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Abstract. We completely describe the boundedness and compactness of Hankel oper-
ators with general symbols acting on Bergman spaces with exponential type weights.

1. Introduction

Hankel operators acting on Bergman spaces is an important area of research in the
theory of operators acting on spaces of analytic functions. Most of the theory of Hankel
operators on standard Bergman spaces is well understood, but not so much is known for
large Bergman spaces. The function and operator theory acting on large Bergman spaces
on the unit disc D of the complex plane C is just developing, and it is our purpose to
study big Hankel operators acting on such spaces. For a strictly subharmonic function ϕ
on D and 0 < p ≤ ∞, let Lpϕ consist of those Lebesgue measurable functions f : D → C
such that

‖f‖Lpϕ =

{∫
D
|f(z)e−ϕ(z)|pdA(z)

} 1
p

<∞, 0 < p <∞,

‖f‖L∞ϕ = sup
z∈D
|f(z)|e−ϕ(z) <∞, p =∞,

and consider the weighted Bergman space Apϕ = Lpϕ ∩H(D). Here H(D) denotes the set
of all holomorphic functions in D and dA is the Lebesgue area measure on C. We also
use Lp to stand for the usual Lebesgue space Lp(D, dA).

In this paper we are interested in Apϕ with weight function ϕ ∈ W0 which was first
introduced in [10]. To describe W0 precisely, let C0 be the family of all continuous
functions ρ on D satisfying lim|z|→1 ρ(z) = 0. Set

L =

{
ρ : D→ R : ρ ∈ C0, ‖ρ‖L = sup

z,w∈D,z 6=w

|ρ(z)− ρ(w)|
|z − w|

<∞
}
,

and let L0 consist of those ρ ∈ L with the property that for each ε > 0 there is a compact
subset E ⊂ D with

|ρ(z)− ρ(w)| ≤ ε|z − w|
whenever z, w ∈ D \ E. The class W0 is defined as

W0 =

{
ϕ ∈ C2(D) : ∆ϕ > 0, and ∃ρ ∈ L0 such that

1√
∆ϕ
' ρ

}
.

Here and afterward, the expression A ' B means there exist two positive constants c1

and c2 independent of the functions being considered such that c1A ≤ B ≤ c2A.
It is easy to verify that Apϕ is a Banach space when 1 ≤ p ≤ ∞, and A2

ϕ is a Hilbert
space. These spaces are also called large Bergman spaces because it usually contains all the
standard Bergman spaces. Examples of weighted Bergman spaces with ϕ ∈ W0 includes
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exponential Bergman spaces, double exponential weighted Bergman spaces, and also some
non-radial weighted Bergman spaces (see [10, 16]). With the Bergman reproducing kernel
K(·, ·) on A2

ϕ one can define the Bergman projection P as

P (g)(z) =

∫
D
g(ξ)K(z, ξ)e−2ϕ(ξ)dA(ξ).

For 1 ≤ p ≤ ∞, P is bounded from for Lpϕ to Apϕ, and P |Apϕ , the restriction on Apϕ, is just
the identity operator Id (see [10] for details).

Given some symbol function f , one defines the so-called Hankel operator Hf as

(1.1) Hf (g) = (Id− P )(fg).

From [10] we know that

Γ =

{
N∑
j=1

ajK(·, zj) : N ∈ N, aj ∈ C, zj ∈ D, for 1 ≤ j ≤ N,

}
is dense in Apϕ. Therefore, to let Hf make sense on Γ we naturally consider those f in the
symbol class S defined as

S = {f measurable on D : fg ∈ L1
ϕ for g ∈ Γ}

(from Theorem 3.3 in [10], ‖K(·, z)‖L∞ϕ < ∞ so that P (fg)(z) is well defined for f ∈ S,
g ∈ Γ and z ∈ D). The purpose of this work is, for 1 ≤ p, q < ∞, to characterize those
f ∈ S such that Hf is bounded (or compact) as an operator acting from Apϕ to Lqϕ. The
descriptions obtained are presented in section 4.

As in [10], we write BDK to be the weight class introduced by Borichev, Dhuez and
Kellay in [3]. We know BDK ⊂ W0 and W0 \ BDK 6= ∅. The Bergman space Apϕ with
ϕ ∈ BDK have been studied in [2, 3, 6, 7, 9, 16, 17].

Given Banach spaces X and Y , and some linear operator from X to Y , we use ‖ · ‖X
and ‖T‖X→Y respectively to stand for the norm on X, and the operator norm of T .
Throughout this paper, we use C to denote positive constants whose value may change
from line to line, but do not depend on functions being considered.

2. Some Preliminary

We are going to present some basic conclusions that will be used in the following
sections. Let ϕ ∈ W0 with 1√

∆ϕ
' ρ ∈ L0. We define a distance dρ(z, w) on D as

dρ(z, w) = inf
γ

∫ 1

0

|γ′(t)| dt

ρ(γ(t))
,

where the infimum is taken over all piecewise C1 curves γ : [0, 1]→ D with γ(0) = z and
γ(1) = w. It is mentioned in [5] that dρ(·, ·) is equivalent to the Bergman distance βϕ(·, ·)
induced by the Bergman metric 1

2
∂2 logK(z,z)

∂z∂z
dz ⊗ dz.

The estimates on the Bergman kernel play an important role in our analysis. The
following lemma comes from [10].

Lemma 2.1. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0. There are positive constants C1, C2, σ and

d such that

|K(z, w)| ≤ C1
eϕ(z)+ϕ(w)

ρ(z)ρ(w)
e−σdρ(z,w) for z, w ∈ D,
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and

|K(z, w)| ≥ C2
eϕ(z)eϕ(w)

ρ(z)ρ(w)
for dρ(z, w) ≤ d.

For Kz(·) = K(·, z) ∈ H(D) and 0 < p ≤ ∞, with Lemma 2.1 and an elementary
calculation as that of Corollary 3.2 in [10] we obtain

(2.1) ‖Kz‖Lpϕ ' eϕ(z)ρ(z)
2
p
−2.

Write kz,p = Kz
‖Kz‖Lpϕ

to denote the normalized reproducing kernels in Apϕ.

For z ∈ D and r > 0, set D(z, r) = {w : |w − z| < r} to be the Euclidean disc with
center z and radius r. Write

Bρ(z, r) = {w ∈ D : dρ(w, z) < r} and Dr(z) = D(z, rρ(z)).

The following lemma is from [10].

Lemma 2.2. Let ρ ∈ L be positive. Then there exists α > 0 with the following properties:

(i) There exist constants C1 and C2 such that

(2.2) C1ρ(w) ≤ ρ(z) ≤ C2ρ(w)

for z ∈ D and w ∈ Dα(z).
(ii) There exists a constant B > 0 such that

(2.3) Dr(z) ⊆ DBr(w), Dr(w) ⊆ DBr(z)

for w ∈ Dr(z) and 0 < r ≤ α.
(iii) There exist positive constants c1 and c2 such that

(2.4) Bρ(z, c1r) ⊆ Dr(z) ⊆ Bρ(z, c2r)

for z ∈ D and 0 < r ≤ α.

Moreover, if α is small enough, we can take C1 = 1/2; C2 = 2 in part (i) and B = 4 in
part (ii).

For our analysis we need a covering lemma which is almost identical to Lemma 3.1 of
[8].

Lemma 2.3. Let ρ ∈ L be positive. There are positive constants α and s, depending only
on ‖ρ‖L , such that for 0 < r ≤ α there exists a sequence {zj}∞j=1 ⊂ D satisfying

(i) D = ∪j≥1D
r(zj);

(ii) Dsr(zj) ∩Dsr(zm) = ∅ for m 6= j;
(iii) {D2α(zj)}∞j=1 is a covering of D of finite multiplicity.

A sequence {zj}∞j=1 satisfying (i)-(iii) of Lemma 2.3 will be called a (ρ, r)-lattice. Given
some (ρ, r)-lattice {zj}∞j=1, by the statement (iii) of Lemma 2.3 we have some integer N
so that

(2.5) 1 ≤
∞∑
j=1

χDBr(zj)(z) ≤ N for z ∈ D.

