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Chronic pain and depression are highly prevalent pathologies and cause a major
socioeconomic burden to society. Chronic pain affects the emotional state of the
individuals suffering from it, while depression worsens the prognosis of chronic
pain patients andmay diminish the effectiveness of pain treatments. There is a high
comorbidity rate between both pathologies, which might share overlapping
mechanisms. This review explores the evidence pinpointing a role for the
ventral tegmental area (VTA) as a hub where both pain and emotional
processing might converge. In addition, the feasibility of using the VTA as a
possible therapeutic target is discussed. The role of the VTA, and the
dopaminergic system in general, is highly studied in mood disorders, especially
in deficits in reward-processing and motivation. Conversely, the VTA is less
regarded where it concerns the study of central mechanisms of pain and its
mood-associated consequences. Here, we first outline the brain circuits involving
central processing of pain and mood disorders, focusing on the often-
understudied role of the dopaminergic system and the VTA. Next, we highlight
the state-of-the-art findings supporting the emergence of the VTA as a link where
both pathways converge. Thus, we envision a promising part for the VTA as a
putative target for innovative therapeutic approaches to treat chronic pain and its
effects on mood. Finally, we emphasize the urge to develop and use animal
models where both pain and depression-like symptoms are considered in
conjunction.
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Introduction

Chronic pain, with a prevalence that ranges from 10% to 40% worldwide, is a major
concern in public health. It is the main reason for seeking medical care and represents a
major societal burden due to its high socioeconomic impact (Goldberg and McGee, 2011;
Breivik et al., 2013; Cohen andMao, 2014; Cohen et al., 2021; De Ridder et al., 2021). Chronic
pain significantly affects the quality of life and psychological wellbeing of patients. It affects
not only the physical condition but also the emotional and psychological state of patients,

OPEN ACCESS

EDITED BY

Luca Posa,
Cornell University, United States

REVIEWED BY

Nicolas Massaly,
University of California, Los Angeles,
United States
Glenn D. R. Watson,
Duke University, United States

*CORRESPONDENCE

Víctor Fernández-Dueñas,
vfernandez@ub.edu

Jordi Bonaventura,
jbonaventura@ub.edu

†These authors have contributed equally
to this work

RECEIVED 15 August 2023
ACCEPTED 25 September 2023
PUBLISHED 02 October 2023

CITATION

Flores-García M, Rizzo A,
Garçon-Poca MZ, Fernández-Dueñas V
and Bonaventura J (2023), Converging
circuits between pain and depression: the
ventral tegmental area as a
therapeutic hub.
Front. Pharmacol. 14:1278023.
doi: 10.3389/fphar.2023.1278023

COPYRIGHT

© 2023 Flores-García, Rizzo, Garçon-
Poca, Fernández-Dueñas and
Bonaventura. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Mini Review
PUBLISHED 02 October 2023
DOI 10.3389/fphar.2023.1278023

https://www.frontiersin.org/articles/10.3389/fphar.2023.1278023/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1278023/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1278023/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1278023/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1278023&domain=pdf&date_stamp=2023-10-02
mailto:vfernandez@ub.edu
mailto:vfernandez@ub.edu
mailto:jbonaventura@ub.edu
mailto:jbonaventura@ub.edu
https://doi.org/10.3389/fphar.2023.1278023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1278023


disturbing mood, sleep, or cognitive processes (Baliki et al., 2006;
Timmers et al., 2019). Neuropsychiatric disorders (e.g., depression)
are often comorbid to chronic pain (Bassols et al., 1999; Mäntyselkä
et al., 2001; Frießem et al., 2009; Goldberg and McGee, 2011; Cherif
et al., 2020; Cohen et al., 2021). Several studies support the idea that
persistent pain increases the likelihood of depression, together with
exacerbating its symptoms (Humo et al., 2019). In addition, there are
other studies showing fewer functional benefits for antidepressants
in patients with comorbid chronic pain (Roughan et al., 2021).
Similarly, depression worsens the prognosis of chronic pain patients
and diminishes the effectiveness of analgesic treatments (Fishbain
et al., 1997; Ren et al., 2016; Sheng et al., 2017). Altogether, it appears
probable that there is an association between chronic pain and
depression and that their treatment requires a comprehensive
approach addressing both the physical and psychological aspects
of both conditions.

