HANKEL OPERATORS ON EXPONENTIAL BERGMAN SPACES

ZHANGJIAN HU AND JORDI PAU

Abstract

We completely describe the boundedness and compactness of Hankel operators with general symbols acting on Bergman spaces with exponential type weights.

1. Introduction

Hankel operators acting on Bergman spaces is an important area of research in the theory of operators acting on spaces of analytic functions. Most of the theory of Hankel operators on standard Bergman spaces is well understood, but not so much is known for large Bergman spaces. The function and operator theory acting on large Bergman spaces on the unit disc \mathbb{D} of the complex plane \mathbb{C} is just developing, and it is our purpose to study big Hankel operators acting on such spaces. For a strictly subharmonic function φ on \mathbb{D} and $0<p \leq \infty$, let L_{φ}^{p} consist of those Lebesgue measurable functions $f: \mathbb{D} \rightarrow \mathbb{C}$ such that

$$
\begin{gathered}
\|f\|_{L_{\varphi}^{p}}=\left\{\int_{\mathbb{D}}\left|f(z) e^{-\varphi(z)}\right|^{p} d A(z)\right\}^{\frac{1}{p}}<\infty, \quad 0<p<\infty, \\
\|f\|_{L_{\varphi}^{\infty}}=\sup _{z \in \mathbb{D}}|f(z)| e^{-\varphi(z)}<\infty, \quad p=\infty,
\end{gathered}
$$

and consider the weighted Bergman space $A_{\varphi}^{p}=L_{\varphi}^{p} \cap H(\mathbb{D})$. Here $H(\mathbb{D})$ denotes the set of all holomorphic functions in \mathbb{D} and $d A$ is the Lebesgue area measure on \mathbb{C}. We also use L^{p} to stand for the usual Lebesgue space $L^{p}(\mathbb{D}, d A)$.

In this paper we are interested in A_{φ}^{p} with weight function $\varphi \in \mathcal{W}_{0}$ which was first introduced in [10]. To describe \mathcal{W}_{0} precisely, let C_{0} be the family of all continuous functions ρ on \mathbb{D} satisfying $\lim _{|z| \rightarrow 1} \rho(z)=0$. Set

$$
\mathcal{L}=\left\{\rho: \mathbb{D} \rightarrow \mathbb{R}: \rho \in C_{0}, \quad\|\rho\|_{L}=\sup _{z, w \in \mathbb{D}, z \neq w} \frac{|\rho(z)-\rho(w)|}{|z-w|}<\infty\right\}
$$

and let \mathcal{L}_{0} consist of those $\rho \in \mathcal{L}$ with the property that for each $\varepsilon>0$ there is a compact subset $E \subset \mathbb{D}$ with

$$
|\rho(z)-\rho(w)| \leq \varepsilon|z-w|
$$

whenever $z, w \in \mathbb{D} \backslash E$. The class \mathcal{W}_{0} is defined as

$$
\mathcal{W}_{0}=\left\{\varphi \in C^{2}(\mathbb{D}): \Delta \varphi>0, \text { and } \exists \rho \in \mathcal{L}_{0} \text { such that } \frac{1}{\sqrt{\Delta \varphi}} \simeq \rho\right\}
$$

Here and afterward, the expression $A \simeq B$ means there exist two positive constants c_{1} and c_{2} independent of the functions being considered such that $c_{1} A \leq B \leq c_{2} A$.

It is easy to verify that A_{φ}^{p} is a Banach space when $1 \leq p \leq \infty$, and A_{φ}^{2} is a Hilbert space. These spaces are also called large Bergman spaces because it usually contains all the standard Bergman spaces. Examples of weighted Bergman spaces with $\varphi \in \mathcal{W}_{0}$ includes

[^0]exponential Bergman spaces, double exponential weighted Bergman spaces, and also some non-radial weighted Bergman spaces (see $[10,16]$). With the Bergman reproducing kernel $K(\cdot, \cdot)$ on A_{φ}^{2} one can define the Bergman projection P as
$$
P(g)(z)=\int_{\mathbb{D}} g(\xi) K(z, \xi) e^{-2 \varphi(\xi)} d A(\xi)
$$

For $1 \leq p \leq \infty, P$ is bounded from for L_{φ}^{p} to A_{φ}^{p}, and $\left.P\right|_{A_{\varphi}^{p}}$, the restriction on A_{φ}^{p}, is just the identity operator Id (see [10] for details).