Here and afterward, χE is the characteristic function of a subset E of D. In what follows
we always take α > 0 as that in Lemma 2.2 and Lemma 2.3. The next lemma has already
been obtained for ϕ ∈ BDK in Arroussi’s dissertation [1].
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Lemma 2.4. Let ϕ ∈ W0, 0 < p ≤ ∞, and let {zj}∞j=1 be some (ρ, r)-lattice with
0 < r ≤ α. Then for λ = {λj}∞j=1 ∈ `p, we have

∑∞
j=1 λjkzj ,p ∈ Apϕ with the norm

estimate

(2.6)

∥∥∥∥∥
∞∑
j=1

λjkzj ,p

∥∥∥∥∥
Lpϕ

≤ C‖λ‖`p .

Proof. We treat the case 1 ≤ p ≤ ∞ first. Let q be the conjugate exponent of p. For
f ∈ H(D), by Lemma 3.3 in [10] we have

(2.7)
∣∣f(z)e−ϕ(z)

∣∣p ≤ C

ρ(z)2

∫
Dr(z)

∣∣f(w)e−ϕ(w)
∣∣p dA(w), z ∈ D.

Hence,
∞∑
j=1

∣∣Kz(zj)e
−ϕ(zj)

∣∣q ρ(zj)
2 ≤ C

∞∑
j=1

∫
Dr(zj)

∣∣Kz(ξ)e
−ϕ(ξ)

∣∣q dA(ξ)

≤ C‖Kz‖qLqϕ .

Then, for each N , Hölder’s inequality implies

N∑
j=1

∣∣λjkzj ,p(z)
∣∣ ≤ (

N∑
j=1

|λj|p
) 1

p
(

N∑
j=1

|kzj ,p(z)|q
) 1

q

≤ C ‖λ‖`p

(
∞∑
j=1

∣∣Kz(zj)e
−ϕ(zj)

∣∣q ρ(zj)
2

) 1
q

≤ C ‖λ‖`p ‖Kz‖Lqϕ <∞.

This implies that
∑∞

j=1 λjkzj ,p converges uniformly on compact subsets of D. Furthermore,
for any g ∈ Aqϕ,

∞∑
j=1

∣∣∣〈λjkzj ,p, g〉L2
ϕ

∣∣∣ =
∑
j=1

|λjg(zj)|
‖Kzj‖Lpϕ

≤ C

∞∑
j=1

|λj|
∣∣g(zj)e

−ϕ(zj)
∣∣ ρ(zj)

2− 2
p

≤ C ‖λ‖`p

(
∞∑
j=1

∫
Dr(zj)

∣∣g(ξ)e−ϕ(ξ)
∣∣q dA(ξ)

) 1
q

≤ C ‖λ‖`p ‖g‖Lqϕ .
Therefore, ∣∣∣∣∣∣

〈
∞∑
j=1

λjkzj ,p, g

〉
L2
ϕ

∣∣∣∣∣∣ ≤
∞∑
j=1

∣∣∣〈λjkzj ,p, g〉L2
ϕ

∣∣∣ ≤ C ‖λ‖`p ‖g‖Lqϕ .

Theorem 4.3 in [10] tells us that the dual of Apϕ is Aqϕ for 1 ≤ p < ∞ and the predual of

A∞ϕ is A1
ϕ. From these we obtain (2.6) for 1 ≤ p ≤ ∞.

For 0 < p ≤ 1, by (a+ b)p ≤ ap + bp for a, b > 0 we have∥∥∥∥∥
N∑
j=1

λjkzj ,p

∥∥∥∥∥
p

Lpϕ

≤
∞∑
j=1

|λj|p
∥∥kzj ,p∥∥pLpϕ = ‖λ‖p`p .
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In our analysis, we are in need to use the notion of Carleson measures. Here is the
definition.

Definition 2.5. Suppose µ is a positive Borel measure on D and 0 < p, q < ∞. If the
embedding Id : Apϕ → Lq(D, e−qϕdµ) is continuous (or compact) then µ is said to be a
q-Carleson measure (or a vanishing q-Carleson measure) for Apϕ.

As on the classical Bergman spaces we are going to use µ̂r to characterize Carleson
measures shown in the following proposition. For ϕ ∈ BDK, the weight class introduced
in [3], all conclusions in Lemma 2.6 except the estimate (2.9) were represented as Theorem
1 in [16] (although it is given there in a different form). Fortunately, the proof of that
in [16] works well in the present setting with only one adjustment that the test function
Fa,n,p(z) there should be replaced by

Fa(z) = ka,∞(z) ' ρ(a)2Ka(z)e−ϕ(a),

because Fa,n,p(z) is available only when ϕ ∈ BDK (particulary, ϕ must be radial), see [3]
and [16].

Given µ as above and 0 < r ≤ α, set

µ̂r(z) =
µ(Dr(z))

|Dr(z)|
,

where |Dr(z)| denotes the area measure of Dr(z). Notice that |Dr(z)| ' ρ(z)2.

Proposition 2.6. Let µ be a positive Borel measure on D.

(A) For 0 < p ≤ q <∞, µ is a q-Carleson measure for Apϕ if and only if

sup
z∈D

µ̂r(z)ρ(z)2(1− q
p) <∞

for some (or any) r ∈ (0, α]. And µ is a a vanishing q-Carleson measure for Apϕ
if and only if

lim
|z|→1

µ̂r(z)ρ(z)2(1− q
p) = 0

for some (or any) r ∈ (0, α].
(B) For 0 < q < p < ∞, µ is a q-Carleson measure for Apϕ if and only if µ is a

vanishing q-Carleson measure for Apϕ if and only if

µ̂r ∈ L
p
p−q

for some (or any) r ∈ (0, α].

When µ is a q-Carleson measure for Apϕ, there holds

(2.8) ‖Id‖Apϕ→Lq(D,e−qϕdµ) '
∥∥∥(µ̂r)

1
q ρ(z)2( 1

q
− 1
p)
∥∥∥
L∞

if 0 < p ≤ q <∞,

and

(2.9) ‖Id‖Apϕ→Lq(D,e−qϕdµ) '
∥∥∥(µ̂r)

1
q

∥∥∥
L

pq
p−q

if 0 < q < p <∞.

Proof. We only present the proof of the estimate (2.9). For this purpose we first prove

(2.10) ‖ (µ̂r)
1
q ‖

L
pq
p−q
≤ C‖Id‖Apϕ→Lq(D,e−qϕdµ).
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As in [16] we use an argument of Luecking (see [14]). Let {zj}∞j=1 be some (ρ, r)-lattice,
and take {φj}∞j=1 to be a sequence of Rademacher functions on [0, 1]. For λ = {λj}∞j=1 ∈ `p
consider the function Gt defined as

Gt(z) =
∞∑
j=1

λjφj(t)kzj ,p(z).

From Lemma 2.4 we know ‖Gt‖Apϕ ≤ C‖λ‖`p . If µ is a q-Carleson measure for Apϕ, then∫
D
|Gt(z)|qe−qϕ(z)dµ(z) ≤ ‖Id‖q

Apϕ→Lq(D,e−qϕdµ)
‖λ‖q`p .

Integrating with respect to t from 0 to 1, applying Fubini’s theorem, and invoking Khint-
chine’s inequality we obtain∫

D

(
∞∑
j=1

|λj|2|kzj ,p(z)|2
) q

2

e−qϕ(z)dµ(z) ≤ C‖Id‖q
Apϕ→Lq(D,e−qϕdµ)

‖λ‖q`p .

On the other hand, by Lemmas 2.1-2.3 and (2.7), one gets∫
D

(
∞∑
j=1

|λj|2|kzj ,p(z)|2
) q

2

e−qϕ(z)dµ(z)

≥ C
∞∑
k=1

∫
Dr(zk)

(
∞∑
j=1

|λj|2|kzj ,p(z)|2
) q

2

e−qϕ(z)dµ(z)

≥ C
∞∑
k=1

∫
Dr(zk)

|λk|q|kzk,p(z)|qe−qϕ(z)dµ(z)

≥ C
∞∑
k=1

|λk|qρ(zk)
2− 2q

p µ̂r(zk).

Therefore,

∞∑
k=1

|λj|q
(
ρ(zk)

2− 2q
p µ̂r(zk)

)
≤ C‖Id‖q

Apϕ→Lq(D,e−qϕdµ)
‖λ‖q`p .

