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Abstract
Objectives: To identify prognostic models which estimate the risk of critical COVID-19 in hospitalized patients and to assess their
validation properties.
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Study Design and Setting: We conducted a systematic review in Medline (up to January 2021) of studies developing or updating a
model that estimated the risk of critical COVID-19, defined as death, admission to intensive care unit, and/or use of mechanical ventilation
during admission. Models were validated in two datasets with different backgrounds (HM [private Spanish hospital network], n 5 1,753,
and ICS [public Catalan health system], n 5 1,104), by assessing discrimination (area under the curve [AUC]) and calibration (plots).

Results: We validated 18 prognostic models. Discrimination was good in nine of them (AUCs � 80%) and higher in those predicting
mortality (AUCs 65%e87%) than those predicting intensive care unit admission or a composite outcome (AUCs 53%e78%). Calibration
was poor in all models providing outcome’s probabilities and good in four models providing a point-based score. These four models used
mortality as outcome and included age, oxygen saturation, and C-reactive protein among their predictors.

Conclusion: The validity of models predicting critical COVID-19 by using only routinely collected predictors is variable. Four models
showed good discrimination and calibration when externally validated and are recommended for their use. � 2023 The Authors. Published
by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: COVID-19; Critical disease; Intensive care unit; Prognostic models; External validation; Epidemiology
1. Introduction

Since the beginning of the pandemic, the substantial
number of critical COVID-19 cases has overwhelmed the
healthcare systems around the world [1]. Despite that only
about 5% of COVID-19 patients require critical care [2],
the deaths from COVID-19 have already surpassed six
million [3]. Therefore, a prompt and standardized identifi-
cation of patients at risk of developing critical COVID-19
is crucial.

Many studies have developed models aiming to predict
critical COVID-19 in patients hospitalized with the disease
[4]. These models have claimed a potential to decrease the
chance of fatal outcomes, assist clinicians in performing
risk stratification, and optimize the use of health resources
[4]. In fact, prior to the pandemic, prognostic models have
been extensively used in the medical field. These rely on
the use of patient-level information (e.g., demographic,
clinical, and laboratory results) to estimate the probability
of developing a future clinical event [5]. To apply a prog-
nostic model in clinical settings, it is imperative to previ-
ously validate its performance in a group of patients
different from the one used for model development. This
process, known as external validation, helps determining
whether the model properties estimated in the development
dataset are real or are due to overfitting. A proper validation
implies assessing the capacity of a model of, first, ordering
individuals as per their risk of presenting the event (i.e.,
discrimination), and second, providing a risk estimate with
similar magnitude to the real risk of presenting the event
(i.e., calibration). Unfortunately, very few of the more than
a hundred published prognostic models aiming to predict
critical COVID-19 have been adequately externally vali-
dated [4], and therefore, there is no evidence on how they
would perform on samples coming from different hospitals
and different locations.

Hence, we aimed to (1) identify prognostic models de-
signed to estimate the risk of critical COVID-19 in patients
hospitalized because of the disease and (2) validate their
performance by assessing their discrimination capacity
and calibration in two external datasets.
2. Methods

2.1. Systematic identification of prognostic models

A systematic review was registered in PROSPERO re-
pository (CRD42021235106) and performed as per a previ-
ously written protocol (Supplementary Material, Item 1)
based on the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) guidelines [6,7] and
the guide to perform systematic reviews of prognostic fac-
tor studies described by Riley et al. [8].

2.1.1. Search strategy
A systematic search was performed using the Medline

database (Supplementary Material, Item 2) covering the
period from December 2019 (first detection of COVID-19
disease) to January 2021, including models developed prior
to COVID-19 vaccination. The search was supplemented
through hand search of the reference lists of relevant
studies. Retrieved articles were saved in the Mendeley plat-
form and screened for inclusion criteria using the CADIMA
software [9]. Two reviewers (G.C.F. and M.B.B.) indepen-
dently screened titles and abstracts of retrieved references
(consistency with Kappa of 0.8) and screened the full text
of those considered eligible. Where consensus was not
achieved, a third reviewer (J.G.A.) was consulted.

2.1.2. Selection criteria
Eligible articles had to (1) be peer-reviewed and pub-

lished in English language; (2) have a longitudinal (pro-
spective or retrospective) design, from hospital admission
to event or discharge, with any length of follow-up; (3)
aim at developing or updating a multivariable prognostic
model; (4) include general population (not disease sub-
groups) hospitalized due to COVID-19, diagnosed through
real-time reverse transcription polymerase chain reaction,
genetic sequencing, or radiological imaging compatible
with COVID-19; (5) include only information routinely
collected at hospital admission as model’s predictors (i.e.,
demographics, clinical signs/symptoms, laboratory results,
medical history, and clinical scores); (6) use critical

http://creativecommons.org/licenses/by-nc-nd/4.0/
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What is new?

Key findings
� We identified nine models that discriminate the

risk of critical COVID-19 well in two external
datasets.

� Four of them are additionally well calibrated, pro-
vide a point-based score, and include predictors
easy to obtain.

