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Abstract

This paper focuses on the role of L3 to organise trajectories for a particle going from
Earth to Moon and viceversa, and entering or leaving the Earth-Moon system. As a first
model, we have considered the planar Bicircular problem to account for the gravitational
effect of the Sun on the particle. The first step has been to compute a family of hyperbolic
quasi-periodic orbits near L3. Then, the computation of their stable and unstable manifolds
provides connections between Earth and Moon, and also generates trajectories that enter
and leave the Earth-Moon system. Finally, by means of numerical simulations based on the
JPL ephemeris we show that these connections can guide the journey of lunar ejecta towards
the Earth.
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2 Transport in the Earth-Moon system

1 Introduction

The dynamics of a particle in the Earth-Moon system has been widely studied, however a
big amount of questions remain unanswered. The work presented here is devoted to a better
understanding of the natural orbits in the surroundings of Earth and Moon, generated by the
collinear point L3. Different models for analysing the motion of such a particle are found in the
literature. One of the most simple and extended ones is the well known Restricted Three Body
Problem (RTBP) that describes a massless particle moving under the gravitational effect of two
point masses, called primaries, that revolve in circular motion around their barycentre. In this
model it is usual to define the mass unit as the sum of the masses of the primaries, the longitude
unit as the distance between them, and the unit of time such that the period of their circular
movement is 2π. With these considerations, the universal gravitational constant becomes one.
In our case, we consider that the primaries Earth and Moon, with total mass 6.0457× 1024 kg.
As, in this model, they move in circular orbits we assume that they are separated by a constant
distance of 3.8440×105 km and revolve with constant angular velocity equal to 2π/27.31 days−1.

Another common consideration is to write the equations of motion in a rotating frame, also
called synodic, so that the axis move along with the two primaries. In this way, primaries are
seen as static points: the Earth, with mass 1−µ, placed at µ and the Moon, with mass µ placed
at µ− 1, being µ = 0.012150582 the mass parameter for the Earth-Moon system.

Taking all this into account, the equations of motion of the RTBP can be written in Hamil-
tonian form. We will restrict the motion of the particle to the Earth-Moon plane. It is not
difficult to see that the Hamiltonian system is autonomous and can be written as follows,

HRTBP =
1

2
(p2x + p2y) + ypx − xpy −

1− µ
rPE

− µ

rPM
, (1)

being rPE and rPM the distances from Earth and Moon to the particle, respectively.

It is well-known that the RTBP, in synodical coordinates, has five equilibrium points. Three
of them, called collinear points (L1, L2 and L3), are disposed along the horizontal axis and the
other two are called equilateral or triangular points (L4 and L5) and are located in the third ver-
tex of the two equilateral triangles formed by taking the primaries as vertices, see Figure 1 (left).
Collinear points are unstable (they are of the form centre×saddle) while triangular equilibrium
points are, for the mass ratio of the Earth-Moon system, linearly stable.

The classical Lyapunov Centre Theorem states that under generic non-resonance and non-
degeneracy conditions, there exists a one-parametric family of periodic orbits emanating from
each linearly stable direction of an equilibrium point of a Hamiltonian system. These families
of periodic orbits have been computed extensively in the literature due to their interest in space
science, see for instance the early work of R. Broucke [Bro68].

An important characteristic of the RTBP is that it conserves energy; this has the advantage
of reducing one degree of freedom, but at the same time, it restricts the movements of the particle
to an energy level. A modification of the RTBP that introduces the effect of a fourth body as a
time periodic force is the so-called Bicircular Problem (BCP), [Hua60, CRR64]. In our case, the
fourth body is the Sun: we assume that the Earth-Moon keep moving as in the RTBP, and that
their barycentre revolves around the Sun-(Earth+Moon) barycentre in circular motion. Using
the same reference frame and units as in the RTBP, the BCP can be seen as a perturbation of
the RTBP (see Figure 1) (right). Note that this model is not coherent since the effect of the Sun
on the two primaries is not taken into account, nevertheless this model is considered to give a
good insight into the dynamics of the system [SGJM95]. It is also remarkable that some results
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Figure 1: Schematic of the Restricted Three Body Problem (left) and of the Bicircular Model
(right). Note that distance to Sun is not in scale.

µ ms ωs as
0.012150582 328900.549999999 0.925195985 388.811143023

Table 1: Parameters of the Bicircular model for the Earth-Moon system, in RTBP units.

obtained using BCP model have been checked successfully using a realistic model based on the
JPL ephemeris [GLMS01], [Jor00].

The BCP is still described by a Hamiltonian system, that now depends on time in a periodic
way. Therefore, the energy is not conserved. Usually the Hamiltonian function describing the
planar BCP is written in two parts,

HBCP = HRTBP + ĤBPC (2)

where HRTBP is the RTBP Hamiltonian (1), and ĤBCP comprises the terms related to the effect
of the Sun,

ĤBCP = − ms

rPS
− ms

a2s
(y sin(ϑ)− x cos(ϑ)),

being rPS the distance from the Sun to the particle, ms is the Sun mass, as is the distance
between the Sun and the Earth-Moon barycentre, ϑ = ωst is the angle that specifies the position
of the Sun at each time t and ωs is the Sun angular velocity with respect to the Earth-Moon
system. Table 1 contains the values of the parameters for Earth-Moon-Sun BCP in the RTBP
units.

It is also well-known that the BCP preserves the symmetry when inverting the time, also
found for RTBP. This means that, for a fixed value of µ, if (x, y, px, py, t) is a particular solution
of the system, then (x,−y,−px, py,−t) is also a solution.