Given some symbol function f, one defines the so-called Hankel operator H_{f} as

$$
\begin{equation*}
H_{f}(g)=(\operatorname{Id}-P)(f g) \tag{1.1}
\end{equation*}
$$

From [10] we know that

$$
\Gamma=\left\{\sum_{j=1}^{N} a_{j} K\left(\cdot, z_{j}\right): N \in \mathbb{N}, a_{j} \in \mathbb{C}, z_{j} \in \mathbb{D}, \text { for } 1 \leq j \leq N,\right\}
$$

is dense in A_{φ}^{p}. Therefore, to let H_{f} make sense on Γ we naturally consider those f in the symbol class \mathcal{S} defined as

$$
\mathcal{S}=\left\{f \text { measurable on } \mathbb{D}: f g \in L_{\varphi}^{1} \text { for } g \in \Gamma\right\}
$$

(from Theorem 3.3 in [10], $\|K(\cdot, z)\|_{L_{\varphi}^{\infty}}<\infty$ so that $P(f g)(z)$ is well defined for $f \in \mathcal{S}$, $g \in \Gamma$ and $z \in \mathbb{D})$. The purpose of this work is, for $1 \leq p, q<\infty$, to characterize those $f \in \mathcal{S}$ such that H_{f} is bounded (or compact) as an operator acting from A_{φ}^{p} to L_{φ}^{q}. The descriptions obtained are presented in section 4.

As in [10], we write $\mathcal{B D K}$ to be the weight class introduced by Borichev, Dhuez and Kellay in [3]. We know $\mathcal{B D K} \subset \mathcal{W}_{0}$ and $\mathcal{W}_{0} \backslash \mathcal{B D \mathcal { L }} \neq \emptyset$. The Bergman space A_{φ}^{p} with $\varphi \in \mathcal{B D K}$ have been studied in $[2,3,6,7,9,16,17]$.

Given Banach spaces X and Y, and some linear operator from X to Y, we use $\|\cdot\|_{X}$ and $\|T\|_{X \rightarrow Y}$ respectively to stand for the norm on X, and the operator norm of T. Throughout this paper, we use C to denote positive constants whose value may change from line to line, but do not depend on functions being considered.

2. Some Preliminary

We are going to present some basic conclusions that will be used in the following sections. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$. We define a distance $d_{\rho}(z, w)$ on \mathbb{D} as

$$
d_{\rho}(z, w)=\inf _{\gamma} \int_{0}^{1}\left|\gamma^{\prime}(t)\right| \frac{d t}{\rho(\gamma(t))}
$$

where the infimum is taken over all piecewise C^{1} curves $\gamma:[0,1] \rightarrow \mathbb{D}$ with $\gamma(0)=z$ and $\gamma(1)=w$. It is mentioned in [5] that $d_{\rho}(\cdot, \cdot)$ is equivalent to the Bergman distance $\beta_{\varphi}(\cdot, \cdot)$ induced by the Bergman metric $\frac{1}{2} \frac{\partial^{2} \log K(z, z)}{\partial z \partial \bar{z}} d z \otimes d \bar{z}$.

The estimates on the Bergman kernel play an important role in our analysis. The following lemma comes from [10].

Lemma 2.1. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$. There are positive constants C_{1}, C_{2}, σ and d such that

$$
|K(z, w)| \leq C_{1} \frac{e^{\varphi(z)+\varphi(w)}}{\rho(z) \rho(w)} e^{-\sigma d_{\rho}(z, w)} \quad \text { for } z, w \in \mathbb{D}
$$

and

$$
|K(z, w)| \geq C_{2} \frac{e^{\varphi(z)} e^{\varphi(w)}}{\rho(z) \rho(w)} \quad \text { for } d_{\rho}(z, w) \leq d
$$

For $K_{z}(\cdot)=K(\cdot, z) \in H(\mathbb{D})$ and $0<p \leq \infty$, with Lemma 2.1 and an elementary calculation as that of Corollary 3.2 in [10] we obtain

$$
\begin{equation*}
\left\|K_{z}\right\|_{L_{\varphi}^{p}} \simeq e^{\varphi(z)} \rho(z)^{\frac{2}{p}-2} . \tag{2.1}
\end{equation*}
$$

