
form αstd in the complement of a ball that contains e(N).

To prove this result, we first recall (Subsection 3.1) Inaba’s characterization of the 
vector fields on a submanifold of a contact manifold (M, ξ) that can be extended as 
Reeb flows for some contact form defining the contact structure ξ. In Subsection 3.2 we 
introduce the concept of Reeb embedding and prove Theorem 3.1 using an h-principle 
for isocontact embeddings. Finally, in Subsection 3.3 we state a stronger Reeb embed-
ding result (Theorem 1.8) which substantially improves the dimension n in Theorem 3.1
and shows that, roughly speaking, any embedding of high enough codimension can be 
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deformed into a Reeb embedding. The proof of this result is more involved and will be 
postponed to Section 5.

We shall see in Section 4 how these results can be used, in combination with the 
correspondence theorem in Subsection 2.2, to prove the universality results stated in 
Section 1. As an immediate corollary we obtain:

Corollary 3.2. Let (N, X) be a compact manifold endowed with a geodesible field X which 
is not necessarily of unit length. Then there exists an embedding e : N → Sn with 
n = 4 dim N−1 and a non-vanishing Beltrami field u on Sn with constant proportionality 
factor such that e∗X = u. The Riemannian metric for which u is a Beltrami field is the 
canonical metric of Sn in the complement of a ball containing e(N).

Proof. Reparametrizing X we obtain another geodesible vector field X̃ of unit length. 
Theorem 3.1 implies that (N, X̃) admits an embedding into (Sn, ξstd), n = 4 dim N − 1, 
such that there is a defining contact form α whose Reeb vector field satisfies R|e(N) = X̃. 
Obviously, we can now reparametrize R by a function f such that fR|e(N) = X and f = 1
in the complement of a ball B that contains e(N). By Theorem 2.3, the vector field fR, 
which is no longer Reeb in general, is a Beltrami field with constant proportionality 
factor for some Riemannian metric on Sn that can be taken to be the canonical metric 
in the complement of B. �
3.1. Extension of Reeb flows

We recall a simple characterization due to Inaba [28] of the vector fields on a subman-
ifold of a contact manifold that can be extended to a Reeb vector field. For the sake of 
completeness, we include a concise proof.

Lemma 3.3. Let (M, ξ) be a (cooriented) contact manifold and (N, X) a compact sub-
manifold of M endowed with a tangent (non-vanishing) vector field X which is positively 
transverse to ξ on N . Then there is a contact form α defining ξ such that its Reeb vector 
field R satisfies R|N = X if and only if X preserves TN ∩ ξ.

Proof. The necessity is trivial because a Reeb vector field preserves the contact dis-
tribution. To prove the sufficiency, assume that the vector field X on N preserves the 
tangent distribution η := TN ∩ ξ. It is useful to denote the embedding of N into M
by e : N → M , where with a slight abuse of notation we are identifying N with its 
embedded image.

Let α0 be a defining contact form of ξ. Fix the strictly positive smooth function 
hN on N , given as hN := 1

e∗α0(X) . By using partitions of unity, we can find a strictly 
positive function h : M → R+ such that h|N = hN . Define a new 1-form α1 := hα0, still 
associated to the contact structure ξ, which by construction satisfies the first condition 
in the defining Reeb equations (2.1)
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ιXα1 = 1 .

Since X preserves kerα1, it preserves ker e∗α1. Hence this reads as,

LXe∗α1 = fe∗α1,

where f is a smooth function. By Cartan formula this implies that ιXe∗dα1 = fe∗α1. 
Contracting this equation (in 1-forms) with the vector field X, we immediately obtain 
that f = 0. Thus, we have

ιXde∗α1 = 0. (3.1)

Now we want to find a new associated contact form multiplying by a strictly positive 
smooth function λ on M such that the vector field X satisfies the Reeb equations (2.1)
when applied to the 1-form α := λα1. Taking a function λ such that λ|N = 1, by 
the uniqueness of the Reeb vector field, this is tantamount to saying that X verifies
ιXd(λα1) = 0, since this new contact form still satisfies e∗(α)(X) = 1. Thus, we just 
need to find a function λ such that the 1-form λα1 satisfies the second Reeb equation in 
(2.1), i.e.

ιXd(λα1) = 0 ,

on TM |N . Expanding it we obtain

0 = ιXd(λα1) = ιX(dλ ∧ α1 + λdα1) ,

that restricted to N reads as

0 = −dλ + dα1(X) , (3.2)

where we have used that X is tangent to N and λ|N = 1. Accordingly, the condition 
that λ must satisfy reads as dλ = dα1(X) on N (over the whole TM |N ).

Since we proved above that ιXe∗dα1 = 0, and λ|N = 1, the equality of 1-forms (3.2)
holds on TN ⊂ TM . For the normal directions, just find a smooth function such that the 
partial derivatives for any v ∈ TpM with p ∈ N satisfy ∂λ∂v = dα1(X, v). This determines 
the whole 1-jet of the function λ on N . Again, by a standard argument taking partitions 
of the unity, this implies the existence of a positive smooth function λ on M that extends 
this given 1-jet. The lemma then follows. �
Remark 3.4. We remark that the vector field X in Lemma 3.3 is geodesible. Indeed, 
following the notation of the proof of the lemma, the 1-form β := e∗α satisfies that 
ιXβ = 1 and ιXdβ = 0, which implies the geodesibility according to Subsection 2.3.
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Remark 3.5. It follows from the proof of the lemma, that if α0 is an associated contact 
form for ξ, then the 1-form α can be taken to be equal to α0 in the complement of a 
neighborhood of N ⊂ M (just take extensions of the functions h and λ in the proof so 
that h = λ = 1 in the complement of the neighborhood).

3.2. Existence of Reeb embeddings

The characterization of vector fields extendible to Reeb flows presented in the previous 
subsection suggests the following definition (see also Definition 1.7).

Definition 3.6. Let (N, X) be a geodesible field on a compact manifold. An embedding 
e : (N, X) → (M, ξ) of N into a contact manifold M is called a Reeb embedding if 
there is a contact form α defining ξ such that its Reeb vector field R satisfies e∗X = R

(in particular e(N) is an invariant submanifold of R). If we further assume that the 
geodesible vector field comes with a fixed preserved distribution kerβ = η, then an 
embedding is called an iso-Reeb embedding if e∗ξ = η.

Observe that a Reeb embedding e : (N, X) → (M, ξ) clearly induces an iso-Reeb 
embedding just by declaring η := e∗ξ. As noticed before, any Reeb vector field tangent 
to a submanifold is geodesible on it. Theorem 3.1 then claims that the converse also 
holds, i.e. that for any geodesible field (N, X) there exists a Reeb embedding into a high-
dimensional sphere endowed with the standard contact structure. The following technical 
lemma is key to prove the main result of this section. For the proof, we follow [14, Section 
16.2.2].

Lemma 3.7. Let (N, X, η) be a geodesible field on a compact manifold N of dimension 
n0, and β a defining 1-form of the hyperplane distribution η. Assume that there exists 
an embedding e : (N, X, η) → M into a manifold of dimension 2m − 1 endowed with a 
hyperplane distribution ξ defined on e(N) such that

(1) η = e∗ξ.
(2) There is a nondegenerate 2-form ω on ξ|N .
(3) ω|TN = dβ.

Then there is a small neighborhood U of e(N) in M and a contact form α on U such 
that e∗α = β.

Proof. For notational simplicity, we shall identify N with its embedded image e(N). 
Consider a small neighborhood U ⊂ M of N , which can be identified with a normal disk 
bundle π : U → N . Fix a covering by small open sets Vj ⊂ N where U |Vj

= Vj ×Rm′−1, 
m′ := 2m − n0. Since e∗ξ = η, then the hyperplane distribution ξ on N can be split as 
ξ|Vj

= η⊕Rm′−1. In terms of this splitting, the assumption ω|TN = dβ implies that the 
2-form ω can be written as
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ω = d(π∗β) + ω′

where ω′ is a 2-form that satisfies that ω′|η = 0.
Let us introduce coordinates (y1,j , · · · , ym′−1,j) in the second factor of Vj × Rm′−1. 

In these coordinates, we can assume that ω′ has the form

ω′ =
m′−1∑
k=1

dyk,j ∧ βk,j

where βk,j are suitable 1-forms on N . Now we can define on U the 1-form

αj := π∗β +
m′−1∑
k=1

yk,jβk,j .

Notice that e∗αj = β and that kerαj |N = ξ. Moreover, since

(dαj)|N = d(π∗β) +
m′−1∑
k=1

(dyk,j ∧ βk,j |N + yk,j ∧ dβk,j |N )

= d(π∗β) +
m′−1∑
k=1

dyk,j ∧ βk,j |N

= ω|N ,

is nondegenerate on ξ|N , and X is transverse to ξ. Observe that αj is a contact form 
near the zero section of Vj ×Rm′−1. Choose a partition of the unity χj subordinated to 
the open cover Vj , and define α =

∑
j χjαj . Expanding this expression we get that:

(dα)|N = d(π∗β) +
∑
j

χj

m′−1∑
k=1

dyk,j ∧ βk,j |N

= ω|N .