Adding a time periodic perturbation to a Hamiltonian system has relevant effects. First of
all, the number of degrees of freedom is increased. Another consequence is that, under generic
hypotheses, the equilibrium points of the RTBP system become periodic orbits with the same
period as the perturbation, in this case the period of the Sun. As we will see in the paper,
this is the case for the L3 point of the Earth-Moon Bicircular problem. As a curiosity, we note
that triangular points are replaced by three periodic orbits; two stables and one unstable (the
occurrence of three periodic orbits is due to the size of the perturbation, see [SGJM95, JCFJ18]).
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1.1 Motivation and main results

It is well-known that the L3 equilibrium point in the RTBP has stable and unstable manifolds
that approach the small primary and give rise to a horseshoe structure [BO06]. The invariant
manifolds related to the family of Lyapunov periodic orbits have transversal intersections, see
[TSdSS14] for more details.

As we will discuss in Section 2.1, in the Bicircular model the point L3 of the RTBP is re-
placed by a periodic orbit, with the same period as the Sun. The stability of this orbit is of
saddle×centre type. This means that, under generic hypotheses, there exist a Cantor family
of quasi-periodic orbits that is born in the centre direction. These quasi-periodic trajectories
come from the family of periodic Lyapunov orbits of L3 in the RTBP: the periodic orbits whose
frequency satisfies a suitable Diophantine condition become quasi-periodic with two basic fre-
quencies, the one of the Sun and the one they already had (see [JV97] for details). Roughly
speaking, it can be said that the effect of the Sun is to “shaken” (periodically) the Lyapunov
family of periodic orbits of L3.

These quasi-periodic solutions are of saddle type so each of them has a stable and unstable
manifolds. As each quasi-periodic solution fills densely a torus of dimension two, each manifold
is of dimension three. As the family of tori is one parametric (with very small holes due to
resonances), from a practical point of view the union of the, say, stable manifolds of all the
tori is a fourth dimensional object that separates the fifth dimensional phase space and, hence,
it organises the flow near L3. In Section 2.2 we have computed this family of invariant tori,
and in Sections 2.3 and 2.4 we have approximated the corresponding invariant manifolds. It is
remarkable that these manifolds behave differently in the BCP than in the RTBP. In particular,
they connect the two primaries and also connect them with the outside system.

Trajectories that enter and leave the system passing through L3 may give us an insight
about Near Earth Objects (NEO) dynamics. Previous works have pointed out the role of L1

and L2 and their associated invariant manifolds to explain their behaviour near the Earth-Moon
system. Hou et al. explain in [HXSW15] that the typical way for a NEO to enter our system
is first through Sun-Earth L1 and L2, and secondly, through Earth-Moon L1 and L2 for low
energy trajectories, or directly without passing through any equilibrium point for high energy
trajectories. Many other authors have also analysed these two collinear points for this purpose,
for example, [SNU18] [LRMG14]. However, as far as we know, none of them have pointed to
L3, in spite of having the same kind of stability. One of the reasons why L3 dynamics is not so
popular could be its high energy, that makes it impossible for trajectories to enter and leave the
system when considering the RTBP model.

One of the applications of this research is to lunar meteorites, which are meteorites originated
on the Moon. They are thought to have their origin in the impacts that the Moon suffers every
year. When an object impacts on the Moon surface with enough energy, a crater is produced. If
the velocity of the crater ejecta is higher than the lunar escape velocity (≈ 2.38 km/s), they get
free from the Moon gravity and become lunar meteorites travelling through space, being able to
reach the Earth. In [GBDL95], Gladman et al. perform numerical simulation of a big number
of initial conditions at the Moon surface for velocities in the range [2.3, 3.5] km. There, they
argue that a four body problem needs to be implemented to integrate initial conditions, due to
the important effect Sun has on them.

Concerning how lunar meteorites reach the Earth, there are clear ideas of how the meteorites
leave the Moon, and numerical computations supporting these ideas can be found in [GBD+96].
There are also reliable physical procedures to analyse the time they have spent in space. However,
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the geometrical mechanism behind this transport is not fully understood. As far as we know, no
invariant object in the Earth-Moon vicinity is known to play a crucial role in their behaviour.
In Section 3.1 we show that the invariant manifolds of the quasi-periodic orbits near L3 in the
BCP model are a mechanism for this transport.

Another application of the results in this paper is to give a new mechanism for a NEO to
enter/leave the Earth-Moon system. In Section 3.2 we have followed the part of these manifolds
that enters/leaves the system to characterise, by its orbital elements, the orbits around the Sun
that are close to these manifolds.

There are also other reasons to study the dynamics near L3, for instance its potential as-
tronautical applications. The fact of being far from the Earth makes its position geometrically
profitable to make astronomical measurements. So it would be interesting to place some station
in L3 vicinity for this end. In fact, it also would be very cheap, since the fuel consumption for
the station keeping at L3 is estimated about some cm/s per year, the same for L4 and L5, while
the costs for doing so at L1 and L2 ascend to hundreds of m/s per year, [FV04].

In [TFR+10], authors propose spacecraft trajectories to Sun-Earth L3 point, motivated by
the vast number of applications. However, we have not found many works proposing missions to
Earth-Moon L3 equilibrium point; the reason is again the energy level at which L3 is placed and
hence the high costs to get there. On the other hand, it is quite easy to leave the Earth-Moon
system once you are in this region, so an space station there is also interesting as a gateway to
Solar System missions.

Finally, as some stable invariant manifolds of L3 tori collide with the Earth (hence, they
intersect parking orbits), which means that a transfer to these regions can be done by a single
manoeuvre, injecting the spacecraft on the stable manifold of the region around L3 (see[LNJ20]
for more details).

2 Invariant objects near L3 in the BCP model

We recall that the effect of the Sun in the BCP introduces time-dependency to the equations of
motion. In this situation it is usual to use the Poincaré section defined by the flow at time the
period of the Sun T = 2π/ωs. In this case, the Poincaré map PT is a diffeomorphism of an open
domain of Rn into itself, where n is the dimension of the dynamical system; in this case n = 4
as we consider the system to be defined on the horizontal plane. In following sections, we make
use of this Poincaré map in order to simplify computations. Notice that dynamical equivalents
(periodic orbits of period T ) are seen as fixed points of PT .