By the duality between `p/q and `p/(p−q) we have

(2.11)

(
∞∑
k=1

ρ(zk)
2µ̂r(zk)

p
p−q

) p−q
p

≤ C‖Id‖q
Apϕ→Lq(D,e−qϕdµ)

.

Meanwhile, it is easy to verify that, for z ∈ Dr(zk),

ρ(zk)
2µ̂r(z)

p
p−q ≤ C

∑
j:Dr(zj)∩Dr(zk) 6=∅

ρ(zj)
2µ̂r(zj)

p
p−q .

Therefore,

‖µ̂r‖
p
p−q

L
p
p−q
≤

∞∑
k=1

∫
Dr(zk)

µ̂r(z)
p
p−q dA(z) ≤ C

∞∑
j=1

ρ(zj)
2µ̂r(zj)

p
p−q .

This and (2.11) imply (2.10).
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To prove the other direction, for f ∈ H(D) applying (2.7) and Hölder’s inequality to
obtain∫

D
|f(z)|qe−qϕ(z)dµ(z)

≤
∞∑
j=1

∫
Dr(zj)

|f(z)|qe−qϕ(z)dµ(z)

≤ C

∞∑
j=1

µ̂r(zj)ρ(zj)
2 sup
ξ∈Dr(zj)

|f(ξ)|qe−qϕ(ξ)

≤ C

(
∞∑
j=1

µ̂r(zj)
p
p−q ρ(zj)

2

) p−q
p
(
∞∑
j=1

ρ(zj)
2 sup
ξ∈Dr(zj)

|f(ξ)|pe−pϕ(ξ)

) q
p

≤ C

(
∞∑
j=1

µ̂r(zj)
p
p−q ρ(zj)

2

) p−q
p
(
∞∑
j=1

∫
D2r(zj)

|f(ζ)|pe−pϕ(ζ)dA(ζ)

) q
p

≤ C‖µ̂r‖
L

p
p−q
‖f‖q

Lpϕ
.

This means

‖Id‖Apϕ→Lq(D, e−qϕdµ) ≤ C‖µ̂r‖
1
q

L
p
p−q

= C
∥∥∥(µ̂r)

1
q

∥∥∥
L

pq
p−q

.

From this and (2.10) we obtain (2.9). �

3. Some ∂-estimates

By Lemma 2.1 and Lemma 2.2 (iii) we have some α > 0 such that Kz(ξ) = K(ξ, z)
does not vanish for ξ ∈ Dα(z). Given any r ∈ (0, α/3] and a (ρ, r)-lattice {zj}∞j=1, let
{ψj}∞j=1 be some partition of unity subordinate to the covering {Dr(zj)}∞j=1. Precisely,

ψj ∈ C∞(D), Suppψj ⊂ Dr(zj) and ψj ≥ 0,
∞∑
j=1

ψj = 1.

Set

G(z, ξ) =
1

(ξ − z)ρ(ξ)

∞∑
j=1

Kzj(z)ψj(ξ)

Kzj(ξ)
.

Define an integral opertor T as

T (f)(z) =

∫
D
G(z, ξ)f(ξ)dA(ξ).

Lemma 3.1. Let ϕ ∈ W0 and 1 ≤ p ≤ ∞. Then T is a bounded linear operator on Lpϕ.

Proof. We will use interpolation to prove this lemma. By (2.7), and by Lemma 2.1, 2.2
we have

∞∑
j=1

|Kzj(z)|ψj(ξ)
|Kzj(ξ)|

' ρ(ξ)2e−ϕ(zj)−ϕ(ξ)
∑

j∈{k:ξ∈Dr(zk)}

|Kz(zj)|ψj(ξ)

≤ Ce−ϕ(ξ)

∫
D2r(ξ)

|Kz(ζ)|e−ϕ(ζ)dA(ζ).

Write

Q(z, ξ) =
e−ϕ(ξ)

|ξ − z|ρ(ξ)

∫
D2r(ξ)

|Kζ(z)|e−ϕ(ζ)dA(ζ).(3.1)
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We have

|G(z, ξ)| ≤ C Q(z, ξ).(3.2)

For f measurable on D, set

T1(f)(z) =

∫
Dr(z)

Q(z, ξ)f(ξ)dA(ξ)

and

T2(f)(z) =

∫
D\Dr(z)

Q(z, ξ)f(ξ) dA(ξ).

To prove the conclusion of the lemma, from (3.2) we need only to prove that both T1 and
T2 are bounded on Lpϕ. For T1, by Lemma 2.2, we have

‖T1(f)‖L1
ϕ
≤

∫
D

(∫
D
χDr(z)(ξ)Q(z, ξ) |f(ξ)|dA(ξ)

)
e−ϕ(z)dA(z)

=

∫
D
|f(ξ)|

(∫
D
χDr(z)(ξ)Q(z, ξ)e−ϕ(z)dA(z)

)
dA(ξ)

≤
∫
D
|f(ξ)|

(∫
D2r(ξ)

Q(z, ξ)e−ϕ(z)dA(z)

)
dA(ξ).

Putting the expression of Q(z, ξ) inside and using (2.1), we obtain

‖T1(f)‖L1
ϕ
≤

∫
D
|f(ξ)|e−ϕ(ξ)

(∫
D2r(ξ)

e−ϕ(z)

|ξ − z|ρ(ξ)

∫
D2r(ξ)

|Kζ(z)|e−ϕ(ζ)dA(ζ)dA(z)

)
dA(ξ)

≤
∫
D
|f(ξ)|e−ϕ(ξ)

(∫
D2r(ξ)

e−ϕ(z)

|ξ − z|ρ(ξ)
‖Kz‖L1

ϕ
dA(z)

)
dA(ξ)

≤ C

∫
D
|f(ξ)|e−ϕ(ξ)dA(ξ)

∫
D2r(ξ)

1

|ξ − z|ρ(ξ)
dA(z).

Using polar coordinates, it is easy to see that∫
D2r(ξ)

1

|ξ − z|
dA(z) ≤ C ρ(ξ),

so that, we finally obtain

‖T1(f)‖L1
ϕ
≤ C

∫
D
|f(ξ)|e−ϕ(ξ)dA(ξ) = C‖f‖L1

ϕ
,

proving that T1 is bounded on L1
ϕ. Similarly,

‖T1(f)‖L∞ϕ = sup
z∈D

e−ϕ(z)

∫
Dr(z)

Q(z, ξ)|f(ξ)|dA(ξ)

≤ C‖f‖L∞ϕ sup
z∈D

∫
Dr(z)

1

|ξ − z|ρ(ξ)

∫
D2r(ξ)

|Kζ(z)|e−ϕ(z)−ϕ(ζ)dA(ζ) dA(ξ)

≤ C‖f‖L∞ϕ sup
z∈D

∫
Dr(z)

1

|ξ − z|ρ(ξ)
dA(ξ)

≤ C‖f‖L∞ϕ .

Set Meϕ to be the multiplier that Meϕ(f) = feϕ. It is easy to see Meϕ is an isometry from
Lp to Lpϕ with the inverse Me−ϕ . Therefore, Me−ϕT1Meϕ is bounded both on L1 and L∞.
By interpolation, Me−ϕT1Meϕ is bounded on Lp which implies T1 is bounded on Lpϕ.
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For T2, applying Lemma 2.1, we have

|T2f(z)| ≤
∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)

|ξ − z|ρ(ξ)

(∫
D2r(ξ)

|K(ζ, z)|e−ϕ(ζ)dA(ζ)

)
dA(ξ)

≤ C
eϕ(z)

ρ(z)

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)

|ξ − z|ρ(ξ)

(∫
D2r(ξ)

e−σdρ(ζ,z)dA(ζ)

ρ(ζ)

)
dA(ξ)

≤ C
eϕ(z)

ρ(z)2

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)

ρ(ξ)2

(∫
D2r(ξ)

e−σdρ(ζ,z)dA(ζ)

)
dA(ξ).

On the other hand, dρ(·, ·) is a distance on D. From Lemma 2.2, part (iii), there is some
constant C such that, for ζ ∈ D2r(ξ),

dρ(ξ, z) ≤ dρ(ξ, ζ) + dρ(ζ, z) ≤ C + dρ(ζ, z).