This concludes the proof. �
Proof of Theorem 3.1. Following the notation introduced in Lemma 3.7, η is the hyper-
plane distribution on N preserved by X, and β is a defining 1-form. Consider the vector 
bundle M defined by the dual distribution η∗ over N , and denote the bundle projection 
as π : M → N . Observe that dim M = 2n0 − 1 and that the tangent bundle of M at the 
zero section (which is the manifold N) splits as TM |N = TN ⊕ η∗ = 〈X〉 ⊕ η⊕ η∗. This 
distribution η ⊕ η∗ over N has dimension 2n0 − 2 and is equipped with the canonical 
symplectic form ω0 defined by
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ω0((v1 ⊕ α1), (v2 ⊕ α2)) := α2(v1) − α1(v2) ,

where vk is a section of η and αk is a section of η∗. Observe that with this symplectic 
structure η on N is an isotropic subspace, i.e. denoting by j : η → η ⊕ η∗ the natural 
inclusion, we have that j∗ω0 = 0.

Let us now perturb the symplectic structure ω0 by lifting a 2–form on N to TM |N . 
For every point p ∈ N we define the 2-form

ωN |p = A(ω0)|p + (dβ)|p,

where A > 0 is a constant large enough so that ωN defined on N is still nondegenerate. 
It follows from the previous construction that, if e0 : (N, X, η) → M denotes the natural 
inclusion then we can apply Lemma 3.7 to conclude that there is a contact form α in 
a neighborhood U of N in M such that e∗0α = β. Notice that the contact distribution 
ξ := kerα coincides with η ⊕ η∗ on N .

Summarizing, we have constructed an open contact manifold U of dimension 2n0 − 1
with a submanifold N endowed with a vector field X that is positively transverse to the 
contact distribution ξ and preserves TN ∩ ξ = η. Lemma 3.8 below and the h-principle 
for isocontact embeddings Theorem 2.1 imply that U can be isocontactly embedded into 
(Sn, ξstd) for n = 4n0 − 1 (see also [31]). Denoting this embedding by e : U → Sn it 
obviously satisfies e∗0e∗ξstd = η. Identifying N with its embedded image in Sn (via the 
embedding e ◦ e0), we have that the field X preserves TN ∩ ξstd = η, so we can apply 
Lemma 3.3 to conclude that there is a contact form α̃ whose Reeb field R coincides with 
X on N , and α̃ = αstd in the complement of a neighborhood of N . The theorem then 
follows. �
Lemma 3.8. Any smooth embedding of a contact manifold (N2n0−1, η) into (S4n0−1, ξstd)
is a formal isocontact embedding.

Proof. Let f : N2n0−1 → S4n0−1 be a smooth embedding. Let us construct a family of 
monomorphisms Ft : TN2n0−1 → TS4n0−1|N such that F0 = df , F1(Rη) = Rstd (the 
corresponding Reeb fields), F1(η) ⊂ ξstd and F1 is a complex monomorphism. To this 
end, we first find a family of vector fields Rt over TS4n0−1|N such that R0 = Rη and 
R1 = Rstd. This family exists because the connectedness of the sphere is higher than 
the dimension of N , i.e., any two sections of TS4n0−1|N are homotopic through non-
vanishing sections since 4n0 > 2n0 − 1. Now fix ξt to be any complementary of Rt which 
satisfies f∗η ⊂ ξ1. This automatically provides a family, canonical up to homotopy of 
(real) monomorphisms, Ft : TN → TS4n0−1|N such that F0 = df . It remains to show 
that F1 : η → ξstd|N is homotopic (by an homotopy fixed along the base) to a complex 
monomorphism, but this is an easy consequence of the connectedness of the inclusion 
map of the space of complex monomorphisms into the space of real monomorphisms, 
i.e., the rank of connectedness is bigger than the dimension of N . �
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Corollary 3.9. Let X be a nonvanishing vector field on a compact manifold N . Then N
embeds into some contact manifold (M, ξ) such that X = R|N for a Reeb vector field R
of some contact form if and only if X is geodesible.

Remark 3.10. The isocontact embedding theorem used in the proof of Theorem 3.1 works 
for any ambient contact manifold of dimension n = 4 dim N − 1 (because it gives an 
embedding into a Darboux neighborhood of any contact manifold of dimension bigger 
or equal than 4 dim N − 1). This implies, in particular, that the ambient manifold in 
Theorem 3.1 can be taken to be (Rn, ξstd).

Remark 3.11. When the manifold N is non-compact the following observation allows one 
to prove a result analogous to Theorem 3.1. Indeed, Lemma 3.3 works if N is a properly 
embedded submanifold, and the embedding provided by Whitney embedding theorem 
can be taken proper [30]. Accordingly, Theorem 3.1 provides a Reeb embedding of any 
pair (N, X) with N non-compact and X geodesible into (Rn, ξstd), n = 4 dim N − 1.

3.3. An improved Reeb embedding theorem

Theorem 3.1 shows the existence of a Reeb embedding of (N, X) into Sn for n =
4 dim N − 1. This suggests two questions:

(1) Can we improve the bound on the dimension n of the target space?
(2) Can an embedding e : (N, X) → (M, ξ) be deformed into a Reeb embedding via an 

isotopy which is C0-close to the identity?

Let us finish this section by stating Theorem 1.8, which is a generalization of The-
orem 3.1, and answers these questions. Its proof, which makes use of some non trivial 
modern h–principle results in contact topology, is technically much more involved than 
the proof of Theorem 3.1, and will be presented in Section 5 together with a few corol-
laries that can be useful for other applications in Contact Geometry. This theorem is 
key for the proofs of Theorems 1.4 and 1.9 stated in the Introduction.

Theorem (Theorem 1.8). Let e : (N, X) → (M, ξ) be a embedding of N into a contact 
manifold (M, ξ) with X a geodesible vector field on N . Then:

• If dimM ≥ 3 dimN +2, then e is isotopic to a (small) Reeb embedding ẽ, and ẽ can 
be taken C0-close to e.

• If dimM ≥ 3 dimN and M is overtwisted, then e is isotopic to a Reeb embedding.

The notions in the statement will be introduced in Section 5. For the proofs of The-
orems 1.4 and 1.9 the (weaker) statement that provides a general Reeb embedding is 
sufficient. Roughly speaking, Theorem 1.8 shows that Reeb embeddings are completely 
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determined by differential topology invariants. This fact can be easily encoded in the 
h-principle philosophy (see [14,24]), details will be provided in Section 5. As a Corollary 
we obtain the following improved version of Corollary 3.2; the proof is analogous so we 
omit it.

Corollary 3.12. Let (N, X) be a compact manifold endowed with a geodesible field X
which is not necessarily of unit length. Then there exists an embedding e : N → Sn with 
n the smallest odd integer n ∈ {3 dim N +2, 3 dim N +3}, and a non-vanishing Beltrami 
field u on Sn with constant proportionality factor such that u|e(N) = X. The Riemannian 
metric for which u is a Beltrami field is the canonical metric of Sn in the complement 
of a ball containing e(N).

4. Steady Euler flows: proof of Theorems 1.4 and 1.9

Our goal in this section is to apply the results on Reeb embeddings in Section 3 to 
prove the main theorems stated in the Introduction on the universality of the stationary 
Euler equations.

4.1. Non-autonomous dynamics and universality

Let u0(·, t) be a non-autonomous vector field on a compact manifold N , and assume 
that it is 2π periodic in t. The suspension of u0 on the manifold N × S1 (with S1 =
R/(2πZ)) is another vector field defined as

X(x, θ) := u0(x, θ) + ∂θ ,

with x ∈ N and θ ∈ S1.
The vector field X on N × S1 is geodesible. Indeed, the closed 1-form β := dθ ob-

viously satisfies that β(X) = 1 and ιXdβ = 0, which implies that X is geodesible, cf.
Subsection 2.3. Now, applying Theorem 1.8 to the pair (N × S1, X), we conclude that 
there exists a Reeb embedding e : (N × S1, X) → (Sn, ξstd) for the smallest odd integer 
n ∈ {3 dim N + 5, 3 dim N + 6}. This means, cf. Definition 3.6, that there is a defining 
1-form α of ξstd whose Reeb field R satisfies that R|e(N×S1) = X. Furthermore, we can 
require that α = αstd in the complement of a ball B that contains e(N × S1), as per 
Remark 3.5.

It follows from the Beltrami-Reeb correspondence Theorem 2.3, that R is a Beltrami 
field (and hence a steady Euler flow) for some metric g on Sn. Moreover, since the 
adapted metric to the standard contact form on the sphere is the round metric g0, it 
turns out that g = g0 in the complement of B ⊂ Sn.

Setting u := R, the previous construction shows that any (time-periodic) non-
autonomous dynamics u0 is Euler-extendible, recall Definition 1.1.

The general case of a non-autonomous flow u0(·, t) is analogous. The suspension man-
ifold is N × R and X is defined as above with θ ∈ R. This vector field is geodesible, so 
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Fig. 1. Suspended diffeomorphism.

proceeding as before we conclude that u0 is Euler-extendible to Rn, for the smallest odd 
integer n ∈ {3 dim N + 5, 3 dim N + 6}. Note that in this case the adapted metric to 
the standard contact form on Rn is not the Euclidean one. This completes the proof of 
Theorem 1.4.

Remark 4.1. When the extended manifold is Sn, the steady Euler flow u is equal to the 
Hopf field in the complement of B (because the Hopf field is the Reeb field associated to 
the standard contact form). In the case that the extension is in Rn, the vector field u is 
the vertical field ∂xn

in the complement of a neighborhood of the non-compact manifold 
e(N ×R).

