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Abstract
We study deformations of graphical zonotopes. Deformations of the classical permuta-
hedron (which is the graphical zonotope of the complete graph) have been intensively
studied in recent years under the name of generalized permutahedra. We provide an
irredundant description of the deformation cone of the graphical zonotope associated
to a graph G, consisting of independent equations defining its linear span (in terms
of non-cliques of G) and of the inequalities defining its facets (in terms of common
neighbors of neighbors in G). In particular, we deduce that the faces of the standard
simplex corresponding to induced cliques in G form a linear basis of the deformation
cone, and that the deformation cone is simplicial if and only if G is triangle-free.
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Introduction

The graphical zonotope of a graphG is a convex polytope ZG whose geometry encodes
several combinatorial properties of G. For example, its vertices are in bijection with
the acyclic orientations of G [39, Prop. 2.5] and its volume is the number of spanning
trees of G [40, Ex. 4.64]. When G is the complete graph Kn , the graphical zonotope
is a translation of the classical n-dimensional permutahedron. This polytope, obtained
as the convex hull of the n! permutations of the vector (1, 2, . . . , n) ∈ R

n , was first
introduced by Schoute in 1911 [37], and has become one of the most studied polytopes
in geometric and algebraic combinatorics.

A deformed permutahedron (a.k.a. generalized permutahedron) is a polytope
obtained from the permutahedron by translating its facet-defining hyperplanes without
passing through a vertex. These polytopes were originally introduced by Edmonds in
1970 under the name of polymatroids as a polyhedral generalization of matroids in
the context of linear optimization [16]. They were rediscovered by Postnikov in 2009
[31], who initiated the investigation of their rich combinatorial structure. They have
since become a widely studied family of polytopes that appears naturally in several
areas of mathematics, such as algebraic combinatorics [1, 2, 34], optimization [17],
game theory [14], statistics [27, 28], and economic theory [20]. The set of deformed
permutahedra can be parametrized by the cone of submodular functions [16, 31].

In general, a deformation of a polytope P can be equivalently described as (i) a
polytope obtained from P by moving the vertices so that the directions of all edges
are preserved [31, 34], (ii) a polytope obtained from P by translating its facet-defining
halfspaces without passing through a vertex [31, 34], (iii) a polytope whose normal
fan coarsens the normal fan of P [23], (iv) a polytope whose support function is a
convex piecewise linear continuous function supported on the normal fan of P [13,
Sec. 6.1] [15, Sec. 9.5], or (v) a Minkowski summand of a dilate of P [26, 38]. The set
of deformations of P always forms a polyhedral cone under dilation and Minkowski
addition, which is called the deformation cone of P [31]. Its interior is called the type
cone of the normal fan of P [23], and contains those polytopes with the same normal
fan as P. When P has rational vertex coordinates, then the type cone is known as the
numerically effective cone and encodes the embeddings of the associated toric variety
into projective space [13].

There exist several methods to parametrize and describe the deformation cone of a
given polytope (see e.g. [34, App. 15]), for example via the height deformation space
and the wall-crossing inequalities or via the edge deformation space and the polygonal
face equalities. However, these methods only provide redundant inequality descrip-
tions of the deformation cone.Not even the dimension of the deformation cone is easily
deduced from these descriptions, as illustrated by the difficulty of describing which
fans have a nonempty type cone (i.e. describing realizable fans [15, Chap. 9.5.3]), or
a one dimensional type cone (i.e. describing Minkowski indecomposable polytopes
[21, 24, 26, 36, 38]).
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The search of irredundant facet descriptions of deformation cones of particular
families of combinatorial polytopes has received considerable attention recently [3,
7, 9, 10, 12, 32, 33]. One of the motivations sparking this interest arises from the
amplituhedron program to study scattering amplitudes in mathematical physics [6].
As described in [33, Sec. 1.4], the deformation cone provides canonical realizations
of a polytope (seen as a positive geometry [5]) in the positive region of the kinematic
space, akin to those of the associahedron in [4].

The main result of this paper (Theorem 2.6) presents complete irredundant descrip-
tions of the deformation cones of graphical zonotopes. Note that, since graphical
zonotopes are deformed permutahedra, their type cones appear as particular faces of
the submodular cone. Faces of the submodular cone are far from being well under-
stood. For example, determining its rays remains an open problem since the 1970s,
when it was first asked by Edmonds [16].

It isworth noting thatmost of the existing approaches to compute deformation cones
only focus on simple polytopes with simplicial normal fans [11, 34]. Nevertheless,
most graphical zonotopes are not simple. They are simple only for chordful graphs
(those where every cycle induces a clique), see [34, Prop. 5.2], [22, Rem. 6.2], or [29,
Prop. 52]. In this paper, we thus use an alternative approach to describe the deformation
cone of a non-simple polytope based on a simplicial refinement of its normal cone.

The paper is organized as follows. We first recall in Sect. 1 the necessary material
concerning polyhedral geometry (Sect. 1.1), deformation cones (Sect. 1.2), and graph-
ical zonotopes (Sect. 1.3). We then describe in Sect. 2 the deformation cone of any
graphical zonotope, providing first a possibly redundant description (Sect. 2.1), then
irredundant descriptions of its linear span (Sect. 2.2) and of its facet-defining inequal-
ities (Sect. 2.3), and finally a characterization of graphical zonotopes with simplicial
type cones (Sect. 2.4).

