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Abstract

This project introduces the concept of neural ordinary differential equations
as well as some of its practical uses. To do so, it provides a review of machine
learning and ordinary differential equations which allow the rest of the discussion
to be well founded and understood by readers of different backgrounds.

Neural ODEs are an exciting and interesting field because they manage to
bring together the two modelling paradigms of neural networks and differential
equations. Apart from their theoretical relevance in linking these fields, they are
very promising for their applications. The incorporation of a differential struc-
ture into the models simplifies crucial aspects that allow the models to be more
complex and expressive.

In spite of not producing new results, this project includes a compilation of
experiments and demonstrations that aim at making the jump from theory to
practice smoother. Generally, this work tries to be an accessible introduction to
the topic, while being extensive and maintaining a high level of mathematical
formalism.

The work than conforms this project allows one to conclude that neural ODEs
are a promising development in the realm of machine learning. They can be very
useful to solve problems such as probability density estimation, with applications
in generative models. Moreover, their theoretical properties alone make them a
topic worth studying.

2020 Mathematics Subject Classification. 34F05, 34A12, 76A02, 68T07, 65L05, 62G05, 62G07



Introduction v

Resum

Aquest projecte introdueix el concepte d’equació diferencial ordinària neuronal
així com alguns dels seus usos pràctics. Per fer-ho, proporciona una revisió de
“machine learning” i equacions diferencials ordinàries que permet que la resta
de la discussió estigui ben fonamentada i sigui entesa per lectors amb diferents
experiències.

Les EDOs neuronals són un camp fascinant i interessant perquè aconsegueixen
unir els dos paradigmes de modelatge que són les xarxes neuronals i les equacions
diferencials. A part de la seva rellevància teòrica per unir aquests camps, prom-
eten molt per les seves aplicacions. La incorporació d’una estructura diferencial
al model simplifica aspectes crucials que permeten que els models siguin més
complexes i expressius.

A pesar de no produir nous resultats, aquest projecte inclou una recopilació
d’experiments i mostres que tenen com a intenció fer el salt de la teoria a la pràctica
més fàcil. Generalment, aquest treball intenta ser una introducció accessible, a la
vegada que exhaustiva i mantenint un nivell alt de formalisme matemàtic.

La feina que conforma aquest projecte permet concloure que les EDOs neu-
ronals són un desenvolupament prometedor en el terreny de “machine learning”.
Poden ser molt útils per resoldre problemes com l’estimació de densitats de prob-
abilitats, amb aplicacions a models generatius. A més a més, simplement les seves
propietats teòriques les fan un tema que val la pena estudiar.
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Chapter 1

Introduction

Neural Ordinary Differential Equations are a bridge between modern deep
learning and classical mathematical modelling. As a conjoining of two of the
most ubiquitous modelling paradigms, they are of great theoretical interest. For
example, they illustrate that some neural network architectures are a discretisation
of differential equations. Moreover, their practical uses make them an exciting and
promising field.

Neural Differential Equations were brought to the spotlight in 2018 by Chen et
al. in their paper Neural Ordinary Differential Equations [6]. However, the topic was
not new: dynamical systems theory was being used to improve neural network
performance for some time [22, 15, 29]. Since then, there have been developments
in their approximation capabilities [10, 19] and usage in different tasks like gen-
erative models [6, 12] or time-series modelling [6, 24, 21], to name a few. This
project is centred around NODEs and their usage for probabilistic modelling via
continuous normalising flows.

The objectives of this work are focused on four main goals:

• Understand what neural ODEs are and present a detailed explanation to
introduce them to the new reader.

• Formalise the concepts present in neural ODE theory and examine the topic
through a mathematical lens.

• Research a probability density estimation model and how it can be improved
with neural ODEs.

• Provide examples of how this family of models can be used in an approach-
able manner so the code and algorithms are easy to understand for inexpe-
rienced readers.

1



2 Introduction

For that purpose, this dissertation is organised in three main chapters, and two
appendices:

• Chapter 2 provides an introduction to machine learning and a review of
ODE theory. Some important concepts are explored here, like automatic
differentiation or relevant neural network architectures. Furthermore, it lays
a foundation to formalise the concepts in the next chapters.

• Chapter 3 defines Neural ODEs and provides a theoretical basis for their
usage and properties.

• Chapter 4 introduces normalising flows, a machine learning algorithm capa-
ble of learning complex probability distributions, and shows how it can be
improved by using their continuous-time analogous.

• Appendix A explains two numerical methods used to solved initial value
problems.

• Appendix B explains the code written as part of this project.

The experiments that have also been conducted as part of this work are a
practical proof of concept. Their main goal is to provide a better insight into how
the models studied here work. The code for these experiments can be found here1

and all of the figures in this document were generated by it or by the author using
PowerPoint.

1https://github.com/pbaldisa/neural-odes/tree/main

https://github.com/pbaldisa/neural-odes/tree/main


Chapter 2

Machine Learning and Ordinary
Differential Equations

This chapter serves as introduction to the two fields that conform the main
topic of the present work: machine learning and differential equations. It starts
with a detailed explanation of what is machine learning and neural networks in
particular and then goes into some important results in ODE theory.

2.1 Machine Learning

According to Zhi-Hua Zhou [34], “Machine learning is the technique that improves
system performance by learning from experience via computational methods. [...] the main
task of machine learning is to develop learning algorithms that build models from data.”

Tom Mitchell gave a more formal definition [23]: “A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves with experience E.”

In other words, the goal of Machine Learning (ML) is to use data to create an
algorithm or model that performs a certain task, of which its performance can be
measured. Then, the learning part is simply the process in which one can find
such a model by optimising the measured performance using the available data.
The main goal of ML is not simply to find the model that best fits the current data,
but one that can predict the outcome to new unseen data. It is about predicting
the future, not fitting the present.

3



4 Machine Learning and Ordinary Differential Equations

2.1.1 Conceptualising the problem

2.1.1.1 Notation and terminology

The information that is known and one uses at the time of prediction is called
input data. Normally, it is a vector and from now on it will be assumed to be in Rd.
What one aspires to predict is called output data. Depending on the task this can
be a quantitative or a categorical value. For the sake of simplicity, it is assumed to
be a numerical value in R, even though it can also be a vector.

It is convenient to understand the input data as samples generated by a ran-
dom vector denoted as X, where the components are written as Xj and are them-
selves random variables. Observed values are written in lowercase; i.e. the i-th
observation of X is xi ∈ Rd. Let the total number of observations be N. It is
customary to write N-vectors and matrices in bold in order to distinguish them.
Hence, one would write x as the N × d matrix of all input vectors, and xj ∈ RN all
observations of variable Xj. Column vectors are used, so the i-th row of x is xT

i .
Predicted outputs are written as ŷi. Evidently, all predicted values should live

in the same space as observed outputs. Ŷ is used to denote the random variable
that produces the predictions, i.e. the distribution the model generates.

In ML, one normally divides all the available data into various sets: training
set, test set and validation set (see remark 2.3). The training data is the set of pairs
(x1, y1), ..., (xN , yN) ∈ Rd × R that is used to construct the model. The other two
are used to make sure the model generalises, since they are not as relevant when
it comes to defining the problem, they might be left without specific notation.

Remark 2.1. In this section, for the description of the training data it has been
assumed that one is facing a supervised learning problem in which there are outputs
one wishes to predict. This is not always the case, as in unsupervised learning one
might want to extract information about data without observed outcomes.

2.1.1.2 Machine Learning and mathematical optimisation

In order to further formalise the problem, let (Ω,F , P) and (Ω′,F , P) be prob-
ability spaces and let the random variables X and Y such that X : Ω → Rd and
Y : Ω′ → R.

Then, the model one wishes to build can be seen as a mapping between the
input and output spaces: fθ : Rd → R. From now on, θ ∈ Rp denotes the
parameters that define the model. For instance, in linear regression with d = 1,
the parameters would be the slope and the y-intercept of the line.

Since the goal for fθ to predict outcomes as well as possible, a valid approach
is to fit it to the observed data. To do so, a loss function that represents the error
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of the model is defined. The loss function is a measure of the difference between
reality and the model’s predictions, a usual notation is Lθ . Notice that the loss
function depends on θ because the prediction is the output of fθ .

The problem has been reduced to mathematical optimisation: one wishes to
find which parameters minimise a function. Concretely, one wants the parameters
that minimise Lθ . To be precise, one looks for µ = arg min

θ
Lθ(ŷ), where ŷ denotes

the predicted output and has components ŷi = fθ(xi) for i ∈ 1, . . . , N.

Remark 2.2. In this section one has not defined a particular loss function. Fur-
thermore, the notation has been left rather general. This is because there are many
functions to choose from depending on the task and the kind of data one has. In
addition, the model can be as complex as one can imagine. These two facts make
the problem of finding a minimum not trivial.

Remark 2.3. Notice how one is minimising the error for the observed data. This
might not generalise to other unobserved inputs. To solve this problems the avail-
able data is divided into training, testing and validation sets. The first one being
the described above which is used to find the parameters. The other two are
used to evaluate the resulting model, decide whether it is good and help choose
hyperparameters.

2.1.2 The loss function

Also referred to as cost function, it is simply a measure of ‘distance’1 between
the model’s output and reality. This similarity, or lack thereof, is a real number.
That is, L : V → R, if L is the loss function and V its domain2. Selecting a loss
function is a problem in itself, since there is no "one fits all" solution, and it must
be chosen with the task in mind, but also the learning algorithm that will be used.
In this section, different examples of loss functions will be provided.

2.1.2.1 Quadratic loss

Known as Mean Square Error (MSE) or L2-loss, this is the most popular cost
function for regression problems. The mathematical formulation is

MSE(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.1)

1Here distance should not be understood as a mathematically precise notion, but rather as a real
number that expresses how much two objects differ from one another.

2The domain of the loss function might be only the predictions’ space or it might include also
the observations.
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It is the average of the squared differences between observations and predicted
values. It is only concerned with the general extent of the error, not its direction
(whether positive or negative). Moreover, large deviations are punished more
harshly than small ones because of the square.

This function is widely used because of its nice properties. Namely, it is dif-
ferentiable and easy to find its gradient. This is vital in modern Deep Learning
applications which use gradient methods to optimise the cost function.

2.1.2.2 Kullback-Leibler divergence

Sometimes called relative entropy, it defines a distance between two probability
distributions over the same sample space. It has a wide range of uses including,
but not limited to, pattern recognitions, neural networks, information theory and
mathematical statistics.

Let (Ω,A) be a measurable space with sample space Ω. Suppose P and Q are
two probability distributions defined over Ω. If P is absolutely continuous3 with
respect to Q, then the Kullback-Leibler divergence is

DKL(P∥Q) = EP(x)[log P(x)− log Q(x)] (2.2)

otherwise, DKL(P∥Q) = +∞.
To be more specific, let p and q be probability mass functions for P and Q

if they are distributions of discrete random variables, and densities if they are
distributions of continuous random variables. Then, in the discrete case one has
that equation 2.2 is equivalent to

DKL(P∥Q) = ∑
x∈Ω

p(x) log(
p(x)
q(x)

) = − ∑
x∈Ω

p(x) log(
q(x)
p(x)

) (2.3)

and, in the continuous case

DKL(P∥Q) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx

Remark 2.4. In the discrete case (equation 2.3) all terms with p(x) = 0 are inter-
preted as 0 because lim

x→0+
x log x = 0.

Relative entropy is an example of a loss function that is used for density esti-
mation tasks. In [6] the authors use it to train Continuous Normalising Flows, where
the task lacks observed data for comparing predictions.

3If P and Q are two measures on the same measurable space (Ω,A), P is absolutely continuous
with respect to Q if ∀A ∈ A (Q(A) = 0 =⇒ P(A) = 0).
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2.1.3 Neural Networks

One of the most ubiquitous model types in ML is the Neural Network. The
concept is rather general and there are numerous architectures. In this section, one
presents the main idea behind this model, as well as some specific architectures
that will be of use in the following chapters.

Neural Network is an umbrella term used for a plethora of non-linear models
that are usually represented with a network diagram. This kind of system is mod-
elled after the biological neurons in our brain. The central principal can be stated
as: each unit or neuron receives some inputs and outputs a signal to other inter-
connected neurons based on those inputs and an activation function. Neurons are
organised in layers, so that the information travels from layer to layer as described
above.

More formally, a neuron is simply a system that does the following computa-
tion:

y = σ(∑
i

wixi + b) = σ(wTx + b) (2.4)

where x = (x1, ..., xn)T is the input vector, w = (w1, ..., wn)T the weights of the
neuron, b is the bias term, σ the activation function, and y denotes the neuron’s
output.

Let one start with an overview of some commonly used activation functions.
Then, some specific models belonging to what is known as Deep Learning (DL) will
be presented. DL only means that there are more than two layers.

2.1.3.1 Activation functions

Recalling the definition of a basic neuron in equation 2.4, the activation func-
tion is an element-wise4 non-linear function that acts on the result of the linear
part of the neuron. In other words, the inputs and the weights get multiplied and
added together. Then the result is passed through the activation function. Go-
ing back to the biological model, the idea behind σ is that it decides whether the
neuron activates or not, given the current inputs.

Notice that it is rather important for the activation function to be non-linear.
Otherwise, the neural network would be a composition of linear functions which
is, in its turn, only a linear function with a very limited approximation capac-
ity. As is explored in section 2.1.3.2, neural networks are trained using their gra-
dients. Therefore, it is an important condition for activation functions to have
“well-behaved” gradients.

4This is important when looking at the whole layer as a computation with vectors. If looking at
the equation of a single neuron, it is a function that acts on a real value.
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The rest of the section is a compendium of popular activation functions.