Remark 4.2. When the vector field u0 is autonomous and geodesible (not necessarily of 
unit length) we do not need to take the suspension of u0. In this case we can directly 
apply Corollary 3.12 to conclude that (N, u0) can be embedded into Sn, where n is the 
smallest odd integer n ∈ {3 dimN +2, 3 dim N +3}, so that e∗u0 extends as a Beltrami 
field with constant proportionality factor on Sn.

We conclude this subsection by proving Corollary 1.6. The main idea is again a sus-
pension construction, depicted in Fig. 1.

Indeed, let Ñ be the manifold defined as Ñ := N × [0, 1]/ ∼ where we identify (x, 0)
with (φ(x), 1). Consider the horizontal vector field ∂θ on N × [0, 1], where θ ∈ [0, 1]. This 
vector field immediately pushes down to another field on Ñ that we call X. Observe that 
N is a cross section of X and its (time-one) return map is conjugate to φ. Arguing as 
before, we show that X is geodesible and can be extended to a steady Euler flow on Sn, 
n ∈ {3 dim N + 5, 3 dim N + 6}, thus showing that φ is Euler-embeddable.
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4.2. Turing completeness

Let us first recall that a Turing machine is a 5-tuple (Q, q0, F, Σ, δ) where

• Q is a finite non-empty set, the set of “states”.
• q0 ∈ Q is the initial state.
• F ∈ Q is the halting state.
• Σ is the alphabet, a finite set of cardinality at least two.
• δ : (Q\F ) ×Σ → Q ×Σ ×{L, N, R} is a partial function called a transition function. 

We denote by L the left shift, R is the right shift and N represents a “no shift”.

Following Tao [37], we consider a Turing machine with a single tape that is infinite 
in both directions and a single halting state, with the machine shifting the tape rather 
than a tape head; in particular we do not need to isolate a blank symbol character in 
the alphabet (anyway, all the results here apply to other variants of a Turing machine). 
We denote by q the current state, and t = (tn)n∈Z the current tape. For a given Turing 
machine (Q, q0, F, Σ, δ) and an input tape s = (sn)n∈Z ∈ ΣZ the machine runs applying 
the following algorithm:

(1) Set the current state q as the initial state and the current tape t as the input tape.
(2) If the current state is F then halt the algorithm and return t as output. Otherwise 

compute δ(q, t0) = (q′, t′0, ε), with ε ∈ {L, R, N}.
(3) Replace q with q′ and t0 with t′0.
(4) Replace t by the ε-shifted tape, then return to step (2).

For any input the machine will halt at some point and return an output or run indef-
initely. The Turing completeness of a dynamical system can be understood in terms of 
the concept of a universal Turing machine, which is a machine that can simulate all 
Turing machines.

In [8] we proved the following theorem:

Theorem 4.3. There exists an Eulerisable flow X in S3 that is Turing complete in the 
following sense. For any integer k ≥ 0, given a Turing machine T , an input tape t, and a 
finite string (t∗−k, ..., t

∗
k) of symbols of the alphabet, there exist an explicitly constructible 

point p ∈ S3 and an open set U ⊂ S3 such that the orbit of X through p intersects U if 
and only if T halts with an output tape whose positions −k, ..., k correspond to the symbols 
t∗−k, ..., t

∗
k. The metric g that makes X a stationary solution of the Euler equations can 

be assumed to be the round metric in the complement of an embedded solid torus.

Now we prove Theorem 1.9, i.e., that there exists a steady Euler flow on S17 that is 
Turing complete using the former construction (Theorem 3.1 and its proof). Even if in 
Theorem 1.9 the sphere is higher dimensional, the method of proof allows us to promote 
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arbitrary Turing complete constructions to higher dimensional Eulerizable vector fields. 
The initial data in our proof can be seen as black boxes that can be assembled to yield a 
whole family of ad-hoc brand-new constructions. A key feature of this theorem is that it 
is based on an h-principle which is algorithmic. In particular, to prove Theorem 1.9 we 
take as initial datum an orientation-preserving diffeomorphism φ of the torus T 4 that 
encodes a universal Turing machine in the following sense [37, Proposition 1.10]:

Proposition 4.4. There exists an explicitly constructible diffeomorphism φ : T 4 → T 4

such that for any Turing machine (Q, q0, F, Σ, δ) there is an explicitly constructible open 
set Ut−n,...,tn ⊂ T 4 attached to each finite string t−n, ..., tn ∈ Σ, and an explicitly con-
structible point ys ∈ T 4 attached to each s ∈ ΣZ such that the Turing machine with 
input tape s halts with output t−n, ..., tn in positions −n, ..., n, respectively, if and only 
if the orbit ys, φ(ys), φ2(ys), ... enters Ut−n,...,tn .

Let us now prove Theorem 1.9 using that the diffeomorphism φ : T 4 → T 4 that en-
codes a universal Turing machine constructed in Proposition 4.4 can be Euler-embedded 
in S17, cf. Corollary 1.6. More precisely, let N be the 5-dimensional manifold defined 
as N := T 4 × [0, 1]/ ∼, where we identify (x, 0) with (φ(x), 1), and X the vector 
field on N obtained by pushing down the horizontal vector field ∂θ on T 4 × [0, 1]
(θ ∈ [0, 1]). This vector field is geodesible, so by Theorem 1.8 there exists a Reeb embed-
ding e : (N, X) → (S17, ξstd), which is a stationary solution to the Euler equations u on 
S17 of Beltrami type satisfying u|e(N) = X. The embedding e is explicitly constructible 
because the applied h-principle is algorithmic; also the vector field u is constructible, 
because it is the Reeb field of a defining contact form α of ξstd, which is also algorith-
mic (see the proof of Theorem 1.8). The fact that these embeddings are algorithmically 
constructible is a key feature to deduce the existence of a Turing complete Beltrami 
field. Indeed, the capacity of simulating a Turing machine requires that the initial point 
associated with an input of the machine is constructible (i.e., computable by a Turing 
machine).

In view of the previous discussion, let us take a point ỹs ∈ S17 as the image of the 
point ys × {0} ∈ N under the embedding e, and a neighborhood Ũt−n,...,tn ⊂ S17 as 
a neighborhood in S17 of the image of the open set Ut−n,...,tn × {0} ⊂ N under the 
embedding e. Then, Theorem 1.9 can be restated in a more precise way as follows:

Theorem (Beltrami fields are Turing complete). There exists a Beltrami field u on S17 for 
some Riemannian metric g such that for any Turing machine (Q, q0, F, Σ, δ) there is an 
explicitly constructible open set Ut−n,...,tn ⊂ T 4 attached to each finite string t−n, ..., tn ∈
Σ and an explicitly constructible point ys ∈ T 4 attached to each s ∈ ΣZ such that 
the Turing machine with input tape s halts with output t−n, ..., tn in positions −n, ..., n
respectively if and only if the trajectory of u with initial datum ỹs enters Ũt−n,...,tn .

Remark 4.5. The metric g in this theorem is the canonical metric of S17 in the comple-
ment of a neighborhood of e(N). In fact, we observe that the dimension of the target 
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sphere may be reduced by 2 in all the applications of this section by considering a sphere 
with an overtwisted contact structure. In this case we would obtain a Turing complete 
Euler flow in S15, but we cannot longer guarantee that the metric g is the canonical 
one in the complement of a neighborhood of e(N). This can be easily fixed if one starts 
with the standard tight contact structure on the sphere and make it overtwisted on a 
small ball U ⊂ S15 using the relative h-principle for overtwisted contact structures [3], 
so that the contact form is the standard one in S15 \ U . Then, taking an embedding 
e : N → S15 with e(N) ⊂ U , Theorem 1.8 can be applied with the overtwisted target 
manifold M ≡ U , and therefore the resulting Reeb embedding ẽ isotopic to e can be 
taken such that ẽ(N) ⊂ U (although it is no longer C0-close to e). The metric g can 
then be chosen to be the canonical one outside U because the contact form coincides 
with the standard one in S15 \ U by construction.

4.3. The existence of a universal solution in Rn

Using the ideas developed in this article, we can show that there exists an Eulerisable 
flow in Rn which, in some sense, exhibits all possible lower-dimensional dynamics. To be 
more precise, let us introduce the following definitions:

Definition 4.6. Given two vector fields X1 and X2 in N × S1, where N is a compact 
manifold, we say that X1 is (ε, k)-conjugate to X2 if there is a diffeomorphism ϕ :
N × S1 → N × S1 such that

||ϕ∗X1 −X2||Ck(N×S1) < ε.

Definition 4.7. Fix a positive integer k. A vector field u in Rn is N -universal if for any 
ε and any vector field X on N there is an invariant submanifold Ñ of u diffeomorphic 
to N × S1 such that u|Ñ is (ε, k)-conjugate to X + ∂θ with θ ∈ S1.

Theorem 4.8. Let N be a compact manifold. There exists an N -universal Eulerisable flow 
of Beltrami type in Rn, where the dimension is the smallest odd integer n ∈ {3 dim N +
5, 3 dim N + 6}.