Thus, for ζ ∈ D2r(ξ), we have e−σdρ(ζ,z) ≤ C e−σdρ(ξ,z). It follows that

|T2f(z)| ≤ C
eϕ(z)

ρ(z)2

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)e−σdρ(ξ,z) dA(ξ).

With this estimate and [10, Corollary 3.1] we obtain

‖T2f‖L1
ϕ
≤ C

∫
D

(∫
D
|f(ξ)|e−ϕ(ξ)e−σdρ(ξ,z) dA(ξ)

)
dA(z)

ρ(z)2

= C

∫
D
|f(ξ)|e−ϕ(ξ)

(∫
D

e−σdρ(ξ,z)

ρ(z)2
dA(z)

)
dA(ξ)

≤ C‖f‖L1
ϕ
.

Similarly, for p =∞ we have

‖T2f‖L∞ϕ ≤ sup
z∈D

1

ρ(z)2

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)e−σdρ(ξ,z) dA(ξ).

≤ C‖f‖L∞ϕ sup
z∈D

∫
D

e−σdρ(ξ,z)

ρ(z)2
dA(ξ)

≤ C‖f‖L∞ϕ .

With the same approach for T1, by interpolation we know that T2 is bounded on Lpϕ as
well.

�

Set C∞c to be the family of all C∞ functions with compact support in D. Given f
Lebesgue measurable on D, for z = x+ iy one can define the weak derivative ∂f

∂x
and ∂f

∂y
,

see [4]. Set ∂f
∂z

= 1
2

{
∂f
∂x
− i∂f

∂y

}
and ∂f

∂z
= 1

2

{
∂f
∂x

+ i∂f
∂y

}
. Since we deal with functions of

one complex variable, we can use ∂f to stand for ∂f
∂z

for short.

Theorem 3.2. Let ϕ ∈ W0. Given f be measurable on D such that ρf ∈ L1
ϕ, set

u(z) =
∞∑
j=1

Kzj(z)

∫
D

ψj(ξ)

(ξ − z)Kzj(ξ)
f(ξ)dA(ξ).(3.3)

Then u solves the equation ∂u = f weakly in D. Furthermore, for 1 ≤ p < ∞ there is
some constant C > 0 such that

‖u‖Lpϕ ≤ C‖ρf‖Lpϕ .(3.4)
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Proof. For a function f with ρf ∈ Lpϕ, one has u(z) = T (fρ)(z). Then Lemma 3.1 implies
‖u‖Lpϕ ≤ C‖fρ‖Lpϕ which gives (3.4).

For f ∈ C1(D), Cauchy-Pompeiu formula tells us that (see Theorem 2.1.2 from [4])

∂

∂z

∫
D

f(ξ)

ξ − z
dA(ξ) = f(z) for z ∈ D.(3.5)

Then for φ ∈ C∞c (D) and f ∈ L1
loc, (3.5) and the fact that Kzj ∈ H(D) imply〈

Kzj(·)
∫
D

ψj(ξ)

(ξ − ·)Kzj(ξ)
f(ξ)dA(ξ),

∂φ

∂z

〉
L2

= −〈fψj, φ〉L2 .

Set

U(z) =
∞∑
j=1

|Kzj(z)|
∫
D

ψj(ξ)

|(ξ − z)Kzj(ξ)|
|f(ξ)|dA(ξ).

We have
|u(z)| ≤ U(z).

By the fact that Suppψj ⊂ Dr(zj), applying Lemma 2.1 and Corollary 3.1 from [10] to
get

U(z) ≤ C
∞∑
j=1

eϕ(zj)+ϕ(z)

ρ(zj)ρ(z)

∫
Dr(zj)

ψj(ξ)

|ξ − z|
|f(ξ)| ρ(zj)ρ(ξ)

eϕ(zj)+ϕ(ξ)
dA(ξ)

≤ C
∞∑
j=1

eϕ(z)

ρ(z)

∫
Dr(zj)

ψj(ξ)

|ξ − z|
|ρ(ξ)f(ξ)e−ϕ(ξ)|dA(ξ)

= C
∞∑
j=1

eϕ(z)

ρ(z)

∫
D

ψj(ξ)

|ξ − z|
|ρ(ξ)f(ξ)e−ϕ(ξ)|dA(ξ).

Write Ω = Suppφ which is compact. Then,∫
D
U(z)

∣∣∣∣∂φ∂z (z)

∣∣∣∣ dA(z)

≤ C

∫
Ω

∣∣∣∣∂φ∂z (z)

∣∣∣∣ dA(z)
∞∑
j=1

eϕ(z)

ρ(z)

∫
D

ψj(ξ)

|ξ − z|
|ρ(ξ)f(ξ)e−ϕ(ξ)|dA(ξ)

≤ C

∥∥∥∥eϕ(z)∂φ

ρ(z)

∥∥∥∥
L∞(Ω)

∫
D
|ρ(ξ)f(ξ)e−ϕ(ξ)|dA(ξ)

∞∑
j=1

ψj(ξ)

∫
Ω

1

|ξ − z|
dA(z)

≤ C

∥∥∥∥eϕ(z)∂φ

ρ(z)

∥∥∥∥
L∞(Ω)

∫
D
|ρ(ξ)f(ξ)e−ϕ(ξ)|

∞∑
j=1

ψj(ξ)dA(ξ)

≤ C

∥∥∥∥eϕ(z)∂φ

ρ(z)

∥∥∥∥
L∞(Ω)

∫
D
|ρ(ξ)f(ξ)e−ϕ(ξ)|dA(ξ)

<∞.
Hence, we can apply Fubini’s theorem to obtain∫

D
u(z)

∂φ

∂z
(z)dA(z) =

∫
D

(
∞∑
j=1

Kzj(z)

∫
D

ψj(ξ)

(ξ − z)Kzj(ξ)
f(ξ)dA(ξ)

)
∂φ

∂z
(z)dA(z)

=
∞∑
j=1

∫
D

(
Kzj(z)

∫
D

ψj(ξ)

(ξ − z)Kzj(ξ)
f(ξ)dA(ξ)

)
∂φ

∂z
(z)dA(z).



HANKEL OPERATORS ON EXPONENTIAL BERGMAN SPACES 11

Therefore, 〈
u,
∂φ

∂z

〉
L2

=
∞∑
j=1

〈
Kzj(·)

∫
D

ψj(ξ)

(ξ − ·)Kzj(ξ)
f(ξ)dA(ξ),

∂φ

∂z

〉
L2

= −
∞∑
j=1

〈fψj, φ〉L2

= −〈f, φ〉L2 .

With this we know ∂u
∂z

= f weakly.
�

4. Hankel operators from Apϕ to Lqϕ

Recall that

Γ =

{
N∑
j=1

ajKzj : N ∈ N, aj ∈ C, zj ∈ D, for 1 ≤ j ≤ N,

}
and

S = {f measurable on D : fg ∈ L1
ϕ for g ∈ Γ}.

Corollary 4.2 from [10] tells us that Γ is dense in Apϕ for all 0 < p <∞. Hence, for f ∈ S
the Hankel operator Hf is densely defined on Apϕ. Therefore, a function f ∈ S can be
used as the symbol to define a Hankel operator on Apϕ.

The following lemma sets up a bridge between Hankel operators and the solution to
∂-equation in Theorem 3.2.

Lemma 4.1. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and suppose that f ∈ S with ρ∂f ∈ S,

where the derivative is in the weak sense. Then for g ∈ Γ there holds

Hf (g) = u− P (u),(4.1)

where

u(z) =
∞∑
j=1

Kzj(z)

∫
D

ψj(ξ)

(ξ − z)Kzj(ξ)
g(ξ) ∂f(ξ) dA(ξ).(4.2)

Proof. Since ρ∂f ∈ S, for g ∈ Γ we have gρ∂f ∈ L1
ϕ. For u defined as in (4.2), Theorem

3.2 implies u ∈ Lpϕ with

‖u‖Lpϕ ≤ C‖g(ρ∂f)‖Lpϕ .(4.3)

Meanwhile, fg ∈ L1
ϕ for g ∈ Γ. Then, fg − u ∈ L1

ϕ, and Theorem 3.2 tells us that

∂(fg − u) = g∂f − ∂u = 0, showing that fg − u ∈ A1
ϕ. Since P |A1

ϕ
= Id, we have

P (fg − u) = fg − u.