Chronic pain and depression might share common or
overlapping mechanisms. From a pharmacological point of view,
antidepressant drugs can be used as analgesics, especially in
neuropathic pain and other types of pain that are not well
managed with first in line analgesic drugs (e.g., NSAIDs, opioids)
(Bonilla-Jaime et al., 2022). Some of these effects may be explained
by the activation of the descending pain modulatory system, which
consists of neuronal projections from midbrain areas, including the
periaqueductal gray (PAG) and the rostral ventral medulla (RVM),
to the spinal cord (Obata, 2017). These projections are primarily
formed by monoaminergic neurons (releasing noradrenaline and
serotonin) that also release endogenous opioid peptides (Hokfelt
et al., 1977). Nevertheless, the processing of pain is a complex
mechanism and involves other areas, such as some thalamic
nuclei, especially in the mediodorsal thalamus, which receive and
process sensory information from the periphery (Willis and
Westlund, 1997), and in addition have the highest density of
opioid receptors (Tempel and Zukin, 1987; Ko et al., 2003).
Other relevant areas are the amygdala or the insula, which are
involved in the processing of emotional responses to pain (Corder
et al., 2019; Takahashi et al., 2019).

Similarly, some analgesics have been proposed as possible
antidepressants based on 1) the presence of endogenous opioid
peptides in brain areas playing a major role in affective disorders
(Jelen et al., 2022), and 2) the affinity for opioid receptors exhibited
by some antidepressant drugs (Berrocoso et al., 2009; McHugh and
Kelly, 2018). The recent development and approval of the well-
established anesthetic and analgesic drug ketamine as a novel
antidepressant is another example sustaining that pain and
depression may share overlapping mechanisms. While the
anesthetic effects of ketamine (and esketamine) are
parsimoniously explained by its action as a glutamate N-methyl-
D-aspartate receptor (NMDAR) non-competitive antagonist, the
molecular mechanisms for its antidepressant effects are more
controverted (Zanos et al., 2018). Indeed, we and others have
shown that some of the rewarding and antidepressant effects of
these drugs are mediated via opioid receptors (Bonaventura et al.,
2021; Levinstein et al., 2023).

Taken from a neurochemical perspective, the interplay between
the opioidergic and monoaminergic systems and the crossover
effects for some analgesic and antidepressant drugs may explain
the bidirectional connection between chronic pain and depression.

However, from a circuit perspective, other neurotransmitter systems
and brain areas might also be involved. One of these areas is the
ventral tegmental area (VTA). The VTA is a midbrain region critical
for motivation and reward via the projection of dopaminergic
neurons to the nucleus accumbens (NAcc) and the prefrontal
cortex (PFC) (Koob, 2009; Russo and Nestler, 2013; Cai and
Tong, 2022), However, the VTA also projects to other nuclei
including the anterior cingulate cortex (ACC), the olfactory bulb,
the amygdala, and the hippocampus (Nair-Roberts et al., 2008;
Sesack and Grace, 2010; Qi et al., 2016; Montardy et al., 2019).
Accordingly, it could play a role both in the processing of pain and
emotion. Here, we will review clinical and preclinical evidence
supporting the role of the VTA as a possible hub where both
pain and emotional processing converge.

Involvement of the VTA in pain
processing

The perception of pain is a highly coordinated and dynamic
process that involves interactions between multiple brain areas. As
briefly discussed above, some thalamic nuclei are major hubs in the
processing of pain (Willis and Westlund, 1997), since they receive
information from the periphery and filter and direct the signal to
other areas for further processing (Basbaum et al., 2009). The
somatosensory cortex plays a crucial role in localizing where pain
occurs, while the ACC and the PFC are responsible for processing its
emotional and cognitive aspects and for other higher-order
cognitive functions, such as decision-making. Other important
areas involved in this process are the insula, which integrates
sensory, emotional, and cognitive information related to pain; the
periaqueductal gray (PAG), modulating the descending pain
modulatory system; the hypothalamus, involved in autonomic
nervous system responses; and the amygdala, which is part of the
limbic system and is mainly associated with its emotional processing
(Wiech et al., 2008; Basbaum et al., 2009; Garland, 2012; Moradi
et al., 2015; Corder et al., 2019; Huang et al., 2022; Ma et al., 2023).