Proof. We first recall that the space X(N) of smooth vector fields on N is second count-
able with the Whitney topology [26, Chapter 2.1]. In particular, it is separable and 
hence there is a countable set of vector fields {Xj}j∈Z which is dense in X(N). For 
every pair (N, Xj), we can take the suspension of the vector field Xj as in Subsec-
tion 4.1 to obtain a countable set of pairs (Nj, Yj) where Nj is diffeomorphic to N × S1

and Yj := Xj + ∂θ is a geodesible flow. Now take a countable collection of contact 
balls (Uj , ξstd) ⊂ Rn with pairwise disjoint closures, where n is the smallest odd in-
teger n ∈ {3 dim N + 5, 3 dim N + 6}. By Theorem 1.8 there exists an embedding ej
of (Nj , Yj) for each j ∈ Z into (Uj , ξstd) such that there is a defining contact form αj
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whose Reeb field Rj on ej(Nj) restricts to Yj . Observe that we can take αj = αstd, the 
standard contact form, in a neighborhood of the boundary ∂Uj. This allows us to define 
a smooth global contact form α on Rn by setting α := αj on each Uj and α := αstd on 
Rn\ 

⋃
j∈Z Uj ; it is obvious that the Reeb field R associated to α satisfies R|ej(Nj) = Yj

for all j.
Fixing an integer k, it follows from the previous construction that for any vector field 

X ∈ X(N) and any ε > 0, there exists j0 ∈ Z so that Xj0 is (ε, k)-conjugate to X. 
Then ej0(Nj0) is an invariant submanifold of R, and R|ej0(Nj0 ) = Yj0 . Accordingly, Yj0

is (ε, k)-conjugate to X +∂θ. Since any Reeb field is an Eulerisable flow of Beltrami type 
(cf. Section 2.2), the theorem follows. �

The method of proof of Theorem 4.8 allows us to provide a different proof of a theorem 
of Etnyre and Ghrist in [19]. Specifically, we can show that there exists an Eulerisable 
flow in R3 exhibiting periodic integral curves of all possible knot and link types; when 
the Riemannian metric of R3 is fixed and analytic, this result was proved in [16].

Corollary 4.9. There exists an Eulerisable flow of Beltrami type in R3 exhibiting stream 
lines of all possible knot and link types.

Proof. The set of all knot and link types of smoothly embedded circles in R3 is known 
to be countable. Let us now embed a representative Lj of each knot and link type in 
pairwise disjoint Darboux balls (Uj , ξstd) ⊂ R3 as in the proof of Theorem 4.8. Then, 
for all j ∈ Z, there is an isotopy of the link Lj, C0-close to the identity, which makes 
it positively transverse to ξstd, see e.g. [21]. For the ease of notation, we still denote 
the deformed link by Lj . Applying Lemma 3.3 to each Lj endowed with the vector field 
Xj := ∂θ, where θ ∈ S1 parametrizes Lj , we conclude that there is a contact form α in 
R3 whose Reeb vector field contains periodic orbits of all possible knot and link types. 
(Note that the condition that Xj preserves TLj ∩ ξstd is trivially satisfied in this case.) 
The statement then follows using the correspondence between Reeb flows and Beltrami 
fields. �
4.4. Even dimensional Euler flows

In all the constructions that we have used to prove Theorems 1.4 and 1.9, the ambient 
manifold is odd dimensional because we exploit the connection between hydrodynamics 
and contact geometry. We finish this section with a result that allows us to establish 
the universality of the Euler flows also for even dimensional ambient manifolds. The 
main observation, which is the even dimensional analog of Theorem 3.1, is the following 
proposition:

Proposition 4.10. Let N be a compact manifold endowed with a geodesible flow X. Then 
there exists an embedding e : (N, X) → Sn × S1 with n the smallest odd integer n ∈
{3 dim N +2, 3 dim N +3}, and an Eulerisable field u on Sn×S1 such that u|e(N) = X.
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Proof. Applying Theorem 1.8 we obtain an embedding ẽ : (N, X) → (Sn, ξstd) and 
a defining contact form α̃ whose Reeb vector field R restricts to X on ẽ(N). By the 
correspondence Theorem 2.3, the field R is a Beltrami field with constant proportionality 
factor for some Riemannian metric g̃ on Sn. Consider now the (n + 1)-manifold Sn ×S1

endowed with the Riemannian metric g := g̃+dθ2, θ ∈ S1, and define the trivial extension 
of the Reeb flow R as the vector field u := (R, 0) on Sn×S1. The dual 1-form of u using 
the metric g is

α = ιug = π∗α̃ ,

where π is the canonical projection π : Sn×S1 → Sn. Accordingly, ιudα = π∗(iRdα̃) = 0
and u preserves the (Riemannian) volume form μ = μg̃ ∧ dθ. Defining the embedding 
e : N → Sn × S1 of N as e := i ◦ ẽ, where i is the natural inclusion of Sn into Sn × S1, 
we conclude that u is a steady Euler flow on Sn × S1 such that u|e(N) = X. �

The proof of Theorems 1.4 and 1.9 for even dimensional ambient manifolds is then 
the same, mutatis mutandis, as in Subsections 4.1 and 4.2, but invoking Proposition 4.10
instead of Theorem 1.8.

5. Flexibility of Reeb embeddings

The goal of this section is to prove the Reeb embedding Theorem 1.8 and provide 
some generalizations that can be useful for further applications in Contact Geometry. 
The proof of this result follows the usual pattern in the h-principle theory:

(1) We first define a purely topological condition that an embedding needs to satisfy 
and introduce the concept of formal iso-Reeb embedding (Definition 5.6).

(2) As it is customary in the h-principle theory (see e.g. [32,3,10]), we restrict ourselves 
to a particular subclass of formal iso-Reeb embeddings called small formal iso-Reeb 
embeddings (Definition 5.8), and prove that any small formal iso-Reeb embedding 
can be deformed into a genuine (small) iso-Reeb embedding (Theorem 5.9).

(3) Finally, we check under which conditions a given embedding can be equipped with 
a small formal iso-Reeb embedding structure and show that for embeddings of high 
enough codimension we can always find such a formal structure, see Lemma 5.12. 
These dimensional restrictions account for the bounds in Theorem 1.8.

These results are presented as follows. In Subsection 5.1 we introduce some basic no-
tions of the h-principle that are used along this section. A technical stability lemma for 
vector bundles which is instrumental for the next subsections is presented in Subsec-
tion 5.2. In Subsection 5.3 we introduce the definitions of formal iso-Reeb embedding 
and small iso-Reeb embedding, and prove a full h-principle in this context (Theorems 5.7
and 5.9). The key lemma to establish the existence of formal iso-Reeb embeddings of 
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high codimension is presented in Subsection 5.4. Finally, using this machinery we prove 
Theorem 1.8 in Subsection 5.5.

5.1. Basic notions of the h-principle

Let us introduce some basic notions in the h-principle theory which are key to provide 
precise statements.

Fix a smooth fibration π : X → V . Denote by πr : Jr(X) → V the associated r-jet 
fibration. There is also a natural projection pr : Jr(X) → X. Given a section σ : V → X, 
denote by jr(σ) : V → Jr(X) the canonical r-jet extension. Thus, we have a natural 
inclusion Sec(V, X) → Sec(V, Jr(X)) where Sec(V, X) and Sec(V, Jr(X)) are the spaces 
of sections from V to X and Jr(X) respectively.

A subset R ⊂ Jr(X) is called a partial differential relation of order r. Define 
SecR(V, Jr(X)) ⊂ Sec(V, Jr(X)) as the space of formal solutions. It is defined as the 
space of sections satisfying that the image of the section lies in R. Moreover, define the 
space of solutions, and denote it by SecR(V, X) ⊂ Sec(V, X), to be the space of sections 
whose r-jet extension is a formal solution. A solution in SecR(V, X) is called a holonomic 
solution.

Definition 5.1. We say that a partial differential relation R obeys the rank k h-principle 
if the inclusion e : SecR(V, X) → SecR(V, Jr(X)) of the space of solutions into 
the space of formal solutions, which induces morphisms πj(e) : πj(SecR(V, X)) →
πj(SecR(V, Jr(X))), satisfies that πj(e) is an isomorphism for j ≤ k. If k = ∞ we 
say that R satisfies the full h-principle.

The following terminology is standard. We say that R satisfies a:

• parametric h-principle if we can deform formal solutions by holonomic solutions 
parametrically.

• relative parametric h-principle if the following holds: Fix a closed subset C ⊂ K, 
where K is any compact parameter space. Assume we have a family of formal solu-
tions σk, k ∈ K such that σk with k ∈ C is a holonomic solution. Then there exists 
a parametric family of formal solutions σ̃k,t, t ∈ [0, 1] such that σ̃k,0 = σk, σ̃k,1 are 
holonomic solutions and moreover σ̃k,t = σk for k ∈ C and all t.

• relative to the domain h-principle if the following is satisfied: For any closed subset 
D ⊂ V , assume we have a formal solution σ that is holonomic in an open neigh-
borhood U of D. Then there exists a family of formal solutions σt, t ∈ I such that 
σ0 = σ, σ1 is holonomic and σt|U = σ|U for all t.

• C0-dense h-principle if any formal solution s : V → Jr(X) can be approximated by 
a holonomic solution jr(σ̃) such that pr(s) is C0-close to σ̃.
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It is known (see for instance [14, Chapter 6]) that any partial differential relation that 
satisfies an h-principle: parametric, relative to the parameter, relative to the domain, 
actually satisfies a full h-principle.