1 Preliminaries

1.1 Fans and Polytopes

We mainly follow [41] for the notation concerning polyhedral geometry, and we refer
to it for more background and details.

A polytope P in R
d is the convex hull of finitely many points. Its faces are the

zero-sets of non-negative affine functions on P. Its vertices, edges and facets are its
faces of dimension 0, dimension 1, and codimension 1, respectively. A d-dimensional
polytope is called simple if every vertex is incident to d facets.

Similarly, a polyhedral cone C in R
d is the positive span of finitely many vectors,

and its faces are the zero-sets of non-negative linear functions on C. Its rays and facets
are its faces of dimension and codimension 1, respectively. Its lineality space is the
inclusion-minimal face, which is always the largest linear subspace contained in C. A
cone is simplicial if its rays are linearly independent, and pointed if its lineality is {0}.
Note that every cone can be decomposed as the free sum of its lineality with a pointed
cone (obtained from any section transversal to the lineality).
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A fan F in R
d is a collection of cones closed under taking faces and such that the

intersection of any two cones is a common face of the two cones. Two cones of a fan
are adjacent if they share a facet. The fanF is complete if the union of its cones is R

d ,
essential if all its cones are pointed, and simplicial if all its cones are simplicial.Wewill
say that F is supported on the set of vectors S if every cone of F is the cone spanned
by a subset of S. An essential fan is supported by representatives of its rays, and this
is the unique inclusion-minimal set with this property, up to positive rescaling. For
non-essential fans, however, non-canonical choices have to be made. We say that F
coarsens G and that G refines F if every cone of a fan F is a union of cones of a fan G.

The normal cone of a face F of a polytope P in R
d is the polyhedral cone in the dual

space (Rd)∗ (which we identify with R
d via the standard inner product) consisting of

the linear formswhosemaximal value on P is attained on all the points of F. The normal
fan of P is the collection of all the normal cones to its faces. It is always complete, and
essential whenever P is full dimensional.

The Minkowski sum of two polytopes P and Q is the polytope P + Q :=
{ p + q | p ∈ P and q ∈ Q}. The normal fan of P + Q is the common refinement of
the normal fans of P and Q. We say that P is a Minkowski summand of R if there is a
polytope Q such that P+Q = R, and a weak Minkowski summand if there is a scalar
λ ≥ 0 and a polytope Q such that P + Q = λR. Equivalently, P is a weak Minkowski
summand of Q if and only if the normal fan of Q refines the normal fan of P [38,
Thm. 4]. The polytope P ⊂ R

d is called Minkowski indecomposable if all its weak
Minkowski summands are of the form λP+ t for some scalar λ ≥ 0 and vector t ∈ R

d .
A zonotope is a Minkowski sum of line segments, called its generators. Its normal

fan is the fan induced by the arrangement of hyperplanes orthogonal to these segments,
see [41, Sec. 7.3].

1.2 Deformation Cones

The weak Minkowski summands of a polytope P ⊂ R
d are also known as deforma-

tions of P, as they can be always obtained from P by translations of its facet-defining
inequalities. It is sometimes convenient to consider the set of deformations of P embed-
ded inside the real vector space of virtual d-dimensional polytopes V

d [30]. This
is the set of formal differences of polytopes P − Q under the equivalence relation
(P1 − Q1) = (P2 − Q2) whenever P1 + P2 = Q1 + Q2. Endowed with Minkowski
addition, it is theGrothendieck group of the semigroup of polytopes, which are embed-
ded into V

d via the map P �→ P − {0}. It extends to a real vector space via dilation:
for P − Q ∈ V

d and λ ∈ R, we set λ(P − Q) := λP − λQ when λ ≥ 0, and
λ(P−Q) := ((−λ)Q) − ((−λ)P) when λ < 0. Here, λP := {λ p | p ∈ P} denotes the
dilation of P by λ ≥ 0. (Note in particular that−P does not represent the reflection of P,
but its group inverse.)

As we already mentioned, the set of deformations of a polytope P ⊂ R
d forms a

polyhedral cone under dilation and Minkowski addition, called the deformation cone
and denoted by DC(P):

DC(P) := {Q ⊂ R
d | Q is a weak Minkowski summand of P}.
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Note thatDC(P) is a closed convex cone (dilations andMinkowski sums preserveweak
Minkowski summands) and contains a lineality subspace of dimension d (translations
preserve weak Minkowski summands). It is the set of all polytopes whose normal fan
coarsens the normal fan F of P. Its interior consists of all polytopes whose normal
fan is F, and was called the type cone of F by McMullen [23]. The faces of DC(P)
are the deformation cones of the Minkowski summands of P , and the face lattice is
described by the inclusions DC(Q) ⊆ DC(R) whenever the normal fan of Q coarsens
the normal fan of R. Having into account the lineality, we will say that the deformation
cone is simplicial when its quotient modulo translations is simplicial. We will also
talk about the rays of DC(P), meaning the rays of its quotient modulo translations.
They are spanned by the indecomposable Minkowski summands of P of dimension at
least 1 (note that 0-dimensional summands account for the space of translations).