Sigmoid Also known as logistic function, the basic idea is that it is a smooth tran-
sition from 0 to 1. It is defined as

f (x) =
1

1 + e−x

This activation function introduces the problem of vanishing gradient as the
network gets deeper. Since the derivative of f is nearly zero for big inputs, the
gradient of the network becomes very small and the model stops learning.

Hyperbolic tangent It is an analogue of the ordinary tangent, but defined using
the hyperbola instead of the circle. The most common way to define it is using the
exponential function:

tanh x =
ex − e−x

ex + e−x

Its properties are very similar to those of the sigmoid function, and has the
same problem with vanishing gradient. The most noticeable difference is the im-
age of the function is (−1, 1) instead of (0, 1). This is why it normally works better
than sigmoid: it is zero-centred, which means not all outputs have the same sign
and thus the network is easier to train [25].

Rectified linear unit (ReLU) The Rectified Linear Unit is perhaps the most com-
monly used activation function for hidden layers. It is defined as

f (x) =

{
0 if x < 0

x otherwise
= max(0, x)

It is simple and overcomes the limitations of the sigmoid and hyperbolic tan-
gent by being less susceptible to vanishing gradients. However, it is not zero-
centred and it is not differentiable at 0. Moreover, some neurons might die. That
is, once the output of the linear phase of the neuron becomes negative, it will stop
learning because the derivative for any negative value is zero.

Softmax In contrast with the other functions in this section, the softmax function
is only used as an output function. Its output is a vector of values that sum to 1
and can be interpreted as the probabilities of the input belonging to a certain class.
This is why it is used in classification tasks. In this case, the input of the function
is a vector corresponding to the outputs of the previous layer. It is defined as

f (z)i =
ezi

∑n
j=1 ezj

where z is a n-vector and f (z)i represents the i-th component of output.
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2.1.3.2 Training

When talking about Neural Networks, as with other Machine Learning algo-
rithms, to train the model means to find the parameters’ values that get the best
performance possible, as described in section 2.1.1.2. There are different methods
to do it, and it is still one of the biggest problems in the field.

To train Neural Networks, a rather simple mathematical method is used: gra-
dient descent. It is an iterative method that, given an error function with respect
to the network’s weights, tries to minimise the loss by moving in the direction of
greatest local descent. That is, the direction opposite to the gradient.

Gradient descent Sometimes referred to as steepest descent, gradient descent is a
first-order iterative optimisation method that intends to find a local minimum of
a differentiable function. Here, first-order only means that the method is based
in a linear approximation, using the first derivative. On the other hand, iterative
refers to the fact its based on the construction of a sequence which, under the
right conditions, converges to a solution. Here, this method will be used to find
the parameters that minimise the loss function.

More formally, if L : V → R is a multivariate, differentiable function, then one
can define the sequence µn+1 = µn − γ∇L(µn), where γ ∈ R+ is called learning
rate.

If the learning rate is small enough, the previous collection {µn} gives rise to
a monotonic sequence L(µ0) ≥ L(µ1) ≥ ..., where µ0 is an initial guess for a local
minimum. Under the right conditions for L and particular choices of γ, one can
guarantee that the previous sequence converges to a local minimum. For example,
the following theorem sets some conditions for convergence:

Theorem 2.5. Let L : Rd → R be a convex and differentiable functions, and suppose its
gradient is Lipschitz continuous with constant C > 0. Then, computing k iterations of
gradient descent with a fixed learning rate γ ≤ 1/C will yield an approximation µk of the
minimum µ∗ that satisfies

L(µk)−L(µ∗) ≤
∥µ0 − µk∥2

2γk
,

where the norm is the euclidean norm. This means that the sequence generated by the
gradient descent algorithm converges and it does so at a rate of O(1/k).

Proof. See [31], Theorem 6.1.

Notice how this method, although simple, generates many problems and un-
certainties. For once, the fact in only searches for a local minimum might be



10 Machine Learning and Ordinary Differential Equations

discouraging when one would like to have the best performance possible, i.e. a
global minimum. Another problem that comes to mind is how to compute the
gradient when the network might have thousands of parameters. This issues are
analysed in the following sections.

Automatic differentiation To compute the gradient of a function using a com-
puter, there are three possible approaches:

1. Symbolic differentiation: First differentiate the function by hand, then code
the result to get the derivative at any point. This gives an exact result with
only machine error.

2. Numerical differentiation: Use a numerical method to approximate the re-
sult, like finite differences. This approach has an error of approximation.

3. Automatic differentiation (autodiff): Exploits the fact that all computer cal-
culations can be divided into a set of simple operations and applies the chain
rule to find the value of the derivative at each point. It also gives an exact
result with only representation error.

Notice that a great difference between symbolic and automatic differentiation
is that in the former, one knows the complete formula of the derivative, while
in the latter, the symbolic derivative is unknown and the values are computed at
each point.

To train neural networks, only automatic differentiation is viable because of
the great number of parameters. Specifically, reverse-mode autodiff is used, which
is very related to the concept of backpropagation. But reverse-mode autodiff is
a much more general and older method [13] that computes the Jacobian of an
arbitrary function f : Rm → Rn, and even algorithms making use of control flow
such as branching, loops, recursion and procedure calls [3, 8].

Let f1, . . . , fn be a collection of functions whose derivatives are known. Let
those functions be called differentiable primitives. For any composition f (x) =

fim(. . . ( fi1(x))), where i1, . . . , im ∈ {1, . . . , n}, the chain rule states:

d f
dx

=
d fim

d fim−1

. . .
d fi2
d fi1

d fi1
dx

(2.5)

Given this, reverse-mode autodifferentiation consists of recursively computing

d fim

d fiq−1

=
d fim

d fiq

d fiq

d fiq−1

(2.6)

for q = m − 1, . . . , 1, and writing x = f0.
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Consider the following example borrowed from [14], Appendix B. Suppose one
wants to find the gradient of f (x, y) = x2y + y + 2 at (x, y) = (1, 2). Analytically,
it directly follows that ∇ f (x, y) = (2xy, x2 + 1) and ∇ f (1, 2) = (4, 2). To use
reverse-mode autodiffernetiation in this example, one only needs to consider the
constant function, addition, multiplication and the variables, all whose derivatives
are known.

Figure 2.1: Computational graph. This shows the computational graph for f (x, y) =

x2y + y + 2. Blue nodes are variables, and green ones are constants.

The first step is to build a computational graph. This is simply a visual way to
display the deconstruction of f into a composition of differentiable primitives. In
figure 2.1 there is an example of such a graph using the example function. In the
example, v−2 = x, v−1 = y and v0 = 2. Likewise, the notation vi has been used to
denote each composition, until f = v4. Notice how each node represents one of
the differentiable primitives mentioned above.

The following step is called forward pass, which is simply the computation of
f (x, y)|(x,y)=(1,2), and all intermediate values. This goes, if using the graph in

figure 2.1, from left to right. This calculation is displayed in figure 2.2, where
one can appreciate the sequence v1, v2, v3, v4 being computed in that order. These
values are stored for future reference, since they are going to be used in the next
stage.

Finally, one has all the tools necessary to find the derivative. This last step is
called backward pass because it goes from right to left, in the opposite direction as
the previous stage. For simplicity, let vi =

d f
dvi

, which is only a new way of writing
equation 2.6. Notice, however, that in equation 2.6, the function f only depends
on x, while generally it can depend on an arbitrary number of variables.

This is the most critical part of the process, so a detailed explanation of the
computations is given in order. The results can be visualised in figure 2.3.

1. v4 = d f
dv4

= dv4
dv4

= 1
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Figure 2.2: Forward pass. It is the same computational graph as in figure 2.1, but with
the values of the evaluation of the function at each step.

2. v3 = d f
dv3

= d f
dv4

dv4
dv3

= v4
dv4
dv3

= 1 · d(v2+v3)
dv3

= dv3
dv3

= 1. Here, the derivative of
a primitive function (addition) has been used. Also, the previous step has
been recovered when asserting d f

dv4
= 1. From now on, these details will be

omitted.

3. v2 = d f
dv2

= v4
dv4
dv2

= 1.

4. v1 = d f
dv1

= v3
dv3
dv1

= 1 · v−1 = 2.

5. v0 = 0. It is the derivative with respect to a constant.

6. v−1 = d f
dv−1

= v2
dv2

dv−1
+ v3

dv3
dv−1

= 1 · 1 + 1 · v1 = 1 + 1 = 2 = d f
dy .

7. v−2 = d f
dv−2

= v1
dv1

dv−2
+ v1

dv1
dv−2

= 2 · v−2 + 2 · v−2 = 2 + 2 = 4 = d f
dx .

Figure 2.3: Backward pass. It is the same computational graph as in figure 2.1, but with
all the values of the partial derivatives.

There are a few things worth commenting. Firstly, the graph in figure 2.3 goes
from right to left. Here, each arrow goes from a node to those that will use its
value when computing vi. Notice how, when calculating the values for v−1 and
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v−2, two arrows end in those nodes. This is why the chain rule results in a sum of
two members. More formally, the chain rule to differentiate h(g1(x), g2(x)) states
∂h
∂x = ∂h

∂g1

∂g1
∂x + ∂h

∂g2

∂g2
∂x . Notice that, writing f (x, y) = v4(v3(x, y), v2(x, y)), it is more

proper to compute v3 as

∂ f
∂v3

=
∂v4

∂v3

∂v3

∂v3
+

∂v4

∂v2

∂v2

∂v3

This is obviously the same as what is written above because ∂v2
∂v3

= 0. The shorter
version has been adopted for simplicity, and the arrows in the graph show what
terms remain.

The other issue worth mentioning is that in the backward pass phase, all the
data used in each computation is available because it was either calculated in the
forward pass, or an earlier iteration of the backward pass.

Once one has gone over all the steps, recovering v−2 and v−1 one find that
the value of the gradient is precisely ∇ f (1, 2) = (v−2, v−1) = (4, 2), as expected.
Then, the remarkable thing is that with only two iterations through the graph, the
derivatives with respect to all the variables have been found.

Backpropagation and stochastic gradient descent In broad terms, backpropaga-
tion is an algorithm that can be used to train all sorts of computational graphs.
At its core, it is the application of the reverse-mode autodiff method to training
Neural Networks. It consists of the following steps:

1. Randomly initiate all the weights in the network.

2. Perform the forward pass of reverse-mode autodiff, while storing all the
intermediate values. This computes the current loss of the model. If this loss
has reached a desirable level, stop the algorithm here.

3. Perform the backward pass and, at each node of the computational graph,
use the partial derivative found to update that parameter according to gra-
dient descent.

4. Go back to step 2.

Thanks to reverse-mode autodiff, it is now feasible to compute the gradient of
the loss function with respect to all the parameters. However, one needs to use
all the training data to compute the loss at step 2. Since this process is generally
repeated many times before gradient descent converges, it would be too costly to
use all the date at every step. This is called batch gradient descent and it is slow and
inefficient. Because of this, stochastic gradient descent is used.

Stochastic gradient descent (SGD) is at its core the same algorithm, but instead
of using all the training data (the whole batch) at each iteration, only one example,
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or a mini-batch5 is used. There are different ways to accomplish this. The first
one would be to select an instance or a mini-batch completely at random at each
iteration. This might cause that some data points of the training set are used
multiple times, while others are not used at all. Another way to proceed, is to
shuffle all the data and use it in that order. Once all data has been used, shuffle
it again and repeat. This ensures that the order in which each instance is taken
changes, which is necessary for SGD to work properly. Like normal gradient
descent, it can also be proved to converge under the right conditions, see [11].

A sweep over all the data is called an epoch. In classical gradient descent,
each iteration represents an epoch because the whole training set is considered.
However, in SGD, the definition becomes ambiguous. If one uses the first method,
i.e. using a random subset of data at each iteration, there is no guarantee that all
the data will be used before any repetitions occur. Therefore, in the case of SGD,
an epoch is defined by a previously set number of iterations. Which, if using the
second method, can iterate over the whole data as in the classical version.

Stochastic gradient descent introduces both issues and solutions. On the one
hand, it makes the algorithm much faster by not taking all the data at each iteration
when computing the loss function, and, by adding noise to the direction of the
gradient, it allows the algorithm to not get stuck in local minima [4]. On the other
hand, this noise makes the algorithm jump around even when it is in a minimum.
Thus, making it to never stop, unless one changes the learning rate.

A solution for this last dilemma is to employ a learning schedule. This is just a
function that determines the learning rate at each iteration. If one starts with large
steps, it helps escape local minima. Then, gradually making those steps smaller
allows to settle for a global minimum [14].

Finally, with all these changes and strategies, backpropagation is a very good
algorithm to train Neural Networks. In fact, it is the most widely used method to
train Machine Learning models.

2.1.3.3 Multi Layer Perceptron (MLP)

Sometimes called a Vanilla Neural Network, a MLP is one of the most basic
architectures. In simple terms, it is a structure that receives a vector x as input
and outputs y, which can be a vector or a single scalar value (depending on the
task). This output is computed by nesting a generalisation of equation 2.4, as will
be explored in the following lines.

5A subset of the training data with a fixed size. There are optimisations using vectorisation and
GPU computing to make this very efficient.
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Definition 2.6 (MLP). A Multi Layer Perceptron is a feed-forward neural network
consisting of at least three fully-connected layers. Suppose there are K layers. Each
layer is a function ℓk : Rnk → Rnk+1 , k ∈ {1, . . . , K}. If xk is the input vector to layer
k (xk ∈ Rnk , where nk is the number of neurons in layer k), Wk the weight matrix where
each row represents the weights for a certain neuron6(Wk ∈ Rnk+1×nk ), b ∈ Rnk+1 a bias
vector, and σk : Rnk+1 → Rnk+1 the activation function, then:

xk+1 = ℓk(xk) = σk(Wkxk + bk) (2.7)

Then the network’s output is a nesting of all the layers in the system: if x1 denotes the
input, the network’s output is (ℓK ◦ ℓK−1 ◦ ... ◦ ℓ1)(x1).