Therefore,

Hf (g)− (u− P (u)) = fg − P (fg)− (u− P (u)) = (fg − u)− P (fg − u) = 0,

from which (4.1) follows. �

To characterize the boundedness (or compactness) of Hankel operators Hf , we need an
auxiliary function Gq,r(f) which is an analogue of the one first introduced in [13], when



12 ZHANGJIAN HU AND JORDI PAU

Luecking studied Hankel operators on the standard Bergman space Ap. Let q ≥ 1 and
0 < r ≤ α. For f ∈ Lqloc we define Gq,r(f) to be

Gq,r(f)(z) = inf

{(
1

|Dr(z)|

∫
Dr(z)

|f − h|q dA
) 1

q

: h ∈ H(Dr(z))

}
, z ∈ D.

For f ∈ L1
loc(D), 1 ≤ q <∞ and 0 < r ≤ α, write

Mq,r(f)(z) =

{
1

|Dr(z)|

∫
Dr(z)

|f |q dA
} 1

q

to be the q-th mean of |f | over Dr(z).
Our analysis on the Hankel operator going from Apϕ to Lqϕ will be carried out in two

cases: 1 ≤ p ≤ q <∞ and 1 ≤ q < p <∞.

Theorem 4.2. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and let 1 ≤ p ≤ q <∞. Set s = 1

q
− 1

p
.

Then for f ∈ S, the following statements are equivalent:

(A) Hf : Apϕ → Lqϕ is bounded;

(B) For some (or any) 0 < r ≤ α, ρ2sGq,r(f) ∈ L∞;
(C) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

ρ2s+1|∂f1| ∈ L∞,(4.4)

and f2 has the property that, for some (or any) 0 < r ≤ α,

ρ2sMq,r(f2) ∈ L∞.(4.5)

Furthermore, for 0 < r ≤ α,

‖Hf‖Apϕ→Lqϕ '
∥∥ρ2sGq,r(f)

∥∥
L∞

.(4.6)

Proof. (A)⇒ (B). For α as in Lemma 2.2, Lemma 2.1 tells us that there is some constant
C > 0 such that

inf
ξ∈Dα(z)

|kz,p(ξ)| ≥ Cρ(z)−
2
p eϕ(ξ) > 0 for z ∈ D.

Then, 1
kz,p

P (fkz,p) ∈ H(Dr(z)), and

‖Hf (kz,p)‖qLqϕ =

∫
D

∣∣fkz,p(ξ)− P (fkz,p)(ξ)
∣∣q e−qϕ(ξ) dA(ξ)

≥
∫
Dr(z)

|kz,p(ξ)|q
∣∣∣∣f(ξ)− 1

kz,p(ξ)
P (fkz,p)(ξ)

∣∣∣∣q e−qϕ(ξ) dA(ξ)

≥ Cρ(z)−
2q
p

∫
Dr(z)

∣∣∣∣f(ξ)− 1

kz,p(ξ)
P (fkz,p)(ξ)

∣∣∣∣q dA(ξ)

≥ C
{
ρ(z)2sGq,r(f)(z)

}q
.

(4.7)

On the other hand, ‖Hf (kz,p)‖qLqϕ ≤ ‖Hf‖qApϕ→Lqϕ ‖kz,p‖
q
Lpϕ

= ‖Hf‖qApϕ→Lqϕ . Therefore, we

have

ρ(z)2sGq,r(f)(z) ≤ C‖Hf‖Apϕ→Lqϕ for all z ∈ D.(4.8)

From this, the statement (B) follows.

(B) ⇒ (C). Suppose ‖ρ2sGq,r(f)‖L∞ < ∞ for some r ∈ (0, α]. Fix a (ρ, r
2
)-lattice

{zj}∞j=1, and take {ψj}∞j=1 to be a partition of the unity subordinate to {D r
2 (zj)}∞j=1,
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satisfying ρ(zj)|∂ψj| ≤ C for j = 1, 2, · · · . With a normal family argument we may find
some function hj ∈ H(Dr(zj)) such that

1

|Dr(zj)|

∫
Dr(zj)

|f − hj|q dA = Gq
q,r(f)(zj), j = 1, 2, · · · .(4.9)

Set

f1(z) =
∑∞

j=1 hj(z)ψj(z) ∈ C∞(D)

and f2 = f − f1. Define Jz = {j : z ∈ Dr(zj)}. Then, ρ(zj) ' ρ(z) for j ∈ Jz, and

|Jz| :=
∞∑
j=1

χDr(zj)(z) ≤ C.(4.10)

As that on pages 254-255 in [14], for z ∈ D there holds

ρ(z)
∣∣∂f1(z)

∣∣ ≤ C
∑
j∈Jz

Gq,r(f)(zj).(4.11)

This implies

ρ(z)2s+1|∂f1(z)| ≤ C||ρ2sGq,r(f)||L∞ for z ∈ D.(4.12)

On the other hand, f2(z) =
∑∞

j=1(f(z)− hj(z))ψj(z), and by (2.5) only at most N terms
are not zero in this summation. Hölder’s inequality implies

|f2(z)|q ≤ C
∞∑
j=1

|f(z)− hj(z)|qψj(z).

Then, by (4.9),

Mq,r(f2)(z) ≤C
∞∑
j=1

(
1

|Dr(z)|

∫
Dr(z)

|(f − hj)|q ψjdA
) 1

q

≤C
∞∑
j=1

(
1

|Dr(z)|

∫
Dr(z)∩Dr/2(zj)

|f − hj|q dA

) 1
q

≤C
∞∑
j∈Jz

Gq,r(f)(zj).

(4.13)

Hence,

ρ(z)2sMq,r(f2)(z) ≤ C
∥∥ρ2sGq,r(f)

∥∥
L∞

for z ∈ D.(4.14)

Something more, the condition (4.5) is independent of r ∈ (0, α]. We reach the condition
(C) from (4.12) and (4.14).

(C)⇒ (A). If we set dµ = |f2|qdA, then

µ̂r(z)
1
q = Mq,r(f2)(z).(4.15)

The assumption (4.5) and Proposition 2.6, imply that µ is a q-Carleson measure for
Apϕ with ‖Id‖Apϕ→Lq(D,e−qϕdµ) ' ‖ρ2sMq,r(f2)‖L∞ . By the boundedness of the Bergman
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projection on Lqϕ,

‖Hf2g‖Lqϕ ≤ C‖f2g‖Lqϕ

= C

(∫
D
|g|q e−qϕdµ

) 1
q

≤ C ‖Id‖Apϕ→Lq(D,e−qϕdµ) ‖g‖Lpϕ
≤ C

∥∥ρ2sMq,r(f2)
∥∥
L∞
‖g‖Lpϕ .

(4.16)

Next, we suppose that f1 satisfies (4.4). With the fact that s ≤ 0 and ρ2s+1∂f ∈ L∞,
we know ρ|∂f1| ∈ L∞. Now, for g ∈ Γ, take u as in (4.1) so that

u(z) =
∞∑
j=1

Kzj(z)

∫
D

ψj(ξ)

(ξ − z)Kzj(ξ)
g(ξ) ∂f1(ξ) dA(ξ).

Theorem 3.2 and Lemma 4.1 tell us

Hf1(g) = u− P (u) and ‖u‖Lqϕ ≤ C‖g(ρ∂f1)‖Lqϕ .
From the boundedness of P on Lqϕ we obtain

‖Hf1g‖Lqϕ ≤ (1 + ‖P‖Lqϕ→Lqϕ)‖u‖Lqϕ ≤ C
∥∥g(ρ∂f1)

∥∥
Lqϕ
.(4.17)

Meanwhile, if we consider the measure dν =
[
ρ|∂f1|

]q
dA, it is easy to see that

ν̂r(z)
1
q ≤ C sup

ξ∈Dr(z)
ρ(ξ)|∂f1(ξ)|.(4.18)

Hence, ρ(z)2sν̂r(z)
1
q ≤ C

∥∥ρ2s+1
∣∣∂f1

∣∣∥∥
L∞

. It follows from (4.4) and Proposition 2.6 that

ν is a q-Carleson measure for Apϕ with ‖Id‖Apϕ→Lq(D,e−qϕdν) '
∥∥ρ2s+1

∣∣∂f1

∣∣∥∥
L∞

. Then

‖g(ρ∂f1)‖Lqϕ ≤ C
∥∥ρ2s+1

∣∣∂f1

∣∣∥∥
L∞
· ‖g‖Lpϕ .