There are several linearly isomorphic presentations of this cone. The first ones we
are aware of are due to McMullen [23] and Meyer [26], even though a description
was already implicit in previous work of Shephard [38]. In fact, the type cone can also
be reinterpreted as a chamber of regular triangulations of a vector configuration, as
introduced in the theory of secondary polytopes [18], see [15, Sect. 9.5] for details.
Other formulations can be found, for example, in the appendix of [34].

The following convenient formulation from [11, Lem. 2.1] shows that the defor-
mation cone of simple polytopes is isomorphic to a polyhedral cone, and provides an
explicit inequality description, usually called the wall-crossing inequalities.

Let P ⊂ R
d be a polytope with normal fan F supported on the vector set S. Let G

be the N × d-matrix whose rows are the vectors in S. For any height vector h ∈ R
N ,

we define the polytope Ph := {
x ∈ R

d
∣∣ Gx ≤ h

}
. It is not hard to see that any weak

Minkowski summand of P is of the form Ph for some h ∈ R
N .

Moreover, for deformations Ph and Ph′ of P, we have Ph + Ph′ = Ph+h′ and
λPh = Pλh for any λ > 0. Hence, the deformation cone, which lies in the space of
virtual polyhedra, is linearly isomorphic to the cone

{h ∈ R
N |Ph ∈ DC(P)}.

To describe this cone with the wall-crossing inequalities, we need some extra nota-
tion. For any pair of adjacent maximal cones R≥0R and R≥0R′ of a simplicial fan F
there is a non-zero linear dependence

∑

s∈R∪R′
αR,R′(s) s = 0

among the rays of R ∪ R′. This dependence is unique up to rescaling, because the
vectors in R are linearly independent. For convenience in the exposition, we will
denote by αR,R′(s) the coefficient of s in the unique linear dependence such that
αR,R′(r) + αR,R′(r ′) = 2, where R � {r} = R′

� {r ′}.

Proposition 1.1 ([11, 18]) Let P ⊂ R
d be a simple polytope with simplicial nor-

mal fan F supported on the rays S. Then the deformation cone DC(P) is the set of
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Fig. 1 A polygon and its normal fan

polytopes Ph for all h in the cone of R
S defined by the inequalities

∑

s∈R∪R′
αR,R′(s) hs ≥ 0

for all adjacent maximal cones R≥0R and R≥0R′ of F.

Example 1.2 Consider the hexagon P and its normal fan depicted in Fig. 1. The fan has
six rays labeled 1, . . . , 6 and six maximal cones labeled a, . . . , f . The deformation
coneDC(P) lies inR

6, but has a 2-dimensional lineality space. The six pairs of adjacent
maximal cones of F give rise to following six defining inequalities for DC(P):

H≥
ab : h1 + h3 − h2 ≥ 0 H≥

bc : h2 + h4 − h3 ≥ 0 H≥
cd : h3 + h5 − 2h4 ≥ 0

H≥
de : h4 + h6 − h5 ≥ 0 H≥

e f : h5 + h1 − h6 ≥ 0 H≥
a f : h6 + h2 ≥ 0

where H≥
i j denotes the halfspace defined by the inequality corresponding to the two

adjacent maximal cones i and j . Note that the inequality H≥
a f is redundant. The

hexagon P corresponds to the height vector (1/2, 3/4, 5/4, 1, 3/2, 5/4).

This characterization can be extended to general (not necessarily simple) polytopes.
One straightforwardway todo so is via a simplicial refinement of the normal fan. If such
a simplicial refinement contains additional rays, then the type cone will be embedded
in a higher dimensional space, but projecting out these additional coordinates gives
a linear isomorphism with the standard presentation. See [35, Prop. 3] and [33,
Prop. 1.7].

Proposition 1.3 Let P ⊂ R
d be a polytope whose normal fan F is refined by the

simplicial fan G supported on the rays S. Then the deformation cone DC(P) is the set
of polytopes Ph for all h in the cone of R

S defined by

• the equalities
∑

s∈R∪R′ αR,R′(s) hs = 0 for any adjacent maximal cones R≥0R
and R≥0R′ of G belonging to the same maximal cone of F,

• the inequalities
∑

s∈R∪R′ αR,R′(s) hs ≥ 0 for any adjacent maximal cones R≥0R
and R≥0R′ of G belonging to distinct maximal cones of F.
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1.3 Graphical Zonotopes

Let G := (V , E) be a graph with vertex set V and edge set E . The graphical
arrangement AG is the arrangement of the hyperplanes

{
x ∈ R

V
∣∣ xu = xv

}
for all

edges {u, v} ∈ E . It induces the graphical fan FG whose cones are all the possi-
ble intersections of one of the sets

{
x ∈ R

V
∣∣ xu = xv

}
,
{
x ∈ R

V
∣∣ xu ≥ xv

}
, or{

x ∈ R
V

∣∣ xu ≤ xv

}
for each edge {u, v} ∈ E . The lineality ofFG is the subspaceLG

of R
V spanned by the characteristic vectors of the connected components of G.

The graphical zonotope ZG is the Minkowski sum of the line segments [eu, ev]
in R

V for all edges {u, v} ∈ E . Here, (ev)v∈V denotes the canonical basis of R
V . Note

that ZG lies in a subspace orthogonal to LG . The graphical fan FG is the normal fan
of the graphical zonotope ZG .