The VTA is not often considered as a primary area involved in
pain processing. However, several studies support a putative role for
the VTA in pain perception and processing. For instance, a recent
study in rats showed that chronic pain decreases dopaminergic
activity due to increased inhibition from the bed nucleus of the stria
terminalis (BNST) (Takahashi et al., 2019), a region that mediates
aversive experiences (Davis et al., 2010; Minami, 2019) (Figure 1).
Conversely, in a rat model of neuropathic pain, VTA neurons
showed increased burst firing 2 weeks after peripheral nerve
injury, which suggested that the increased dopaminergic activity
could be an early result of chronic maladaptation to persistent pain
(Sagheddu et al., 2015). Of note, these dopaminergic neurons in the
VTA are modulated by GABAergic neurons projected from the
rostromedial tegmental nucleus (RMTg). These inhibitory
projections have been shown to reduce VTA excitability during
inflammatory pain (Markovic et al., 2021). Similarly, optogenetic
stimulation of VTA reversed allodynia caused by nerve injury in
mice (Watanabe et al., 2018). On the other hand, RMTg GABAergic
neurons, which express opioid receptors, are thought to mediate the
inhibitory effects of opioid drugs in regulating the VTA
dopaminergic neurons (Johnson and North, 1992; Fields and
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Margolis, 2015; Taylor et al., 2019). Indeed, it has been shown that
morphine elicits some of its antinociceptive effects through RMTg
neurons, thus supporting a critical role of VTA activity not only on
the rewarding effects of opioids but also on opioid-mediated
analgesia (Taylor et al., 2019).

The activity in the VTA can lead to multifaceted, even
contrasting, effects in its projection areas (Lammel et al., 2014)
and therefore, the outcomes of its activation are highly context
dependent (Belujon and Grace, 2015). The mesolimbic
dopaminergic circuit, which consists of the projection of
dopaminergic neurons from the VTA to the NAcc, has been
shown to be altered in chronic pain conditions (Ren et al., 2016;
Campos-Jurado et al., 2019; Yang et al., 2020; Wang et al., 2023).
These alterations often involve changes in neurochemistry or
neurotransmitter receptors of both the dopaminergic and
opioidergic systems [for review see (Taylor et al., 2016; Lin et al.,
2023)]. For instance, in different neuropathic pain models, it was
observed that an increase in the activity of the VTA dopaminergic
neurons had positive effects on pain regulation and its associated
mood effects (Abdul et al., 2022; Huang et al., 2022). Similarly, a
recent study showed diminished firing and intrinsic excitability of
VTA dopaminergic neurons under chronic pain conditions that was
due to reduced glutamatergic input from the dorsal raphe nucleus,
and that optogenetic modulation of this pathway produced analgesic
effects (Wang et al., 2023). Nevertheless, few reports have focused on
assessing whether modulating the reward system can exert analgesic
effects. For instance, in neuropathic or cancer pain, activation of
dopamine neurons projecting to the NAcc restore the allodynia
(Watanabe et al., 2018). Similarly, microinjecting dopamine
receptor ligands into the NAcc led to reduced injury-induced
thermal allodynia (Sato et al., 2022). Particularly, they showed
that the specific facilitation of dopamine D1 receptor-expressing
medium spiny neurons (MSN) in the NAcc projecting to the VTA
led to pain relief, while the inhibition of dopamine D2 receptor-
expressingMSNs led to significant antinociceptive effects (Sato et al.,
2022). Interestingly, the increased excitability of the D2-containing
indirect pathway MSN of the medial shell of the NAcc worsens

tactile allodynia following peripheral nerve injury (Ren et al., 2016).
Finally, it has been also shown that, in chronic pain conditions,
extracellular dopamine release evoked by morphine or cocaine
administration is decreased suggesting that a hyporeactive state
of the mesolimbic dopaminergic system under chronic pain
conditions (Taylor et al., 2015).