In this section we also summarise the numerical methods used to compute invariant objects
near L3. First, in Subsection 2.1, we focus on the periodic orbit replacing L3 in the BCP. Then,
in Subsection 2.2 we describe the computation of invariant tori and in Subsection 2.3 their
stability is analysed. Finally, Subsection 2.4 is devoted to the approximation of their invariant
manifolds. All the numerical integrations have been done by means of Taylor methods [JZ05].

2.1 Dynamical equivalent for L3 in the BCP

To apply a continuation method from the RTBP to the BCP, it is usual to add a parameter ε
to (2),

Hε = HRTBP + εĤBPC ,

so that when ε = 0 we have the RTBP and when ε = 1 we have the BCP. Let us call Pε the
Poincaré map defined by the flow at time T for this Hamiltonian Hε. It is clear that the L3
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Figure 2: Periodic orbit replacing L3 in the BCP, in the XY -plane.

point of the RTBP is a fixed point of Pε for ε = 0. We continue this fixed points for ε going
from 0 to 1, and no bifurcations occur. Figure 2 shows the resulting periodic orbit for ε = 1,
that plays the role of L3 in the BCP. The type of stability of the orbit remains the same as for
L3, centre×saddle. For ε = 1, the unstable eigenvalue of the fixed point that plays the role of
L3 is λu ≈ 3.372815841682823.

It is important to mention that the reason for performing the continuation was to clarify that
no bifurcation of the periodic orbit takes place, as it happens for L4 and L5, [SGJM95, JCFJ18].
Otherwise, the computation of this orbit could have been simply performed directly for the BCP
(that is, ε = 1) and looking for the fixed point by means of a Newton method.

2.2 Invariant tori

In this section we discuss the numerical computation of the Lyapunov family of invariant tori
near L3. The methods we have used are explained in [CJ00] and [GJ04] and we refer to these
references for deeper explanations.

Each torus of the family of invariant tori growing from the periodic orbit that replaces L3

has two frequencies: the frequency of the Sun, plus another one which is different for each torus
and it is close to the normal frequency of the periodic orbit. As the Solar frequency is known,
we use the Poincaré map corresponding to the period of the Sun, PT , to reduce this dimension
for all the tori in the family. As a result, what we numerically compute is a family of invariant
curves, such that every curve is characterised by a frequency denoted by ω. So, when applying
the map PT to one of the invariant tori of the family, we should see the same curve rotated a
quantity equal to ω. This idea is expressed by the invariance equation, that must be satisfied
by each of the invariant curves of the family. Let us write this in a more precise form.

Let ϕ(θ) be a parametrization of the curve in terms of an angle θ ∈ [0, 2π], where we assume
that ϕ(θ) belongs to the space of continuous functions C(T1,R4), and let PT (ϕ(θ)) be its image
after a solar period. Then, the invariance equation is written as follows,

ϕ(θ + ω) = PT (ϕ(θ)). (3)

The discretization of an invariant curve is performed by using a truncated Fourier series,

ϕ(θ) ≈ a0 +

N∑
k=1

ak cos(kθ) + bk sin(kθ),
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where N is the number of Fourier modes and a0, ak, bk are the Fourier coefficients (that belong
to R4). Therefore, what we will do is to use the invariance equation to find the set of coefficients
for each curve.

For each curve there is a total of 4(2N + 1) + 1 unknowns: (2N + 1) Fourier coefficients with
4 coordinates each and the frequency ω. A Newton method is applied in order to find the values
for these unknowns that satisfies the invariance equation. Note that, as the parametrization is
not unique (if ϕ(θ) is a parametrization then, for any α, ϕ(θ+ α) is a different parametrization
of the same curve), an extra condition is needed. This makes a total of 4(2N +1)+2 conditions.

For the moment being, let us assume that we have selected a suitable value of N (we will
come back to this point later on). Let us consider the mesh θi = 2πi

2N+1 , 0 ≤ i ≤ 2N , and let us
impose the invariant equation (3) on this mesh to produce 4(2N + 1) conditions. We add an
equation to fix one coordinate when θ = 0, for example x plus another equation to fix another
coordinate, for example y (in other words, when fixing these two coordinates we are looking
for the invariant curve that goes through a certain point of the positions plane (x, y)). With
this, the number of equations is 4(2N + 1) + 2 for 4(2N + 1) + 1 unknowns, and the system of
equations is rectangular, although there is a redundant equation due to the lack of unicity of the
parametrization. This is not a problem at all because the pivoting strategy used by the linear
solver during the Newton iterations detects and removes the redundant equation.

To start the numerical continuation of the family we find first two invariant curves very
close to the periodic orbit. This is done by choosing the x and y coordinates of the seed ϕ of
the Newton method as ϕ(θ) = p+ δ(vr cos(kθ) + vi sin(kθ)), where p is the point found for the
periodic orbit replacing L3 at t = 0, vr +

√
−1vi is the eigenvector corresponding to the centre

and δ is an small distance from the point p to the invariant curve, that has been chosen as
δ = {10−3, 2× 10−3}. For more details concerning to the computation of these initial curves, we
refer the reader to [GJ04].

Once the first two curves are obtained, a continuation method is applied to compute the
Lyapunov family of invariant curves that emanates from the fixed point corresponding to the
periodic orbit that replaces L3. To have a uniform distribution of points1 in the continuation
curve , we ask to the new point in the continuation curve, ϕj , to be at distance δ of the previous
point, ϕj−1,

‖ϕj−ϕj−1‖2+(ωj−ωj−1)2 = |a(j)0 −a
(j−1)
0 |2+

N∑
k=1

(
|a(j)k − a

(j−1)
k |2 + |b(j)k − b

(j−1)
k |2

)
+(ωj−ωj−1)2 = δ2.