5.2. Classical stability lemmas for vector bundles

The following technical results will be used in the next subsections. Proofs are provided 
for the sake of completeness though they are well known to experts (see e.g. [27, Corollary 
4.6]).

Lemma 5.2. Let Vk,t be a parametric family of complex bundles over a fixed smooth 
manifold M with parameters given by (k, t) ∈ K × [0, 1]. Then, there exists a family of 
complex isomorphisms φk,t : Vk,0 → Vk,t.

Proof. Take a finite number of sections σk,t
r : M → Vk,t, r ∈ {1, . . . , n} varying con-

tinuously with the parameters such that for any point p ∈ M and any parameter value 
(k, t), there are l := rank Vk,t sections σk,t

r , 1 ≤ r ≤ l (relabeling the index r if necessary) 
defining a framing of the fiber over p. Then the bundle map:

pk,t : Cn ×M → Vk,t

(λ1, . . . , λn, p) → (Σn
r=0λrσ

k,t
r (p), p)

is an epimorphism of vector bundles. By choosing a metric on each bundle, we find the 
adjoint map p∗k,t : Vk,t → Cn ×M that is a monomorphism of vector bundles.

So we may assume that Vk,t ⊂ Cn. Now, fix an hermitian metric on Cn. Denote by 
Hk,t the orthogonal to Vk,t with respect to the fixed metric. Define a map

fε
k,t : Vk,t → Vk,t+ε

in the following way. Choose for each p ∈ M and v ∈ Vk,t the unique intersection point 
in Cn of the affine subspaces v + Hk,t and Vk,t+ε and denote it by vε. We define then 

the map as fε
k,t(v) = vε. Finally, for each p ∈ M define Xk,t := limε→0

fε
k,t(v)−v

ε . This 
defines a time dependent vector field over each fiber {p} × Cn. Clearly, its associated 
flow φk,s satisfies that φk,s(Vk,0) = Vk,s and it is an isomorphism of complex bundles, by 
construction of Xk,t using fε

k,t. �
Corollary 5.3. Let (Vk,t, [ωk,t]) be a parametric family of conformal symplectic bundles 
over a fixed smooth manifold M with parameter given by (k, t) ∈ K × [0, 1]. Then, there 
exists a family of isomorphisms φk,t : Vk,0 → Vk,t which furthermore are conformal 
symplectomorphisms.

Proof. Since in this paper we only consider conformal symplectic structures induced on 
contact distributions that are cooriented, we restrict to this case (the general case can be 
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easily reduced to this one by a finite covering argument). In particular, we may assume 
that the conformal symplectic structure is induced by a symplectic structure ωk,t. Then, 
fix compatible complex structures Jk,t. This can be done continuously in families since 
the space of complex structures which are compatible with a fixed symplectic structure is 
contractible and thus, we can always find global sections: i.e. almost complex structures 
in the bundle, also in parametric families. This produces an hermitian metric hk,t on Vk,t.

Extend hk,t to a global hermitian structure h̃k,t in Cn. We can then mimic the proof 
of Lemma 5.2 to obtain a family of hermitian preserving isomorphisms, which are in 
addition conformal symplectomorphisms (and in fact symplectomorphisms for the cho-
sen ωk,t). �

Adapting the proof for the real case, we obtain:

Lemma 5.4. Let Vk,t be a parametric family of real bundles over a fixed smooth mani-
fold M with parameters given by (k, t) ∈ K × [0, 1]. Then, there exists a family of real 
isomorphisms φk,t : Vk,0 → Vk,t.

5.3. An h-principle for iso-Reeb embeddings

Following previous notation, let X be a geodesible vector field on N , and denote by 
β the 1-form such that η = kerβ and β(X) = 1. That is, η is the transverse hyperplane 
field preserved by X. Let (M, ξ) be a contact manifold with defining contact form α, i.e. 
kerα = ξ.

Remark 5.5. As in previous sections we either assume that N is compact or N is properly 
embedded into M .

With a slight abuse of notation, we will denote α ◦ F1 for α(F1(·)) and dα ◦ F1 for 
dα(F1(·), F1(·)). This is also denoted by F1

∗α and F1
∗dα in similar discussions in [14].

Definition 5.6. An embedding f : (N, X, η) → (M, ξ) is a formal iso-Reeb embedding if 
there exists a homotopy of monomorphisms

Ft : TN −→ TM,

such that Ft covers f , F0 = df , h1α ◦ F1 = β and dβ|η = h2dα ◦ F1|η for some strictly 
positive functions h1 and h2 on N .

It is clear that any genuine iso-Reeb embedding is a formal iso-Reeb embedding. 
Indeed, take an iso-Reeb embedding e : (N, X, η) → (M, ξ), so by hypothesis we have 
e∗α = β, which reads as α ◦ de = β. Thus, we also obtain e∗dα = dβ that restricted to η
can be written as dβ|η = dα ◦ F1|η, and it is clear that (e, Ft = de) is a formal iso-Reeb 
embedding.



28 R. Cardona et al. / Advances in Mathematics 428 (2023) 109142
Both conditions h1α◦F1 = β and dβ|η = h2dα◦F1|η are required to fix the definition 
of formal iso-Reeb embedding. One may be tempted to say that the first condition 
naturally implies the second one, but this is tantamount to saying that F1 commutes 
with the exterior differential. This only holds when F1 is holonomic, i.e. the pull-back 
(through the differential of a morphism) commutes with the exterior differential.

The first main result of this subsection is a full h-principle for iso-Reeb embeddings 
into overtwisted contact manifolds. The general case is more elaborated because it in-
volves the introduction of a particularly appropriate subclass of iso-Reeb embeddings, 
and will be discussed later.

Theorem 5.7 (h-principle for iso-Reeb embeddings into overtwisted manifolds). Let f :
(N, X, η) → (M, ξ) be a formal iso-Reeb embedding with formal differential Ft such that 
dimN < dimM . Furthermore, assume that ξ is an overtwisted contact structure. Then, 
there exists a homotopy (fs, F s

t ) of formal iso-Reeb embeddings such that (f0, F 0
t ) =

(f, Ft) and such that (f1, F 1
t ) = (f1, df1) is a genuine iso-Reeb embedding. Moreover, 

the natural inclusion of the space of iso-Reeb embeddings whose image does not intersect 
a fixed overtwisted disk Δ into the space of formal iso-Reeb embeddings whose image does 
not intersect Δ on a fixed overtwisted contact manifold is a homotopy equivalence.

Proof. All the bundles in the next paragraph are bundles over N , i.e. TM , TN , ξ, etc. are 
to be understood as the restriction over N of these bundles, but we shall omit notations 
like TM |N for the sake of simplicity.

Step 1: Deform ξ to a homotopic formal contact structure ξ̄1 on N for which F0(η) ⊂ ξ̄1.
It is standard to find a family of isomorphisms Gt : TM → TM such that G0 = id

and Gt ◦ F0 = Ft. Denote ξ̄t := Gt
−1(ξ), so we have ξ̄0 = ξ. Define ωt := dα ◦ Gt that 

equips ξ̄t with a symplectic vector bundle structure (ξ̄t, ωt) such that, for t = 1 we obtain 
F0(η) ⊂ ξ̄1. Denote by β a defining 1-form for η. Then

(ω1)|η = dα ◦G1|η = dα ◦ F1 = (h2)−1dβ,

where the last equality comes from the definition of formal iso-Reeb embedding. Up to 
conformal transformation, we can assume that (ω1)|η = h2(dα ◦ F1) = dβ. Therefore, ξ̄1
is a formal contact structure, homotopic to ξ, such that F0(η) ⊂ ξ̄1.

Step 2: Extend ξ̄1 to a contact structure on a neighborhood of N and make the inclusion 
an iso-Reeb embedding. Extend the family of distributions ξ̄t that are defined over N to a 
family of distributions ξ̃t defined over a neighborhood Op(N). A possible way to do this is 
just to extend the isomorphisms Gt : TM → TM over N to a new family G̃t : TM → TM

over Op(N) that can be used to define ξ̃t := G̃t(ξ̃0). Then, using Lemma 3.7 where (M, ξ)
is the neighborhood Op(N) and ξ̃1, we obtain a contact structure ξ̂1 that is defined on 
Op(N) ⊃ N inside M and is homotopic to ξ̃1. Also, we obtain an iso-Reeb embedding 
of (N, X, η) with respect to a contact form α̃1 defining the contact structure ξ̂1.
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Step 3: Reduce to formal isocontact embeddings. Summarizing, we have obtained that 
ξ̃0 = ξ and ξ̂1 are homotopic as formal contact structures in the neighborhood of N . 
By Corollary 5.3, we can find a family of bundle isomorphisms φt : ξ̃1 → ξ̃t that pre-
serves the conformal symplectic structures on a small neighborhood of N . Extend φt to 
TM |Op(N) and define the family (e = id, Ht = φt) with e = id : Op(N) → Op(N). It is 
a codimension 0 formal isocontact embedding.

Step 4: Conclusion. Applying the h-principle for isocontact embeddings in codimension 
0 with overtwisted target, cf. Theorem 2.2, we obtain the first part of Theorem 5.7.