Hence,
‖Hf1g‖Lqϕ ≤ C

∥∥ρ2s+1
∣∣∂f1

∣∣∥∥
L∞
· ‖g‖Lpϕ .

With this and (4.16), we obtain

‖Hf‖Apϕ→Lqϕ ≤ C
{∥∥ρ2s+1|∂f1|

∥∥
L∞

+
∥∥ρ2sMq,r(f2)

∥∥
L∞

}
.(4.19)

This gives the implication (C) ⇒ (A) finishing the proof of the equivalence among (A),
(B) and (C). The norm estimates (4.6) come from (4.8), (4.12), (4.14) and (4.19). �

The next result describes the compactness of Hf when p ≤ q. For q ≥ 1, we understand
that Hf : Apϕ → Lqϕ is compact if and only if whenever {gm}∞m=1 is a bounded sequence in
Apϕ converging to zero on compact subsets of D, it follows that ‖Hfgm‖Lqϕ tends to zero.

Theorem 4.3. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and let 1 ≤ p ≤ q <∞. Set s = 1

q
− 1

p
.

Then for f ∈ S, the following statements are equivalent:

(A) Hf : Apϕ → Lqϕ is compact;

(B) For some (or any) 0 < r ≤ α, lim|z|→1 ρ
2sGq,r(f)(z) = 0.

(C) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

lim
|z|→1

ρ(z)2s+1|∂f1(z)| = 0,(4.20)

and

lim
|z|→1

ρ(z)2sMq,r(f2)(z) = 0(4.21)

for some (or any) 0 < r ≤ α.
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Proof. Let Hf be compact from Apϕ to Lqϕ. It is easy to see that {kz,p : z ∈ D} tends to 0
weakly in Apϕ as |z| → 1. Then, for 0 < r ≤ α fixed, from (4.7) we have

ρ(z)2sGq,r(f)(z) ≤ C ‖Hf (kz,p)‖Lqϕ → 0

as |z| → 1. So, (A) implies (B).
Suppose now that (B) is holds for some r ∈ (0, α]. From (4.11) and (4.13) we know

ρ(z)2s+1
∣∣∂f1(z)

∣∣ ≤ C
∑
j∈Jz

ρ(zj)
2sGq,r(f)(zj)

and
ρ(z)2sMq,r(f2)(z) ≤ C

∑
j∈Jz

ρ(zj)
2sGq,r(f)(zj).

From these estimates, the statement (C) follows easily.
Finally, we prove the implication (C) ⇒ (A). As in the proof of Theorem 4.2, we know

that both dµ = |f2|qdA and dν =
[
ρ|∂f1|

]q
dA are vanishing q-Carleson measures for Apϕ.

With (2.7) we know that the unit ball of Apϕ is a normal family. Then, for any bounded
sequence {gm} in Apϕ converging to zero uniformly on compact subsets of D, we have

‖Hf2(gm)‖Lqϕ ≤ C

(∫
D
|f2|q|gm|qe−qϕdA

) 1
q

→ 0,

and, by (4.17),

‖Hf1(gm)‖Lqϕ ≤ C
∥∥(ρ|∂f1|

)
gm
∥∥
Lqϕ
→ 0.

Then, limm→∞ ‖Hf (gm)‖Lqϕ = 0, and this tells us that Hf is compact from Apϕ to Lqϕ. �

Next, we proceed to characterize the boundedness and compactness in the case that
1 ≤ q < p <∞.

Theorem 4.4. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and let 1 ≤ q < p <∞. Set s = 1

q
− 1

p
.

Then for f ∈ S, the following statements are equivalent.

(A) Hf : Apϕ → Lqϕ is bounded.
(B) Hf : Apϕ → Lqϕ is compact.

(C) For some (or any) 0 < r ≤ α
2

, Gq,r(f)(z) ∈ L 1
s .

(D) f admits a decomposition f = f1 + f2, where

f1 ∈ C1(D), ρ|∂f1| ∈ L
1
s , and Mq,r(f2) ∈ L

1
s(4.22)

for some (or any) 0 < r ≤ α.

Furthermore, for 0 < r ≤ α
2

fixed,

‖Hf‖Apϕ→Lqϕ ' ‖Gq,r(f)‖
L

1
s
.(4.23)

Proof. (B)⇒(A) is trivial. We need only to prove the implications (A)⇒(C), (C)⇒(D)
and (D)⇒(B).

(A)⇒(C) . For r ∈ (0, α] fixed, take {zj}∞j=1 to be some (r/4, ρ)-lattice. By Lemma 2.4,

for λ = {λj} ∈ `p, we have
∥∥∥∑∞j=1 λjkzj ,p

∥∥∥
Lpϕ
≤ C ‖λ‖`p . As in [14] again, take {φj}∞j=1 to

be a sequence of Rademacher functions in [0, 1]. From the boundedness of Hf , we have∥∥∥∥∥Hf

(
∞∑
j=1

λjφj(t)kzj ,p

)∥∥∥∥∥
Lqϕ

≤ ‖Hf‖Apϕ→Lqϕ ·

∥∥∥∥∥
∞∑
j=1

λjφj(t)kzj ,p

∥∥∥∥∥
Lpϕ

≤ C‖Hf‖Apϕ→Lqϕ ‖λ‖`p .



16 ZHANGJIAN HU AND JORDI PAU

Meanwhile, by Khintchine’s inequality,∫ 1

0

∥∥∥∥∥Hf

(
∞∑
j=1

λjφj(t)kzj ,p

)∥∥∥∥∥
q

Lqϕ

dt

=

∫
D
e−qϕ(z)dA(z)

∫ 1

0

∣∣∣∣∣
∞∑
j=1

λjφj(t)Hf (kzj ,p)(z)

∣∣∣∣∣
q

dt

'
∫
D

(
∞∑
j=1

|λj|2|Hf (kzj ,p)(z)|2
) q

2

e−qϕ(z)dA(z).

This, together with the previous estimate, gives∫
D

(
∞∑
j=1

|λj|2|Hf (kzj ,p)(z)|2
) q

2

e−qϕ(z)dA(z) ≤ C ‖Hf‖qApϕ→Lqϕ ‖λ‖
q
`p .

On the other hand,∫
D

(
∞∑
j=1

|λj|2|Hf (kzj ,p)(z)|2
) q

2

e−qϕ(z)dA(z)

≥ C
∞∑
k=1

∫
Dr(zk)

(|λk||Hf (kzk,p)(z)|)q e−qϕ(z)dA(z)

= C
∞∑
k=1

|λk|q
∫
Dr(zk)

|f(z)kzk,p(z)− P (fkzk,p)(z)|qe−qϕ(z)dA(z).

As in (4.7),∫
Dr(zk)

|f(z)kzk,p(z)− P (fkzk,p)(z)|qe−qϕ(z)dA(z) ≥ C
{
ρ(zk)

2sGq,r(f)(zk)
}q
.

Therefore, joining the previous estimates, we obtain
∞∑
k=1

|λk|q
{
ρ(zk)

2sGq,r(f)(zk)
}q ≤ C‖Hf‖qApϕ→Lqϕ‖{|λj|

q}‖`p/q .

By the duality between `p/q and `p/(p−q), we have
∞∑
k=1

[Gq,r(f)(zk)]
pq
p−q ρ(zk)

2 =
∞∑
k=1

[
ρ(zk)

2sGq,r(f)(zk)
] pq
p−q ≤ C‖Hf‖

pq
p−q
Apϕ→Lqϕ

.