The following result is well-known. For example, it can be easily deduced from [39,
Prop. 2.5] or [8] (for the latter, see that the graphical matroid from Sec. 1.1 is realized
by the graphical arrangement, and use the description of the cells of the arrangement
in terms of covectors from Sec. 1.2(c)).

An ordered partition (μ, ω) of G consists of a partition μ of V where each part
induces a connected subgraph of G, together with an acyclic orientation ω of the
quotient graph G/μ. We say that (μ, ω) refines (μ′, ω′) if each part of μ is contained
in a part of μ′ and the orientations are compatible; that is, for all u, v ∈ V if there is a
directed path in ω between the parts of μ respectively containing u and v, then there
is a directed path in ω′ between the parts of μ′ respectively containing u and v.

Proposition 1.4 The face lattice of FG is antiisomorphic to the lattice of ordered
partitions of G ordered by refinement. Explicitly, the antiisomorphism is given by
the map that associates the ordered partition (μ, ω) to the cone Cμ,ω defined by the
inequalities xu ≤ xv for all u, v ∈ V such that there is a directed path in ω from the
part containing u to the part containing v (in particular, xu = xv if u, v are in the
same part of μ).

Some easy consequences of Proposition 1.4 are:

• The maximal cones of FG are in bijection with the acyclic orientations of G. We
denote by Cω the maximal cone of FG associated to the acyclic orientation ω.

• The minimal cones of FG , that is the rays of FG/LG , are in bijection with the
biconnected subsets ofG, i.e. non-empty subsets S of V such that there is a disjoint
non-empty subset T of V such that S ∪ T is a connected component of G and the
induced subgraphs G[S] and G[T ] are connected.

• The rays of FG/LG that belong to the maximal cone associated to an acyclic
orientation are the biconnected subsets which form an upper set of the acyclic
orientation (hence, they are in bijection with the minimal directed cuts of the
acyclic orientation).

• Similarly, the rays of FG/LG that belong to the cone associated to an ordered
partition (μ, ω) are the biconnected sets that contracted by μ give rise to an upper
set of ω.

Note that the natural embedding of a graphical fan FG is not essential, as it has
a lineality given by its connected components. This is why we cannot directly talk
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about the rays of the fan in the enumeration above. The usual solution to avoid this
is to consider the quotient by the subspace LG . However, this subspace depends on
the graph, and with such a quotient we would lose the capacity of uniformly treating
all the graphs with a fixed vertex set. We will instead work with the natural non-
essential embedding, together with a collection of vectors supporting simultaneously
all graphical fans.

Example 1.5 When G is the complete graph Kn , the graphical zonotope is the per-
mutahedron. The graphical fan is the braid fan Bn , induced by the braid arrangement
consisting of the hyperplanes

{
x ∈ R

n
∣∣ xi = x j

}
for all 1 ≤ i < j ≤ n. Its lineal-

ity is spanned by the all-ones vector 1n := (1, . . . , 1). Since all the proper subsets
of [n] := {1, 2, . . . , n} are biconnected in Kn , the face lattice of Bn is isomorphic to
the lattice of ordered partitions of [n]. The rays of Bn/1n correspond to proper subsets
of [n], and its maximal cells are in bijection with permutations of [n]. Each maximal
cell is the positive hull of the n − 1 rays corresponding to the proper upper sets of the
order given by the permutation. In particular, Bn/1n is a simplicial fan.

2 Graphical Deformation Cones

Our main result is an irredundant facet description of the deformation cone of ZG
for every graph G := (V , E). Our starting point is Proposition 2.4, which gives a
(possibly redundant) description derived from Proposition 1.3. It is strongly based on
the fact that the braid fan simultaneously refines all the graphical fans. Note however
that the braid fan is not simplicial (due to its lineality). The classical approach to
overcome this issue is to quotient the braid fan by its lineality space. However, we
prefer to triangulate the braid fan, since it simplifies the presentation of the proof.

2.1 A First Polyhedral Description

Associate to each subset S ⊆ V the vector

ιS :=
∑

v∈S
ev −

∑

v /∈S
ev.

This is essentially the characteristic vector of S, but it has the advantage that ιV = 1V

and ι∅ = −1V positively span the line 1VR, which is the lineality LKV of the braid
fan.

Lemma 2.1 For any ordered partition (μ, ω) of a graph G := (V , E), we have

Cμ,ω = cone {ιS | S ⊆ V upper set of ω} .

Here, we mean that S is an upper set of ω when contracted byμ. Note that ∅ and V
are always upper sets, which is consistent with the fact that the lineality of FG always
contains the line spanned by 1V .
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Fig. 2 The fan B̂123 intersected with the unit sphere. (For brevity, here and in the labels we write 123 to
denote the set {1, 2, 3}, and so on.) The braid fan B123 is the Cartesian product of a regular hexagonal fan
with a line. To obtain B̂123, each maximal cell is divided into two simplicial cells, one containing ι∅ and
one containing ι123

We will work with a refined version B̂V of the braid fan whose maximal cells are

C∅

σ := cone {ιS | S � V upper set of σ } and

CV
σ := cone {ιS | ∅ �= S ⊆ V upper set of σ }

for every acyclic orientation of the complete graph KV , which we identify with a
permutation σ of V . An example is depicted in Fig. 2. The following two immediate
statements are left to the reader.