What this adds to what was known?
� The several critical COVID-19 prognostic models

that lacked external validation have been identified
and validated in the context of this study.

What is the implication and what should change
now?
� The use of any of these four models will assist cli-

nicians in performing risk stratification, thus
decreasing the chances of fatal outcomes and opti-
mizing the use of health resources.

COVID-19 as the model outcome, defined by the use of
invasive or noninvasive mechanical ventilation, a registered
admission to the intensive care unit (ICU), in-hospital or
out-hospital death, or by a combination of them; (7) pro-
vide at least one indicator of model performance; and (8)
perform an internal or external validation (only in models
labeled as having a high potential of over/under fitting)
(Supplementary Material, Item 1). Studies including only
a population subgroup (e.g., patients with cancer);
excluding population subgroups (e.g., pregnant partici-
pants); not providing regression coefficients, point-based
scores, or equivalent predictors’ weights; or not providing
predictors’ units or summary statistics were discarded.

2.1.3. Data extraction
Key features of selected articles (study sample, model’s

predictors, outcome variables, and modeling techniques)
were extracted by two independent reviewers (G.C.F. and
M.B.B.). Data were organized in standardized forms de-
signed as per the Prediction Study Risk of Bias Assessment
Tool Guidelines (PROBAST) [8]. Discrepancies during the
data extraction were solved by consulting a fourth reviewer
(I.C.).

2.2. Validation of prognostic models

2.2.1. Study design and population
Results were reported as per the validation section of the

Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis statement [10].
Models identified in the systematic review were validated
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in two datasets, representing two longitudinal retrospective
cohorts with different backgrounds: the private and the pub-
lic health system. These datasets included anonymous in-
formation extracted from electronic health records of
patients hospitalized due to COVID-19, followed from hos-
pital admission to the development of critical COVID-19
(as defined in each validated model) or discharge. The Hos-
pital Universitario de Madrid (HM) dataset included pa-
tients hospitalized in the dependencies of the HM
network, formed by 16 private hospitals in Spain, three of
which are in Catalonia (further details in Supplementary
Material, Item 3). We included patients with COVID-19
admitted between February 5 and April 20, 2020, covering
the first COVID-19 wave in Spain, when COVID-19 vacci-
nation was still not available [11]. The Institut Catal�a de la
Salut (ICS) dataset included patients hospitalized in the de-
pendencies of the Catalan Public Health System, which
serves almost six million people living in Catalonia, a re-
gion in the Northeast of Spain. We included patients with
COVID-19 admitted between March 1 and August 14,
2020, covering the first and second COVID-19 wave in
Spain who were, therefore, also unvaccinated [11]. The
study protocol was approved by the Ethics Committee of
Parc de Salut Mar (2020/9206/I).

Diagnosis of COVID-19 was defined as a registration of
‘confirmed COVID-19’ in the HM dataset and as a positive
real-time reverse transcription polymerase chain reaction
test in the ICS dataset. We excluded individuals younger
than 18 years (n 5 5); those who died, were admitted to
the ICU, or were discharged on the day of admission (n
5 205); those who remained hospitalized at the time of data
dumping (n 5 224); anddbecause most prognostic models
included signs and symptomsdthose with no available in-
formation on these variables at hospital admission (n 5
21,951). The final study sample included 2,857 participants
(1,753 in HM dataset and 1,104 in ICS dataset)
(Supplementary Material, Item 4).

2.2.2. Variables and procedures
We obtained data collected as part of routinely clinical

assistance, including information on: (1) demographics, un-
derlying comorbidities, clinical signs, symptoms, and labo-
ratory results at hospital admission; (2) procedures
performed during the hospitalization (e.g., administration
of invasive mechanical ventilation); and (3) administrative
registries (e.g., dates of admission and discharge of the hos-
pital and ICU). In variables with repeated measurements
during hospitalization (e.g., laboratory results, signs, or
symptoms), we only included the first one.

2.2.3. Definition of critical COVID-19
Critical COVID-19 has been defined by the World

Health Organization as presenting sepsis, septic shock, or
other conditions that would normally require the provision
of life-sustaining therapies such as mechanical ventilation
or vasopressor therapy [12]. In the present validation study,
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we defined critical COVID-19 as in each original study, this
is: models using mortality as the outcomedregardless of
being inside or outside the hospitaldwere validated against
in-hospital mortality, respecting the original time frames (if
stated); models using a registered ICU admission were vali-
dated against a registered ICU admission; and models using
a composite outcome were validated against a standard
composite outcome, created as having an ICU admission
and/or in-hospital death.
2.3. Statistical analysis

A detailed description of the statistical analysis is pro-
vided in the Supplementary Material, Item 5. In brief, we
validated the prognostic models separately in both datasets.
Since missing data in each dataset accounted for ! 20% of
Records identified through 
database searching 

(n= 1,240)

Additional
throug

Records after duplicates remova
(n= 1,257)

Records screened at 
title/abstract level

Full-text articles 
assessed for eligibility 

(n= 328)

Included in the review 
(14 studies, 19 models)

Included in the 
validation 

(13 studies, 18 models)

Fig. 1. PRISMA fl
observations (Supplementary Material, Items 6-7) and were
considered completely at random (e.g., a hospital did not
collect a variable at all) or at random (e.g., patients
admitted to the ICU had fewer missing data), we performed
multiple imputations using chained equations, and per-
formed the main analysis using the imputed datasets.