Reading definition 2.6, one might feel that some ideas are not clear. Firstly, the
definition states that at least three layers need to be present. These layers are: the
input layer, one or more hidden layers, and a output layer. Since the first layer is not
computational (it only transmits the input data to the next layer), if one were to
remove the hidden layer(s), one would be left with single layer perceptron.

Regarding unintroduced concepts, fully-connected layers means that every neu-
ron on layer k is connected to all the neurons in layer k+ 1; while feed-forward refers
to the fact that the information inside the network travels in only one direction -
forward - from the input, to the output, without feedback loops.

Finally, Wk and bk, for k = 1, . . . , K, are learnt parameters that vary from layer
to layer. If one recalls the concepts of section 2.1.1.2, this refers to the parameters
θ that one uses to optimise the loss function.

2.1.3.4 Residual Neural Networks

Residual Networks (ResNets) were introduced to solve what is known as the
degradation problem. As described by the original researchers [16]:

“With the network depth increasing, accuracy gets saturated (which might be unsur-
prising) and then degrades rapidly. Unexpectedly, such degradation is not caused by
over-fitting, and adding more layers to a suitably deep model leads to higher training
error.”

This degradation can be caused by different problems, but the solution ResNets
provide is very simple. Since it is evident that, by construction, the accuracy of a
deeper network should be at least as good as the shallower one - by learning the
identity mapping in all the extra layers - the idea is to allow the network a simple
way to do it. This also solves a possible complication of exploding/vanishing
gradient.

6In other words, each row corresponds to the row-vector that appears in equation 2.4
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Figure 2.4: Basic representation of a residual block. Some steps like activation functions
have been ignored for the sake of simplicity. Also, the shortcut connection is the identity
function, as it was the original idea.

It is capital to understand the idea behind the model before formalising and
generalising the concepts. Suppose one wishes to learn H(x). It does not have to
be the mapping the whole network has to learn, it can be what a certain subset
of layers should approximate. Now, if one defines F (x) := H(x) − x, learning
H becomes equivalent to learning F . It constitutes and advancement because the
authors hypothesised that not all systems are equally easy to optimise. This leads
to the introduction of residual blocks, which are the layers in the network that learn
the new function F , and use a shortcut connection from the previous block to add
x and obtain the goal mapping H. This is illustrated in figure 2.4. In the present
context, a Residual Function refers to an auxiliary function F that is introduced in
the learning process.

Definition 2.7 (ResNet). In its general form, a Residual Neural Network (ResNet)
is a deep learning model that consists of layers grouped in residual blocks. Each block is
formed by a set of layers7 and a shortcut connection. More formally, if there are K residual
blocks with L layers each (normally 2 or 3), the k-th block computes

yk = h(xk) + fWk(xk) (2.8)

xk+1 = σk(yk) (2.9)

where xk and xk+1 are the input and output of the block, respectively. fWk is the output
of a set of layers with parameters Wk = {Wk,l |1 ≤ l ≤ L}. h is a function applied to
the input of the block and gets added to the residual function. Lastly, σk is the activation
function.

In the original paper [16], h was taken to be the identity function, and σ to be
ReLu. However, they later found that it is best to use the identity function for both

7Essentially a sub-network that learns a residual function.
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σ and h [17]. Then one can summarise equations 2.8 and 2.9 as:

xl+1 = xl + fWl (xl) (2.10)

Remark 2.8. Notice that definition 2.7 assumes the input and output dimensions
are the same. This is not necessarily the case and there are strategies to solve the
problem [16]. However, for the sake of simplicity, one will assume they are of
equal dimension.

Remark 2.9. The notion of a ResNet is rather broad. There are no specific require-
ments about the architecture of each residual block. Many modifications have
been explored and work when applied to various objectives [17].

2.1.3.5 Universal approximation

A sensible question to ask oneself is whether there are limitations to what
Neural Networks can learn. Mathematically, this refers to the density of the class
of functions that are Neural Networks, with respect to a given function space.

More concretely, it is often desirable to prove that a set of Neural Networks
Rd1 → Rd2 can approximate any function in C(K; Rd2), where K ⊆ Rd1 is a com-
pact, and C(K; Rd2) denotes the space of continuous functions K → Rd2 .

Before presenting formal results, let one introduce some notation, and a re-
minder of key concepts.

Definition 2.10 (Normed vector space). Let V be a vector space over R. It is said that
(V, ∥ · ∥) is a normed vector space (normally referred to simply as V) if there exists a
map ∥ · ∥ : V → R+, which is called a norm, and has the following properties:

i) ∥v∥ = 0 ⇔ v = 0, ∀v ∈ V

ii) ∥v + u∥ ≤ ∥v∥+ ∥u∥, ∀u, v ∈ V

iii) ∥λv∥ = |λ|∥v∥, ∀λ ∈ K, ∀v ∈ V

Remark 2.11. If one defines d(u, v) = ∥u− v∥, then d is a distance in V. Therefore,
(V, d) is a metric space.

Theorem 2.12. Let K ⊆ Rd be a compact. Then V = C(K, R) is a vector space over R,
∥ · ∥ : V → R defined as ∥ f ∥ = supx∈K | f (x)| is a norm, and (V, ∥ · ∥) is complete8.

8A metric space is complete if every Cauchy sequence in V converges in V.
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Proof. For any f , g ∈ V one can define addition as ( f + g)(x) = f (x) + g(x), ∀x ∈
K; and, for any λ ∈ R, the scalar product (λ f )(x) = λ f (x), ∀x ∈ K. Then, it is
trivial that V is a vector space.

To prove that ∥ · ∥ is a norm, first notice that ∥ f ∥ = maxx∈K | f (x)| < +∞
because K is a compact, and f is continuous. Then, the properties of a norm hold.
For any f , g ∈ V and any λ ∈ R:

i) ∥ f ∥ ≥ 0 and ∥ f ∥ = 0 ⇔ max
x∈K

| f (x)| = 0 ⇔ | f (x)| = 0 ∀x ∈ K ⇔ f = 0

ii) ∥λ f ∥ = max
x∈K

|λ f (x)| = |λ|max
x∈K

| f (x)| = |λ|∥ f ∥

iii) ∥ f + g∥ = max
x∈K

| f (x) + g(x)| ≤ max
x∈K

| f (x)|+ max
x∈K

|g(x)| = ∥ f ∥+ ∥g∥

Finally, let { fn}n≥1 ∈ V be a Cauchy sequence. Then for all x ∈ K { fn(x)}n≥1 is a
Cauchy sequence in R. Let f (x) := lim

n→∞
fn(x). f is bounded (because the sequence

it is point-wise Cauchy for all x and fn is bounded for all n). Using the triangle
inequality, the fact the sequence is Cauchy, and lim

n→∞
∥ fn − fN∥ = ∥ f − fN∥ < ϵ/2,

one has ∥ f − fn∥ ≤ ∥ f − fN∥+ ∥ fN − fn∥ < ϵ . Then it follows that { fn} converges
to f ∈ V. To finish, f is continuous because of the uniform limit theorem.

Definition 2.13 (Supremum norm). The norm defined above is normally referred to as
the uniform norm or supremum norm, and often denoted as ∥ · ∥∞.

From now on, all norms are the supremum norm unless stated otherwise.

Definition 2.14 (Universal Approximation). Given a normed vector space (V, ∥ · ∥)
and some subset W ⊆ V, it is said that W exhibits universal approximation with
respect to V if for all ϵ > 0 and for all v ∈ V, there exists w ∈ W such that ∥v−w∥ < ϵ.

Remark 2.15. Using a metric space (V, d), definition 2.14 states that a subset W ⊆
V exhibits universal approximation with respect to V if ∀ϵ > 0, ∀v ∈ V, ∃w ∈ W
such that d(v, w) < ϵ. This is, in fact, the definition of a dense set W ⊆ V.

Before delving into the details of neural networks, let one recall a similar re-
sult for polynomials in order to contextualise the issue and relate it to a better
known problem. The following theorem states that polynomials exhibit universal
approximation with respect to continuous functions C([a, b], R).

Theorem 2.16 (Weierstrass approximation theorem). For any continuous function
f : [a, b] → R and for any ϵ > 0, there exists a polynomial p such that ∥ f − p∥ < ϵ.
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In the case of neural networks, the vector space V is the space of continuous
functions, and the subset W the set of neural networks. Obviously, this is a prob-
lem and, to give some specific results, one needs to restrict it to special kinds of
networks. The theorems presented here, are the ones about MLP with one hidden
layer of arbitrary width, and MLP of arbitrary depth (i.e. number of layers).

Let N σ
d , for any continuous function σ : R → R, and d ∈ N, denote the set

of feed-forward neural networks with activation function σ, with d neurons in the
input layer, one neuron in the output layer, and an arbitrary number of neurons
in a single hidden layer.

Theorem 2.17 (Universal Approximation Theorem). Let K ⊆ Rd be compact. Then,
N σ

d is dense in C(K, R) if, and only if, σ is non-polynomial.

Proof. See [27], Theorem 3.1.

Similarly, let NN σ
din,dout,dw

, for any continuous function σ : R → R, and for any
din, dout, dw ∈ N, denote the set of feed-forward neural networks with din neurons
in the input layer, dout neurons in the output layer, and an arbitrary number of
hidden layers of width dw, with activation function σ.

Theorem 2.18 (Deep and Narrow Universal Approximation Theorem). Let σ : R →
R be any non-affine function of class C1, such that there is at least one point with nonzero
derivative. Let K ⊆ Rdin be compact. Then, NN σ

din,dout,din+dout+2 is dense in C(K, Rdout).

Proof. See [20], Theorem 3.2.

2.2 Ordinary Differential Equations

Now, let one move on to Ordinary Differential Equations and some relevant
results. The goal of this section is to contextualise and provide a foundation for
the following chapters. From this section onward, x : R → Rd is a function, and ẋ
denotes its derivative with respect to t, unless stated otherwise. That is, ẋ = dx

dt (t).

2.2.1 Initial Value Problem

Definition 2.19 (IVP). Let D ⊆ R × Rd and f : D → Rd continuous. Consider the
differential equation ẋ = f (t, x). Then, given a point (t0, x0) ∈ D, the Initial Value
Problem {

ẋ = f (t, x)

x(t0) = x0
(2.11)

consists in finding a differentiable function ϕ : I → Rd such that
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i) ϕ(t0) = x0,

ii) ∀t ∈ I (t, ϕ(t)) ∈ D,

iii) ∀t ∈ I dϕ
dt (t) = f (t, ϕ(t))

Remark 2.20. In the previous definition, ϕ is, a posteriori, not only differentiable,
but C1, due to the continuity of f .

Lemma 2.21 (Volterra Integral Equation). Let ẋ = f (t, x) be a differential equation,
where f : D ⊆ R × Rd → Rd is continuous. Let (t0, x0) ∈ D, and I ⊆ R an interval
containing t0. Let ϕ : I → Rd be a function. The following statements are equivalent:

a) ϕ is differentiable, and a solution to the IVP 2.11.

b) ϕ is continuous, and solution to the Volterra Integral Equation:

x(t) = x0 +
∫ t

t0

f (s, x(s))ds. (2.12)

2.2.2 Solutions

It is useful to introduce specific notation for a unique solution to the IVP 2.11.
It is custom to write such a solution as ϕ(t; t0, x0). If t0 and x0 remain fixed, this is
the same function of t introduced in definition 2.19, but referencing that it solves
a particular IVP. Additionally, it is useful to see it as a function ϕ : D ⊆ R × R ×
Rd → Rd that changes with respect to the initial conditions. This mapping ϕ is
sometimes called an evolutionary process [2], and D is its domain.

2.2.2.1 Existence and Uniqueness

Let one start with a specific version of Picard’s Theorem that will be useful in
the following chapters.

Theorem 2.22 (Picard’s Existence and Uniqueness Theorem). Consider the initial
value problem 2.11 where f : D = [t0, t f ]× Rd → Rd is continuous and Lipschitz with
respect to x in [t0, t f ] × Rd. Then, for all (t0, x0) ∈ [t0, t f ] × Rd there exists a unique
solution to the initial value problem, and this solution is defined in [t0, t f ].

The following result is a direct consequence of this theorem.

Corollary 2.23. Let ϕ1 and ϕ2 be solutions of the IVP 2.11 with initial conditions
ϕ1(t0) ̸= ϕ2(t0). Then ∀t ∈ [t0, t f ], ϕ1(t) ̸= ϕ2(t). Informally, ODE trajectories do
not intersect.



2.2 Ordinary Differential Equations 21

2.2.2.2 Extensibility of solutions

Solutions to the IVP 2.11 might not exist for all or any t ∈ R. This raises the
question about the maximal interval of definition.

Definition 2.24 (Extension). Let ϕ1 and ϕ2 be two solutions to the IVP 2.11, defined at
intervals I1 and I2 respectively. If ϕ1

∣∣
I2

, then ϕ2 is an extension of ϕ1.

Definition 2.25 (Maximal interval). I is a maximal interval for an IVP if the solution
defined at I cannot be extended to any interval J , I ⊂ J . The maximal interval for an
IVP with initial condition x(t0) = x0 and unique solution is written as I(t0, x0).

Definition 2.26 (Maximal solution). A solution that cannot be extended is also called
maximal solution.