Lemma 2.2 For any finite set V :

(i) The fan B̂V is an essential complete simplicial fan in R
V supported on the 2|V |

vectors ιS for S ⊆ V .
(ii) For any permutation σ , themaximal conesC∅

σ andCV
σ are adjacent, and the unique

linear relation supported on the rays of C∅

σ ∪ CV
σ is ι∅ + ιV = 0.

(iii) The other pairs of adjacent maximal cells are of the form CX
σ and CX

σ ′ , where
X ∈ {∅, V } and σ = PuvS and σ ′ = PvuS are permutations that differ in the
inversion of two consecutive elements. The two rays that are not shared by CX

σ

and CX
σ ′ are ιS∪{u} and ιS∪{v}, and the unique linear relation supported on the rays

of CX
σ ∪ CX

σ ′ is given by

ιS∪{u} + ιS∪{v} = ιS + ιS∪{u,v}.

Lemma 2.3 For any graph G := (V , E):

(i) The fan B̂V is a simplicial refinement of the graphical fan FG.
(ii) For an acyclic orientation ω of G and S ⊆ V , we have ιS ∈ Cω if and only if S is

an upper set of ω.
(iii) For an acyclic orientation σ of KV and X ∈ {∅, V } we have CX

σ ⊆ Cω if and only
if σ is a linear extension of ω.
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We are now ready to describe the deformation cone of the graphical zonotope ZG .
For any h ∈ R

2V , let Dh be the polytope given by

Dh :=
{
x ∈ R

V
∣∣∣

∑

v∈S
xv −

∑

v /∈S
xv ≤ hS for all S ⊆ V

}
.

Proposition 2.4 For any graph G := (V , E), the deformation cone DC(ZG) of the
graphical zonotope ZG is the set of polytopes Dh for all h in the cone of R

2V defined
by the following (possibly redundant) description:

• h∅ = −hV ,
• hS∪{u} + hS∪{v} = hS + hS∪{u,v} for each {u, v} ∈ (V

2

)
� E and S ⊆ V � {u, v},

and
• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ V � {u, v}.

Proof Observe first that, as stated in Lemma 2.3, B̂V provides a simplicial refinement
of FG . Following Proposition 1.3, we need to consider all pairs of adjacent maximal
cones of B̂V , and to study which ones lie in the same cone of FG .

Adjacent maximal cones of B̂V are described in Lemma 2.2, and the containement
relations of the cones of B̂V in the cones of FG are described in Lemma 2.3.

For any σ , the cones C∅

σ and CV
σ belong to the same cell of FG . Hence, by

Proposition 1.3, the following equation holds in the deformation cone:

h∅ = −hV .

The remaining pairs of adjacent maximal cones of B̂V correspond to pairs of acyclic
orientations of KV differing in a single edge; or equivalently, to pairs of permutations
of V of the form σ = PuvS and σ ′ = PvuS. The unique linear relation supported
on the rays of CX

σ ∪ CX
σ ′ for X ∈ {∅, V } is then

ιS∪{u} + ιS∪{v} = ιS + ιS∪{u,v}.

We consider first the case when {u, v} /∈ E . Observe that both σ and σ ′ induce
the same acyclic orientation of G, which we call ω. We have then CX

σ ∪ CX
σ ′ ⊆ Cω by

Lemma 2.3. Therefore, by Proposition 1.3 and Lemma 2.2, we have

hS∪{u} + hS∪{v} = hS + hS∪{u,v}

for any h in DC(ZG). Note that, for any {u, v} /∈ E and S ⊂ V � {u, v}, we can
construct such permutations σ and σ ′. This gives the claimed description of the linear
span of DC(ZG).

In contrast, if {u, v} ∈ E , then σ and σ ′ induce different orientations of G, and
hence they belong to different adjacent cones of FG by Lemma 2.3. Therefore, by
Proposition 1.3 and Lemma 2.2, we have
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hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v}

for any h in DC(ZG). As before, for any {u, v} ∈ E and S ⊂ V � {u, v}, we can
construct such permutations σ and σ ′. This gives the claimed inequalities describ-
ing DC(ZG). �

2.2 The Linear Span of Graphical Deformation Cones

The description of the deformation cone of Proposition 2.4 is highly redundant, both
in the equations describing its linear span and in the inequalities describing its facets.
We will give a non-redundant description in Theorem 2.6. The first step will be to give
linearly independent equations describing the linear span. As a by-product, we will
obtain the dimension and a linear basis of the deformation cone DC(ZG).

For a polytope P ⊂ R
d , we define the space VD(P) ⊂ V

d of virtual deformations
of P as the vector subspace of virtual polytopes generated by the deformations of P.
Equivalently, VD(P) is the linear span of the deformation cone DC(P). Every virtual
polytope in VD(P) is of the form Ph − Ph′ for deformations Ph, Ph′ ∈ DC(P). Note
that the vector h−h′ uniquely describes the equivalence class of this virtual polytope,
and we will use the notation Ph−h′ to denote it.

Denote by �U := conv {eu | u ∈ U } the face of the standard simplex �V corre-
sponding to a subset U ⊆ V . These polytopes are particularly important deformed
permutahedra as they form a linear basis of the deformation space of the permutahe-
dron [14] (see also [2, Prop. 2.4]). Namely, any (virtual) deformed permutahedron can
be uniquely written as a signed Minkowski sum of dilates of �I . Our first result states
that this linear basis is adapted to graphical zonotopes.