For each participant and prognostic model, we calcu-
lated (1) the predicted probability of developing critical
COVID-19 (in models providing regression coefficients or
similar) or (2) a final score (in models providing a point-
based scoring system). Discrimination was assessed by
calculating the area under the curve (AUC) in models
providing outcome’s probabilities based on a logistic
regression or in those providing a point-based scoring sys-
tem, or by calculating the Harrell’s C index in models
providing probabilities based on a Cox regression.
 records identified 
h hand search 
(n= 17)

l 

Records excluded 
(n= 929)

Reasons for exclusion 
(n= 314, sequential exclusion):

- Duplicate records (n= 2)
- Not general population (n= 108)
- Outcome not critical COVID-19 

(n= 58)
- Predictors not at baseline/not 

routinely collected (n= 38)
- No prognostic model (n= 42)
- No model performance/

validation (n= 58)
- Coefficients/scores not provided 

(n= 3)
- Predictor units not provided 

(n= 1)
- Not in English (n= 2)
- Full text not accessible (n= 2)

ow diagram.



Table 1. Characteristics of the 19 identified prognostic models

Model Country Events (sample size)a Age, mean, or median (years)a Sex, % of malea

ZhaoeICU USA 195 (454) 60 60%

Zhaoemortality 82 (454)

Weng China 21 (176) 47 42%

Torres-Macho Spain 325 (1,968) 67 56%

Meienonlaboratory China 103 (1,088) 58 50%

Meielaboratory

Wangenonlaboratory China 19 (296) 47 47%

Wangelaboratory

Berzuinienonlaboratory England 110 (392) 71 65%

Berzuinielaboratory

Gude Spain 51 (229) 68 61%

Zhou China 68 (763) 51 49%

LieICU USA 271 (1,108) ICU: 59, non-ICU admitted: 62 57%

Liemortality 142 (1,022) Death: 76, alive: 59 57%

Altschul USA 621 (2,355) 65 47%

Chen China 50 (1,590) Death: 69, alive: 48 Death: 60%, alive: 57%

Baronio Italy 157 (191) 65 78%

4C Mortality England, Scotland, Wales 11,426 (35,463) 73 58%

Magro Italy 495 (1,810) 67 71%

AST, aspartate aminotransferase; BUN, blood urea nitrogen; CKD, chronic kidney disease; CRP, C-reactive protein; COPD, chronic obstructive
pulmonary disease; COVID-19, coronavirus 2019; GFR, glomerular filtration rate; HR, hazard ratio; ICU, intensive care unit; IMV, invasive
mechanical ventilation; LASSO, least absolute shrinkage and selection operator; LDH, lactate dehydrogenize; MAP, mean arterial pressure;
NLR, neutrophil/lymphocyte ratio; OR, odds ratio; PCT, procalcitonin; SpO2, oxygen saturation; USA, United States of America; WBC, white
blood cell count.

a Described for the total sample. In articles performing an external validation, these parameters are described for the derivation cohort.
b Day of diagnosis considered day 1.
c Severe COVID-19 defined as ICU admission, IMV, and/or all-cause mortality.
d Calculated as (prothrombin time/normal range of prothrombin time) international sensitivity index.
e We validated the model using 28-day survival.
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Calibration was assessed by inspecting calibration plots in
models providing outcome’s probabilities or by plotting a
final score against the observed outcome’s probability in
models providing a point-based scoring system.

As secondary analysis, we assessed discrimination and
calibration in all models against 28-day in-hospital mortal-
ity. As sensitivity analyses, we repeated the analysis (1) in
the complete-case datasets, to account for the possibility of
inducing bias during imputation and (2) after excluding
participants transferred to other hospitals at the moment
of discharge (only in HM dataset, as this situation did not
occur in the ICS dataset), to account for potential outcome
misclassification. All analyses were conducted using R
4.1.2 (R Foundation for Statistical Computing, 2021).
3. Results

3.1. Identified prognostic models of critical COVID-19

The search retrieved 1,257 articles (fig 1) (1,240 from
Medline and 17 from the hand search). Among them, 328
were eligible for full-text screening: 327 due to fulfilling
the title and abstract screening criteria and oneddespite
including participants with confirmed and nonconfirmed
COVID-19 diagnosisdbecause of its large sample size, in-
ternational coverage, and statistical rigor [13]. During full-
text screening, and after removing duplicate records
(n 5 2), we excluded those not meeting participant’s, out-
come’s, or predictor’s selection criteria (n5 204); those not
deriving a prognostic model (n 5 42); those not assessing
model’s performance or validity (n 5 58, 67% of the arti-
cles deriving a model); and those not providing model co-
efficients or predictor units (n 5 3, 3% of the articles
deriving a model). Fourteen studies were selected after
full-text screening, from which we extracted 19 prognostic
models [13e26]. Models differed in their study popula-
tions, selection of predictors and outcomes, and modeling
techniques (Table 1 and Supplementary Material, Item 8).
They were developed in seven countries (China, England,
Italy, Scotland, Spain, the United States, and Wales), had
samples sizes ranging between 176 and 35,463 individuals
(median 893 individuals), and were mostly developed in