This can be viewed as the discrete version of the statement (C). Since

Gq, r
2
(f)(w) ≤ CGq,r(f)(z) for w ∈ D

r
2 (z),(4.24)

we have ∫
D
Gq, r

2
(f)

pq
p−q dA ≤

∞∑
k=1

∫
D
r
2 (zk)

Gq, r
2
(f)

pq
p−q (u)dA(u)

≤ C
∞∑
k=1

∣∣D r
2 (zk)

∣∣Gq,r(f)
pq
p−q (zk)

≤ C‖Hf‖
pq
p−q
Apϕ→Lqϕ

.

(4.25)

This gives the statement (C).
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(C)⇒(D). As in the proof of Theorem 4.2, set f1 =
∑∞

j=1 hj ψj ∈ C∞(D), and f2 =

f − f1. By (4.24),

Gq, r
2
(f)

pq
p−q (zj) ≤ C

1

|D r
2 (zj) |

∫
D
r
2 (zj)

Gq,r(f)
pq
p−q (u)dA(u).

From (4.11) we have

[
ρ(z)

∣∣∂f1(z)
∣∣] pq

p−q ≤ C
∑
j∈Jz

Gq, r
2
(f)

pq
p−q (zj)

≤ C

|Dr(z)|
∑
j∈Jz

∫
Dr(zj)

Gq,r(f)
pq
p−q (u)dA(u)

≤ C

|Dr(z)|

∫
D2r(z)

Gq,r(f)
pq
p−q (u)dA(u).

Integrating both sides on D against the measure dA, and applying Fubini’s theorem, one
gets

∫
D

[
ρ(z)

∣∣∂f1(z)
∣∣] pq

p−q dA(z)

≤ C

∫
D

1

|Dr(z)|
dA(z)

∫
D
χD2r(z)(u)Gq,r(f)

pq
p−q (u)dA(u)

≤ C

∫
D
Gq,r(f)

pq
p−q (u)dA(u).

(4.26)

Notice that 1
s
> 1. By (4.13) and (4.24) we obtain

Mq,r(f2)(z) ≤ C

∞∑
j=1

(
1

|Dr(z)|

∫
Dr(z)∩Dr/2(zj)

|(f − hj)|q dA

) 1
q

≤ C
1

|Dr(z)|

∫
D2r(z)

Gq,2r(f)(ξ)dA(ξ)

≤ C

{
1

|Dr(z)|

∫
D2r(z)

G
1
s
q,2r(f)(ξ)dA(ξ)

}s
.

This and Fubini’s theorem turn out

‖Mq,r(f2)‖
L

1
s
≤ C ‖Gq,2r(f)‖

L
1
s
.(4.27)

And it is trivial that the condition Mq,r(f2) ∈ L 1
s is independent of r. We see that (4.26)

and (4.27) give the statement (D).
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Now we prove (D)⇒(B). First, we claim that both f1 and ρ|∂f1| ∈ S. In fact, apply
Lemma 3.3 from [10] to get∫

D
|f2(ξ)Kz(ξ)|e−ϕ(ξ)dA(ξ)

≤ C

∫
D
|f2(ξ)|

(
1

ρ(ξ)2

∫
Dr/2(ξ)

|Kz(ζ)|e−ϕ(ζ)dA(ζ)

)
dA(ξ)

= C

∫
D
|Kz(ζ)|e−ϕ(ζ)

∫
D
χDr/2(ξ)(ζ)|f2(ξ)| 1

ρ(ξ)2
dA(ξ) dA(ζ)

≤ C

∫
D
M1,r(|f2|)(ζ)|Kz(ζ)|e−ϕ(ζ)dA(ζ)

≤ C

∫
D
Mq,r(|f2|)(ζ)|Kz(ζ)|e−ϕ(ζ)dA(ζ).

By Hölder’s inequality with exponent 1
s

= pq
p−q and its conjugate exponent denoted by t,

notice also that ‖Kz‖Ltϕ <∞,∫
D
|f2(ξ)Kz(ξ)|e−ϕ(ξ)dA(ξ) ≤ C ‖Mq,r(f2)‖

L
1
s
· ‖Kz‖Ltϕ <∞.

This implies f2 ∈ S, and f1 = f − f2 ∈ S. For ρ|∂f1|, notice that ρ|∂f1| ∈ L
1
s with

1
s

= pq
p−q > 1. Then∫
D
ρ(ξ)|∂f1(ξ)Kz(ξ)|e−ϕ(ξ)dA(ξ) ≤

{∫
D

∣∣ρ(ξ)∂f1(ξ)
∣∣ 1s dA(ξ)

}s
‖Kz‖Ltϕ <∞.

It follows that ρ|∂f1| ∈ S.

As before, write dν =
[
ρ|∂f1|

]q
dA. Applying Hölder’s inequality with exponent p

p−q
and its conjugate p/q, we get

‖ν̂r‖
p
p−q

L
p
p−q

=

∫
D

{∫
Dr(ξ)

[
ρ|∂f1(ζ)|

]q
dA(ζ)

|Dr(ξ)|

} p
p−q

dA(ξ)

≤ C

∫
D

{∫
Dr(ξ)

[
ρ(ζ)|∂f1(ζ)|

] pq
p−q dA(ζ)

}
1

ρ(ξ)2
dA(ξ)

' C

∫
D

[
ρ(ζ)|∂f1(ζ)|

] 1
s dA(ζ) <∞.

Lemma 2.6 tells us that ν is a q-Carleson measure for Apϕ. Equivalently, the embedding
Id : Apϕ ↪→ Lq(D, e−qϕdν) is compact with

‖Id‖q
Apϕ↪→Lq(D,e−qϕdν)

≤ C ‖ν̂r‖
L

p
p−q
≤ C‖ρ|∂f1|‖q

L
1
s
<∞.

Meanwhile, since both f1 and ρ|∂f1| are in S, for g ∈ Γ, as in (4.17), we have

‖Hf1g‖Lqϕ ≤ C‖g(ρ∂f1)‖Lqϕ = C‖Id(g)‖Lq(D,e−qϕdν).

Hence Hf1 is bounded from Apϕ to Lqϕ with the norm estimate

‖Hf1‖Apϕ→Lqϕ ≤ C‖ρ|∂f1|‖L 1
s
.(4.28)

We claim that Hf1 is compact as well. To see this, let {gm}∞m=1 be any bounded sequence
in Apϕ with the property that limm→∞ supz∈K |gm(z)| = 0 on any compact subset K ⊂ D.
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We are going to prove Hf1(gm)→ 0 in Lqϕ as m→∞. For this purpose, for each m pick

some hm ∈ Γ so that ‖gm − hm‖Lpϕ <
1
m

. Set

um(z) =
∞∑
j=1

Kzj(z)

∫
D

φj(ξ)

(ξ − z)Kzj(ξ)
hm(ξ)∂f1(ξ)dA(ξ).

Then, ∂um = hm∂f1 and

‖um‖Lqϕ ≤ C‖hm(ρ∂f1)‖Lqϕ = C‖hm‖Lq(D, e−qϕdν).

Notice that Id : Apϕ ↪→ Lq(D, e−qϕdν) is compact, so limm→∞ ‖hm‖Lq(D, e−qϕdν) = 0, show-
ing that

lim
m→∞

‖um‖Lqϕ = 0.

Then, as Hf1(hm) = um − P (um), we get

lim
m→∞

‖Hf1(hm)‖Lqϕ ≤ (1 + ‖P‖Lqϕ→Lqϕ) lim
m→∞

‖um‖Lqϕ = 0.(4.29)

On the other hand, by (4.28),

lim
m→∞

‖Hf1(gm − hm)‖Lqϕ ≤ ‖Hf1‖Apϕ→Lqϕ lim
m→∞

‖gm − hm‖Lpϕ = 0.

This, together with (4.29), implies

lim
m→∞

‖Hf1(gm)‖Lqϕ ≤ lim
m→∞

{
‖Hf1(gm − hm)‖Lqϕ + ‖Hf1(hm)‖Lqϕ

}
= 0,

which gives the compactness of Hf1 from Apϕ to Lqϕ.
Finally, we consider the compactness of Hf2 . Similarly, dµ = |f2|qdA is a vanishing

q-Carleson measure for Apϕ. Equivalently, Id : Apϕ → Lq(D, e−qϕdµ) is compact. By

‖Hf2(g)‖Lqϕ ≤ C‖f2g‖Lqϕ = C‖Id(g)‖Lq(D, e−qϕdµ),(4.30)

with the similar approach for Hf1 above we know Hf2 is compact from Apϕ to Lqϕ as well.
This finishes the proof of implication (D)⇒(B).