Theorem 2.5 For any graph G := (V , E):

(i) The dimension of VD(ZG) is the number of non-empty induced cliques in G (the
vertices of G count for the dimension as they correspond to the lineality space).

(ii) The faces�K of the standard simplex�V corresponding to the non-empty induced
cliques K of G form a linear basis of VD(ZG).

(iii) VD(ZG) is the set of virtual polytopes Dh for all h ∈ R
2V fulfilling the following

linearly independent equations:

• h∅ = −hV and
• hS�{u} +hS�{v} = hS +hS�{u,v} for each S ⊆ V with |S| ≥ 2 not inducing a

clique of G and any {u, v} ∈ (S
2

)
� E (here, we only choose one missing edge

for each subset S, for example, the lexicographically smallest).

Proof Observe first that the faces �I of the standard simplex �V corresponding to
the induced cliques I of G are all in the deformation cone DC(ZG). Indeed, faces of
the standard simplex �I belong to the deformation cone of the complete graph KI by
[31, Prop. 6.3]. The graphical zonotope ZG ′ is a Minkowski summand of ZG for any
subgraph G ′ of G, and hence summands of ZG ′ are also summands of ZG .

Moreover, all faces �I for ∅ �= I � V are Minkowski independent by [2,
Prop. 2.4]. This shows that the dimension of VD(ZG) is at least the number of non-
empty induced cliques of G.
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Let ( f X )X⊆V be the canonical basis of
(
R
2V

)∗. The vectors

oS := f S − f S�{u} − f S�{v} + f S�{u,v},

for all subsets ∅ �= S ⊆ V not inducing a clique of G and one selected missing
edge {u, v} for each S, are clearly linearly independent. Indeed, if the f X are ordered
according to any linear extension of the inclusion order on the indices X , and the
oS are ordered analogously in terms of the indices S, then the equations are already
in echelon form, as f S is the greatest non-zero coordinate of oS . Finally, the vector
v ∈ 2V with vX = |X | for X ∈ 2V is orthogonal to any oS with |S| ≥ 2 but not to
o∅ := f

∅
+ f V , showing that the latter is linearly independent to the former. This

proves that the dimension of VD(ZG) is at most the number of non-empty induced
cliques of G.

We conclude that
{�K

∣∣ ∅ �= K ⊆ V inducing a clique of G
}
is a linear basis of

the deformation cone, and that
{
oS

∣∣ S = ∅ or S ⊆ V not inducing a clique of G
}

is a basis of its orthogonal complement (we slightly abuse notation here as oS was
defined in

(
R
2V

)∗ instead of in (Vd)∗, but note that each f X can be considered as a
linear functional in (Vd)∗ if seen as a support function). �

Note that the dimension of the deformation space of graphical zonotopes has been
independently computed by Raman Sanyal and Josephine Yu (personnal communica-
tion), who computed the space of Minkowski 1-weights of graphical zonotopes in the
sense of McMullen [25]. Their proof also uses the basis from Theorem 2.5 (ii), but
with an alternative argument to show that they are a generating family.

2.3 The Facets of Graphical Deformation Cones

To conclude, it remains to compute the facets of the deformation cones, i.e. a non-
redundant inequality description.

We define the neighborhood of a vertex v of a graph G := (V , E) as N (v) :=
{u ∈ V | {u, v} ∈ E}.

Theorem 2.6 For any graph G := (V , E), the deformation cone DC(ZG) of the
graphical zonotope ZG is the set of polytopes Dh for all h in the cone of R

2V defined
by the following irredundant facet description:

• h∅ = −hV ,
• hS�{u} +hS�{v} = hS +hS�{u,v} for each ∅ �= S ⊆ V and any {u, v} ∈ (S

2

)
� E,

• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ N (v) ∩ N (v).

Note that this description is given as a face of the submodular cone, embedded
into R

2V . One gets easily an intrinsic presentation by restricting to the space spanned
by the biconnected subsets of V . However, that presentation loses its symmetry, and
the explicit equations depend on the biconnected sets of G.
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Proof of Theorem 2.6 We know by Proposition 2.4 that DC(ZG) is the intersection of
the cone

hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} (1)

for {u, v} ∈ E and S ⊆ V � {u, v} with the linear space given by the equations
h∅ = −hV and

hS∪{u} + hS∪{v} = hS + hS∪{u,v} (2)

for {u, v} ∈ (V
2

)
� E and S ⊆ V � {u, v}.

We have already determined the equations describing the linear span in Theorem
2.5, so it only remains to provide non-redundant inequalities describing the deforma-
tion cone.

We will prove first that the inequalities from (1) indexed by {u, v} ∈ E and
S ⊆ N (v) ∩ N (v) suffice to describe DC(ZG).

To this end, consider an inequality from (1) for which S � N (v) ∩ N (v). Without
loss of generality, assume that there is some x ∈ S such that {x, v} /∈ E . We will show
that this inequality is induced (in the sense that the halfspaces they define coincide on
the linear span of DC(ZG)) by the inequality

hS′∪{u} + hS′∪{v} ≥ hS′ + hS′∪{u,v} (3)

where S′ = S�{x}. Our claim will then follow from this by induction on the elements
of S � (N (v) ∩ N (v)).