Predictors Outcome Statistical method/validated parameters

Smoking status, SpO2, LDH, lymphocyte count, PCT ICU admission Logistic/risk score points

Age, COPD, heart failure, heart rate, SpO2, LDH, PCT In-hospital mortality

Age, CRP, D-dimer, NLR All-cause mortality Logistic/intercept, beta coefficients

Age, smoking status, SpO2, creatinine, CRP, hemoglobin,
lymphocyte count, platelet count, sodium

In-hospital mortality Logistic/risk score points

Age, respiratory failure, renal failure, coronary heart disease,
heart failure, interaction age-renal failure

60-day all-cause mortalityb Logistic/intercept, beta coefficients

Age, respiratory failure, D-dimer, LDH, lymphocyte count,
platelet count, WBC, interaction WBC platelets, interaction
D-dimer-LDH

Age, coronary heart disease, hypertension In-hospital mortality Logistic/OR

Age, SpO2, AST, CRP, D-dimer, GFR, lymphocyte count,
neutrophil count

Age, smoking status, respiratory rate, SpO2 21-day mortalityb Logistic/intercept, beta coefficients

Age, smoking status, respiratory rate, SpO2, NLR

Age, diabetes, SpO2, lymphocyte count, pH Severe COVID-19c Logistic/intercept, beta coefficients

Age, smoking status, CKD, respiratory rate, systolic blood
pressure, fever

ICU admission Logistic/risk score points

SpO2, CRP, ferritin, LDH, PCT ICU admission Deep learning neural network/risk score
points

Age, SpO2, CRP, LDH, PCT, troponin In-hospital mortality

Age, MAP, SpO2, BUN, CRP, international normalized ratiod In-hospital mortality Logistic/risk score points

Age, cerebrovascular disease, coronary heart disease, AST,
PCT, dyspnoea

14-day, 21-day, and 28-day survivale Cox/HR

Age, BMI, cardiovascular disease, SpO2, lymphocyte count ICU admission Logistic/OR

Age, sex, number of comorbidities, respiratory rate, SpO2,
Glasgow Coma Scale, BUN, CRP

In-hospital mortality LASSO/risk score points

Age, sex, chronic liver disease, coronary heart disease,
diabetes, LDH, duration of symptoms before hospital
admission

40-day in-hospital mortality Competing risks/none
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retrospective cohorts. In the identified models, the most
prevalent critical COVID-19 definition was death (74%),
followed by ICU admission (21%) and composite outcome
(n 5 5%). Forty four different predictors were included in
the models, the most frequent being age (89%), oxygen
saturation (63%), C-reactive protein (37%), lactate dehy-
drogenize (32%), and lymphocyte count (32%). Of the 19
models, 17 provided the components of the regression for-
mula allowing the estimation of the outcome probability,
from which eight also provided a scoring system. The re-
maining two studies provided only a scoring system, which
also permitted validation. Of the 19 models, nine had been
only internally validated, whereas 10 had been externally
(and, in some cases, also internally) validated.
3.2. Characteristics of the external validation samples

We included a total of 2,857 COVID-19 patients from
the HM and ICS datasets (Table 2). On average, patients
were aged more than 60 years (mean [standard deviation]
66.9 [15.8] years in HM; 63.6 [16.2] years in ICS), there
were slightly more men (HM: 61%; ICS: 58%), and they
were mostly nonsmokers (HM: 97%; ICS: 86%). A
considerable proportion of patients had a recorded diag-
nosis of high blood pressure (HM: 35%; ICS: 49%), dia-
betes (HM: 16%; ICS: 21%), and/or obesity (HM 5%;
ICS: 42%). At hospital admission, more than half of the
participants reported dyspnea as the main (in HM) or as
one of the symptoms (in ICS); and 7% and 70% reported
cough as the main (in HM) or as one of the symptoms (in
ICS), respectively. By the end of follow-up, in the HM and
ICS datasets, respectively, roughly 7% and 28% of the pa-
tients received some form of mechanical ventilation; 4%
and 18% were admitted to the ICU; and a 16% and 13%
died. In the crude analysis (Supplementary Material, Item
9), an increased risk of 28-day mortality was observed
among participants who were older, male, had an underly-
ing comorbidity, high respiratory rate, low oxygen satura-
tion, and/or altered laboratory results at hospital
admission.
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3.3. External validation of the prognostic models

Due to the unavailability of some predictors in the vali-
dation datasets (Supplementary Material, Item 10), we vali-
dated 18 (of 19) models: four using both datasets, 13 using
one of the datasets (seven in HM and six in ICS), and one
using only the complete case ICS dataset.