Now observe that the previous arguments work parametrically. Also, it is simple to 
check that the proof is relative to any closed subdomain of the domain N . It is left to 
check that it works relative to the parameter, however this is not true in general. It is 
simple to realize that a sufficient condition to reproduce the proof making it relative to 
the parameter, see [3], is restricting to the class of embeddings which do not intersect a 
fixed overtwisted disk. This is because in the previous construction we naturally obtain 
genuine iso-Reeb embeddings which do not intersect a fixed overtwisted disk. It is clear 
that for this subclass the previous three properties, parametric, relative to the domain 
and relative to the parameter, imply a full h-principle. The theorem then follows. �

Let us consider now a specific subclass of iso-Reeb embeddings, what we call small 
iso-Reeb embedding. While it imposes an extra condition on the iso-Reeb embedding, the 
advantage is that it will allow us to prove a full h-principle.

Definition 5.8. Assume that there is a decomposition (ξ|N , dα|N ) = (ξ′⊕V, dα|ξ′ +dα|V )
as orthogonal conformal symplectic subbundles (i.e., a product of conformal symplectic 
bundles), and we further assume that V is a proper subbundle of ξ.

An embedding f : (N, X, η) → (M, ξ = kerα) is a small formal iso-Reeb embedding if 
there exists a homotopy of monomorphisms

Ft : TN −→ TM ,

such that Ft covers f , F0 = df0, F1(η) � ξ′ and dβ|η = h2dα ◦ F1|η, for some strictly 
positive function h2 on N .

Likewise we say that f : (N, X, η) → (M, ξ = kerα) is a small iso-Reeb embedding if 
df(η) = TN ∩ ξ and df(η) � ξ′, where ξ = ξ′ ⊕ V is an orthogonal conformal symplectic 
decomposition and V is a non trivial subbundle.

Clearly, any small iso-Reeb embedding is in particular an iso-Reeb embedding. The 
embedding satisfies that ξ ∩ TN = η, and hence by Lemma 3.3 there is a contact form 
such that its Reeb vector field satisfies R|N = X. If X is negatively transverse to ξ, one 
can consider −X instead. Otherwise, the contact form such that a negatively transverse 
X is Reeb is a negative contact form.
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Theorem 5.9 (h-principle for small iso-Reeb embeddings). Let f : (N, X, η) → (M, ξ)
be a small formal iso-Reeb embedding into a contact manifold with formal derivative Ft. 
Then there is a homotopy (fs, F s

t ) such that (f1, F 1
t = df1) is a genuine (small) iso-Reeb 

embedding and one can take fs to be arbitrarily C0-close to f .
Moreover the natural inclusion of the space of small iso-Reeb embeddings into the 

space of small formal iso-Reeb embeddings on a fixed contact manifold is a homotopy 
equivalence.

Notice that a parametric family of small formal iso-Reeb embeddings comes equipped 
with a parametric symplectic orthogonal decomposition of ξ along the embeddings as in 
Definition 5.8. Hence the two subbundles of the decomposition have constant rank along 
the parametric family of embeddings.

Remark 5.10. Observe that an h-principle in general cannot be satisfied: if we take (N, X)
with X a Reeb vector field and associated hyperplane distribution a contact structure ξ′, 
then an iso-Reeb embedding is equivalent to an isocontact embedding. It is well known 
that codimension-2 isocontact embeddings do not satisfy the h-principle. The inclusion 
of formal isocontact embeddings into genuine isocontact embeddings is not injective [11].

Proof of Theorem 5.9. Step 1: Deform the pair ξ′ ⊂ ξ to a new pair of formal contact 
structures ξ̄′1 ⊂ ξ̄1 such that F0(η) ⊂ ξ̄′1. We start by fixing the small formal iso-Reeb 
embedding f . Find Gt : TM → TM a family of isomorphisms such that G0 = id and 
Gt ◦ F0 = Ft. Denote ξ̄′t := Gt

−1(ξ′) and ξ̄t := Gt
−1(ξ), so we have ξ̄0 = ξ. Define 

ωt := dα ◦Gt that equips ξ̄t with a conformal symplectic vector bundle structure (ξ̄t, ωt)
such that, for t = 1 we obtain F0(η) ⊂ ξ̄1. Likewise we obtain a conformal symplectic 
vector subbundle structure ω′

t = (dα)|ξ′ ◦Gt. Denote by β the defining 1-form for η, i.e. 
kerβ = η. We have

(ω1)|η = dα|ξ′ ◦G1|η = dα|ξ′ ◦ F1 = (h2)−1dβ ,

where the last equality comes from the definition of formal small iso-Reeb embedding. 
Up to conformal transformation, we may assume that (ω1)|η = h2(dα ◦ F1) = dβ. We 
also obtain h1(α ◦ F1) = β.

Step 2: Find a positive codimension contact submanifold on a neighborhood of N that 
contains it. Since, by hypothesis, there is a conformal symplectic orthogonal decomposi-
tion (ξ̄1, ω1) = (ξ̄′1, ω′

1) ⊕(ξ̄′1)⊥ω1 , consider a small neighborhood of the zero section of the 
bundle ξ̄′t → N (that exists because F0(η) is included but not equal to ξ̄′1), and denote it 
by Et. Build an embedding of codimension (greater or equal than) 2, Et ⊃ N , by fixing a 
metric and applying the exponential map. Extending the exponential map to (ξ̄′1)⊥ω1 , we 
obtain a local fibration of a neighborhood of N as Op(N) → Et, with linear conformal 
symplectic fiber given by ξ̄′1. Thus, the conclusion is that the neighborhood Op(N) can 
be understood as a small tubular neighborhood of the formal contact submanifold Et.
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Step 3: Mimic the proof of Theorem 5.7. We apply steps 2 and 3 as in Theorem 5.7
to obtain a contact structure ξ̃′1 in E1 and by Lemma 3.7 an iso-Reeb embedding of 
(N, X, η) into (E1, ξ̃′). Using that (E1, ξ̃′1) 

id→ (M, ξ) is a positive codimension formal 
isocontact embedding with open source manifold, we can apply the h-principle Theo-
rem 2.1 to obtain an isocontact embedding, whose restriction to N is C0-close to the 
original embedding. To obtain the C0-closeness we use the fact that we are just obtaining 
C0-closeness on a positive codimension core, i.e. N , of the manifold E1. All the previous 
constructions can be done parametrically, relative to the parameter and relative to the 
domain. Accordingly, we obtain a full C0-dense h-principle. �

Note that the data of a formal (small) iso-Reeb embedding include the choice of a 
distribution η invariant under the flow of X. It is important to realize that this choice 
is not unique. In particular, the space of invariant distributions for a fixed geodesible 
vector field is a vector space, the transverse ones conforming a cone inside it. Moreover, 
Theorems 5.7 and 5.9 depend on the invariant distribution chosen, as the following result 
illustrates.

Proposition 5.11. For an isocontact embedding e : (N2n0+1, ξN ) → (M, ξM ) of codimen-
sion 2 (which is clearly an iso-Reeb embedding for any Reeb vector field on N), there is 
a Reeb field R and a distribution η′ invariant under R, which is C0-close to ξN , such 
that (N, R, η′) does not admit an iso-Reeb embedding into M , if n0 ≥ 2.

Proof. It is standard that one can take a Reeb field R on N with a standard neighborhood 
around a periodic orbit of type S1×D2n0 endowed with a contact form α = dθ+ r2αstd, 
where r is the radial coordinate on D2n0 and αstd is the standard contact form on S2n0−1. 
In particular, the Reeb field has the form ∂θ in this neighborhood. Now choose function 
f : [0, 1] → R+ satisfying the following conditions:

• f(r) = 0 for r ≤ 1
2 ,

• f(r) is r2 for r ∈ [ 34 , 1].

The form β := dθ+f(r)αstd extends to the whole manifold since it coincides with α on the 
boundary of the neighborhood. Moreover, it defines a transverse distribution η′ := kerβ
that is invariant under the flow of R. Assume that the triple (N, R, η′) admits an iso-Reeb 

embedding e′ in (M, ξ). Then the submanifold {0} ×D2n0 ⊂ S1 ×D2n0 ⊂ N
e′−→ (M, ξ)

is clearly a submanifold tangent to ξM , which leads to a contradiction. �
5.4. A technical lemma: the j-connectedness of the space of isotropic subbundles inside 
a symplectic bundle

The main result of this subsection is Lemma 5.12 below. It is an instrumental lemma 
that will be our main tool to check that any smooth embedding with high enough codi-
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Fig. 2. Picture before first homotopy.

mension is a small formal iso-Reeb embedding. This is the most delicate point of the 
proof of Theorem 1.8. Throughout this subsection, the dimension of N is denoted by n
and the dimension of M is denoted by 2m + 1.

Lemma 5.12. Let (N, X, η) ↪→ (M, ξ) be an embedding such that X � ξ, and (ξ, ω) is a 
symplectic hyperplane bundle of real rank 2m. Denote by β a defining 1-form of η in N . 
If 2m ≥ 3n − 1 then there exists a family (ξt, ωt) of symplectic distributions such that 
(ξ1, ω1) = (ξ, ω) and (ξ0, ω0) satisfies η = ξ0 ∩ TN and η is an isotropic subspace of ξ0. 
Furthermore (ξt, ωt) coincides with (ξ, ω) away from a neighborhood of N .