Similarly, VTA projections to the PFC are altered upon chronic
pain conditions. An example of this, and of the diverse effects of
opioid drugs within the brain, is shown in the work by Zhao et al.
(2007), in which the injection of morphine in the PFC alleviated
mechanical allodynia in a mouse model of neuropathic pain.
Another study in mice demonstrated that not necessarily opioid-
mediated effects but just increased dopaminergic activity in the PFC,
elicited by selective activation of VTA’s dopaminergic neurons,
reduced mechanical hypersensitivity (Huang et al., 2020). This
effect was explained by an increased PFC-mediated activity in the
PAG (Huang et al., 2020). In fact, by using optogenetic
manipulations, they demonstrated that the PFC-PAG circuit
altered pain behavior by reducing the descending noradrenergic
and serotoninergic modulation of spinal pain signals (Huang et al.,
2019). The capacity of the PFC to receive nociceptive inputs but also
to exert control over the pain sensation can be found elsewhere [for
example, see (Apkarian et al., 2005; Ong et al., 2019; Kummer et al.,
2020)]. Therefore, there is compelling evidence to support that areas
other than the thalamus and canonical pain-related areas play a role
in the processing of pain. Another area that might suffer alterations
during chronic pain is the claustrum (Atilgan et al., 2022; Ntamati
et al., 2023), a multimodal node with brain-wide connectivity and
involved in several networks (Atilgan et al., 2022). Interestingly, the
claustrum also receives dopaminergic inputs from the VTA (Wong
et al., 2021), with dopamine causing a mostly inhibitory response of
this structure (Wong et al., 2021), although the precise mechanisms
of this inhibition are not yet well understood. However, it is
interesting to note that an hypodopaminergic state could explain
the reduced excitatory drive of the claustrum onto cortical structures
like the ACC (Ntamati et al., 2023). In summary, speculatively, the
VTAmight have a central role as a flow regulator of the information

FIGURE 1
Incoming and arising pathways to and from the VTA subject to alterations under chronic pain conditions. The literature mainly suggests an overall
hypoactivity of the VTA dopaminergic outputs in the mesolimbic and mesocortical pathways (blue arrows) in chronic pain conditions. Regarding VTA
inputs, there would be a decrease in excitatory glutamate release from projections originating in the DRN and the PAG (solid red arrows). The role of lPBN
excitatory neurons, which have been shown to be either activated or inhibited (dotted red arrows), is not clear. The resulting hypoglutamatergia,
together with increased GABA release from the BNST and the RMTg (green arrows) would result in an overall VTA dopaminergic output inhibition.
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integrated and processed in areas such as the NAcc, PFC, claustrum,
thalamus and PAG. Altogether, these results suggest that the effects
elicited by chronic pain through the limbic system could also be
viewed as a promising target to reach effective analgesia.

The VTA as an emerging therapeutic
target to treat depression

Depression is a complex, multifaceted, and disabling disorder
affecting an estimate of 5% of the world’s adult population (World
Health Organization, 2023). Decades of evidence showed the link
between depression and the monoaminergic systems, especially the
serotoninergic and noradrenergic (Coppen, 1967; Yohn et al., 2017).
Although highly controversial and failing to reconcile the diverse
symptomatology of depression (see Moncrieff et al., 2022) and its
associated correspondence, the serotonergic hypothesis of
depression supports the principal therapeutic treatments. The
first-line class of antidepressant drugs are selective serotonin re-
uptake inhibitors, which increase extracellular serotonin
concentrations by blocking presynaptic serotonin transporters.
Similarly, other popular antidepressant drug classes include both
serotonin-noradrenaline reuptake inhibitors, tricyclic
antidepressants, or monoamine-oxidase inhibitors (Cipriani et al.,
2018; Lin et al., 2023), which also lead to increased extracellular
levels of monoamines. However, all these medications have a
delayed onset of action, and around 30%–40% of patients do not
show an adequate response (Rush et al., 2006). More recently,
psychedelic drugs, which may also act through the serotonergic
system but targeting serotonin receptors instead of serotonin re-
uptake or degradation, have been proposed as novel treatments for
depression (Carhart-Harris et al., 2016; Griffiths et al., 2016; Reiff
et al., 2020; Carhart-Harris et al., 2021; Daws et al., 2022). Of note,
while their efficacy and safety are still a matter of debate, the role of
the serotonergic system in their antidepressant action is also
questioned (Hesselgrave et al., 2021; Moncrieff et al., 2022;
Moliner et al., 2023).