Nine of 17 models showed a good discrimination capac-
ity (AUC � 80%) (Table 3, Supplementary Material, Item
11). All these models included age among their predictors,
six included oxygen saturation, and seven included at least
one laboratory variable obtained at hospital admission. In
both datasets, discrimination was higher in models predict-
ing mortality (AUCs ranging from 65% to 87%) than in
those predicting ICU admission or a composite outcome
(AUCs ranging from 53% to 78%).

All models estimating outcome’s probabilities exhibited
an overall poor calibration (Supplementary Material, Item
12), with some models showing a general underestimation
of the risk of critical COVID-19 and others showing an
overestimation at small probabilities and underestimation
at large probabilities. Of the eight models using a point-
based scoring system, four showed a good calibration
(Figs. 2 and 3). These models (Torres Macho [20], Li
[26], 4C Mortality [13], and Altschul [18]) showed good
discrimination, used mortality as the outcome variable,
and included age, oxygen saturation, and C-reactive protein
among their predictors (Table 4).

3.4. Secondary and sensitivity analysis

The validation of all models against 28-day mortality as
a unique outcome showed a 1% to 2% increase in the AUCs
of most models predicting mortality and a more than 10%
increase in the AUCs of those predicting ICU admission
(Supplementary Material, Item 13). The validation of the
models in the complete case datasets (including one addi-
tional model not validated in the multiple imputed datasets
[21]), resulted in slightly higher AUCs in the HM dataset
(0% to 10% more) and in slightly lower or higher AUCs
in the ICS dataset (3% to 4%) (Supplementary Material,
Item 14). After excluding participants who were transferred
to another hospital, there were no substantial changes in the
discrimination ability of the models (Supplementary
Material, Item 15). The four models highlighted aboved
Torres Macho [20], Li [26], 4C Mortality [13], and Altschul
[18]dexhibited very similar validation properties in the
sensitivity analyses.
4. Discussion

This systematic review identified 19 models aimed at
predicting critical COVID-19 in hospitalized individuals
with the disease and validated 18 of them separately in da-
tasets obtained from public and private hospitals. Main re-
sults showed that (1) half of the validated models presented
good discrimination, all using mortality as the outcome; (2)
of those, only four models had a good calibration, and these
were all based on a scoring system (not providing out-
come’s probabilities); and (3) the best performing models
included parameters easy to obtain in clinical settings.
4.1. Performance of prognostic models during the
external validation

In the present study, half of the models estimating
COVID-19 mortality showed good discrimination. These
results are in contrast with most findings in the field of pre-
dictive modeling, where the discrimination of a model sub-
stantially decreases when being validated in an external
sample [27]. Indeed, our results confirm the importance
of conducting a systematic review and of including strict
selection criteria to identify the most adequate models,
prior to their validation. Previous studies have validated
several critical COVID-19 prognostic models [28e30],
but compared to our study, they have found worse discrim-
ination results. This could be explained by the fact that they
have selected the models using more permissive criteria and
have used smaller sample sizes for the validation (from 169
to 1,612). The lower discrimination capacity of models us-
ing ICU admission or composite outcomes to define critical
COVID-19, compared to those using mortality, is in line
with other reports [29,31] and might be explained by the
context of the pandemic itself, where the criteria to be
admitted to an ICU may have been modified due to an
increased demand or to the unavailability of hospital re-
sources [32]. Finally, our finding of poor calibration in all
models providing an outcome’s probability (not going
through a calibration in the large) agrees with the idea that
prognostic models should recalibrate the intercept based on
the frequency of the outcome in the setting where they are
to be applied [33]. Overall, our study went a step further by
providing a list of models that are applicable to the clinical
settings and by identifying four models exhibiting the best
discrimination and calibration properties when validated
externally in two diverse and large datasets.
4.2. Components of the well-performing prognostic
models

We identified age, oxygen saturation, and laboratory in-
dicators (C-reactive protein, lactate dehydrogenize, and
lymphocyte count) as variables consistently included in
the models with best prediction properties for critical
COVID-19, in agreement with previous literature identi-
fying them as individual predictors of critical COVID-19
[32,34e37]. It is important to highlight that these indicators
are easy and rapid to obtain, something that enhances the
clinical applicability of the models. Some of the studies
developing prognostic models emphasized that laboratory
results and vital signs (i.e., dynamic indicators of acute dis-
ease) exhibited better predictive abilities than chronic



Table 2. Characteristics of the study population according to study dataset

Characteristics of the Study Population

HM dataset (N [ 1,753) ICS dataset (N [ 1,104)

N N

Age, years e mean (SD) 1,753 66.9 (15.8) 1,104 63.6 (16.2)

Male gender, n (%) 1,753 1,064 (60.7%) 1,104 639 (57.9%)

Current smoker, n (%) 1,502 47 (3.13%) 902 124 (13.7%)

BMI, kg/m2emean (SD) n.a. n.a. 373 29.5 (5.52)

Presence of comorbidity, n (%)

Diabetes Mellitus 1,502 239 (15.9%) 1,104 228 (20.7%)