This condition replaces the condition of fixing the value of the y coordinate at θ = 0. The
seed for the Newton method is obtained by linear extrapolation from the last two points, ϕj−1
and ϕj−2. If more than 4 steps of Newton method are required, the step of continuation δ is
decreased.

The error of the invariant curve is estimated by checking the invariance condition (3) on a
much finer mesh, say 100 times finer. The maximum difference gives an estimation of the error
of the computed curve,

E(ϕ, ω) = max
θ∈T1

|ϕ(θ + ω)− PT (ϕ(θ))|.

If this value is bigger than a prescribed threshold (we have used 10−10), the number of Fourier
modes (i.e., the value of N) is increased.

1As it is usual in a continuation scheme, we refer to a single curve as a point in the family of invariant curves.
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Figure 3: Left: family of invariant curves. Right: variation of the rotation number along the
family.

Following the procedure explained above, we have been able to compute the family of invari-
ant curves until a distance of 0.8 (as a measure of distance we use the difference between the x
coordinate of the curve at the left intersection point with the x axis) from the fixed point that
corresponds to L3. With this definition of distance we can also say that the most exterior torus
of the family is at a distance of 0.2 from the Earth, as shown in Figure 3 (left). Invariant tori at
this distance are already covering a considerable region around L3, so we have decided to stop
the continuation here.

The computations have been started using N = 25 Fourier modes and finished using N = 211
(we recall that this value is adjusted automatically by the algorithm). In Figure 3 (right) we
show the value of the frequency ω for the invariant curves according to their distance to L3.

2.3 Stability of invariant tori

Once we have the invariant curves and their frequencies, we study the linear normal behaviour
around them. As usual, we take an infinitesimal displacement, h ∈ R4, from the curve and look
at its image by the Poincaré map,

PT (ϕ(θ) + h) = PT (ϕ(θ)) +Dx(PT (ϕ(θ)))h+O(‖h‖2).

The linear normal behaviour around the invariant curves is therefore described by this dynamical
system (also known as linear quasi-periodic skew product),{

φ̄ = A(θ)φ,
θ̄ = θ + ω,

(4)

where A(θ) = Dx(PT (ϕ(θ))). The system (4) is said to be reducible is there exists a continuous
change of variables φ = C(θ)χ such that (4) becomes{

χ̄ = Bχ,
θ̄ = θ + ω,

(5)

where matrix B = C−1(θ+ω)A(θ)C(θ) does not depend on θ. Then, the stability of (4) follows
immediately from the eigenvalues of matrix B in (5). In [Jor01] it is shown that these eigenvalues
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Figure 4: Hyperbolic eigenvalues w.r.t. the distance of the invariant curve to L3.

can be found analysing the following generalised eigenvalue problem (GEV),

A(θ)ψ(θ) = λΓωψ(θ), (6)

where (λ, ψ) ∈ C × (C(T1,C4) \ {0}), and Γω is the operator Γω : ψ(θ) ∈ C(T1,C4) 7→ ψ(θ +
ω) ∈ C(T1,C4). Using the same discretization used for the invariant curves, we compute the
eigenvalues and eigenvectors (eigenfunctions) in (6). The discretized problem has dimension
4(2N +1)×4(2N +1) and this implies that we obtain 4(2N +1) eigenvalues. They are disposed
in circles of radius {λs, 1, λu}, where the subindex s means stable and u, unstable (due to the
Hamiltonian structure, we have that λs = λ−1u ). Not all the eigenvalues have the same accuracy,
so we select the most accurate ones to obtain the stability of the invariant curves and, from the
eigenfunctions, the linear approximation to their stable and unstable manifolds. See [Jor01] for
details on this procedure.

The evolution of eigenvalues of the family of invariant curves as we move away from L3

is shown in Figure 4. We note that, as the invariant curves get further away, the unstable
eigenvalue becomes smaller.

2.4 Invariant manifolds of invariant tori

The saddle part of each torus produces two invariant manifolds, one stable and one unstable.
Stable invariant manifolds, Ws, are defined by the set of points that are sent towards the invariant
tori forward in time, while unstable invariant manifolds, Wu, are defined by the set of points
that are sent towards the tori backwards in time. In the previous section we have computed, for
each invariant curve ϕ, two hyperbolic eigenvalues λs,u and two eigenfunctions ψs,u of (6). Note
that, for h ∈ R small and any θ, they satisfy

PT (ϕ(θ)+hψs,u(θ)) = PT (ϕ(θ))+hDxf(ϕ(θ))ψs,u(θ)+O(h2) = ϕ(θ+ω)+hλs,uψs,u(θ+ω)+O(h2),

which means that

(θ, h) 7→ ϕ(θ) + hψs,u(θ),

is a parametrization of the linearization of the manifolds of the invariant curve ϕ. For h small,
this is an approximation of the true invariant manifold with an error of order h2. To obtain a
more global approximation to the manifold we follow the ideas in [Sim90]. First, we define a
small displacement h0 (we have used 10−5 or 10−6, so that the error of the linear approximation
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Figure 5: Stable (green) and unstable (red) invariant manifolds corresponding to two invariant
curves, in the XY -plane. See the text for more details.

is of the order of 10−10), and then we choose h ∈ [h0, h0λu] (or h ∈ [h0, h0/λs]) so that (θ, h) 7→
ϕ(θ)+hψs,u(θ) is a parametrization of a fundamental set (in this case, a cylinder) on the invariant
manifold, that spans the whole manifold by iteration under the Poincaré map PT . Hence, to
globalise the manifold, we have defined a equispaced mesh of M1 values of h, and mesh of M2

equispaced values of θ to construct a mesh of M1M2 points on the manifold that we propagate
forward to span the unstable manifold and backwards to span the stable manifold. We note
that we have to use h and −h to have both “sides” of the manifold.