Despite being the most studied, serotonin and noradrenaline are
not the only monoamines implicated in depression. Several studies
have shown that changes in the dopaminergic system are associated
with both the pathogenesis and treatment of depression (Pani et al.,
2000; Nestler and Carlezon, 2006; Yadid and Friedman, 2008; Tye
et al., 2013; Belujon and Grace, 2017). Positron emission
tomography (PET) imaging studies in humans reported a
decrease in dopamine transporter binding potential in depressed
patients, which is usually associated with an hypodopaminergic state
(Meyer et al., 2001). Accordingly, pharmacological depletions in
dopamine led to an increase of depressive symptoms in depressed
patients or in subjects with a family history of depression but not in
healthy subjects (Ruhé et al., 2007; Hasler et al., 2008). On the other
hand, dopamine agonists such as the Parkinson’s disease (PD)
medications pramipexole or aripiprazole have antidepressant
properties in PD patients with concurrent depression or
anhedonia (Lemke et al., 2006).

As a complex disorder, it is not possible to pinpoint a unique
brain region or circuit responsible for all the symptoms of
depression (Kempton et al., 2011; Spellman and Liston, 2020).
Despite this, there are converging reports that observed

alterations of the limbic corticostriatal circuitry (precisely, several
subregions of the PFC and the NAcc) in anhedonia and reward
processing in patients suffering from depression (Johnstone et al.,
2007; Siegle et al., 2007; Pizzagalli et al., 2009; Mayberg et al., 1999).
The activity of the PFC and the NAcc is heavily modulated by
dopaminergic transmission originating in the VTA (Koob, 2009;
Russo and Nestler, 2013). Hence, the putative role of the VTA as a
therapeutic target for depression has been studied in several
preclinical studies in rodents. Interestingly, it has been shown
that optogenetic or electrical stimulation of the VTA to NAcc or
PFC pathways can ameliorate depressive-like symptoms in animal
models of depression (Gersner et al., 2010; Sesia et al., 2010; van der
Plasse et al., 2012; Chaudhury et al., 2013; Tye et al., 2013; Bambico
et al., 2015; Ferenczi et al., 2016). On the other hand, non-
pharmacological treatments of depression (Schlaepfer et al., 2013;
Bewernick et al., 2017), such as deep brain stimulation (DBS) or
transcranial magnetic stimulation, have also successfully targeted
the VTA or the medial forebrain bundle (the main pathway of fibers
connecting the limbic midbrain and forebrain) to achieve
antidepressant activity in treatment-resistant depressed patients
(Schlaepfer et al., 2013; Fenoy et al., 2016; Bewernick et al.,
2017). Similar results have been observed with peripheral
stimulation: vagus nerve stimulation (VNS) has shown promising
results in ameliorating depression scores in clinical trials with
patients with mild or moderate symptoms (Fang et al., 2016;
Rong et al., 2016). Interestingly, the mechanistic studies of VNS
[reviewed in (Carron et al., 2023)] support the idea that its
therapeutic effects are due to increased catecholamine release.

Lastly, it is important to highlight that emerging antidepressant
therapies, distinct from those directly linked to monoaminergic
function -such as ketamine- consistently pinpoint the PFC-NAcc-
VTA pathways as crucial anatomical sites of their effects. (Kokkinou
et al., 2018; Wu et al., 2021).

Converging mechanisms between pain
and depression in the VTA

Taking the above into consideration, it becomes evident that the
VTA is a key structure where both pathogenic and therapeutic
mechanisms of pain and depression might converge. Therefore, the
VTA might arise as a candidate to target the concurrence of both
pathologies. However, despite the high comorbidity between both
pathologies in humans (Goldberg and McGee, 2011; Cherif et al.,
2020; Cohen et al., 2021) and the extensive clinical data that relate
them (Lampl et al., 2016; Roughan et al., 2021; Zhou et al., 2021;
Voute et al., 2023), only a few preclinical studies have addressed
them together. Of note, these studies generally coincide in
suggesting that afferents from the PAG or the parabrachial
nucleus (PBN), the dorsal raphe nucleus (DRN) or the BNST
directly or indirectly control dopaminergic activity in the VTA
efferent regions, such as the NAcc and PFC (Waung et al., 2019;
Yang et al., 2021; Zhang et al., 2021; Lee et al., 2023). Hence, the VTA
seems to be critical in translating painful stimuli into aversive or
depressive-like behaviors.