COPD 1,502 72 (4.79%) 1,104 89 (8.06%)

Asthma 1,502 69 (4.59%) 1,104 80 (7.25%)

Obesity 1,502 77 (5.13%) 1,104 459 (41.6%)

Hypertension 1,502 525 (35.0%) 1,104 535 (48.5%)

Cardiovascular disease (any) n.a. n.a. 1,104 117 (10.6%)

Cerebrovascular disease 1,502 33 (2.20%) 1,104 45 (4.08%)

Heart failure 1,502 24 (1.60%) 1,104 55 (4.98%)

Coronary heart disease 1,502 82 (5.46%) 1,104 87 (7.88%)

Vital signs at admission e mean (SD) or
median [IQR]

Systolic blood pressure, mmHg 1,462 125 (19.4) 1,066 130 (20.2)

Diastolic blood pressure, mmHg 1,462 71.5 (12.4) 1,062 74.5 (13.9)

Temperature, �C 1,746 36.7 (0.86) 918 37.2 (1.00)

Heart rate, bpm 1,721 81.3 (14.4) 1,066 91.8 (17.8)

Respiratory rate, breath/min n.a. n.a. 981 20.0 [18.0e25.0]

SpO2, % 1,489 94.0 [91.0-96.0] 1,030 96.0 [94.0e98.0]

Clinical scores at admission e mean (SD)
or median [IQR]

Glasgow coma scale, units n.a. n.a. 899 15.0 [15.0e15.0]

Laboratory parameters at admission e

mean (SD) or median [IQR]

D-dimer, mg/L 1,325 2.17 (7.10) 491 1.69 (16.9)

Platelet count, 109/L 1,605 220 (94.6) 642 207 (85.6)

International normalized ratioa 1,305 1.20 [1.12e1.31] 597 1.11 [1.04e1.21]

Arterial O2, mmHg 599 59.0 [51.0e67.0] 175 75.0 [60.0e100]

Arterial CO2, mmHg 599 34.3 (6.57) 175 66.7 (45.2)

WBC, 109/L 1,605 6.47 [4.93e8.59] 575 6.72 [5.12e8.89]

Lymphocyte count, 109/L 1,605 1.02 [0.73e1.41] 554 1.00 [0.70e1.40]

Neutrophil count, 109/L 1,605 4.68 [3.26e6.73] 548 4.90 [3.48e7.00]

NLR 1,605 6.85 (11.1) 547 7.01 (7.75)

Creatinine, mg/L 1,570 0.90 [0.72e1.10] 643 0.85 [0.68e1.07]

BUN, mmol/L 1,538 5.61 [4.20e7.91] 509 6.30 [4.33e9.00]

GFR, mL/min 5 25.1 [19.7e27.9] 575 86.0 [61.0e90.0]

AST, U/L 1,498 34.0 [24.0-51.5] 621 41.0 [30.0e60.0]

CRP, mg/L 1,573 73.2 [31.1e138] 445 12.4 [5.86e24.5]

PCT, ng/mL 142 0.14 [0.09e0.27] 42 0.21 [0.14e0.32]

Troponin, ng/L 272 11.2 [7.08e29.5] 180 10.0 [8.43e20.0]

LDH, U/L 1,527 541 [427e698] 363 352 [288e453]

Sodium, mmol/L 1,552 137 (4.55) 644 136 (3.56)

Ferritin, ng/mLe median [IQR] 373 936 [426e1,553] 322 582 [315e1,089]

pH, unitse mean (SD) 788 7.45 (0.06) 284 7.42 (0.08)

Symptoms at admission, n (%)

Main symptom

(Continued )
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Table 2. Continued

Characteristics of the Study Population

HM dataset (N [ 1,753) ICS dataset (N [ 1,104)

N N

Dyspnoea 1,714 940 (54.8%) n.a. n.a.

Fever 1,714 231 (13.5%) n.a. n.a.

Cough 1,714 123 (7.18%) n.a. n.a.

Presence of symptoms

Dyspnoea n.a. n.a. 876 440 (50.2%)

Fever n.a. n.a. 1,023 794 (77.6%)

Cough n.a. n.a. 876 642 (73.3%)

Complications, n (%)

NIMV 1,502 66 (4.39%) 802 103 (12.8%)

IMV 1,502 33 (2.20%) 802 121 (15.1%)

ICU admission 1,753 77 (4.39%) 1,104 205 (18.6%)

In-hospital mortality 1,753 278 (15.9%) 1,104 145 (13.1%)

ICU admission and/or death 1,753 319 (18.2%) 1,104 325 (29.4%)

Time from hospital admission to e mean
(SD)

Discharge/death, days 1,753 8.39 (5.62) 1,104 10.7 (12.9)

ICU admission, days 77 5.60 (5.99) 203 4.57 (6.78)

AST, aspartate aminotransferase; BUN, blood urea nitrogen; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; COV-
ID-19, coronavirus disease 2019; CRP, C-reactive protein; GFR, glomerular filtration rate; ICU, intensive care unit; IMV, invasive mechanical venti-
lation; LDH, lactate dehydrogenase; NIVM, noninvasive mechanical ventilation; NLR, neutrophil/lymphocyte ratio; SpO2, oxygen saturation;
WBC, white blood cell count.

a Calculated as (prothrombin time/normal range of prothrombin time) international sensitivity index.