Proof. It is clear by assumption that TM |N = 〈X〉 ⊕ ξ. This implies that ξ and TN are 
transverse subspaces in TM |N and thus we can define a new bundle η1 := ξ ∩ TN . The 
linear interpolation between η = η0 and η1, which is well defined since η0 and η1 are 
contained in TN and are transverse to X, provides a homotopy of subbundles between 
these two subbundles inside TM |N . Denote this homotopy by et : ηt → TM . Fix an 
auxiliary metric on TM satisfying that ξ is orthogonal to X. Define ξt = ηt ⊕ TN⊥, so 
clearly ξ1 = ξ. We apply Lemma 5.4 to obtain Gt : ξ1 → ξ1−t, chosen to satisfy G0 = id, 
which is symplectic by taking the symplectic structure ω1−t = ω ◦ G−1

t . Hence (ξt, ωt)
is a family of symplectic hyperplane bundles such that η ⊂ ξ0. The situation before the 
first homotopy is pictured in Fig. 2.

Assume that, if 2m ≥ 3n − 1, any subbundle η ⊂ (ξ0, ω0) can be homotoped onto an 
isotropic one, i.e. any rank n −1 subbundle of a 2m dimensional symplectic bundle, over 
an n-dimensional manifold, is homotopic to an isotropic subbundle. This statement is 
the content of Lemma 5.13 below. In other words, we have a family of monomorphisms 
Ft : η → ξ0 such that ηis := F1(η) is isotropic. We extend the monomorphisms Ft into 
isomorphisms Ht : ξ0 → ξ0 satisfying H0 = id, Ft = Ht ◦ F0. Clearly, the family of 
symplectic hyperplane bundles (ξ0, ω0 ◦Ht) composed with the homotopy constructed in 
the previous paragraph, gives the required homotopy. The situation before this second 
homotopy is pictured in Fig. 3. �
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Fig. 3. Picture before second homotopy.

Lemma 5.13. Let ξ be a symplectic bundle of rank 2m over N and denote by η a rank 
n − 1 subbundle of ξ. If 2m ≥ 3n − 1, η is homotopic to an isotropic subbundle.

Proof. Observe that we need to find a section of a bundle E → N whose fiber is P =
Path(Grass(n − 1, R2m), Grassis(n − 1, R2m)), i.e. the space of paths connecting a fixed 
base point in Grass(n −1, R2m) with end point in the Grassmanian of isotropic subspaces 
of dimension n − 1 in R2m. This is a homotopy fibration with fiber homotopic to the 
space of loops in the Gr := Grass(n −1, R2m) based on the subspace Gris := Grassis(n −
1, R2m).

As explained in [25, Section 4.3, Proposition 4.64] and the subsequent discussion, 
we have the identification πj(P ) ∼= πj+1(Gr, Gris). By standard obstruction theory, a 
sufficient condition for the existence of such a section is to assume that the fiber P is 
(n − 1)-connected.

Recall that,

Gr ∼= SO(2m)
SO(n− 1) × SO(2m− (n− 1)) ,

Gris ∼=
U(m)

SO(n− 1) × U(m− (n− 1)) .

We have the following commutative diagram, given vertically by the relative exact se-
quences, and horizontally by quotients.

πj(SO2m−n+2, Um−n+1) πj(SO2m, Um) πj(Gr,Gris) πj−1(SO2m−n+2, Um−n+1) πj−1(SO2m, Um)

πj(SOn−1 × SO2m−n+1) πj(SO2m) πj(Gr) πj−1(SOn−1 × SO2m−n+1) πj−1(SO2m)

π (SO × U ) π (U ) π (Gr ) π (SO × U ) π (U )
j n−1 m−n+1 j m j is j−1 n−1 m−n+1 j−1 m
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We made the identifications πj(SOn−1 × SO2m−n+1, SOn−1 × SO2m−n+1) ∼=
πj(SO2m−n+2, Um−n+1) ∼= πj(SO2m−n+2, Um−n+1), by using in the last isomorphism 
that we are in the stable range of SO(2m − n + 1).

Denote the gamma spaces SO(2n)/U(n) by Γn. Observe that SO(2n) is a fibration 
over Γn with fiber U(n). It is standard that the relative homotopy groups of a fibration 
with respect to the fiber are isomorphic to the homotopy groups of the base, see for in-
stance [25, Theorem 4.41]. Hence we have the identification πj(SO(2n), U(n)) ∼= πj(Γn). 
In conclusion, the previous diagram is equivalent to the following one.

πj(Γm−n+1) πj(Γm) πj−1(P ) πj−1(Γm−n+1) πj−1(Γm)

πj(SOn−1 × SO2m−n+1) πj(SO2m) πj(Gr) πj−1(SOn−1 × SO2m−n+1) πj−1(SO2m)

πj(SOn−1 × Um−n+1) πj(Um) πj(Gris) πj−1(SOn−1 × Um−n+1) πj−1(Um)

aj aj−1

bj

cj

We want to prove that πj−1(P ) is trivial up to j − 1 = n − 1. To this end, let us show 
that we are in the stable range of Γm−n+1 up to rank n − 1, and prove that an is an 
epimorphism. The stable range of Γm−n+1 is 2(m −n +1) −2, hence imposing that n −1
is in the stable range we obtain n − 1 ≤ 2(m − n + 1) − 2 which implies 3n − 1 ≤ 2m, 
our dimensional hypothesis. Hence aj is an isomorphism for j ≤ n − 1 and we deduce 
πr(P ) = 0 for r ≤ n − 2.

To conclude, observe that πn(Γm−n+1) is in general no longer in the stable range. Let 
us check that an is always at least an epimorphism, which will imply that πn−1(P ) = 0. 
If 2m ≥ 3n, then we are in the stable range and an is an isomorphism. If not, then 
2m = 3n − 1 and n is odd. But the exact sequence induced by Γk → Γk+1 → S2k, 
see [23], at rank n = 2m − 2n + 1 is the following.

π2m−2n+1(Γm−n+1) → π2m−2n+1(Γm−n+2) → π2m−2n+1(S2m−2n+2)

Since π2m−2n+1(S2m−2n+2) = 0, the first arrow is an epimorphism. This implies that an
is always an epimorphism and the proof is complete. �
5.5. Proof and discussion of Theorem 1.8

We proceed with the proof of Theorem 1.8, and a discussion of the result.

Proof of Theorem 1.8. Let N be a compact manifold endowed with a geodesible field 
X. Denote by e : (N, X) → (M, ξ) an embedding into a contact manifold (M, ξ). Let 
us assume that M is overtwisted. Because of the codimension hypothesis, there is an 
homotopy Ft : TN → TM such that F0 = de, F1(X) � ξ and ξ is positively transverse, 
i.e. by genericity it is needed dim(N) < 2 dim(M), which is clearly satisfied under our 
assumption 2 dim(M) + 1 ≥ 3 dim(N). Find isomorphisms Gt : TM → TM satisfying 
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Ft = Gt ◦ F0. Define ξt = G−1
t (ξ) and define ωt = dα ◦ G−1

t . It deforms ξ to a formal 
contact structure ξ1 satisfying that F0(X) � ξ1.

Denote by η = kerβ a transverse hyperplane distribution preserved by X. We can now 
apply Lemma 5.12 to our embedding with ambient symplectic bundle (ξ1, ω1) to obtain 
a formal contact structure (ξ̃, ω̃) satisfying that ξ̃ ∩ TN = η and, that η is isotropic. 
Concatenating homotopies, we constructed a family of symplectic bundles (ξ̃t, ω̃t), t ∈
[0, 1], such that (ξ̃0, ω̃0) = (ξ, dα) and (ξ̃1, ω̃1) = (ξ̃, ω̃).

Since η is isotropic, the bundle ηC = η ⊕ η∗ (endowed with the standard complex 
structure) is a complex subbundle of ξ̃1, and hence η∗ naturally lies, over N , in the 
normal bundle of N . The formal contact structure splits as ξ̃1 = ηC ⊕ (ηC)⊥ on a small 
tubular neighborhood of N , denoted as Op(N) pr→ N . For a real constant A, take the 
homotopy of symplectic structures

ω̃t = ((t− 1)A + (2 − t))ω̃ + (t− 1)pr∗dβ, t ∈ [1, 2],

which will be a path of symplectic structures for a big enough A > 0, as being symplectic 
is an open condition. We define ξ̃t = ξ̃1 for t ∈ [1, 2]. We obtain naturally (ξ̃t, ω̃t)
for t ∈ [0, 2], a family of formal contact structures obtained by concatenating both 
homotopies. Clearly, we have that

ω̃2 ◦ de = dβ (5.1)

Now, as usual we undo the homotopy of contact structures by deforming the formal 
embedding. In order to do it, apply Corollary 5.3 to find a family of isomorphisms 
G̃t : TM → TM , t ∈ [0, 2], such that

• G̃t = Gt for t ∈ [0, 1],
• (G̃−1

t (ξ), dα ◦ G̃t) = (ξ̃t, ω̃t) for t ∈ [0, 2].

Thus, we define a family of monomorphisms F̃t = G̃t ◦ F0 that satisfy dα ◦ F̃t = dα ◦
G̃t ◦ F0 = ω̃t ◦ F0. For t = 2, using equation (5.1), we have ω2 ◦ F̃0 = ω2 ◦ de = dβ and 
therefore it is a formal iso-Reeb embedding. We conclude applying Theorem 5.7.