Write $k_{z, p}=\frac{K_{z}}{\left\|K_{z}\right\|_{L_{\varphi}^{p}}}$ to denote the normalized reproducing kernels in A_{φ}^{p}.
For $z \in \mathbb{D}$ and $r>0$, set $D(z, r)=\{w:|w-z|<r\}$ to be the Euclidean disc with center z and radius r. Write

$$
B_{\rho}(z, r)=\left\{w \in \mathbb{D}: d_{\rho}(w, z)<r\right\} \text { and } D^{r}(z)=D(z, r \rho(z)) .
$$

The following lemma is from [10].
Lemma 2.2. Let $\rho \in \mathcal{L}$ be positive. Then there exists $\alpha>0$ with the following properties:
(i) There exist constants C_{1} and C_{2} such that

$$
\begin{equation*}
C_{1} \rho(w) \leq \rho(z) \leq C_{2} \rho(w) \tag{2.2}
\end{equation*}
$$

for $z \in \mathbb{D}$ and $w \in D^{\alpha}(z)$.
(ii) There exists a constant $B>0$ such that

$$
\begin{equation*}
D^{r}(z) \subseteq D^{B r}(w), \quad D^{r}(w) \subseteq D^{B r}(z) \tag{2.3}
\end{equation*}
$$

for $w \in D^{r}(z)$ and $0<r \leq \alpha$.
(iii) There exist positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
B_{\rho}\left(z, c_{1} r\right) \subseteq D^{r}(z) \subseteq B_{\rho}\left(z, c_{2} r\right) \tag{2.4}
\end{equation*}
$$

for $z \in \mathbb{D}$ and $0<r \leq \alpha$.
Moreover, if α is small enough, we can take $C_{1}=1 / 2 ; C_{2}=2$ in part (i) and $B=4$ in part (ii).

For our analysis we need a covering lemma which is almost identical to Lemma 3.1 of [8].

Lemma 2.3. Let $\rho \in \mathcal{L}$ be positive. There are positive constants α and s, depending only on $\|\rho\|_{L}$, such that for $0<r \leq \alpha$ there exists a sequence $\left\{z_{j}\right\}_{j=1}^{\infty} \subset \mathbb{D}$ satisfying
(i) $\mathbb{D}=\cup_{j \geq 1} D^{r}\left(z_{j}\right)$;
(ii) $D^{s r}\left(z_{j}\right) \cap D^{s r}\left(z_{m}\right)=\emptyset$ for $m \neq j$;
(iii) $\left\{D^{2 \alpha}\left(z_{j}\right)\right\}_{j=1}^{\infty}$ is a covering of \mathbb{D} of finite multiplicity.

A sequence $\left\{z_{j}\right\}_{j=1}^{\infty}$ satisfying (i)-(iii) of Lemma 2.3 will be called a (ρ, r)-lattice. Given some (ρ, r)-lattice $\left\{z_{j}\right\}_{j=1}^{\infty}$, by the statement (iii) of Lemma 2.3 we have some integer N so that

$$
\begin{equation*}
1 \leq \sum_{j=1}^{\infty} \chi_{D^{B r}\left(z_{j}\right)}(z) \leq N \quad \text { for } z \in \mathbb{D} \tag{2.5}
\end{equation*}
$$

Here and afterward, χ_{E} is the characteristic function of a subset E of \mathbb{D}. In what follows we always take $\alpha>0$ as that in Lemma 2.2 and Lemma 2.3. The next lemma has already been obtained for $\varphi \in \mathcal{B D} \mathcal{K}$ in Arroussi's dissertation [1].