Indeed, if {x, v} /∈ E , we know by (2) that the following two equations hold in the
linear span of DC(ZG) by considering the non-edge {x, v} with the subsets S′ ∪ {u}
and S′, respectively:

hS∪{u} + hS′∪{u,v} = hS′∪{u} + hS∪{u,v}, (4)

hS + hS′∪{v} = hS′ + hS∪{v}, (5)

where we used that (S′ ∪ {u}) ∪ {x} = S ∪ {u} and (S′ ∪ {u}) ∪ {x, v} = S ∪ {u, v}
in the first equation, and that S′ ∪ {x} = S and S′ ∪ {x, v} = S ∪ {v} in the second
equation. To conclude, note that (1) is precisely the linear combination (3 + (4)-(5)).

We know therefore that the descriptions in Proposition 2.4 and Theorem 2.6 give
rise to the same cone. It remains to show that the latter is irredundant. That is, that
each of the inequalities gives rise to a unique facet of DC(ZG).

Let ( f X )X⊆V be the canonical basis of
(
R
2V

)∗. For u, v ∈ V and S ⊆ V � {u, v},
let

n(u, v, S) := f S∪{u} + f S∪{v} − f S − f S∪{u,v}.

Note that,if {u, v} /∈ E , thenn(u, v, S) is orthogonal toDC(ZG),whereas if {u, v} ∈ E ,
then n(u, v, S) is an inner normal vector to DC(ZG).
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Fix {u, v} ∈ E and S ⊆ N (v) ∩ N (v). To prove that the halfspace with nor-
mal n(u, v, S) is not redundant, we will exhibit a vector w ∈ R

2V in the linear span
of DC(ZG) that belongs to the interior of all the halfspaces describing DC(ZG) except
for this one. That is, we will construct a vector w ∈ R

2V respecting the system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈w | n(u, v, S) 〉 ≤ 0,

〈w | n(u, v, X) 〉 > 0 for S �= X ⊆ N (u) ∩ N (v),

〈w | n(a, b, X) 〉 > 0 for {a, b} ∈ E � {u, v} and X ⊆ N (a) ∩ N (b), and

〈w | n(a, b, X) 〉 = 0 for {a, b} ∈ (V
2

)
� E and X ⊆ V � {a, b}.

(6)

Denote by T := N (u)∩N (v)�S. We will constructw as the sumw := t S− tT +c
for some vectors t S , tT , and c ∈ R

2V defined below, whose scalar products with
n(a, b, X) for {a, b} ∈ (V

2

)
and X ⊆ V � {a, b} fulfill:

〈 t S | n(a, b, X) 〉 〈−tT | n(a, b, X) 〉 〈 c | n(a, b, X) 〉
if {a, b} = {u, v} and X = S −|S| 0 |S|
if {a, b} = {u, v} and S �= X ⊆ N (u) ∩ N (v) −|S ∩ X | |T ∩ X | |S|
if {a, b} ∈ E � {u, v} and X ⊆ N (a) ∩ N (b) ≥ −1 ≥ 0 2

if {a, b} /∈ E 0 0 0

It immediately follows from this table that the vectorwwill fulfill the desired properties
from (6). For the second one, note that if S �= X ⊆ S � T , then either |S ∩ X | < |S|
or |T ∩ X | > 0.

To define these vectors, first, for {x, y, z} ∈ (V
3

)
, let txyz ∈ R

2V be the vector such

that txyzX = 1 if {x, y, z} ⊆ X and txyzX = 0 otherwise. Note that, for any a, b ∈ (V
2

)

and X ⊆ V � {a, b}, we have

〈 txyz | n(a, b, X) 〉 =
{

−1 if {x, y, z} = {a, b, t} for some t ∈ X , and

0 otherwise .
(7)

We define

t S :=
∑

s∈S
tuvs and tT :=

∑

t∈T
tuvt .

It is straightforward to derive the identities in the table from (7). For the inequalities,
notice that if 〈 tuvx | n(a, b, X) 〉 = −1 but {a, b} �= {u, v}, then either {a, b} = {u, x}
or {a, b} = {v, x}, and in both cases 〈 tuvy | n(a, b, X) 〉 = 0 for any y �= x .

Now, for {x, y} ∈ (V
2

)
, let cxy ∈ R

2V be the vector such that cxyX =1 if |{x, y}∩X |=1
(that is, if {x, y} belongs to the cut defined by X ), and cxyX =0 otherwise. Note that, for
any a, b ∈ (V

2

)
and X ⊆ V � {a, b}, we have
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〈 cxy | n(a, b, X) 〉 =
{
2 if {a, b} = {x, y}, and

0 otherwise.
(8)

We set

c := |S|
2
cuv +

∑

{a,b}∈E�{u,v}
cab.

The identities in the table are straightforward to derive from (8). �
Corollary 2.7 For any graph G := (V , E), the dimension of DC(ZG) is the number
of induced cliques in G, the dimension of the lineality space of DC(ZG) is |V |, and
the number of facets of DC(ZG) is the number of triplets (u, v, S) with {u, v} ∈ E
and S ⊆ N (u) ∩ N (v).