Table 3. Discriminatory ability of 16 critical COVID-19 prognostic models in two external validation samples

Critical COVID-19 Prognostic Models

HM dataset ICS dataset

AUC (95% CI) AUC (95% CI)

Outcome: In-hospital mortality

Zhao e mortality 0.78 (0.75 to 0.81) -

Weng 0.84 (0.81 to 0.86) 0.78 (0.74 to 0.82)

Torres-Macho 0.87 (0.85 to 0.89) 0.82 (0.79 to 0.86)

Mei e laboratory 0.80 (0.77 to 0.84) -

Wang e nonlaboratory 0.83 (0.80 to 0.85) 0.81 (0.78 to 0.84)

Wang e laboratory - 0.65 (0.59 to 0.70)

Berzuini e nonlaboratory - 0.85 (0.82 to 0.88)

Berzuini e laboratory - 0.86 (0.83 to 0.89)

Li e mortality 0.81 (0.77 to 0.85) -

Altschul 0.83 (0.81 to 0.86) 0.82 (0.78 to 0.87)

Chen 0.73 (�1.48 to 2.93)a -

4C Mortality - 0.84 (0.81 to 0.87)

Outcome: ICU admission

Zhao e ICU 0.64 (0.58 to 0.71) -

Zhou - 0.53 (0.49 to 0.59)

Li e ICU 0.59 (0.52 to 0.66) -

Baronio - 0.62 (0.55 to 0.69)

Outcome: composite

Gude 0.78 (0.75 to 0.81) -

ICU, intensive care unit; AUC, area under the curve.
a Harrell’s C index.
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Fig. 2. Calibration of six critical COVID-19 prognostic models providing a point-based scoring system in the HM dataset. The dashed black line
indicates the LOESS fit. The five imputed datasets are differentiated in colors.
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comorbidities or demographic data (i.e., fixed individual
characteristics) [35,38]. This is of great importance at the
moment of hospital admission, where diagnosis of comor-
bidities may not be available or accurate in electronic
health records, and where interviewing compromised
incoming patients may not be possible. In this context,
two of our four best performing models, based only on
age and parameters obtained from physical examination
and laboratory analysis, might be particularly useful
[18,26].
4.3. Clinical applicability of the identified models

Based on our results, half of the tested models are suit-
able for use in the general hospitalized population and for a
prompt application at hospital admission, a key moment in
decision-making. The selection of one of the four models
with best prediction properties should be based mainly on
the target population and on the availability of predictors
(Table 4). In brief, the Torres-Macho score [20] is suitable
for a broad population (as we found it valid in both private
and public hospitals), is especially useful when a
comprehensivedbut still routinely collecteddset of pre-
dictors including age, smoking status, and results from
the physical examination and laboratory analysis are avail-
able (see full list of predictors in Table 4), and can be
computed online (www.pandemyc-score.com). The Li
[26] and the Altschul [18] scores include the smallest set
of predictors (age, one to two clinical signs, and three to
four laboratory indicators), making them especially useful
at emergency settings; however, they do not provide an on-
line application and, in the case of Li score, it was validated
(and proved suitable) only in our private hospitals dataset.
Finally, the application of the 4C Mortality score [13] needs
a compressive set of predictors and is available as an online
calculator (www.isaric4c.net/risk); however, in this study,
its suitability was tested (and proved) only in our public
hospitals dataset.

It could be argued whether the mentioned models, devel-
oped and validated in prevaccination conditions, can be
applicable to current and future patients. Research has
consistently reported that the severity of COVID-19 (and
therefore, the proportion of cases with critical disease)
was higher in the first than in subsequent waves, in alpha
and beta than in following variants, and in unvaccinated
than vaccinated patients [39e43]. However, the predictors
of critical COVID-19 have been reported to be the same
regardless of wave, variant, and vaccination status. Indeed,
a recent study validating one prevaccination model found
good performance in a sample of patients infected with
delta and omicron variants [44], and a recently developed
model including vaccination as a predictor did not include

http://www.pandemyc-score.com
http://www.isaric4c.net/risk


Fig. 3. Calibration of four critical COVID-19 prognostic models providing a point-based scoring system in the ICS dataset. The dashed black line
indicates the LOESS fit. The five imputed datasets are differentiated in colors.
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any interaction term between vaccine and remaining predic-
tors [45]. All in all, data suggest that models developed
prior to vaccination maintain their discrimination properties
(i.e., the ability to order individuals as per their risk of crit-
ical COVID-19 when used for risk stratification) and would
only need to be recalibrated when used to estimate the risk
of critical COVID-19, as anyways recommended when us-
ing prognostic models as mentioned previously [33].
4.4. Applicability of study results to prognostic model
research