Theorem 2.27 (Existence of maximal solutions). Suppose the IVP 2.11 has a unique
solution. Then, for all (t0, x0) ∈ Ω, the corresponding IVP has a unique maximal solution
defined at I(t0, x0). Furthermore, I(t0, x0) is an open interval.

Definition 2.28 (Global solution). A global solution, is a maximal solution with max-
imal interval I = R.

2.2.3 Flows

Definition 2.29 (Non-autonomous flow). Let Ω = I ×U ⊆ R×Rd, and ϕ a solution
to the differential equation ẋ = f (t, x) of an IVP like 2.11. For any s, t ∈ I let ϕs

t (x) =
ϕ(t; s, x) denote the solution at time t of the equation with initial condition x(s) = x. This
is called a non-autonomous flow.

More specifically, let one fix an initial time t0 and denote ϕt : Ut → U as a
function of the initial condition corresponding to ϕt(x) = ϕ(t; t0, x) where Ut =

{x ∈ U|t ∈ I(t0, x)}. Notice that U0 = U and ϕ0 = Id
∣∣
U .

From now on, ϕt will be referred to as the flow of the IVP, considering a fixed
initial time.

Remark 2.30. The concept of flow is normally associated to autonomous differen-
tial equations. In definition 2.29, this notion has been modified, by also fixing an
initial time t0.

Proposition 2.31. Let f : [t0, t f ]×U ⊆ R×Rd → U, U an open set. If f is continuous
and Lipshitz with respect to x, and given s, t, r ∈ [t0, t f ] then ϕs

t = ϕr
t ◦ ϕs

r . In particular,
ϕs

t ◦ ϕt
s = Id is invertible for all s and t.
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Proof. [32] It follows from the uniqueness of solutions. If x ∈ U, ϕs
t (x) is the value

at time t of the unique solution of {ẏ = f (t, y), y(s) = x} which is equal to x at
time s; it is equal to x̃ := ϕs

r(x) at time r, and thus also equal to ϕr
t (x̃).

Theorem 2.32. If f : [t0, t f ]×U ⊆ R×Rd → U, the associated flow ϕs
t is a homeomor-

phism of U for all times s and t.

Proof. Proposition 2.31 implies that ϕs
t is invertible and (ϕs

t )
−1 = ϕt

s. Therefore,
it is sufficient to prove ϕs

t is continuous for any s, t ∈ [t0, t f ]. This follows from
proposition 2.33

2.2.4 Regularity

Proposition 2.33. Let f : Ω ⊆ R × Rd × Rp → Rd be a family of functions depending
on a parameter θ ∈ Rp. Suppose f is continuous and locally Lipschitz with respect to x in
the open set Ω. Consider the IVP {ẋ = f (t, x, θ); x(t0) = x0} for (t0, x0, θ) ∈ Ω and its
solution ϕ : D ⊆ R × Ω → Rd. Then,D is an open set and ϕ is continuous and locally
Lipschitz with respect to (t; t0, x0). Additionally, if f is locally Lipschitz with respect to θ,
then ϕ is locally Lipschitz with respect to (t; t0, x0, θ).

Theorem 2.34 (Differentiability with respect to initial conditions and parameters).
Let f : Ω ⊂ R × Rd × Rp → Rd be a family of functions depending on a parameter
θ ∈ Rp. Suppose Ω is an open set and f is continuous and of class C1(Ω) with respect
to x and θ. Consider the IVP {ẋ = f (t, x, θ); x(t0) = x0} for some (t0, x0, θ) ∈ Ω.
Let ϕ(t; t0, x0, θ) denote its solution. Then, ϕ(t; t0, x0, θ) is of class C1 with respect to
(t, t0, x0, θ). Furthermore, the derivatives satisfy the following equations:

The matrix of partial derivatives of ϕ(t; t0, x0, θ) with respect to x0 is the solution to{
Ẋ = Dx f (t, ϕ(t; t0, x0, θ), θ)X

X(t0) = Idd
(2.13)

Similarly, the vector of partial derivatives of ϕ(t; t0, x0, θ) with respect to t0 satisfies{
Ẋ = Dx f (t, ϕ(t; t0, x0, θ), θ)X

X(t0) = − f (t0, x0, θ)
(2.14)

Finally, the matrix of partial derivatives of ϕ(t; t0, x0, θ) with respect to θ solves{
Ẋ = Dx f (t, ϕ(t; t0, x0, θ), θ)X + Dθ f (t, ϕ(t; t0, x0, θ), θ)

X(t0) = 0
(2.15)



Chapter 3

Neural Ordinary Differential
Equations

Now that the foundations have been laid, it is possible to define neural ordi-
nary differential equations and introduce their properties. This chapter intends to
provide a solid base for this kind of model and how it can be used.

3.1 Defining Neural Ordinary Differential Equations

In order to approach Neural Ordinary Differential Equations (Neural ODE or
ODE-Net), one can take two separate paths, depending on one’s background.

The most direct path is what leads to a “mathematical” definition. In this case,
one takes the concept of a classic ODE and uses modern deep learning (Neural
Networks) to parameterise the vector field.

Definition 3.1 (Neural ODE). Consider the following initial value problem:{
dx
dt (t) = fθ(t, x(t))

x(0) = x0
(3.1)

Where x : R → Rd, d ∈ N, t ∈ R, fθ : R × Rd → Rd and θ ∈ Rp, with p ∈ N.
The IVP in equation 3.1 is said to be a Neural Ordinary Differential Equation if the
function fθ is a neural network, i.e. the differential equation’s vector field is parameterised
using a neural network. Here, fθ can be any neural architecture.

Remark 3.2. Despite being technically correct, definition 3.1 is not very useful
without some extra conditions. As it is, there is no guarantee that the solution is
unique or that it even exists. Some basic requirements are for fθ to be continuous
and Lipschitz with respect to the second variable.

23
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Another approach to Neural ODEs is to regard them as “continuous-depth”
neural networks [6].

Recalling equation 3.1, and discretising it using Euler’s method, on is left with

xn+1 = xn + h fθ(tn, xn) = xn + h fθ(n · h, xn) (3.2)

using the same notation as in section A.1.
For convenience, it is useful to rewrite equation 2.10 as

xn+1 = xn + fθ(n, xn) (3.3)

where n denotes the residual block, θ includes the weights for all blocks, and fθ

has an added argument n to reference the current block.
Now one can easily observe that equations 3.2 and 3.3 are the same by taking

h = 1. With all this, one has been able to see an ODE-Net as the continuum limit
of a ResNet. Or, rather more precisely, a ResNet as the discrete version of an
ODE-Net.

Remark 3.3. Notice how equation 3.3 has introduced the notion that not all resid-
ual blocks need to be of the same form. As is usually done in image recognition
tasks, it might be useful to change the network’s architecture from layer to layer.
This change can be seen as a function of l, being l the block, that controls the
weights and layers inside the residual block. In the case of neural ODEs, the vec-
tor field (which is a neural network) also changes as a function of t, this time,
however, in a continuous fashion.

3.1.1 Modelling with Neural ODEs

From definition 3.1 and the subsequent interpretation, it is not clear how one
can use this structure. Disregarding critical aspects like its learning methodology,
which will be addressed later in this dissertation, it is essential to define how the
model makes predictions based on input data.

Suppose the IVP 3.1 has a solution ϕ : Ω → Rd where Ω ⊆ R × R × Rd × Rp

is an open set. Then, for any x ∈ Rd one can define the mapping

ψ : Rd → Rd (3.4)

x 7→ ϕ(T; 0, x, θ)

which corresponds to a flow ϕt where t0 = 0.
Then, the ODE-Net model is actually the mapping in equation 3.4 that, given

an input vector x, outputs a prediction corresponding to the value of the solution
to the IVP with initial condition x(0) = x, at time T.



3.1 Defining Neural Ordinary Differential Equations 25

This is a very rigid structure. Notice that the source and target spaces are the
same, so it would mean that it can only be used to predict values in the same space
as the input variables. This can be solved by composing with auxiliary functions
before and after ψ, as the following example illustrates.

For simplicity, let one focus on an image classification problem, using a neu-
ral ODE [19]. This example will allow for the introduction of some important
theoretical concepts, as well as an illustration of the usage of this kind of models.

3.1.1.1 Data

Suppose one has some images, like the MNIST dataset (see B.1.1), which can
be represented as a tensor R28×28, corresponding to height (28 pixels), and width
(28 pixels), respectively. Suppose also that one wishes to classify these images
using a class label in R10 corresponding to a one-hot encoding1 of what digit the
image represents.

3.1.1.2 Basic model

Let fθ : R × R28×28 → R28×28 be a convolutional neural network, and let lθ :
R28×28 → R10 be affine.

Then, a first version of the desired image classification model, what will be
referred to as the ‘basic model’ from now on, can be defined as follows, using the
same notation introduced previously in this section:

Ψ : R28×28 → R28×28 → R10 (3.5)

x 7→ ψ(x) 7→ softmax(lθ(ψ(x)))

Looking at the first part of the model, it is simply the flow of the ODE to some
time T. What the model is doing is approximate some function h(x) that allows
for the second part of the model to classify the input accordingly.

3.1.1.3 Augmented model

The model defined by equation 3.5 can be improved using a technique called
‘augmentation’2. This refers to the practice of inserting an affine map between
input and initial value, to increase the dimension of the IVP with respect to the
input. The relevant justifications will be given in the next section.

1One-hot encoding transforms a categorical variable with N categories into a binary vector of
length N where only one element is 1, representing the category by its position.

2Not all models allow for the use of this technique. For example, Continuous Normalising Flows
cannot use augmentation, as it is a requirement that every operation is bijective.
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Let one start with a general explanation, before applying it to the current ex-
ample. Given some input x ∈ Rd, the initial value of the ODE is taken to be gθ(x)
instead of simply x. Here, gθ : Rd → Rdl is some learnt function, with dl > d.

With this formulation, ψ(x) becomes ϕ(T; 0, gθ(x), θ) instead of ϕ(T; 0, x, θ).
Also, note that the dimension of θ might not be the same in both cases, since it
might contain parameters for the function gθ .

The main point is that gθ increases dimensionality, not its particular choice.
The reason is that the continuous flow of an ODE cannot change the topology
of its input. Therefore, if the target space has the same dimension as the source
space, topological properties of the input manifold are preserved. More on this
later.

Returning to the image classification example, taking gθ as the zero augmenta-
tion function (i.e. gθ(x) = (x, 0)), and keeping the same ψ function as in equation
3.53, the resulting model becomes:

Ψ : R28×28 → R28×28×1 → R28×28×1 → R10 (3.6)

x 7→ (x, 0) 7→ ψ((x, 0)) 7→ softmax(lθ(ψ((x, 0))))

To summarise, in general, a NODE is a model of the form

Ψ : Rdin → Rdl → Rdl → Rdout → Rdout

x 7→ gθ(x) 7→ ψ(gθ(x)) 7→ lθ(ψ(gθ(x))) 7→ act(lθ(ψ(gθ(x))))

where gθ : Rdin → Rdl is a function that increases the dimensionality of the input
(din < dl), lθ : Rdl → Rdout is an affine transformation, and act is an activation
function. Not all of these are always necessary. For example, gθ is only used in
augmented NODEs, and the activation function might be ignored in some scenarios.

3.2 Existence and uniqueness

The three attributes of an initial value problem that have to be considered are
whether there exists a solution, whether it is unique, and how sensitive it is to
small perturbations to the initial information.

The answer to these questions lies in the same results as for other ordinary
differential equations, presented in section 2.2.2.1.

3If one were to use ψ(x) = ϕ(T; 0, gθ(x), θ), the model formulation would be the same as with
the basic model. The old ψ is used to make the changes more explicit.
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3.3 Approximation properties

It is a natural question whether neural ODEs are capable of approximating any
kind of function. Approximation theory was introduced in section 2.1.3.5 when
examining the capabilities of some basic neural networks. The goal of the current
section is to do the same for neural ODEs. For notation simplicity, all NODEs will
be assumed to apply no activation function to the final output. In appendix B.5
one can find a comparison of an augmented and an unaugmented model.

3.3.1 Unaugmented neural ODEs

Recall that, in this context, an unaugmented model is one which does not apply
any transformation to the input before solving the neural ODE. Using the same
notation as in equation 3.4, the model may be written as

Ψ : Rdin → Rdin → Rdout (3.7)

x 7→ ψ(x) 7→ hθ(ψ(x))

where din, dout ∈ N represent the dimensions of the input space, and the output
space, respectively; and hθ is some affine transformation adequate for the task at
hand. For example, it might be the composition softmax ◦ψ as in equation 3.5.

Unfortunately, this model cannot approximate many functions for the reason
previously hinted. The continuous evolution of the ODE ensures that any topo-
logical property of the input is preserved. Let one illustrate this with a class of
functions that cannot be represented by a NODE [10].

Definition 3.4 (Representation). A family of models given by the functions mθ : Rdin →
Rdout for parameters θ ∈ Θ is said to represent an arbitrary function h : Rdin → Rdout if
∃θ ∈ Θ such that mθ(x) = h(x) ∀x ∈ Rdin .

Let 0 < r1 < r2 < r3 and let h : Rd → R be a function such that

h(x) =

{
−1 if ∥x∥ ≤ r1

1 if r2 ≤ ∥x∥ ≤ r3

where ∥ · ∥ is the Euclidean norm. Let A = {x|∥x∥ ≤ r1} denote the disk with
radius r1 and let B = {x|r2 ≤ ∥x∥ ≤ r3} be the d-dimensional spherical shell.

Proposition 3.5. Neural ODEs cannot represent h(x).