Lemma 2.4. Let $\varphi \in \mathcal{W}_{0}, 0<p \leq \infty$, and let $\left\{z_{j}\right\}_{j=1}^{\infty}$ be some (ρ, r)-lattice with $0<r \leq \alpha$. Then for $\lambda=\left\{\lambda_{j}\right\}_{j=1}^{\infty} \in \ell^{p}$, we have $\sum_{j=1}^{\infty} \lambda_{j} k_{z_{j}, p} \in A_{\varphi}^{p}$ with the norm estimate

$$
\begin{equation*}
\left\|\sum_{j=1}^{\infty} \lambda_{j} k_{z_{j}, p}\right\|_{L_{\varphi}^{p}} \leq C\|\lambda\|_{\ell p} \tag{2.6}
\end{equation*}
$$

Proof. We treat the case $1 \leq p \leq \infty$ first. Let q be the conjugate exponent of p. For $f \in H(\mathbb{D})$, by Lemma 3.3 in [10] we have

$$
\begin{equation*}
\left|f(z) e^{-\varphi(z)}\right|^{p} \leq \frac{C}{\rho(z)^{2}} \int_{D^{r}(z)}\left|f(w) e^{-\varphi(w)}\right|^{p} d A(w), \quad z \in \mathbb{D} \tag{2.7}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|K_{z}\left(z_{j}\right) e^{-\varphi\left(z_{j}\right)}\right|^{q} \rho\left(z_{j}\right)^{2} & \leq C \sum_{j=1}^{\infty} \int_{D^{r}\left(z_{j}\right)}\left|K_{z}(\xi) e^{-\varphi(\xi)}\right|^{q} d A(\xi) \\
& \leq C\left\|K_{z}\right\|_{L_{\varphi}^{q}}^{q}
\end{aligned}
$$

Then, for each N, Hölder's inequality implies

$$
\begin{aligned}
\sum_{j=1}^{N}\left|\lambda_{j} k_{z_{j}, p}(z)\right| & \leq\left(\sum_{j=1}^{N}\left|\lambda_{j}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{j=1}^{N}\left|k_{z_{j}, p}(z)\right|^{q}\right)^{\frac{1}{q}} \\
& \leq C\|\lambda\|_{\ell^{p}}\left(\sum_{j=1}^{\infty}\left|K_{z}\left(z_{j}\right) e^{-\varphi\left(z_{j}\right)}\right|^{q} \rho\left(z_{j}\right)^{2}\right)^{\frac{1}{q}} \\
& \leq C\|\lambda\|_{\ell^{p}}\left\|K_{z}\right\|_{L_{\varphi}^{q}}<\infty
\end{aligned}
$$

This implies that $\sum_{j=1}^{\infty} \lambda_{j} k_{z_{j}, p}$ converges uniformly on compact subsets of \mathbb{D}. Furthermore, for any $g \in A_{\varphi}^{q}$,

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|\left\langle\lambda_{j} k_{z_{j}, p}, g\right\rangle_{L_{\varphi}^{2}}\right| & =\sum_{j=1} \frac{\left|\lambda_{j} \overline{g\left(z_{j}\right)}\right|}{\left\|K_{z_{j}}\right\|_{L_{\varphi}^{p}}} \\
& \leq C \sum_{j=1}^{\infty}\left|\lambda_{j}\right|\left|g\left(z_{j}\right) e^{-\varphi\left(z_{j}\right)}\right| \rho\left(z_{j}\right)^{2-\frac{2}{p}} \\
& \leq C\|\lambda\|_{\ell^{p}}\left(\sum_{j=1}^{\infty} \int_{D^{r}\left(z_{j}\right)}\left|g(\xi) e^{-\varphi(\xi)}\right|^{q} d A(\xi)\right)^{\frac{1}{q}} \\
& \leq C\|\lambda\|_{\ell^{p}}\|g\|_{L_{\varphi}^{q}} .
\end{aligned}
$$

Therefore,

$$
\left|\left\langle\sum_{j=1}^{\infty} \lambda_{j} k_{z_{j}, p}, g\right\rangle_{L_{\varphi}^{2}}\right| \leq \sum_{j=1}^{\infty}\left|\left\langle\lambda_{j} k_{z_{j}, p}, g\right\rangle_{L_{\varphi}^{2}}\right| \leq C\|\lambda\|_{\ell^{p}}\|g\|_{L_{\varphi}^{q}} .
$$

Theorem 4.3 in [10] tells us that the dual of A_{φ}^{p} is A_{φ}^{q} for $1 \leq p<\infty$ and the predual of A_{φ}^{∞} is A_{φ}^{1}. From these we obtain (2.6) for $1 \leq p \leq \infty$.