In our systematic review, more than two-thirds of the
studies that had developed a prognostic model did not
report their results in adequate detail to allow individual
prediction nor subsequent validation despite this is strongly
recommended in Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
guidelines [10]. Incomplete reporting has been considered
a form of research waste and, in the case of prognostic
model research, precludes any further validation and use
of research results. Our findings sustain the idea that, in
the COVID-19 field, further efforts should be directed to-
ward validating, recalibrating, and making available exist-
ing models rather than toward developing new ones.
4.5. Strengths and limitations

A strength of this study is the systematic identification
of prognostic models and the focus on those applicable to
the general population (not to specific subgroups) and on
those using only routinely collected data. For the external
validation, we used two different datasets (one from a pub-
lic health system and one from a private hospitals network,
thus representing different patients’ background) with rela-
tively high sample sizes, which broadens the applicability
of our results. Additionally, the HM dataset was generated
during the first COVID-19 epidemiological period (i.e., first
wave), which was dominated by the original SARS-CoV-2
strain [46], whereas the ICS dataset included data not only
from the first wave but also from the second, which in
Spain was dominated by the B.1.177. variant [47]. This
adds confidence regardless of the SARS-CoV-2 variant in
circulation, in the predictive ability of models that per-
formed well in the two validation datasets, such as the
Torres-Macho score.

The main limitation of this study is that some predictors
(e.g., signs/symptoms at hospital admission) were missing,
which prevented us from validating some of the identified
models in both datasets. However, it is likely that these pre-
dictors are not available in most clinical settings, something
that hinders the clinical applicability of models including



Table 4. Components of the four prognostic models showing the best discrimination and calibration properties: Torres-Macho, Li, 4C Mortality, and
Altschul mortality scores

Torres-Macho [20] (range 70e452) Li [26] (range 0e6)

Categories Pts Categories Pts

Age, years Age, years

!46 �46 �71 0

�46 and �60 4 O71 1

O60 and �78 29 SpO2, %

O78 50 �88 0

Missing 28 !88 1

Smoking status CRP, mg/L

No 25 �17 0

Yes 43 O17 1

Missing 22 PCT, ng/mL

SpO2, % �1.1 0

!88 59 O1.1 1

�88 and �92 36 Troponin, ng/mL

O92 and �96 21 �0.03 0

O96 �2 O0.03 1

Missing 30 LDH, U/L

Platelet count, 109/L �487 0

!124 48 O487 1

�124 27 BUN, mmol/L

Missing 18 �19.6 0

Hemoglobin, g/dL O19.6 and �39.2 1

!11.2 51 O39.2 3

�11.2 and �12.2 36

O12.2 25

Missing 20

Lymphocyte count, cells/mL

!500 55

�500 and �799 37

O799 and �1,000 28

O1,000 22

Missing 19

Creatinine, mg/dL

!0.77 14

�0.77 and �1.08 21

O1.08 and �1.71 37

O1.71 48

Missing 29

CRP, mg/L

!9.7 8

�9.7 and �65.9 20

O65.9 and �188.5 35

O188.5 45

Missing 18

Sodium, mmol/L

!144 28

(Continued )
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Table 4. Continued

Torres-Macho [20] (range 70e452) Li [26] (range 0e6)

Categories Pts Categories Pts

�144 53

Missing 17

4C Mortality [13] (range 0e21) Altschul [18] (range 0e10)

Age, years Age, years

!50 0 !60 0

�50 and !60 2 �60 and !70 1

�60 and !70 4 �70 and !80 2

�70 and !80 6 �80 3

�80 7 O80 0

Sex Mean arterial pressure, mmHg

Female 0 O70 and �80 1

Male 1 O60 and �70 2

Number of comorbidities �60 3

0 0 SpO2, %

1 1 �94 0

�2 2 !94 1

Respiratory rate, breath/min International normalized ratioa

!20 0 �1.2 0

�20 and !30 1 O1.2 1

�30 2 BUN, mg/dl

SpO2, % �30 0

�92 0 O30 1

!92 2 CRP, mg/L

Glasgow Coma Scale �10 0

15 0 O10 1

!15 2

BUN, mmol/L

�19.6 0

O19.6 and �39.2 1

O39.2 3

CRP, mg/L

!50 0

�50 and !100 1

�100 2

BUN, blood urea nitrogen; CRP, C-reactive protein; LDH, lactate dehydrogenase; SpO2, oxygen saturation; Pts, points.
a Calculated as (prothrombin time/normal range of prothrombin time) international sensitivity index.
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them and support the idea that future studies should focus on-
ly on models including easily available predictors. Another
limitation was the retrospective nature of our validation co-
horts, which increases the chances of bias (e.g., due to a non-
standardized data collection and data entry procedure).
4.6. Conclusion

The validity of models predicting critical COVID-19
in the general population by using only routinely
collected predictors is variable, and only half of them
showed good discrimination when externally validated.
Four models (Torres Macho [20], Li [26], 4C Mortality
[13], and Altschul [18]) exhibiting good discrimination
and calibration included routinely collected patient’s pa-
rameters and therefore are proposed for their use in clin-
ical settings.
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