Remark 3.6. Recalling the structure of an (unaugmented) NODE (Ψ = lθ ◦ ψ), for
it to map points in A to −1 and points in B to 1, the affine transformation lθ must
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map the points in ψ(A) to −1, and the points in ψ(B) to 1. This implies that ψ(A)

and ψ(B) must be linearly separable. That is, there exists a hyperplane such that
all points in ψ(A) lie above it, and all points in ψ(B) lie below it. The following
proof consists on proving this is not possible if ψ is a homeomorphism.

Proof. Define a disk D = {x ∈ Rd|∥x∥ ≤ r2} with boundary ∂D and interior
Int(D). Now, A ⊂ Int(D), ∂D ∩ A = ∅ and ∂D ⊂ B. So the problem is reduced
to seeing that ψ(Int(D)) and ψ(∂D) are not linearly separable.

Since ψ is a homeomorphism (2.32), then ψ(Int(D)) = Int(ψ(D)) and ψ(∂D) =

∂ψ(D). For convenience, let one write D′ = ψ(D).
Suppose ∂D′ and Int(D′) to be linearly separable. This is, ∀x ∈ Int(D′) L(x) >

0 and ∀x ∈ ∂D′ L(x) < 0 for some affine function L(x) = wTx + c for w ∈ Rd and
c ∈ R.

Sine D is a compact and ψ a homeomorphism, D′ is also compact. This means
that D′ is bounded (Heine-Borel theorem). Let Bδ(p) = {x ∈ Rd|∥x − p∥ < δ} be
the open d-dimensional ball centered in p with radius δ. Then, for any x ∈ Int(D′)

there exist a < b ∈ R such that Ba(x) ⊂ Int(D′) (definition of interior point) and
δD′ ⊂ Bb(x). Consider now a diameter of Bb(x). This segments must intersect δD′

at least in two points x1, x2 ∈ δD′ (and x1 ̸= x ̸= x2 since ∥x − xi∥ > a, i = 1, 2).
One can write this segment as {λx1 + (1 − λ)x2} for 0 ≤ λ ≤ 1. Furthermore,

for some 0 < λ̃ < 1, x = λ̃x1 + (1 − λ̃)x2. Then,

L(x) = wTx + c

= wT(λ̃x1 + (1 − λ̃)x2) + c

= λ̃wTx1 + (1 − λ̃)wTx2 + c

< λ̃(−c) + (1 − λ̃)(−c) + c

= 0

But it was supposed that L(x) > 0 for all x ∈ Int(D′). Therefore, Int(D′) and
∂D′ are not linearly separable, and neither are ψ(A) and ψ(B).

In practice, even if NODEs are not able to represent this class of functions,
it is often possible to approximate these functions, albeit the resulting flows are
complex and lead to problems that are computationally hard to solve [10].

3.3.2 Augmented neural ODEs

As discussed above, the main idea of augmentation is to increase the di-
mensionality of the ODE input as to avoid trajectories intersecting. This leads
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to lower losses, better generalisation and lower computational cost that unaug-
mented NODEs [10]. This section will be focused on their status as universal
approximators (definition 2.14).

3.3.2.1 The vector field is a universal approximator

In this situation, f has universal approximation properties in Lipschitz func-
tions R × Rdl → Rdl . For simplicity, let one state the following result assuming
the vector field is drawn from the space of Lipschitz functions instead of just a
dense subset of it.

Theorem 3.7. Let d, dl , dout ∈ N with dl ≥ d + dout. Suppose f : R × Rdl → Rdl is a
continuous and Lipschitz function, and g : Rd → Rdl and l : Rdl → Rdout are affine. Let
Ψ f ,g,l(x) denote the map

Ψ f ,g,l : Rd → Rdl → Rdl → Rdout

x 7→ g(x) 7→ ψ(g(x)) 7→ l(ψ(g(x))),

where the same notation as before has been used to the denote ψ(x) = ϕ(T; 0, x) and ϕ is
the solution to the corresponding IVP {ẋ = f (t, x); x(0) = x0}.

Then,

{Ψ f ,g,l | f ∈ Lip(R × Rdl ; Rdl ), g : Rd → Rdl affine, l : Rdl → Rdout affine}

is a universal approximator for C(Rd; Rdout).

Proof. See [33], Theorem 7.

3.3.2.2 The vector field is not a universal approximator

Now, one can get universal approximation using only a vector field f for each
dimension d.

Theorem 3.8. Let d, dout ∈ N. For dl ∈ N, f ∈ C(R × Rdl ; Rdl ), and g : Rd → Rdl

and l : Rd → Rdl affine functions, let Ψdl , f ,g,l : Rd → Rdout(x) denote the ODE-Net
like previously, for those f for which there exists a unique solution to the corresponding
IVP. For each dl ∈ N there exists an fdl ∈ C(Rdl ; Rdl ) for which the IVP has a unique
solution such that

{Ψdl , f ,g,l |dl ∈ N, g : Rd → Rdl affine, l : Rdl → Rdout affine}

is a universal approximator for C(Rd; Rdout)

Proof. See [19], Theorem 2.13.
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3.4 Training

To learn the parameters of the model, its derivatives need to be computed. To
accomplish this, there are a few options available. The ones that are explored in
this dissertation are:

• Discretise-then-optimise

• Optimise-then-discretise

• Variational equations

Each of this methods have their own advantages and disadvantages and their
use has to be evaluated in a case by case fashion. The content presented in this
section is largely derived from [19] and [6].

3.4.1 Variational Equations

When looking for the derivatives of an ODE solution with respect to the vector
field’s parameters, classic mathematics has an answer: variational equations. By
using 2.15, one can solve the new equation with an ODE solver and use the chain
rule to compute dL

dθ . As with regular neural networks, this approach is not rec-
ommended because it computes the whole Jacobian matrix when only its product
with dL

dx(t) is relevant, making this method less efficient both in terms of space and
time.

3.4.2 Discretise-then-optimise

This is the most straightforward option since it consists simply on backprop-
agating through the internal operations of the ODE solver. Since the solver is a
composition of differentiable operations such as addition or multiplication, it is
also differentiable.

Implementing this is also rather effortless: if the differential equation solver
was written in an autodifferentiable framework, the gradients can be computed di-
rectly as any other function. Examples of such implementations are torchdiffeq4

for PyTorch and diffrax5 for JAX.

3.4.2.1 Advantages

• Accuracy: The derivatives are computed directly on the discretised version of
the differential equation, as opposed to an ideal continuous representation.

4https://github.com/rtqichen/torchdiffeq
5https://github.com/patrick-kidger/diffrax

https://github.com/rtqichen/torchdiffeq
https://github.com/patrick-kidger/diffrax
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Because of this, it offers higher accuracy to represent the gradients of the
model.

• Time complexity: It is often the fastest way to backpropagate because the com-
putational graph is already known and the underlying libraries can leverage
parallelism.

3.4.2.2 Disadvantages

• Memory inefficient: This approach requires that every internal operation of
the ODE solver is stored. This leads to a memory consumption of O(ST)
where S represents the number of operation in each step, and T the time
horizon.

3.4.2.3 Use cases

This is generally the preferred technique. One should only consider other
methods if there are memory constraints.

3.4.3 Optimise-then-discretise

In contrast with the previous option, this works by finding the derivatives of
the ideal continuous model. This is done by numerically solving a backwards-in-
time differential equation, which arises from the following result.

Theorem 3.9 (Continuous adjoint equations). Let x0 ∈ Rd and θ ∈ Rp. Let fθ :
[t0, t1] × Rd → Rd be continuous in t, and of class C1 in x and θ. Let ϕ(t; t0, x0, θ) :
R × R × Rd × Rp denote the solution to the IVP

ẋ = fθ(t, x), x(t0) = x0. (3.8)

For simplicity, let x1 = ϕ(t1; t0, x0, θ).
Let L : Rd → R be a differentiable scalar function and let one define the function

ℓ(t1, t0, x0, θ) := L(ϕ(t1; t0, x0, θ)). Lastly, let one define the following:

ax(t)T :=
dL
dx

(x1)Dx0 ϕ(t; t1, x1, θ)−1 (3.9)

aθ(t)T :=
∫ t1

t
ax(t)TDθ f (s, ϕ(s; t1, x1, θ), θ)ds (3.10)

Then, ax and aθ satisfy the following ODEs

ȧx(t)T = −ax(t)TDx f (t, ϕ(t; t1, x1, θ), θ); ax(t1) =
dL
dx

(x1) (3.11)

ȧθ(t)T = −ax(t)TDθ f (t, ϕ(t; t1, x1, θ), θ); aθ(t1) = 0, (3.12)
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Furthermore, aθ(t0)T = ∂ℓ
∂θ (t1, t0, x0, θ).

Proof. The IVP 3.12 follows directly from the definition 3.10. Similarly, from def-
inition 3.9 one has dL

dx (x1) = ax(t)TDx0 ϕ(t; t1, x1, θ) for any t ∈ [t0, t1] and taking
the derivative with respect to t:

0 =
d
dt

(
dL
dx

(x1)

)
= ȧx(t)TDx0 ϕ(t; t1, x1, θ) + ax(t)T d

dt
(Dx0 ϕ(t; t1, x1, θ))

Using the variational equation with respect to the initial conditions (2.13) this
can be written as

0 = ȧx(t)TDx0 ϕ(t; t1, x1, θ) + ax(t)TDx f (t, ϕ(t; t1, x1, θ), θ)Dx0 ϕ(t; t1, x1, θ)

Or, equivalently, ȧx(t)T = −ax(t)TDx f (t, ϕ(t; t1, x1, θ), θ) and by using the def-
inition of ax(t) and evaluating for t = t1, 3.11 follows.

Finally, to see aθ(t0)T = ∂ℓ
∂θ (t1, t0, x0, θ), let one start by using the chain rule,

∂ℓ

∂θ
(t1, t0, x0, θ) =

dL
dx

(ϕ(t1; t0, x0, θ))Dθϕ(t1; t0, x0, θ). (3.13)

Recalling the variational equation with respect to the parameters (2.15), the
derivative with respect to the parameters Dθϕ(t1; t0, x0, θ) satisfies

Ẋ = Dx f (t, ϕ(t1; t0, x0, θ), θ)X + Dθ f (t, ϕ(t1; t0, x0, θ), θ); X(t0) = 0 (3.14)

and since, once again, Dx0 ϕ(t1; t0, x0, θ) is the solution to the variational equation
with respect to the initial conditions (2.13), using the variation of constants method
one has

Dθϕ(t1; t0, x0, θ) = Dx0 ϕ(t1; t0, x0, θ)
∫ t1

t0

Dx0 ϕ(s; t0, x0, θ)−1Dθ(s, ϕ(s; t0, x0, θ), θ)ds

(3.15)
Then, recalling that ϕ(t1; s, ϕ(s; t0, x, θ), θ) = ϕ(t1; t0, x, θ) for any s ∈ [t0, t1] and

x ∈ Rd, it follows that Dx0 ϕ(t1; t0, x0, θ) = Dx0 ϕ(t1; s, ϕ(s; t0, x0, θ), θ)Dx0 ϕ(s; t0, x0, θ)

and therefore Dx0 ϕ(t1; t0, x0, θ)Dx0 ϕ(s; t0, x0, θ)−1 = Dx0 ϕ(t1; s, ϕ(s; t0, x0, θ), θ).
Consequently, 3.15 is equal to∫ t1

t0

Dx0 ϕ(t1; s, ϕ(s; t0, x0, θ), θ)Dθ f (s, ϕ(s; t0, x0, θ), θ)ds (3.16)

In turn, ϕ(s; s, x, θ) = x = ϕ(s; t1, ϕ(t1; s, x, θ), θ) implies that Dx0 ϕ(s; s, x, θ) =

Id = Dx0 ϕ(s; t1, ϕ(t1, s, x, θ), θ)Dx0 ϕ(t1; s, x, θ) for any s ∈ [t0, t1] and x ∈ Rd. By
taking x = ϕ(s; t0, x0, θ), Id = Dx0 ϕ(s; t1, ϕ(t1, t0, x0, θ), θ)Dx0 ϕ(t1; s, ϕ(s; t0, x0, θ), θ)

and then Dx0 ϕ(t1; s, ϕ(s; t0, x0, θ), θ) = Dx0 ϕ(s; t1, x1, θ)−1.
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Therefore, 3.16 can be written as∫ t1

t0

Dx0 ϕ(s; t1, x1, θ)−1Dθ f (s, ϕ(s; t1, x1, θ), θ)ds

By using this series of equalities in 3.13 it follows that

∂ℓ

∂θ
(t1, t0, x0, θ) =

∫ t1

t0

dL
dx

(x1)Dx0 ϕ(s; t1, x1, θ)−1Dθ f (s, ϕ(s; t1, x1, θ), θ)ds

=
∫ t1

t0

ax(s)TDθ f (s, ϕ(s; t1, x1, θ), θ)ds = aθ(t0)
T (3.17)

Using theorem 3.9, computing dL
dθ (x1) becomes a matter of solving the system

of equations backwards in time from t = t1 to t = t0.

Remark 3.10. An ODE-Net is seldom just an ODE solve step, as explained in
section 3.1.1. If the model has other phases such as affine transformations or
activation functions for the output, these are backpropagated as usual to find
dL
dx (x1) and the technique exposed here is used merely for the ODE solve step. The
same applies for any preceding operations, which would be backpropagated as
usual from the results of this technique for ax(t0) and aθ(t0)

This way to backpropagate is normally called the continuous adjoint method. The
naming comes from the fact that the adjoint usually refers to the gradient with
respect to the hidden state at a specified time or step, and this method considers
this in the idealised continuous-time model.

3.4.3.1 Advantages

• Memory efficient: Since x is recomputed on the backwards pass, it is not nec-
essary to store all the forward computations of x. Therefore, using the same
notation as before, memory cost becomes merely O(S) as it is independent
of the time horizon and only requires to solve an extra ODE.