Furthermore, from (4.28), (4.30) and (4.26), (4.27) we have

‖Hf‖Apϕ→Lqϕ ≤ C inf{‖Hf1‖Apϕ→Lqϕ + ‖Hf2‖Apϕ→Lqϕ} ≤ C‖Gq,r(f)‖
L

1
s
,

where the ”inf” is taken over all decomposition f = f1 + f2 as (4.22). This and (4.25)
imply (4.23). The proof is completed. �

5. Simultaneously boundedness of Hf and Hf

For f ∈ Lqloc(D) with 1 ≤ q <∞ and 0 < r < α, set fDr(z) = 1
|Dr(z)|

∫
Dr(z)

fdA,

MOq,r(f)(z) =

{
1

|Dr(z)|

∫
Dr(z)

∣∣f − fDr(z)∣∣q dA} 1
q

and
Oscr(f)(z) = sup

ξ∈B(z,r)

|f(ξ)− f(z)|.

Lemma 5.1. Let 1 ≤ q <∞, 0 < s ≤ ∞, −∞ < γ <∞, and let f ∈ Lqloc(D). Then the
following statements are equivalent:

(A) For some (or any) 0 < r ≤ α, both ργGq,r(f) and ργGq,r(f) are in Ls;
(B) For some (or any) 0 < r ≤ α, one has ργMOq,r(f) ∈ Ls;
(C) f = f1 + f2 with f1 ∈ C(D), and for some (or any) 0 < r ≤ α

ργOscr(f1) ∈ Ls and ργMq,r(f2) ∈ Ls.(5.1)
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Furthermore,

‖ργGq,r(f)‖Ls +
∥∥ργGq,r(f)

∥∥
Ls
' ‖ργMOq,r(f)‖Ls .(5.2)

Proof. By definition, we know

(5.3) Gq,r(f)(z) ≤MOq,r(f)(z) and Gq,r(f)(z) ≤MOq,r(f)(z)

which gives the implication (A)⇒ (B).
Similar to the estimate (2.7) in [11], for fixed r > 0, we have some constant C indepen-

dent of z such that
‖u− u(z)‖Lq(Dr(z),dA) ≤ C‖v‖Lq(Dr(z),dA)

for all real valued functions u and v so that u + iv ∈ H(Dr(z)). From this, as done in
Proposition 2.5 in [11], we know

(5.4) MOq,r(f)(z) ≤ C
{
Gq,r(f)(z) +Gq,r(f)(z)

}
.

This means that (B) implies (A).
Suppose f = f1 + f2 is as in statement (C). From

MOq,r(f1)(z) =

{
1

|Dr(z)|

∫
Dr(z)

∣∣∣∣ 1

|Dr(z)|

∫
Dr(z)

(f1(ξ)− f1(ζ)) dA(ζ)

∣∣∣∣q dA(ξ)

} 1
q

≤ 2Oscr(f1)(z)

and MOq,r(f2)(z) ≤ 2Mq,r(f2)(z), we know that f satisfies (A) .
To prove the implication (B)⇒ (C) we set f1(z) = fDr(z) and f2 = f − f1. As in the

proof of Lemma 8.3 in [18] we have

Oscr/2(f1)(z) ≤ CMOq,r(f)(z) and Mq,r/2(f2)(z) ≤ CMOq,r(f)(z).

And it is easy to see that the condition (5.1) is independent of r ∈ (0, α]. Then (C) follows
from (B) . The equivalence (5.2) comes from (5.3) and (5.4). �

Lemma 5.2. Let 1 ≤ q <∞, 0 < s ≤ ∞, −∞ < γ <∞, and let f ∈ Lqloc(D). Then the
following statements are equivalent:

(A) For some (or any) 0 < r ≤ α, lim|z|→1

{
ρ(z)γGq,r(f)(z) + ρ(z)γGq,r(f)(z)

}
= 0;

(B) For some (or any) 0 < r ≤ α, lim|z|→1 ρ(z)γMOq,r(f)(z) = 0;
(C) f = f1 + f2 with f1 ∈ C(D), and for some (or any) 0 < r ≤ α

lim
|z|→1
{ρ(z)γOscr(f1)(z) + ρ(z)γMq,r(f2)(z)} = 0.

The proof of this lemma can be carried out with the same approach as that of Lemma
5.1 and will be omitted here.

Here are three theorems for simultaneous boundedness (or compactness) of Hankel
operators Hf and Hf from Apϕ to Lqϕ.

Theorem 5.3. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and let 1 ≤ p ≤ q <∞. Set s = 1

q
− 1

p
.

Then for f ∈ S, the following statements are equivalent:
(A) Hf , Hf : Apϕ → Lqϕ are simultaneously bounded;

(B) For some (or any) 0 < r ≤ α, ρ2sMOq,r(f) ∈ L∞;
(C) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

ρ2sOscr(f1) ∈ L∞, and ρ2sMq,r(f2) ∈ L∞

for some (or any) 0 < r ≤ α.
Furthermore,

‖Hf‖Apϕ→Lqϕ + ‖Hf‖Apϕ→Lqϕ '
∥∥ρ2sMOq,r(f)

∥∥
L∞

.(5.5)
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Theorem 5.4. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and let 1 ≤ p ≤ q <∞. Set s = 1

q
− 1

p
.

Then for f ∈ S, the following statements are equivalent:
(A) Hf , Hf : Apϕ → Lqϕ are simultaneously compact;

(B) For some (or any) 0 < r ≤ α, lim|z|→1 ρ
2s(z)MOq,r(f)(z) = 0;

(C) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

lim
|z|→1

ρ2s(z)Oscr(f1)(z) = 0, and lim
|z|→1

ρ2s(z)Mq,r(f2)(z) = 0

for some (or any) 0 < r ≤ α.

Theorem 5.5. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and let 1 ≤ q < p <∞. Set s = 1

q
− 1

p
.

Then for f ∈ S, the following statements are equivalent:
(A) Hf , Hf : Apϕ → Lqϕ are bounded.
(B) Hf , Hf : Apϕ → Lqϕ are compact.

(C) For some (or any) 0 < r ≤ α, MOq,r(f) ∈ L 1
s .

(D) f = f1 + f2 with f1 ∈ C(D),

Oscr(f1) ∈ L
1
s , and Mq,r(f2) ∈ L

1
s

for some (or any) 0 < r < α.
Furthermore, ‖Hf‖Apϕ→Lqϕ ' ‖MOq,r(f)‖

L
1
s
.

Proof. The proof of Theorem 5.3, 5.4 and 5.5 are in the same approach, so we only write
out the one for Theorem 5.3 here.

Theorem 4.2 tells us that the statement (A) is equivalent to

ρ2sGq,r(f) + ρ2sGq,r(f) ∈ L∞.

And this, by Lemma 5.2, is equivalent to Statement (B). The equivalence between (B)
and (C) comes from Lemma 5.2 as well. �

When f is holomorphic, it is trivial that Hf = 0. Furthermore, for fixed 0 < r ≤ α
there are two positive constant C1 and C2 such that

C1ρ(z) sup
ξ∈Dr(z)

|f ′(ξ)| ≤Mq,r(f)(z) ≤ C2ρ(z) sup
ξ∈Dr(z)

|f ′(ξ)|.

Therefore we have the following theorem on Hankel operators with conjugate holomorphic
symbols. The case ϕ ∈ BDK and p = q = 2, was previously obtained in [9].

Theorem 5.6. Let ϕ ∈ W0 with 1√
∆ϕ
' ρ ∈ L0, and set s = 1

q
− 1

p
for 1 ≤ p, q < ∞.

Then for f ∈ S ∩H(D) the following statements are true.

(A) For p ≤ q, Hf is bounded from Apϕ to Lqϕ if and only if ρ2s+1f ′ ∈ L∞; Hf is

compact from Apϕ to Lqϕ if and only if lim|z|→1 ρ
2s+1f ′(z) = 0.

(B) For p > q, Hf is bounded from Apϕ to Lqϕ if and only if Hf is compact from Apϕ to

Lqϕ if and only if ρf ′ ∈ L 1
s
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