During the propagation of the orbits we check at every step of the integration if they have
reached some of the primaries or if they have left the system. Leaving the system has been
defined as being at a distance from the Earth-Moon barycentre larger than 10 Earth-Moon
distances. At the moment that some orbit reaches the Earth or Moon, a Newton method is
applied to refine the coordinates at which the orbit reaches their surfaces. This will be used
later on.

3 Transport in the BCP

It is well known that the invariant manifolds of L3 in the RTBP approach the small primary
giving rise to horseshoe-like motions [BO06, SSST13]. As we will see, in the BCP the invariant
manifolds of the tori near L3 display a shape that reminds that of the RTBP, but with important
differences. In particular, in the BCP the motion is not restricted to an energy level so that
the manifolds fill a larger region of configuration space and even they move far away from the
Earth-Moon system.

In Figure 5, invariant manifolds corresponding to two invariant tori (one at distance 1.3974×
10−3 from L3 periodic orbit, and another one at 5.5857× 10−3) are shown together to illustrate
the shape of the manifolds for different tori. The trajectories correspond to the flow, not to the
Poincaré map. For reference, Earth and Moon are also included in the figure as black circles of
proportional radius.

As expected, it takes some Earth-Moon revolutions to leave L3 neighbourhood. This is shown
in Figure 6, where the manifolds of the curve at 1.3974× 10−3 from L3 are plotted for different
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integration times. Images on the right column are the same as those on the left, but making a
zoom around the primaries in order to show how some of the orbits reach them. The integration
time for the first (upper) image is meaningless since it depend on the initial distance to the
invariant torus. The following images are separated in time just by one Earth-Moon revolution.
Note that the manifolds reach not only the Moon, but also the Earth. As a side comment, the
reversing symmetry of the BCP mentioned in the introduction is now easy to observe: the stable
manifold can be obtained from the unstable one by changing y by −y and px by −px.

Next we perform massive numerical simulations to explore the evolution of the invariant
manifolds for the computed family of invariant tori. The results show that most of the computed
trajectories on the unstable manifolds (43.27%) leave the Earth-Moon system, a big amount
of them (21.69%) go to the Moon and a smaller number (2.67%) go to the Earth. Due to
the reversing symmetry, a 43.27% of trajectories on the sable manifold come from outside the
Earth-Moon system, a 21.69% come from the Moon and a 2.67% come from the Earth. The
remaining trajectories keep moving around the system without colliding with the primaries or
escaping for the whole simulation.

In order to display the rich dynamics given by these invariant manifolds, let us discuss first
how we introduce coordinates on them. As it has been discussed in the previous section we
parametrize a fundamental region (a cylinder) of the, say, unstable manifold for an invariant
curve ϕ as

(θ, h) ∈ [0, 2π]× [h0, λuh0] 7→ ϕ(θ) + hψu(θ).

Note that, in fact, we have two parametrizations of this kind, one for h0 > 0 (the “positive piece”
of the manifold) and another one for h0 < 0 (the “negative piece”). We have used a mesh of
1000 equispaced points on [0, 2π] and 1000 equispaced points on [h0, λuh0] to produce 106 initial
conditions for each piece of each unstable manifold (and similarly for the stable manifolds). We
have coloured each couple (θi, hj) according to the fate of the orbit that they genereate: yellow
colour corresponds to escaping the Earth-Moon system, purple to collision with the Earth, red
to collision with the Moon and black to those trajectories that move along the system without
neither crashing nor escaping during the simulation time. Horizontal axis is taken as the angle
along the curve θ ∈ [0, 2π] and the vertical one corresponds to the height of the fundamental
domain, that is different for each curve, so we have scaled it to [0, 1]. Figure 7 shows several
colour maps corresponding to the four pieces of the manifolds of an invariant curve close to
L3(at 3.3351× 10−2 from L3). The presence of the symmetry when inverting the time is easily
recognisable, which means that from now on we will only plot, say, unstable invariant manifolds.
Figure 8 shows colour maps for several invariant curves at different distances from L3. Note that
the left side of each plot coincides with the right side, due to the periodicity of θ. The upper
side is the result of applying the Poincare map to the bottom side, so they coincide except for
a shift equal to the frequency of the invariant curve.

Looking at Figures 7 and 8 we can see how the aspect of the colour maps evolves with the
invariant curve. In general, in the first images, red and yellow colours seem to predominate,
while for the last images quantity of purple and black colours has clearly increased; except for
the first images in Figure 7, where purple regions are well defined. This means that it is more
likely for the Earth to be origin or destiny of the trajectories passing close to the invariant curves
near L3, or far away from it, than for intermediate curves. The opposite effect is observed for the
Moon. However, both primaries have connections with invariant curves at any distance from L3.
For each of the curves we have counted how many initial conditions on the fundamental cylinder
reach the Earth, the Moon, escape the system, or none of these. The percentages are collected
in Table 2. The two columns in each category correspond to the two sides of the manifold.



12 Transport in the Earth-Moon system

Figure 6: Invariant manifolds in the XY -plane of the curve at 1.3974×10−3 from L3 for different
times.
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Figure 7: Fundamental cylinder of the invariant manifolds for an invariant curve at a distance
3.3351 × 10−2 from L3. Up, unstable manifolds. Down, stable manifolds. Left, positive piece.
Right, negative piece. See text for more details.