The work by Waung et al. (2019) demonstrated that excitatory
neurons from the ventrolateral PAG (vlPAG) mainly project to VTA
GABAergic neurons; however, it is important to highlight that they
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also detected both excitatory and inhibitory vlPAG inputs into a few
dopaminergic neurons (Waung et al., 2019). Similarly, other studies
described a parallel glutamatergic input from the lateral PBN (lPBN)
to dopaminergic VTA neurons (Yang et al., 2021; Zhang et al., 2021).
Therefore, VTA dopaminergic neurons may be relevant for relaying
nociceptive signals from the spinal cord to midbrain nuclei. Indeed,
when silencing these neurons pain sensation can be blocked. Thus,
the ablation of lPBN to substantia nigra pars reticulata glutamatergic
neurons was enough to reduce pain-mediated inhibition of
dopamine release in mice (Coizet et al., 2010; Yang et al., 2021).
Interestingly, one of the reports that addressed chronic pain and
depression together (Lee et al., 2023) used a spinal nerve ligation
(SNL) mouse model. This model resulted in a dysregulation of the
glutamatergic transmission from PAG into the VTA. Then, by using
chemogenetic tools to selectively recover the activity of the PAG-
VTA pathway, they attenuated the SNL-induced depressive
behavior of mice. Altogether, these studies showed that, in mice,
pain reduced glutamatergic transmission to the VTA causing a
decrease in dopamine release in its efferent areas (NAcc and
PFC). The same hypodopaminergic state has been observed in
chronic pain conditions, which might be due to the dampening
of glutamatergic transmission from the DRN to the VTA,
consequently decreasing dopamine release in the NAcc (Wang
et al., 2023) (Figure 1). Accordingly, the activation of the DRN-
VTA-NAcc pathway would be enough to decrease pain-like
hypersensitivity and the concomitant anhedonic state. Another
critical area could be the BNST. Several studies (Takahashi et al.,
2019; Hara et al., 2020) have revealed the capacity of BNST to
modulate the mesolimbic system, not only under chronic pain
conditions but also in a depression model. In both cases (pain
and depression), it seems likely that the inhibitory inputs to the
VTA-projecting BNST neurons would led to neuroplastic changes,
which would be a common mechanism between the two diseases
(Takahashi et al., 2019; Hara et al., 2020).

As mentioned above, the opioidergic system plays an
important role in controlling VTA-mediated dopamine release
to the projecting areas (i.e., NAcc), an effect that is critical in
regulating opioid reward and reinforcement. Nevertheless, some
studies have shown that pain conditions can induce presynaptic
MOR desensitization in the VTA, causing an increment in GABA
release from RMTg neurons, and resulting in reduced dopamine
release to dopaminergic projecting areas (Ozaki et al., 2002;
Hipólito et al., 2015; Campos-Jurado et al., 2019). Similarly,
chemogenetic activation of the NAcc-projecting VTA dopamine
neurons allowed to overcome the pain-reduced motivated
behaviors (Markovic et al., 2021). Altogether, pain-induced
dysregulation of this circuit affects motivation and reward,
supporting that it may act as a trigger to anhedonic-like
behaviors. Additionally, apart from the neurochemical changes
and the balance shift that leads to a hypodopaminergic state
(Figure 1), chronic pain may cause other maladaptive effects in
the VTA. For instance, chronic pain induced microglial activation
in the VTA, which disrupted the homeostasis in GABAergic
neurons and contributed to the decreased extracellular
dopamine in the NAcc (Taylor et al., 2015). In conclusion,
there are a number of studies supporting the idea that a
hypodopaminergic state occurs upon chronic pain conditions,

and that the decline in dopamine levels impairs motivated
behavior (summarized in Figure 1).