• Ease of implementation: There are no constraints on what differential equation
solvers to use, as they do not need to be autodfferentiable.

3.4.3.2 Disadvantages

• Time complexity: It is slightly slower because it needs to recompute x during
the backward pass.
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• Truncation errors: There are multiple sources of errors. Namely, re-computation
of x(t) and numerical solutions for aθ(t) and ax(t).

Firstly, in the backward pass x(t) is computed again starting from the nu-
merical approximation to the terminal condition x(T). Therefore, there will
be a difference between the value of x(t) computed in the forward pass, and
the same value computed in the backward pass.

Secondly, the continuous adjoint equations will have to be solved numeri-
cally, making the gradients calculated with this method not as accurate as
those calculated by backpropagating through the solver, which represent the
gradients of the actual model.

Al this might make training slower and impact model performance.6

3.4.3.3 Use cases

This method is adequate when working with strict memory constraints which
would make the discretise-then-optimise approach unfeasible. Additionally, this
method might be required if ODE solvers with autodifferentiation support are not
available.

An empirical comparison of the last to methods can be found in appendix B.3.

6The issue with numerical errors can be addressed with some changes to the algorithm like
recording x(t) at some points of the forward pass, but not all the internal operations. This modifi-
cation is called interpolated adjoints.



Chapter 4

Normalising Flows

This chapter explores a non-parametric density estimation technique called
Normalising Flows (NF). As with other kinds of models aforementioned, they can
be approached from a discrete or continuous point of view. This approaches were
called by Rezende and Mohamed [28], finite flows and infinitesimal flows, respec-
tively. NF normally refers to the former, while Continuous Normalising Flow (CNF)
is commonly used for the latter. This terminology is used in this work.

The problem of density estimation can be expressed as follows: given a set
of independent observations xi, i = 1, . . . , m, estimate the underlying probability
distribution that has produced them [30]. The simplest methodology is parametric
estimation. This approach is problematic because assumptions need to be made
about the underlying density. In non-parametric density estimation, no such as-
sumptions are made. This added flexibility allows for better approximations, since
one is not limited to a certain family of probability distributions.

4.1 Normalising Flows

The main idea behind NF is that by transforming a simple probability distri-
bution through a sequence of invertible mappings, one can obtain a more complex
distribution that better describes the underlying one. In order to obtain the final
probability distribution, the following theorem is applied.

Theorem 4.1 (Smooth change of variables [5]). Let X ∈ Rd be a random vector, with
PDF (Probability Density Function) pX. Let f : U ⊆ Rd → Rd where U is an open set
and f ∈ C1(U), and let V = f (U). Additionally, let one write Dx f = ∂ f

∂x .
Suppose det Dx f (x) ̸= 0 ∀x ∈ U (i.e. f is invertible with inverse f−1 and f−1 ∈

C1(V), or simply f is a diffeomorphism between U and its image). If P(X ∈ U) = 1,

35
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then Y = f (X) is a random vector with density

pY(y) = pX( f−1(y))|det Dx f ( f−1)(y)|−11V(y) (4.1)

where 1V(y) represents the indicator function.

Proof. For any V0 ⊂ V one has P(Y ∈ V0) =
∫

V0
pY(y)dy. At the same time,

P(y ∈ V0) = P(X ∈ f−1(V0)) =
∫

f−1(V0)
pX(x)dx

=
∫

V0

pX( f−1(y))|Dx f ( f−1(y))|−1dy.

In the last equation, the change of variable x = f−1(y) has been used in the
integral. Also, from the inverse function theorem, the fact that Dx f−1(y) =

Dx f ( f−1(y))−1 has been applied to the last equality.

4.1.1 Definition

Let { fk : Rd → Rd}k be a sequence of bijective and at least C1 functions.
Let Ω be a sample space and X : Ω → R a random vector with density pX :

Rd → [0, ∞). Let this refer to a known distribution π.
Let {Yk}k be a sequence of random vectors with Y1 = f1(X) and defined itera-

tively as Yk+1 = fk+1(Yk). Let one write as pk the density for Yk.
Then the change of variables formula (Theorem 4.1) applied to a chain of K

transformations gives the density pK of YK = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(X):

log pK(y) = log pX( f−1(y))−
K

∑
k=1

log
∣∣∣det Dx fk( f−1

k (yk))
∣∣∣ (4.2)

where f = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1 and y = f (x), being x a sample from the original
distribution.

The resulting function f can then be used to go from the known distribution π

to a new one described by density pK. Moreover, by sampling from π and applying
f , one gets a sample from the new distribution. Therefore, this technique can be
useful to approximate densities, but also for generative purposes.

The path formed by the successive distributions pk is a Normalising Flow.

4.1.2 Training

4.1.2.1 Maximum Likelihood

In parametric statistics, one selects the “best” model from a family of distribu-
tions with densities pθ , θ ∈ Θ where Θ is the parameter space. The parameters
that define the best fitting density is often found via maximum likelihood estimation.
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This technique assumes that the best probability density to describe the dis-
tribution that generates the data is the one that maximises the probability of the
observed samples.

Definition 4.2 (Likelihood function). For samples y = (y1, . . . , yN)
T and a family of

densities {pθ |θ ∈ Θ} the likelihood function is

L(θ; y) =
N

∏
i=1

pθ(yi).

Sometimes, the log-likelihood is used because of the convenience of its additive form:

ℓ(θ; y) =
N

∑
i=1

log pθ(yi).

In both cases, it is to be seen as a function of θ, with the data fixed.

Consequently, maximum likelihood estimation consists of choosing the distri-
bution with density pθ̂ where θ̂ maximises L(θ; y). That is,

θ̂ = arg max
θ

L(θ; y)

4.1.2.2 Application to Normalising Flows

One advantage of Normalising Flows with respect to other density estimation
techniques such as Variational Auto Encoders (VAE) is that they offer a precise for-
mula for the likelihood of the model, so approximations like the ELBO (Evidence
Lower Bound) are unnecessary. Therefore, Normalising Flows can be trained by
minimising the negative log-likelihood or, equivalently, − 1

N ∑N
i=1 log pθ(yi).

To do so, one samples x ∼ pX and does a forward pass recalling all interme-
diate values yk to then apply gradient descent on − 1

NL(θ; y), using formula 4.2
for the density. This, however, has one flaw. Namely, computing det Dx f is very
expensive. To be precise, it has a computational complexity of O(N3).

As a result, the complexities of the transformations need to be restricted to
functions with easy to compute determinant Jacobians, as well as being invertible.
Some of these architectures are explored as examples in the following section.

4.1.3 Examples

4.1.3.1 Planar flows

As Rezende and Mohamed explore in the original paper [28], using planar
flows with transformations of the form f (y) = y + uh(wTy + b) where Θ = {w ∈



38 Normalising Flows

RK; u ∈ RK; b ∈ R} and h is an element-wise smooth non-linear function with
derivative h′. This is useful because the determinant of the Jacobian is known and
easy to compute: 1 + uTh′(wTy + b)w.

4.1.3.2 Real NVP

Another structure for the transformations that allows for an easy computation
of the determinant of the Jacobian is known as real-valued non-volume preserving, as
was introduced by Dinh et al. [9].

Once again, let f (y) be the transformation, which the authors call a coupling
layer. For an input y ∈ Rd, let y1:i and yi+1:d denote the first i components, and the
last d − i for a fixed 0 < i < d. Then, the transformation is as follows:

f (y) =

(
y1:i

yi+1:d ⊙ exp (s(y1:i)) + t(y1:i)

)
(4.3)

Where ⊙ is the Hadamard or element-wise product.
This architecture exploits the fact that computing the determinant of a trian-

gular matrix is cheap because it is simply the product of the diagonal. In this case,
the Jacobian is

∂ f
∂y

=

(
Idi 0

∂ fi+1:d
∂y1:i

diag(exp (s(y1:i)))

)
Where diag(exp (s(y1 : i))) is the diagonal matrix with elements exp (s(y1 : i)) in
the diagonal.

Finally, this transformation is also easy to invert. Given a vector z ∈ Rd such
that z = f (y),

y = f−1(z) =

(
z1:i

(zi+1:d − t(z1:i))⊙ exp (−s(z1:i))

)

4.2 Change of variables for a continuous in time transfor-
mation

This section is devoted to the proof of an equivalent theorem to 4.1 but for a
continuous transformation through time, instead of a discrete set of layers. This
will allow for the introduction of ODE dynamics to Normalising Flows.

Chen et al. called this theorem Instantaneous change of variables in their paper
on Neural ODEs [6], in which they provided a proof based on the definition of
the derivative as a limit. In this section a different approach will be taken, as the
theorem can be derived from some basic notions of fluid dynamics.
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4.2.1 A brief introduction to the continuity equation

In the following pages, one will try to introduce some of Euler’s equations
while developing a connection with properties of probability densities. Most of
this section’s proofs and definitions are based on the first chapter of [7].

Theorem 4.3 (Jacobi-Liouville Formula). Let ẋ = A(t)x be a linear differential equa-
tion for some matrix A(t) : R → Rn×n and x ∈ Rn. Let M(t) be a solution matrix,
for which the Wronskian is defined as w(t) = det M(t). Then w satisfies the following
differential equation:

ẇ = trA(t)w (4.4)

where trA(t) is the trace of A(t).

Proof. Let M(T) = (m1(t), . . . , mn(t)) in column notation. Notice that since M(t)
is a solution matrix, one has m′

i(t) = A(t)mi(t); 1 ≤ i ≤ n. Furthermore, if M(t)
is not fundamental, then w(t) = 0 and equation 4.4 is satisfied trivially. From
now on, let one suppose M(t) is fundamental, that is, the columns are linearly
independent solutions of the system.

As a n-linear function of its columns, one can differentiate the determinant of
M(t) as follows:

w′(t) =
n

∑
i=1

det(m1(t), . . . , m′
i(t), . . . , mn(t))

=
n

∑
i=1

det(m1(t), . . . , A(t)mi(t), . . . , mn(t)) (4.5)

Since M(t) is fundamental, B = {m1(t), . . . , mn(t)} is a basis of Rn.
Let α(t) : x 7→ A(t)x; ∀x ∈ Rn be a linear map at every fixed time t. Suppose

as well that α(t) has matrix (αij(t))1≤i,j≤n in basis B. Consequently, the trace of
A(t) is trA(t) = ∑n

i=1 αii(t), which is invariant for change of basis.
Then

m′
i(t) = A(t)mi(t) =


α11(t) α12(t) · · · α1n(t)

α21(t) α22(t) · · · α2n(t)
...

...
. . .

...

αn1(t) αn2(t) · · · αnn(t)




0
...
1
...
0

 =


α1i(t)

...
αii(t)

...
αni(t)


where mi(t) in vector form in basis B is all 0 except for row i, which is 1. Therefore
the result is the i-th column of matrix A(t) in basis B. Expressing it as a linear
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equation of the vectors in B, it follows from the above equation that m′
i(t) =

∑n
j=1 αjimj(t).

With this, one can rewrite 4.5 as

w′(t) =
n

∑
i=1

det(m1(t), . . . ,
n

∑
j=1

αji(t)mj(t), . . . , mn(t))

=
n

∑
i=1

det(m1(t), . . . , αii(t)mi(t), . . . , mn(t))

=
n

∑
i=1

αii(t)det(m1(t), . . . , mi(t), . . . , mn(t))

=
n

∑
i=1

αii(t)w(t) = trA(t)w(t) (4.6)

Where the linearity of determinants with respect to their columns was used in the
second line, as well as the fact that a determinant with repeated columns is zero.
For the same reason αii(t) can be taken out of the determinant in line 3.

Finally, 4.6 is exactly what one wanted to prove.

Let V ⊆ Rd be an open set and f (t, x) where f : R × V → Rd is a non
autonomous vector field of class C1. Consider the following IVP for t0 ∈ R and
x0 ∈ V:

∂x
∂t

(t) = f (t, x(t)); x(t0) = x0 (4.7)

whose solution will be written as ϕ(t; t0, x0) in reference to the initial condition.

Theorem 4.4 (Transport theorem). Let g : R × V → Rd be a function of class C1 that
from now on will be called observable. One defines the measure of the observable over a
bounded open set U ⊆ U ⊆ V at time t as

G(t, U) =
∫

U
g(t, x)dx

Consider the bounded open set U0 ⊆ U0 ⊆ V at time t0 that evolves according to 4.7 and
let Ut = ϕ(t; t0, U0). Then

d
dt
(G(t, Ut)) =

∫
Ut

(
∂g
∂t

(t, x) + Dxg(t, x) f (t, x) + div f (t, x)g(t, x)
)

dx (4.8)

where Dxg(t, x) = ∂g
∂x (t, x), and div is the divergence with respect to x. More precisely,

div f (t, x) = trDx f (t, x) = ∑d
i=1

∂ fi
∂xi

(t, x), supposing f = ( f1, . . . , fd)



4.2 Change of variables for a continuous in time transformation 41

Proof. Let one start by finding the derivative of G(t, Ut) with respect to time.

d
dt

∫
Ut

g(t, x)dx =
d
dt

∫
U0

g(t, x0)|det Dϕ(t; t0, x0)|dx0

=
∫

U0

([
∂g
∂t

(t, x0) + Dxg(t, x)
∂ϕ

∂t
(t, x0)

]
|d(t, x0)|+ g(t, x0)

∂

∂t
|d(t, x0)|

)
dx0

where d(t, x) := det Dϕ(t; t0, x) and Dϕ is the derivative with respect to x0. Writing
x = ϕ(t; t0, x0), the change of variable x 7→ x0 using ϕ−1 has been used to change
the domain of integration.