Example 2.8 For the complete graph KV , the graphical zonotope ZKV is a permu-
tahedron and the deformation cone DC(ZKV ) is the submodular cone given by
the irredundant inequalities hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ⊆ V
and S ⊆ V � {u, v}. (The usual presentation imposes h∅ = 0, but both presentations
are clearly equivalent up to translation). It has dimension 2|V | − 1 and

(|V |
2

)
2|V |−2

facets. The lineality is |V |-dimensional, given by the space of translations in R
|V |.

For instance, for the triangle K3, the graphical zonotope ZK3 is the regular hexagon
depicted in the bottom left of Fig. 3, which arises as the Minkowski sum of 3 coplanar
vectors in R

3. Its deformation cone DC(ZK3) lives in the 8-dimensional space R
2[3]

,
has dimension 7, a lineality space of dimension 3, and 6 facets. It admits as irredundant
description the equation h∅ = −h123 and the following 6 inequalities:

h1 + h2 ≥ h∅ + h12 h1 + h3 ≥ h∅ + h13 h2 + h3 ≥ h∅ + h23
h12 + h13 ≥ h1 + h123 h12 + h23 ≥ h2 + h123 h13 + h23 ≥ h3 + h123.

After quotienting the lineality and intersecting with an affine hyperplane, we get the
bipyramid illustrated on Fig. 3. Note that the four rays of DC(ZK3) (i.e. vertices of
the bipyramid) of the form �K for an induced clique K of K3 provide a linear basis
of DC(ZK3) (i.e. an affine basis of the bipyramid). Nevertheless, the last ray can not
be written as a positive Minkowski sum of �K .

Example 2.9 For a triangle-free graph G := (V , E), the deformation cone DC(ZG)

has dimension |V | + |E | and |E | facets. As before, the lineality is |V |-dimensional,
given by the space of translations in R

|V |. Thus DC(ZG) is simplicial.
For instance, for the 4-cycle C4, the graphical zonotope ZC4 is the 3-dimensional

zonotope depicted in the bottom right of Fig. 4, which arises as the Minkowski sum
of 4 vectors in a hyperplane of R

4. Its deformation cone DC(ZC4) lives in the 16-
dimensional spaceR

2[4]
, has dimension 8, a lineality space of dimension 4, and 4 facets.

It admits as irredundant description the following 8 equations and 4 inequalities:
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Fig. 3 A 3-dimensional affine section of the deformation cone DC(ZK3 ) for the triangle K3. The deforma-
tions of ZK3 corresponding to some of the points of DC(ZK3 ) are depicted

h∅ = −h1234 h12 + h14 = h124 + h1 h1 + h2 ≥ h12 + h∅

h1 + h3 = h13 + h∅ h12 + h23 = h123 + h2 h2 + h3 ≥ h23 + h∅

h2 + h4 = h24 + h∅ h23 + h34 = h234 + h3 h3 + h4 ≥ h34 + h∅

h123 + h134 = h1234 + h13 h14 + h34 = h134 + h4 h1 + h4 ≥ h14 + h∅.

After quotienting the lineality and intersecting with an affine hyperplane, we get the
3-simplex illustrated in Fig. 4.

2.4 Simplicial Graphical Deformation Cones

As an immediate corollary, we obtain a characterization of those graphical zonotopes
whose deformation cone is simplicial.

Corollary 2.10 The deformation cone DC(ZG) is simplicial (modulo its lineality) if
and only if G is triangle-free.
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Fig. 4 A 3-dimensional affine section of the deformation cone DC(ZC4 ) for the 4-cycle C4. The deforma-
tions of ZC4 corresponding to some of the points of DC(ZC4 ) are depicted

Proof If G is triangle-free, the deformation cone DC(ZG) has dimension |V | + |E |,
lineality space of dimension |V |, and |E | facets, and hence it is simplicial. If G is not
triangle-free, then we claim that the number of induced cliques K ofG with |K | ≥ 2 is
strictly less than the number of triples (u, v, S)with {u, v} ∈ E and S ⊆ N (u)∩N (v).
Indeed, each induced clique K of G with |K | ≥ 2 already produces

(|K |
2

)
triples of the

form (u, v, K � {u, v}) which satisfy {u, v} ∈ E and K � {u, v} ⊆ N (u) ∩ N (v) and
are all distinct. Since

(|K |
2

)
> |K | as soon as |K | ≥ 3, by Corollary 2.7, this shows

that the deformation cone DC(ZG) is not simplicial. �
Corollary 2.11 If G is triangle-free, then every deformation of ZG is a zonotope, which
is the graphical zonotope of a subgraph of G up to rescaling of the generators.

Proof For any induced clique K of G of size at least 2, �K is a Minkowski inde-
composable (|K | − 1)-dimensional polytope in the deformation cone DC(ZG) (see
for example [19, 15.1.3] for a certificate of indecomposability). It spans therefore a
ray of DC(ZG). When G is triangle-free, the deformation cone modulo its lineality
is of dimension |E |, and the polytopes �e for e ∈ E account for the |E | rays of the
simplicial deformation cone DC(ZG).

Therefore, each polytope P ∈ DC(ZG) can be uniquely expressed as a Minkowski
sum

P =
∑

e∈E
λe�e

with nonnegative coefficients λe. Since each �e is a segment, P is a zonotope,
normally equivalent to the graphical zonotope of the subgraph G ′ = (V , E ′) with
E ′ = {e ∈ E | λe �= 0}. �
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