Assume now that M is not overtwisted, and hence dimM ≥ 3 dimN+2. Because of the 
dimension condition we can find an orthogonal symplectic decomposition ξ|N = ξ′ ⊕ L, 
with rankL = 2 and for every p ∈ N we have Lp ∩ TNp = {0}p. We can assume this 
as long as dimM ≥ 2 dimN + 4, which is true for dimN ≥ 2. Hence there exists a 
family of symplectic bundles ξ′t such that ξ′0 = ξ′ and X is transverse to ξ′1, and the 
proof applies verbatim by projecting η into ξ′, which is a symplectic bundle of rank 
2 dimM − 2 ≥ 3 dimN − 1. �

Observe that, in fact, in Theorem 1.8 we proved that for high enough codimension, 
any smooth embedding is isotopic to a (small) iso-Reeb embedding for any geodesible 
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field and any invariant distribution. If we were to prove that our Theorem is sharp, 
we should find a geodesible field with a fixed invariant distribution on a manifold N
that does not admit an iso-Reeb embedding into a carefully fixed contact manifold of 
dimension 3 dimN − 2 or 3 dimN − 1 (depending on the parity of dimN).

What we can prove is that there is a manifold of dimension 4k0 + 1 with a geodesible 
field and a fixed invariant distribution, and a smooth embedding of such a manifold into 
Sn, where n = 3 dimN − 4, which is not deformable into an iso-Reeb embedding. So we 
are two dimensions away from the perfect sharpness.

Proposition 5.14. There is a sequence of triples (Nk, Xk, ηk) of geodesible vector fields on 
a k-dimensional compact manifold Nk with k = 4k0 + 1 such that there is no iso-Reeb 
embedding of (Nk, Xk, ηk) into (Sn, ξ) with n < 3k − 2 and ξ any contact structure.

Proof. Let W be a compact manifold such that dimW = 4k0. Assume its Pontryagin 
classes pj(W ) are all vanishing except the top one pk0(W ), which is non trivial (such 
as the manifolds constructed in [29]). Consider the manifold endowed with a geodesible 
vector field (N = W × S1, ∂θ) of dimension k = 4k0 + 1, with invariant 1-form dθ. 
The distribution η = ker dθ is given by TW seen as a distribution. If it admits a Reeb 
embedding into (Sn, ξ), we would have that TW is an isotropic subspace of ξ. This 
follows from the fact that dθ is closed. Indeed, if we have a Reeb embedding e, there is 
a contact form α such that e∗α = dθ, so e∗dα = 0 and hence dα|TW = 0.

Therefore, we have the decomposition ξ|N = TWC ⊕ V , where V is the symplectic 
orthogonal to TWC. Using the Whitney sum formula for the total Chern class, we 
obtain that 0 = c2k0(TWC) + c2k0(V ). Hence V is of rank at least 4k0. This implies 
that n ≥ 8k0 + 4k0 + 1 = 3k − 2. For instance, (CP 2 × S1, ∂θ) does not admit a Reeb 
embedding into (S11, ξ). �
6. Final remarks

To conclude, let us make a few observations about the results in Section 5 that are of 
independent interest. In Subsection 6.1 we provide some natural examples of iso-Reeb 
embeddings that appear in Contact Geometry, and in Subsection 6.2 we analyze the 
topology of the moduli space of iso-Reeb embeddings, thus illustrating the wide range 
of iso-Reeb embeddings that our construction yields.

6.1. Examples

In this section we give some additional examples of formal iso-Reeb embeddings:

Formal isotropic η. Let X be a geodesible vector field on N with associated 1-form β, 
and denote kerβ = η. Fix an embedding e : N → (M, ξ). Assume we can formally deform 
the embedding in such a way that X is transverse to ξ and η is an isotropic subspace. 
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Then perturbing the symplectic form as done in the proof of Theorem 1.8, we prove that 
it is a small formal iso-Reeb embedding.

Totally isotropic embeddings. Consider an embedding e : N → (M, ξ) that is formal 
isotropic, we can actually make it isotropic by the h–principle for isotropic embed-
dings or Lagrangian immersions [14, Sections 12.4 and 16.1]. So we assume that it 
is isotropic. Take any geodesible vector field X on N that preserves kerβ = η. We 
have the decomposition TN = 〈X〉 ⊕ η. Then, by the Weinstein neighborhood theorem 
TM |N = TNC ⊕V ⊕〈R〉 = ηC ⊕〈X, JX〉 ⊕V ⊕〈R〉, where V is the symplectic orthog-
onal to TNC inside ξ. We claim that there is an arbitrarily small C∞-perturbation of 
the isotropic embedding that makes X transverse and η remains isotropic. The way of 
producing it is to flow the image e(N) through the flow associated to JX. Do note that

α(LJXX) = α([JX,X]) = dα(JX,X) −X(α(JX)) − JX(α(X)) = dα(X, JX) > 0.

This shows that the image of X through the flow becomes transverse to ξ. On the other 
hand, we obtain for any Y ∈ η that, α(LJXY ) = 0 and thus η remains tangent to ξ. By 
perturbing the symplectic structure in ηC as in the proof of Theorem 1.8, it is clear that 
it is a small formal iso-Reeb embedding.

Remark 6.1. An alternative explanation of the last example was suggested to us by 
Emmy Murphy: apply the h-principle for isotropic immersions to make the embedding 
into an isotropic immersion (by genericity, in this codimension we can assume that it is 
an embedding). There is a neighborhood of the embedding Op(N) contactomorphic to 
a neighborhood of the zero section of the bundle T ∗N ×R × S, where S is a conformal 
symplectic bundle orthogonal to T ∗N . The contactomorphism is provided by fixing the 
standard contact form αstd = dt − λLiou over T ∗N × R, where t ∈ R and λLiou is 
the canonical Liouville form in the cotangent bundle. Fix your geodesible vector field 
(N, X, η = kerβ). There is a canonical embedding β̃ : N → S(T ∗N) ⊂ T ∗N × R. By 
the universal property of the Liouville form, we have β̃∗λLiou = β. This implies, just 
by definition, that β̃ is a iso-Reeb embedding. In other words, if the vector field X is 
geodesible on N , then it can be understood as the restriction of the geodesic flow on 
S(T ∗N) and the geodesic flow is just the Reeb flow.

6.2. The topology of the space of (small) iso-Reeb embeddings

Finally, in this subsection, we compare the topology of the moduli space of iso-Reeb 
embeddings with the topology of the moduli space of smooth embeddings. To this 
end, we introduce some notation. For a compact manifold N endowed with a geode-
sible field X, and target contact manifold (M, ξ), we denote the space of iso-Reeb 
embeddings of (N, X, η) into (M, ξ) as Reeb(N, M) and the space of formal iso-Reeb em-
beddings as FReeb(N, M). Similarly we denote the space of small iso-Reeb embeddings 
as Reebs(N, M) and the space of small formal iso-Reeb embeddings as FReebs(N, M). 
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In these last spaces we have made the notation minimal, since we should refer to 
(N, X, η, M, ξ) instead of (N, M). Finally, denote by S(N, M) the space of smooth em-
beddings of N in M . We have the following commutative diagram, where the maps are 
given by the natural inclusions.

Reeb(N,M) FReeb(N,M) Reebs(N,M) FReebs(N,M)

S(N,M) S(N,M)

i

j

is

js

Using this notation, Theorem 5.7 implies that if (M, ξ) is overtwisted, and we only 
consider embeddings that do not intersect a fixed overtwisted disk, then i is a homotopy 
equivalence. Theorem 5.9 implies that is is always a homotopy equivalence. In both cases 
we assume dimN < dimM . A parametric discussion of Theorem 1.8 implies that adding 
codimension is translated into isomorphisms in higher homotopy groups induced by j
and js.

Corollary 6.2. Let N be a compact manifold endowed with a geodesible vector field X, 
and (M, ξ) a contact manifold.

• If dimM > 3 dimN + 2 + k then

jrs : πr(FReebs(N,M)) → πr(S(N,M))

is an isomorphism for r ≤ k.
• If M is overtwisted, dimM > 3 dimN + k and we consider embeddings not inter-

secting a fixed overtwisted disk, then

jr : πr(FReeb(N,M)) → πr(S(N,M))

is an isomorphism for r ≤ k.

Remark 6.3. Observe that for k = 0, we are increasing by 1 the minimum codimension 
with respect to Theorem 1.8, this is because we are getting more. Theorem 1.8 gives 
surjectivity of j0 and here we obtain an isomorphism at the π0 level.

Proof. Let us discuss the case where M is overtwisted, the other case is analogous. The 
result follows from the proof of Theorem 1.8, which works parametrically by adding 
codimension. We want to prove that j induces an isomorphism in homotopy groups up 
to rank k. To achieve this we only need that in the key step of Theorem 1.8, which 
is Lemma 5.12, the fiber P = Path(Grass(n − 1, R2m), Grassis(n − 1, R2m)) is n + k

connected. Following the notation and computations of Lemma 5.13, we need that the 
space Γ(m − n + 1) is in the stable range up to rank n + k. Since the stable range is up 
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to 2(m −n + 1) − 2, we need to impose that n + k ≤ 2(m −n + 1) − 2. This implies that 
dimM = 2m + 1 > 3 dimN + k. �

By combining Corollary 6.2 with Theorem 5.9, we deduce that we can replace FReebs

by Reebs in Corollary 6.2, i.e. the isomorphisms of homotopy groups are between the 
spaces of genuine small iso-Reeb embeddings and smooth embeddings.
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