Since Dϕ is the derivative of a solution with respect to the initial condition, it
satisfies the variational equation

Ẋ = Dx f (t, x0)X; X(t0) = Id (4.9)

Furthermore, by the corresponding variational theorem, the solution to equa-
tion 4.9 is a principal fundamental matrix, which means d(t, x0) ̸= 0 ∀t ∈ R. Since
D(t0, x0) = Id this means d(t, x0) > 0 and one can consequently ignore the abso-
lute value in the previous equations.

Considering A(t) = Dx f (t, x0) as the matrix of the IVP in theorem 4.3, and
applying said theorem it follows that

∂d
∂t

(t, x0) = tr(Dx f (t, x0))det Dϕ = div f (t, x0)det Dϕ

Now, one can put everything together to get the sought result

d
dt

∫
Ut

g(t, x)dx

=
∫

U0

[
∂g
∂t

(t, x0) + Dxg(t, x0) f (t, x0)

]
d(t, x0) + g(t, x0)div( f (t, x))d(t, x0)dx0

=
∫

U0

[
∂g
∂t

(t, x0) + Dxg(t, x0) f (t, x0) + g(t, x0)div( f (t, x))
]

d(t, x0)dx0

=
∫

Ut

∂g
∂t

(t, x) + Dxg(t, x) f (t, x) + g(t, x)div( f (t, x))dx

Where in the last line the change of variables has been reversed.

Remark 4.5. The relationship between g in the previous theorem and a probability
density is clear. Without loss of generality, consider an absolutely continuous
random variable X : Ω → R with probability P, cumulative distribution function
G : R → [0, 1] and probability density function g ≥ 0. Let (a, b) ⊂ R be an open
set with a < b. Then, P(a < x < b) = G(b)− G(b) =

∫
(a,b) g(x)dx. Although in

this case the measure would be the probability P and not G as the notation would
suggest.
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Now let X : Ω → Rn be a random vector from a sample space Ω. Suppose
the points of such distribution are transported through IVP 4.7, just like the fluid
mentioned above. Then, let g : R × Rn → R denote the probability density at
each time t for point x ∈ Rn. Probability density functions have two properties.
Namely, they are non-negative and

∫
R

g(t, x)dx = 1. A straightforward way to
keep this last property is by conservation of mass. This is, the rate of change of G
with respect to time is zero.

Theorem 4.6 (Continuity equation). Let g : R×V → R be a function of class C1. Sup-
pose that the measure G(t, U) =

∫
U g(t, x)dx is conserved. Then the following equation

holds and is called the continuity equation:

∂g
∂t

(t, x) + Dxg(t, x) f (t, x) + g(t, x)div f (t, x) = 0 (4.10)

where Dxg(t, x) = ∂g
∂z (t, z(t)). This can also be written as ∂g

∂t + div(g f ) = 0.

Proof. If the measure is conserved,

d
dt

(G(t, U)) = 0. (4.11)

Let U0 ⊂ U0 ⊂ V be a bounded open set and Ut = ϕ(t; t0, U0). Then applying
the transport theorem (equation 4.8) to 4.11 one gets

0 =
d
dt

(G(t, U))

=
∫

Ut

∂g
∂t

(t, x) + Dxg(t, x) f (t, x) + g(t, x)div f (t, x)dx

Since div f ∈ C1, g ∈ C1, and the previous equality holds for any bounded
open set, then the expression inside the integral sign is zero. If the function was
positive at a certain point, it would be positive in an open set and then the integral
over that set would be positive.

4.2.2 Instantaneous change of variables theorem

Although this result is more general, for convenience when using it in the
following pages, let one give the problem the adequate context.

Consider the following IVP where the initial condition is sampled from a base
distribution, for instance a Gaussian:

dz
dt

(t) = f (t, z(t)); z(0) ∼ N (0, Idd×d) (4.12)
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for t ∈ [t0, t f ], where f : [t0, t f ]× Rd → Rd is of class C1. Allowing for some abuse
of notation, let z(t) be the solution to 4.12.

Additionally, let p : [t0, t f ]× Rd → R where p(t, z(t)) denotes the probability
density of z(t) at time t. Notice that, as in the previous section, this density will
be transported while conserving the probability measure.

Theorem 4.7. (Instantaneous change of variables) Assume f and p are of class C1. Then
p evolves according to the differential equation

d
dt
(log p(t, z(t))) = −div f (t, z(t)) (4.13)

Proof. Differentiating the time-dependant function t 7→ p(t, z(t)) and using the
continuity equation 4.10 and the fact that dz

dt (t) = f (t, z(t)) it follows directly that

d
dt
(p(t, z(t)) =

∂p
∂t

(t, z(t)) +
∂p
∂z

(t, z(t))
dz
dt

(t)

= −∂p
∂z

(t, z(t)) f (t, z(t))− p(t, z(t))div f (t, z(t))− ∂p
∂z

(t, z(t)) f (t, z(t))

= −p(t, z(t))div f (t, z(t)) (4.14)

Now, taking the log-density, differentiating with respect to time, and using
4.14 one has the result

d
dt

log p(t, z(t)) =
1

p(t, z(t))
∂p
∂t

(t, z(t)) = −div f (t, z(t))

4.3 Continuous Normalising Flows

Just like with Normalising Flows, the idea is to transform a simple distribution
to something more expressive that hopefully better describes the observed system.
However, there is one big difference between CNF and NF: the former uses con-
tinuous dynamics by transforming the distribution using a differential equation
instead of a series of compositions of invertible functions.

4.3.1 Definition

Suppose one observes a probability distribution with density π over some state
space Rd and one wishes to approximate it.

Consider the following IVP with a random initial condition sampled from a
known distribution D(µ) which has density p(0, x) ∈ C1 for all x ∈ Rd, and µ
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denotes whatever parameters this distribution has. For instance, if one were to use
a normal distribution with location 0 and covariance Idd×d, then µ = (0, Idd×d).

dz
dt

(t) = fθ(t, z(t)) for t ∈ [0, T]; z(0) ∼ D(µ) (4.15)

where fθ : [0, T]× Rd → Rd is a neural network with parameters θ. Notice that
here, the initial and terminal times are set to 0 and T. This is for simplicity and
works for any t0 < t f .

Using this model, one seeks the distribution of z(T) to be approximately the
observed one, and therefore p(T, ·) to approximate π(·).

Then, by using the instantaneous change of variables theorem (4.7) one knows
the dynamics of the probability density over time, which allows for maximum
likelihood training.

4.3.2 Training

As with normalising flows, knowing the probability density of the modelled
distribution allows for maximum likelihood training. In this case, solving a system
of differential equations backward in time will suffice.

Given a terminal condition x ∈ Rd consider the following IVP:
d
dt

(
z(t)

I(t, z(t))

)
=

 fθ(t, z(t))

− tr
(

∂ fθ

∂z (t, z(t))
) ∀t ∈ [0, T];(

z(T)

I(T, z(T))

)
=

(
x

0

) (4.16)

Solving 4.16 from t = T to t = 0, I(0, z(0)) = −
∫ 0

T
tr
(

∂ fθ

∂z
(t, z(t))

)
dt. This

allows one to compute log p(T, z(T)) = log p(0, z(0))− I(0, z(0)) where p(0, ·) is
the density of the known distribution in 4.15. Then, it is a matter of minimising
the negative log-likelihood.

4.3.3 Advantages over Normalising Flows

The main advantage of CNF over NF is the use of the trace-Jacobian instead of
the determinant-Jacobian. In the general case, this allows the cost of computation
to go from O(d3) to O(d2). This decrease in complexity makes it possible to
have transformations that are more complex and expressive, which leads to better
results in approximating the observed distribution [6, 12]. An experiment on this
can be found in appendix B.2.
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Moreover, the complexity of the trace-Jacobian can be further decreased by
using the Hutchinson’s trace estimator, which brings it down to O(d) [12].

Definition 4.8. Let A ∈ Rd × Rd be any matrix. Let x ∈ Rd be a random variable
such that E[xxT] = Idd×d. Then E[xT Ax] = tr A is known as the Huntchinson’s trace
estimator.

Proposition 4.9. Let A ∈ Rd × Rd be any matrix and let x ∈ Rd be a random variable
such that E[xxT] = Idd×d. Then xT Ax is an unbiased estimator of tr A.

Proof. [1] Using the linearity of the expected value and the trace, as well as the
cyclic property (for any matrices C and B such that CTB and BCT can be multi-
plied, tr(CTB) = tr(BCT)) it follows that

E[xT Ax] = E[tr(xT Ax)] = E[tr(AxxT)]

= tr(E[AxxT]) = tr(AE[xxT])

= tr(A)

This holds for any random variable x such that E[x] = 0 and Cov(x) = Id, for
example, a multivariate normal distribution or a Rademacher random variable1.
In practice, this is computed using Monte-Carlo approximation and, in order to
keep the dynamics deterministic within each call of the ODE solver, one can use a
fixed noise vector ϵ for the duration of each solve. Then, using the same notation
as in the previous section,

log p(T, z(T)) = log p(0, z(0))−
∫ T

0
tr
(

∂ fθ

∂z
(t, z(t))

)
dt

= log p(0, z(0))−
∫ T

0
Eϵ

[
ϵT ∂ fθ

∂z
(t, z(t))ϵ

]
dt

= log p(0, z(0))− Eϵ

[∫ T

0
ϵT ∂ fθ

∂z
(t, z(t))ϵdt

]

4.3.4 Example of usage for image generation

A possible usage of this kind of model is to generate images similar to provided
samples. Using the MNIST dataset, CNF can be used to learn the distribution of
the digits in the 28 × 28-dimensional space. Once an approximation to this distri-
bution has been obtained, sampling from it generates new images corresponding
to hand-written images. This experiment is explained in more detail in B.1.

1It is a discrete random variable with probability mass function f (k) =

{
1/2 if k = ±1

0 otherwise
.
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4.4 CNF as optimal transport problems

One problem with CNF is that they do not always learn the most efficient
trajectories to transform the original distribution to the observed one.

In [26] the researchers propose a way to solve this by adding transport costs
to the loss function. This is useful because it reduces the number of time steps
required to solve 4.16. Furthermore, by encoding the underlying regularity of
optimal transport into the model, it is free from learning unwanted dynamics.
This, in turn, reduces the number of parameters required.

4.4.1 Deriving the loss function

As seen in section 2.1.2.2, a common loss function to measure the similarity of
two probability distributions is the Kullback-Leibler divergence. Let one start by
deriving a cost function for the CNF model.

Proposition 4.10 ([26]). Under the same conditions as in 4.12, minimising the Kullback-
Leibler divergence

DKL(p(0, z(0; x))∥pn(z(0; x)))

where z(t; x) represents the vector of all samples (the vector x is the terminal condition)
transported backwards through the ODE flow, and pn is the multivariate normal used as
terminal condition of the CNF model, is equivalent to the following optimisation problem

min
θ

Ep f (x)[C(T, θ)] (4.17)

where p f is the real observed probability and

C(T, θ) :=
d
2

log(2π) +
1
2
∥z(0; x)∥2 − log |det Dxz(0; x)|. (4.18)

Here, the θ variable refers to the fact that the flow z depends on the vector field’s parameters.

Proof. Given an empirical sample x ∈ R generated by the probability distribution
associated to density p f , one can consider the invertible C1 function that maps
x 7→ z(t; x) for t ∈ [0, T]. Then, using the change of variables theorem (4.1) one
has

p f (x) = p(t, z(t; x))|det Dxz(t; x)| (4.19)

where, like before, p(t, ·) is the probability density transformed by the ODE at
time t.
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Using 4.19 and the change of variables inside the integral,

DKL(p(0, x)∥pn(x)) =
∫

Rd
log
(

p(0, x)
pn(x)

)
p(0, x)dx

=
∫

Rd
log
(

p(0, z(0; x))
pn(z(0; x))

)
p(0, z(0; x))|det Dxz(0; x)|dx

=
∫

Rd
log
(

p f (x)
pn(z; x))|det Dxz(0; x)|

)
p f (x)dx (4.20)

Consider the formula for the multivariate probability density N (0, IdRd) is

pn(x) = (2π)−d/2 exp
(
−1

2
xTx

)
= (2π)−d/2 exp

(
−1

2
∥x∥2

)
Then, applying it on 4.20 and allowing for DKL := DKL(p(0, x)∥pn(x)) one has

DKL =
∫

Rd

[
log p f (x)− log |det Dz(0; x)|+ d

2
log(2π) +

1
2
∥x∥2

]
p f (x)dx

=
∫

Rd

[
log p f (x) + C(T, θ)

]
p f (x)dx

= Ep f

[
log p f (x) + C(T, θ)

]
Since log p f (x) is an unknown constant, minimising C(T, θ) is sufficient to

minimise the original Kullback-Leibler divergence.

Remark 4.11. At first it might seem strange that one is looking to minimise
DKL(p(0, z(0; x))∥pn(z(0; x))) instead of DKL(p(T, x)∥p f (x)) considering p f is the
objective density and p(T, ·) the model’s approximation. However, this is not pos-
sible because p f is not known.

The idea behind this is simple. If x is a vector of samples following p f and
it is transported backward in time using the learnt flow, at time t = 0 the points
should be distributed as the multivariate normal N (0, IdRd). Since it is known
that flowing backwards from the learnt distribution p(T, ·) results in pn, one can
assess the similarity between p(T, ·) and p f by how close the transported p(0, ·)
and pn are.

Then, the model can be trained by minimising 4.18 instead of maximum likeli-
hood.

4.4.2 Adding a transport cost

Now the objective is to make the trajectories be as short as possible. To do this,
one can add a regularisation factor to the optimisation problem. This factor will
be the transport cost that will penalise solutions with long trajectories.
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Consider the following transport cost:

L(T, θ) =
∫ T

0

1
2
∥ fθ(t, z(t))∥2dt (4.21)

In practice, L is computed using an ODE solver like one does with I(0, z(0)) in
4.16.