Distance to L3 Earth (%) Moon (%) Exterior (%) Neither (%)

1.3974× 10−3 1.93 6.93 12.19 0.19 49.63 92.20 36.27 0.68

3.3351× 10−2 1.73 3.75 26.85 5.09 39.11 77.38 32.30 13.93

1.9607× 10−1 1.76 1.68 29.08 31.19 43.54 41.72 25.63 25.42

3.0902× 10−1 1.92 1.50 24.30 22.35 45.68 53.50 28.21 22.69

4.9936× 10−1 2.55 1.88 18.71 20.04 39.04 39.19 39.71 38.89

5.7020× 10−1 2.57 2.19 15.42 18.78 36.20 37.93 45.82 41.10

7.4214× 10−1 5.61 3.89 12.56 14.71 35.52 39.53 46.31 41.87

Table 2: Percentages of the trajectories starting at fundamental cylinders that go to the Earth,
Moon, outside system or neither, through the two directions of the unstable invariant manifolds
for some invariant curves.
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Figure 8: Fundamental cylinders for the two directions of the unstable manifolds of curves at
distances to L3, from up to down, 1.9607 × 10−1, 3.0902 × 10−1, 4.9936 × 10−1, 5.7020 × 10−1

and 7.4214× 10−1.
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The mix of colours in the maps in Figure 7 shows that a single invariant curve can be
reached from several places and, starting at this quasi-periodic orbit, there are several possible
destinations. These manifolds are the skeleton that organises the dynamics near L3, and they
provide multiple connections between Earth and Moon, and also allow to enter and exit the
Earth-Moon system. In particular, it is remarkable that an asteroid entering the Earth-Moon
system near these manifolds has more chances to impact on the Moon than on the Earth. Next
Section contains numerical simulations around these manifolds to show the abundance of these
connections.

3.1 Lunar meteorites

It is well known that some asteroids are frequently impacting on the Moon surface, being able
to release material from the lunar surface. If the velocity at which this material is ejected from
the Moon is high enough, they get free from the lunar gravity and start to move along the
open space, becoming lunar meteorites. It is thought that some of these lunar meteorites reach
the Earth what would explain why several stones, whose composition belongs to the Moon, are
found on our planet.

In this section we study whether the invariant manifolds of the previous section can “guide”
lunar meteorites to reach the Earth. The skeleton for these connections is defined by the subsets
of the stable invariant manifolds can connect the Moon surface with a quasi-periodic orbit near
L3 whose unstable manifold reaches the Earth surface.

Let us start by computing the points (positions and velocities) at which stable manifolds
reach the Moon surface, and the points at which unstable manifolds reach the Earth surface. It
is remarkable that there is not a preferred time or point on the Moon surface for these orbits to
start. Neither a prefer-ed time or point on the Earth surface for them to end. In order to illustrate
this, in Figure 9 the histograms for the trajectories initial and final data. On the left of this
figure, data corresponding to the Moon surface is presented; initial time, point along the surface
and velocity. On the right, data of the destination of these trajectories, on the Earth surface, are
also included; final time, point along the surface and velocity. Notice that time is parametrized
in [0, T ], and the point along the primaries surfaces as circles of corresponding radius and angle
in [0, 2π]. Ranges for velocities of the trajectories leaving the Moon are in [2.25, 3.38] km/s,
while for the velocities when they reach the Earth surface (neglecting atmosphere effects) is in
the range [11.00, 11.31] km/s. For velocities we do find some ranges that are preferred, or have
higher possibilities. Vertical axis have been scaled such that they correspond to the probability
percentage for each of the 100 bins.

Trajectories going from the Moon to the Earth can have very different shapes, depending on
the invariant curve they approach during their journey. In Figure 10 two trajectories connecting
Moon and Earth are shown; the left one is close to the invariant manifolds of a quasi-periodic
orbit close to L3 and the right one is close to the invariant manifolds of a quasi-periodic orbit
far from L3.

To see how likely is for a Moon ejecta to follow these trajectories we have performed a series
of numerical simulations. To this end, for each intersection point of the stable manifolds with the
Moon surface, we have modified the corresponding velocity module and direction maintaining its
x and y coordinates, as well as the inital time (we recall that the BCP depends on time). A mesh
of modules and angle directions for the velocities is created from the values of the trajectory.

The mesh is formed by 103 points in each direction (modulus and angle of the velocity
vector) for a total of 106 points. Each of these points gives an initial condition that is integrated
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Figure 9: Left column contains histograms for the Moon; from up to down they show the time
leaving the primary, the point of the surface at which it happens, and escape velocity. Right
column contains similar histograms buy for the Earth. See the text for more details.
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Figure 10: Two trajectories, in the XY -plane, connecting the Moon with the Earth. See the
text for details.

Trajectory 1st 2nd 3rd 4th

ϑ 132.917506118 225.259626325 298.729423247 263.209360181

Table 3: Initial angular position of the Sun with respect to the Earth-Moon barycentre (ϑ) in
degrees, for the trajectories in Figure 11.

during a maximum of 55 Earth-Moon revolutions; depending on their final destination a colour
is assigned to them, see Figure 11. As in the colour maps from Section 3, yellow corresponds
to trajectories that leave the Earth-Moon system, purple to those that reach the Earth and
red colour to those that come back to the Moon. There are also a few trajectories in black
colour that neither crash nor leave the system. The trajectory at the left of each colour map
corresponds to an orbit which is extremely close to the invariant manifold and reaches the Earth
(we note that, in a perfect computation with no errors, an orbit exactly on the manifold will
accumulate to the quasi-periodic orbit without going anywhere else). Note that the plot axis
have been adjusted differently for each trajectory.

In these maps we find a large variety of destinations for each of the trajectories starting
on the Moon surface and near the stable manifold. We can see that only for higher velocities
big areas of initial conditions leading to the Earth from the Moon are found. Also, it is quite
visible that three of the four maps have a vertical red band on the left of the plot, the reason
for this to happen is that those are trajectories with velocities below the Moon velocity escape,
consequently they tend to fall again against the lunar surface. However, in the last map this
red vertical band is not present, the reason may be the relative position of the Sun when the
trajectory starts, that helps to escape Moon’s gravity. In Table 3 the initial angular position of
the Sun (ϑ, see Figure 1) for the four trajectories are shown. Notice that for the last trajectory,
the initial position of the Sun is almost vertically above the primaries.