On the other hand, other authors have proposed an alternative
scenario. Thus, the development of depression-like behaviors in an
animal model of chronic pain correlated with increased firing of the
VTA dopaminergic neurons (Zhang et al., 2021). In this study, it was
observed that blocking glutamatergic lPBN input to VTA dopamine
neurons reversed the depressive-like behavior associated with
chronic pain, however it did not affect the induced neuropathic
pain sensitivity. In the opposite way, activation of this same circuit in
naïve animals resulted in increased depressive-like behaviors,
suggesting that the plastic changes induced by pain led to an
increased firing neuronal rate that would be responsible for the
comorbid emotional impaired state (Zhang et al., 2021).

Taken together, the evidence presented above suggests that the
brain pathways incoming and arising from the VTA are part of a
key, albeit understudied, circuit to explain the relationship between
pain and depression. This hypothesis is further supported by the fact
that pharmacological treatments for both pathologies not only
overlap but they also directly or indirectly target the VTA. A
paradigmatic example of this idea is represented by opioid drugs,
which are used to treat pain but have ample actions on mood and
have been proposed to treat depression (Browne et al., 2020).
However, the abuse liability of opioid drugs makes them far from
ideal to treat depression due to the higher vulnerability and
comorbidity of addiction in patients with depressive disorders
(Swendsen and Merikangas, 2000; Quello et al., 2005; McGrath
et al., 2020). Alternatively, non-canonical drugs that target opioid
receptors such as ketamine or methadone, which in addition show
reduced abuse liability (Cai et al., 2019; Bonaventura et al., 2021),
have become depression and pain medications.

Finally, as above-mentioned, a different, non-pharmacological,
therapeutic approach to tackle neuropsychiatric disorders is
electrical brain stimulation. This technique has been used for
treating multiple conditions, such as movement disorders (e.g.,
Parkinson’s disease), epilepsy, pain and psychiatric conditions
like addiction, schizophrenia, or depression, focusing on multiple
areas (Lozano et al., 2019). For depression, most studies have
proposed targeting areas like the lateral habenula, the NAcc, or
the ACC [reviewed in (Schlaepfer and Bewernick, 2013)]. More
recently, DBS into the VTA and/or the medial forebrain bundle has
also emerged as a suitable treatment. Clinical studies have shown
rapid and sustained antidepressant effects (Schlaepfer et al., 2013;
Fenoy et al., 2018; Coenen et al., 2019), and they also support its
safety as a chronic treatment for up to 6 weeks (Thiele et al., 2018).
Regarding pain, DBS has been mostly investigated for cluster
headache, a highly disabling pain that tremendously affects
patients’ quality of life. Recent studies (Akram et al., 2016;
Cappon et al., 2019) have demonstrated that this kind of
treatment reduces the frequency and severity of migraine.
Interestingly, Cappon et al. (2019) assessed the effects of DBS
into the VTA in patients with cluster headache. They assessed
the effects of the treatment on cognition, mood, behavior, and
quality of life. Their findings suggest that the treatment induced
a significant decrease in anxiety and better coping with pain, and an
improvement in depression albeit it was not statistically significant
(Akram et al., 2016; Cappon et al., 2019).
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Conclusion

About a third of patients suffering from chronic pain also present
depressive symptoms (Cherif et al., 2020). In addition, patients with
concurrent chronic pain and depression show poorer prognosis than
those with chronic pain alone (Fishbain et al., 1997). Hence, individuals
with comorbid chronic pain and depression could benefit from a
comprehensive approach to address both conditions simultaneously
and improve their overall wellbeing and quality of life. However, most
of the preclinical research is focused on either the development of novel
analgesic treatments or understanding depressive-like behaviors per
separate. Here, we highlight the importance of studying pain and
depression as coexisting pathologies rather than by themselves to learn
more about the converging pathways andmechanisms that can explain
their comorbidity and find new effective strategies to treat them in
conjunction.

A potential approach could involve targeting, through either
pharmacological means or non-pharmacological methods like
several forms of brain stimulation, toward brain regions that
function as a communication hub connecting both conditions.
From the evidence presented in this review it becomes evident that
one of such brain regions could be the VTA. Thus, we propose that
modulating the activity of the VTA can be regarded as a novel
therapeutic opportunity to treat the concurrence of pain and
depression. Although further studies will be required to elucidate
the precise actions needed to target the VTA with the desirable
therapeutic effects, the growing range of neuromodulation
technologies, which allow precise and cell-specific control of neural
activity, present unprecedented possibilities to tackle these devastating
disorders from a newer perspective.
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