With this, the optimisation problem in 4.17 becomes

min
θ

Ep f (x)[C(T, θ) + L(T, θ)] (4.22)

In practice, L(T, θ) is computed when calculating the trajectories in 4.16. There-
fore, it is found using an ODE solver. In fact, the following IVP is added to the
original training problem:{

d
dt L(t, θ) = 1

2∥ fθ(t, z(t))∥2 ∀t ∈ [0, T];

L(T, θ) = 0
(4.23)



Chapter 5

Conclusion

This project has accomplished its purpose and is the culmination of months
of work and learning. Firstly, it has produced a comprehensive review of neu-
ral ODEs and their integration to the broader contexts of modern deep learning
and mathematics. It is the author’s opinion that the topic has been explained in
detail and regard for formalism, while also being accessible to a non-specialised
reader. Furthermore, chapter 4 addresses the objective to understand and explain
a discrete density estimation family of models, as well as their continuous-in-time
counterparts. Not only does this provide a survey of discrete and continuous NF,
but it also explains the necessary mathematical foundation they are built upon.

In addition to the theoretical investigation of the topic, the empirical experi-
ments and demonstrations illustrate the concepts discussed here and allow for a
smooth introduction to the models and their implementation. As their main goal,
they provide valuable insight into the behaviour and structure of neural ODEs
and CNFs. However, none of the results obtained are state-of-the art since the
examples had to be simplified due to a computational restriction of the hardware
available. Existing literature shows these kinds of model can achieve excellent
results in areas like density estimation [6, 12].

The main contributions lie in the development of a different proof for the con-
tinuous adjoint equations built upon variational equations, and the framing of the
instantaneous change of variables through fluid mechanics. This shows how most,
if not all, of the developments that popularised this field were not new, but redis-
coveries of techniques and results already known in other areas of knowledge.
In summary, this project represents a new approach compared to most existing
literature [6, 12, 19] in terms of its mathematical contextualisation.

Lastly, neural differential equations as a field is much richer than what could
be explored in this project. Future examination of the topic might include the
conjoining of neural networks and other kinds of differential equations, such as
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stochastic or controlled differential equations. Additionally, the application of
neural ODEs to time-series modelling, especially irregular time-series, is one of
the most promising uses, which has not been explored here.



Appendix A

Numerical Methods for ODEs

Assume one wants to approximate the solution to the following IVP:{
ẋ = f (t, x)

x(t0) = x0
(A.1)

Where f : I × Rd −→ Rd is a well-behaved function, I ⊆ R is an interval, and
x0 ∈ Rd is the initial condition.

In order to talk about the solution to the IVP one must insist on it being unique
at least in a certain interval. Therefore, at the very least, one needs for f to be
continuous, and Lipschitz with respect to x.

A.1 Euler’s method

Let ϕ be the actual solution to A.1 that one wishes to approximate. Euler’s
method consists on obtaining a set of approximations xn of ϕ(tn) for some equidis-
tant grid points tn ∈ [t0, tN ] ⊆ I with h := tN−t0

N = tn+1 − tn, 0 ≤ n < N.
Each point of the approximation is computed as follows:

xn+1 = xn + h f (tn, xn) (A.2)

This can be interpreted geometrically as approximating the solution at tn+1

by moving along the tangent line at xn. Alternatively, one can see it as a Taylor
expansion of first order centred at tn each step.

The astute reader might wonder about the study of stability so that the ap-
proximation does not fall too far from the actual solution. The critical question
is whether, as h → 0, the numerical solution tends to the exact solution ϕ. Luck-
ily for the purpose of this dissertation, if f is Lipschitz, then Euler’s method is
convergent (See [18]; Theorem 1.1).
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A.2 Explicit Runge-Kutta methods

Considering the same problem as in the previous section, these family of meth-
ods uses the slope at more points to extrapolate a better approximation. Then, an
explicit Runge-Kutta computes the next value xn+1 following these steps:

xn+1 = xn + h
s

∑
i=1

biki (A.3)

ki = f (tn + ci, xn + h
i−1

∑
j=1

aijk j) i = 1, . . . , s

Each method is defined by the number of stages s and the coefficients aij, bi, ci.
A Taylor series expansion gives certain conditions under which the method is
consistent (∑s

i=1 bi = 1) and of order p, i.e. the local truncation error is O(hp+1)

(this can be seen as each xn+1 being a Taylor expansion of order mathcalO(hp+1)).

To represent these coefficients, a device called the Butcher Tableau is normally
used. For the general method described above, it is as follows

0

c2 a21

c3 a31 a32
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Embedded methods are those that produce an estimate of the local truncation
error and use it to adapt the step size. This is done by using one method of order
p and one of order p − 1.

In this case, the lower-order step is given by

x∗n+1 = xn + h
s

∑
i=1

b∗i ki.
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Then, the resulting Butcher tableau is written as

0

c2 a21

c3 a31 a32
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

b∗1 b∗2 . . . b∗s−1 b∗s

And the error predicted by using both approximations is

en+1 = xn+1 − x∗n+1 = h
s

∑
i=1

(bi − b∗i )ki.

This error is then used to change the step size h. A common way to do it is using
user-defined absolute (atol) and relative (rtol) tolerance:

toln+1 = atol+ rtol ·max(|xn|, |xn+1|)

En+1 = norm
(

en+1

toln+1

)
hn+1 = hn

(
1

En+1

) 1
p+1

(A.4)

where En is the normalised error.

A.2.1 Dormand-Prince method

Dormand-Prince or Dopri is an embedded method part of the Runge-Kutta
family. It calculates forth and fifth order approximations and it is the default ODE
solver for MATLAB and GNU Octave. Also the one used for all experiments in
this dissertation.
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Its Butcher tableau is:

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

1 35
384 0 500

1113
125
192

−2187
6784

11
84

35
384 0 500

1113
125
192

−2187
6784

11
84 0

5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40



Appendix B

Experiments

In this appendix one can find brief explanations for the experiments conducted,
as well as images generated by them. The code can be found here1.

B.1 Generating MNIST digits

B.1.1 The dataset

Perhaps one of the most well-known datasets used in Machine Learning, the
MNIST database is a compilation of handwritten digits. Its name stands for Mod-
ified National Institute of Standards and Technology, which is the institution that cre-
ated the dataset as a combination of images of digits written by high school stu-
dents and employees of the United States Census Bureau.

Te database consists of 60,000 training images and 10,000 testing ones. The
images are black and white and have a resolution of 28 × 28 pixels. Moreover, the
digits are centred and labelled. An example of such images can be appreciated in
figure B.1.

B.1.2 Loss function

As explained in chapter 4, normalising flows, especially continuous normalis-
ing flows, can be trained via maximum likelihood. Equivalently, another measure
of loss is that of bits per dimension, which is the one used in [12] and some of the
experiments done in this dissertation.

More precisely, an image z of the MNIST dataset, it can be expressed as a a
28 × 28 matrix with integer values in [0, 256] representing shades of grey (0 being
black and 256 white). Let D := 28 · 28 be the dimension of the image (i.e. its total

1https://github.com/pbaldisa/neural-odes/tree/main
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Figure B.1: MNIST images. This shows 100 images from the dataset and their labels.

number of pixels). The space of all images with D pixels is enormous. In fact, the
images of the MNIST database lie in a small subspace of ([0, 256] ∩ Z)D and one
wants to learn how to sample from this subspace. The real distribution of images
in ([0, 256] ∩ Z)D is given by a probability density pd.

Then, given such a representation of an image z, one computes bits per pixel
as

b(z) = −
log2 pd(z)

D
. (B.1)

Another way to represent grey-scale images is to use real values in the range
[0, 1]. When working with CNF, one often uses this representation in the [0, 1]
range. Let p denote the probability density in such space and x an image in it. To
account for discretisation, one can obtain pd as

pd(z) =
p
( z

256

)
256

=
p(x)
256

,

where the change of variables z = 256x was used.
Finally, using this in B.1, one obtains

b(x) = −

(
log p(x)

D − log 256
)

log 2
.
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B.1.3 Methodology and results

In this experiment, a simplification of the model used by the paper FFJORD:
Free-form continuous dynamics for scalable reversible generative models [12] was
used. It is a RealNVP with multiple CNF layers. The images are down-sampled to
different scales, where a number of CNFs are applied to learn the corresponding
probability distribution.

The model was trained during 500 epochs (300 iterations each) on a single GPU
for around a week. The final validation error was 1.1573 bits per dimension. Some
samples generated but the trained model can be seen in figure B.2.

Figure B.2: Images generated by the trained model. The most “authentic” looking images
are highlighted in red.
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B.2 NF and CNF comparison

In this experiment, the performances of a NF and a CNF model were compared
using two toy datasets: a triangle-shaped uniform distribution in R2, and two
concentric circles, also in R2.

The CNF uses a hypernetwork to learn the parameters of a linear network
depending on time. Therefore, the neural ODE corresponds to a non-autonomous
equation. This hypernetwork is a 3-layer MLP with 32 hidden units per layer and
hiperbolic tangent activation.

For the triangle distribution, the NF uses a RealNVP architecture with 6 cou-
pling layers. Each of these layers has 2 networks: scale and translation. Both have
1 layer and 256 hidden units with LeakyReLU2 activation. On the other hand, for
the circles distribution 14 coupling layers with a depth of 4 each were used.

Table B.1 shows a summary of the performances of both models, and the num-
ber of parameters used.

Triangle distribution Circles distribution

Number of Parameters Loss Number of Parameters Loss

NF 804888 -1.2070 7404600 0.8107
CNF 15904 -1.2433 15904 0.8128

Table B.1: Comparison of Triangle and Circle Models in negative log-likelihood, the lower
the better.

These results can be appreciated in figures B.3 and B.4.

B.3 Training with and without adjoint comparison

This experiment is aimed at comparing the speed of training when using the
discrete-then-optimise and the optimise-then-discrete approach (informally, using
the adjoint). The same model was used in both cases, the only difference being
the usage of the continuous adjoint equations.

The model used was a neural ordinary differential equation with a single layer
MLP vector field, trained for 5000 iterations. In order to compare the results,
the training was repeated 5 times. Training with the adjoint method reported
an average time of 1552.62 seconds, while not using this yields a training time

2A modificaiton of the ReLU function: f (x) =

{
x ifx > 0,

0.01x otherwise.
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(a) Results for the NF RealNVP model.

(b) Results for the CNF model.

Figure B.3: Comparison of the results obtained by both models for the triangle distribu-
tion. The first image is the target distribution, the middle one shows a sample from the
model and the image on the right is model’s learnt density.

of merely 11.73 seconds. In both cases the average loss was around 7.8, which
suggests the method used did not have an effect on it.

B.4 Learning a linear ODE illustration

In this demonstration a neural ODE was used to learn a linear continuous
dynamical system. The goal is to illustrate how neural ODEs can be used in
simple ways to learn systems that are modelled by differential equations. This
shows great potential to learn physical systems which are normally described by
dynamical systems by simple observation (recollecting data to train the model).

A visualisation of this can be seen in figure B.5.
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(a) Results for the NF RealNVP model.

(b) Results for the CNF model.

Figure B.4: Comparison of the results obtained by both models for the circles distribution.
The first image is the target distribution, the middle one shows a sample from the model
and the image on the right is model’s learnt density.

B.5 Augmentation illustration

Neural ODEs cannot learn all possible functions. In fact, there are very simple
functions like h(x) = −x that cannot be learnt using a neural ODE. The goals of
this experiment are to demonstrate the following theorem empirically, and illus-
trate how to use an augmented ODE to accomplish the same task.

Proposition B.1. Let h : R → R be a continuous function such that{
h(−1) = 1

h(1) = −1

Then the flow of an ODE cannot represent h(x) and, consequently, a NODE cannot model
its behaviour.
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Figure B.5: Example of the dynamics learnt by the NODE. The two images on the left
represent the trajectory predicted by the model compared to the real trajectory. The image
on the right is the plot of the learnt vector field.

Proof. It is a consequence from the fact that continuous trajectories mapping −1
to 1 and 1 to −1 must cross each other, and the result that states that no ODE
trajectories can cross (proposition 2.23).

Only remains to prove that continuous trajectories mapping −1 to 1 and 1
to −1 must intersect. Suppose there exists a vector field f such that ϕ1 and ϕ2

are solutions to the IVPs {ẋ = f (t, x); x(0) = −1} and {ẋ = f (t, x); x(0) = 1}
respectively, and ϕ1(T) = 1, ϕ2(T) = −1.

As ϕ1 and ϕ2 are solutions to an IVP, they are continuous (proposition 2.33).
Therefore, if one defines ϕ(t) = ϕ2(t)− ϕ1(t), it is also continuous. Since ϕ(0) = 2
and ϕ(T) = −2, by Bolzano’s theorem, there exists some t̃ ∈ [0, T] where ϕ(t̃) = 0.
Consequently, ϕ1(t̃) = ϕ2(t̃) and their trajectories intersect.

In the code, the performances of an augmented and an unagumented neural
ODE are compared. Both models have the same architecture, except for the fact
the augmented model first increases the dimensionality of the input by adding a
zero (in other words, it performs the transformation x 7→ (x, 0)) and after running
it through the ODE, it reduces it back with a linear transformation R2 → R.
Figure B.6 shows the functions learnt by both models compared to the objective.
The models were trained with samples from the interval [−1, 1] and evaluated
between [−5, 5].
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(a) Unaugmented model. (b) Augmented model.

Figure B.6: Comparison of learnt functions by both models.
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