A last comment on this section is devoted to transfers from the Earth to the Moon. We do
not consider ejecta from Earth travelling to the Moon since the effect of Earth’s atmosphere
would ask for extremely high speeds but the transfer from an orbit around the Earth to the
Moon has undoubtedly astronautical interest. Therefore, we can use the same strategy but
starting at some distance from the Earth surface, for instance at some Parking Orbit (PO). If
a quasi-periodic orbit has a stable invariant manifold crossing a PO and an unstable manifold
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Figure 11: Left, trajectories connecting the Moon with the Earth, in the XY -plane. Right,
destination colour maps when modifying trajectories velocities; horizontal axis corresponds to
the velocity module (km/s) and vertical to the angle direction (degrees). The trajectory on the
left corresponds to the centre point of the map at the right. See the text for more details.
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Figure 12: Horizontal axis corresponds to semi-axis (in astronomical units), and vertical to
eccentricity. Orbital elements for orbits entering (left) and leaving (right) the Earth-Moon
system.

colliding with the Moon we can use this geometrical structure to go to the Moon by means of
a single manoeuvre, which is a change of velocity ∆v at the crossing point (in configuration
space) of the PO with the stable manifold. We have done some estimations on the ∆v costs for
transferring to L3 stable manifolds from a PO defined at 200 km from the Earth surface, and
they show that minimum cost for some spaceship to make this manoeuvre is of 3.17 km/s; value
near typical costs for leaving an PO at this distance to go to the Moon. We have not performed
a deeper study in this direction, since it is not our goal in the present work. In [LNJ20] the
costs for entering in one of these orbits are refined and a transfer is proposed from a PO to the
Earth-Moon triangular points through the neighbourhood of L3. A similar strategy could be
used to reach the Moon.

3.2 Entering and leaving orbits

Due to Sun gravitational attraction, when a particle reaches a distance far enough from the
Earth-Moon barycentre, it is captured by the Solar gravitational field. Consequently, unstable
manifolds that overcome this distance are said to leave the Earth-Moon system, and stable ones,
are said to enter in the system, both led by L3 dynamics. To analyse the kind of trajectories that
enter and leave the system, their orbital elements with respect to the Sun are computed. As the
model treated here is planar, only semi-axis and eccentricity are obtained. Before computing
the orbital elements, synodic coordinates are translated to inertial ones, with the origin set at
Sun position.

In Figure 12 semi-axis and eccentricity are shown. Due to the time reversibility of the system,
it is quite natural that the orbital elements corresponding to trajectories that have escaped the
Earth-Moon system are similar to those corresponding to trajectories that will enter the system.

Granvik et al., [GVJ12], computed the capture probability for NEOs according to their
orbital elements. If we compare their results with the orbital elements obtained with the Bi-
circular Problem (Figure 12), it seems that trajectories entering and leaving the Earth-Moon
system described by BCP, are probably to happen in the real system.

Our results show that these entering manifolds connect, near L3, with manifolds that go
towards the Moon or the Earth, and viceversa. Moreover, we have observed trajectories that



20 Transport in the Earth-Moon system

Figure 13: Trajectories that suggest intersections between the manifolds of different invariant
curves.

enter in the Earth-Moon system after orbiting the Sun in an orbit outer than the one of the
Earth (i.e., with semi-axis larger than 1AU ) and then leave the system to orbit around the Sun
in an inner orbit than the Earth (semi-axis smaller than 1AU). In the same way, the opposite
transfer (from an inner orbit around the Sun to an outer one) can be led by L3 dynamics. This
behaviour reminds that of the quasi-satellites except for the fact here there is no inclination for
the trajectories, [MIW+06].

3.3 On the existence of heteroclinic orbits

Another phenomenon we have observed is that it seems that there exist intersections among
manifolds of different quasi-periodic orbits near L3. In Figure 13 (left) we can see an orbit that
goes from the Moon surface to the outside system through a torus close to L3, but it also seems
to spin around a second torus. In Figure 13 (right), we can observe the opposite effect, for an
orbit that goes from the Moon to the Earth. The study of these connections is left for another
work.

4 Transport in a realistic model

The results concerning to the transport between Earth and Moon that we have obtained by
analysing L3 in the Bicircular Problem may explain the behaviour of lunar meteorites travelling
to the Earth. Now we want to check these results in a more realistic model. To this end,
we consider the Solar system as an N -body problem containing Sun, Earth, Moon and all the
planets, with initial conditions provided by the JPL ephemeris DE405. The initial conditions
for the particles are obtained by means of a change of coordinates from BCP to the the ecliptic
system of reference, whose origin is placed at the Solar system centre of mass. Once the change is
performed, we integrate every particle jointly with the Solar system as a restricted (N+1)-body
problem. Let us see this with more detail.

4.1 Changes of coordinates

The change of coordinates applied here can also be found in [GLMS01]. Let RE , RM and b be
the positions of the Earth, Moon and their barycentre at a given time, in ecliptic coordinates
with origin at the Solar System barycentre. These values are provided by the JPL ephemeris.
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Now, let a be the position of a particle in the adimensional BCP system and e its position
in the ecliptical reference system. The relation between them is of the following type,

e = kCa+ b, (7)

where k = ‖RE − RM‖ is the change of scale factor, C is an orthogonal matrix that gives the
rotation between e and a coordinates and adding b means the translation of the origin. The
rotation matrix C is composed by three unitary column vectors c1, c2 and c3, defined as:

c1 =
RE −RM
||RE −RM ||

, c3 =
(RM −RE) ∧ (VM − VE)

||(RM −RE) ∧ (VM − VE)|| , c2 = c3 ∧ c1,

where VE and VM are the velocities of the Earth and Moon. Notice that the first vector marks
the direction between the two primaries, the expression of the third one is the normalised angular
momentum for Earth and Moon, and the second one is perpendicular to the other two giving an
positively oriented reference frame. To transform velocities from the adimensional system (ȧ)
to the ones in the ecliptical system (ė) we take derivatives with respect to time in (7),

ė = k̇Ca+ kĊa+ kCȧ+ ~̇b. (8)

Here ~̇b is the velocity of the barycentre, and the derivative of the rotational matrix is performed
by derivating every element of the three column vectors, what implies the accelerations of the
Earth and the Moon, that are computed from the Newtonian equations of motion of the full
Solar system.

It is important to realise that the relation between units of length between the two systems
is given by the scale factor k. However, when we take derivatives with respect to time, that in
the JPL model is given in days, we need to introduce the adimensional velocities (ȧ) in units of
adimensional length over days.

4.2 Lunar meteorites

Every initial condition of the maps in Figure 11 has been translated to the ecliptical system
by applying the change of coordinates given by (7) and (8). Notice that our coordinates in the
BCP are four-dimensional, so initial vertical position and velocity in the adimensional system
are zero. Also, each colour map corresponds to a different starting time (the angles in Table 3),
that needs to be translated to modified Julian days (the time in the JPL ephemeris is measured
in Julian days). Since time zero for BCP model corresponds to a lunar eclipse we have chosen
as origin of time in the real system the first lunar eclipse of year 2000, which corresponds to the
modified Julian day 20.1978749133 (day 0.0 corresponds to year 2000.0). Taking all this into
account, we obtain the initial data for each point of the colour maps with the same units as in
the JPL ephemeris.

The initial numerical simulations, with the same mesh of initial conditions as in the BCP,
showed similar patterns but sometimes with a shift, mainly in velocities, and different in each
case. For this reason we have enlarged the mesh to cover a larger set of initial data. The results
are shown in Figure 14. An explanation of these shifts, different for each map (i.e. for each
different time) may be given by the relative positions and velocities of the Earth and Moon
at each time. This implies a different scale factor that can be translated into higher or lower
velocities for the initial conditions, see Table 4. The last column in this table, σ = ‖ė−VM‖−‖ȧ‖
(in km/s), is a comparison of the initial velocities with respect to the Moon in the two reference
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Figure 14: JPL results for the destination colour maps when modifying trajectories velocities;
horizontal axis corresponds to the velocity module (km/s) and vertical to the angle direction
(degrees). See the text for more details.

frames. Note that value of σ is correlated with the shift in velocities when comparing the colour
maps in Figures 11 and 14. It is remarkable that for the time of the fourth map the relative
positions of Earth, Moon and Sun are close enough to the (planar) BCP configuration so that
we have not needed to widen the mesh to find the same patterns.

As a last check, the trajectories that leave the Earth-Moon system in those integrations
(yellow colour in the maps), are characterised in terms of their orbital elements. Again, for
the planar Bicircular model, only semi-major axis and eccentricity can be computed. For the
realistic, all the orbital elements have been computed. Here we only include the semi-major
axis, eccentricity and inclination values for the four maps, see Figure 15. Again, the plots for
the BCP and for the real model are in good agreement.

5 Conclusions

This work focuses on the role of L3 equilibrium point in the planar Earth-Moon system under
the perturbation of the Sun. First, we have found the dynamical equivalent for this point in
the Bicircular model. Then, the family of Lyapunov quasi-periodic orbits that emanates from
L3 has been numerically computed and its stability analysed. The computation of their stable
and unstable invariant manifolds shows the existence of connecting orbits between Earth and
Moon, and trajetories that enter and/or escape the Earth-Moon system. By means of numerical
simulation, we have shown that these connections can be a mechanism for the transport of lunar
ejecta to the Earth. We have tested these trajetories with a realistic model for the Solar system
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Figure 15: Orbital elements for the trajectories that leave the Earth-Moon system, corresponding
to the four maps of initial conditions defined in Section 3.1 (from up to down), integrating them
in the BCP (first column) and in a realistic N-body problem (other two). First two columns
of graphs show eccentricity versus semi-major axis (astronomical units), and the last one the
inclination (in degrees) versus semi-major axis.
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Trajectory k (km) VEM (km/s) ωEM (1/s) ez (km) σ (km/s)

1st 404835.4469 0.9702 2.3964 ×10−6 64623.3917 1.4039 ×10−1

2nd 396750.5357 0.9923 2.5012 ×10−6 16469.0752 6.2282 ×10−2

3rd 369879.1465 1.0594 2.8641 ×10−6 -2390.8644 -1.0638 ×10−1

4th 384247.7345 1.0195 2.6533 ×10−6 -517.1608 -1.3396 ×10−2

BCP 384400.0000 1.0236 2.6628 ×10−6 0.0000 --------

Table 4: Scale factor, relative Earth-Moon linear and angular velocities and vertical coordinate
in the ecliptic system and BCP for the initial data of the four trajectories of Figure 11. Last
row corresponds to the difference in the ecliptical velocity module for the particle relative to the
adimensional one.

and the results are in good agreement with those of BCP. This means that these invariant
objects of the BCP seems to provide a structure to guide Moon ejecta to the Earth. Moreover,
the simulation in the real model of Moon ejecta escaping the Earth-Moon system is also in good
agreement with the BCP results.

In the same way, these connections could be used to design a mission to the Moon starting
at a Parking Orbit of the Earth. In addition, trajectories entering and leaving our system can
give some insight in NEOs dynamics, in particular these manifolds connect orbits semi-major
axis larger than 1 AU with orbits with semi-major axis smaller than 1 AU. All these phenomena,
that appear naturally in this study, will lead us to deeper research, both in the case of natural
orbits and in the case of orbits for astronautical applications.
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