For $0<p \leq 1$, by $(a+b)^{p} \leq a^{p}+b^{p}$ for $a, b>0$ we have

$$
\left\|\sum_{j=1}^{N} \lambda_{j} k_{z_{j}, p}\right\|_{L_{\varphi}^{p}}^{p} \leq \sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}\left\|k_{z_{j}, p}\right\|_{L_{\varphi}^{p}}^{p}=\|\lambda\|_{\ell \ell^{p}}^{p}
$$

In our analysis, we are in need to use the notion of Carleson measures. Here is the definition.

Definition 2.5. Suppose μ is a positive Borel measure on \mathbb{D} and $0<p, q<\infty$. If the embedding Id : $A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)$ is continuous (or compact) then μ is said to be a q-Carleson measure (or a vanishing q-Carleson measure) for A_{φ}^{p}.

As on the classical Bergman spaces we are going to use $\widehat{\mu}_{r}$ to characterize Carleson measures shown in the following proposition. For $\varphi \in \mathcal{B D K}$, the weight class introduced in [3], all conclusions in Lemma 2.6 except the estimate (2.9) were represented as Theorem 1 in [16] (although it is given there in a different form). Fortunately, the proof of that in [16] works well in the present setting with only one adjustment that the test function $F_{a, n, p}(z)$ there should be replaced by

$$
F_{a}(z)=k_{a, \infty}(z) \simeq \rho(a)^{2} K_{a}(z) e^{-\varphi(a)}
$$

because $F_{a, n, p}(z)$ is available only when $\varphi \in \mathcal{B D K}$ (particulary, φ must be radial), see [3] and [16].

Given μ as above and $0<r \leq \alpha$, set

$$
\widehat{\mu}_{r}(z)=\frac{\mu\left(D^{r}(z)\right)}{\left|D^{r}(z)\right|}
$$

where $\left|D^{r}(z)\right|$ denotes the area measure of $D^{r}(z)$. Notice that $\left|D^{r}(z)\right| \simeq \rho(z)^{2}$.
Proposition 2.6. Let μ be a positive Borel measure on \mathbb{D}.
(A) For $0<p \leq q<\infty, \mu$ is a q-Carleson measure for A_{φ}^{p} if and only if

$$
\sup _{z \in \mathbb{D}} \widehat{\mu}_{r}(z) \rho(z)^{2\left(1-\frac{q}{p}\right)}<\infty
$$

for some (or any) $r \in(0, \alpha]$. And μ is a a vanishing q-Carleson measure for A_{φ}^{p} if and only if

$$
\lim _{|z| \rightarrow 1} \widehat{\mu}_{r}(z) \rho(z)^{2\left(1-\frac{q}{p}\right)}=0
$$

for some (or any) $r \in(0, \alpha]$.
(B) For $0<q<p<\infty$, μ is a q-Carleson measure for A_{φ}^{p} if and only if μ is a vanishing q-Carleson measure for A_{φ}^{p} if and only if

$$
\widehat{\mu}_{r} \in L^{\frac{p}{p-q}}
$$

for some (or any) $r \in(0, \alpha]$.
When μ is a q-Carleson measure for A_{φ}^{p}, there holds

$$
\begin{equation*}
\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)} \simeq\left\|\left(\widehat{\mu}_{r}\right)^{\frac{1}{q}} \rho(z)^{2\left(\frac{1}{q}-\frac{1}{p}\right)}\right\|_{L^{\infty}} \quad \text { if } 0<p \leq q<\infty \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)} \simeq\left\|\left(\widehat{\mu}_{r}\right)^{\frac{1}{q}}\right\|_{L^{\frac{p q}{p-q}}} \text { if } 0<q<p<\infty . \tag{2.9}
\end{equation*}
$$

Proof. We only present the proof of the estimate (2.9). For this purpose we first prove

$$
\begin{equation*}
\left\|\left(\widehat{\mu}_{r}\right)^{\frac{1}{q}}\right\|_{L^{\frac{p q}{p-q}}} \leq C\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)} . \tag{2.10}
\end{equation*}
$$

As in [16] we use an argument of Luecking (see [14]). Let $\left\{z_{j}\right\}_{j=1}^{\infty}$ be some (ρ, r)-lattice, and take $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ to be a sequence of Rademacher functions on $[0,1]$. For $\lambda=\left\{\lambda_{j}\right\}_{j=1}^{\infty} \in \ell^{p}$ consider the function G_{t} defined as

$$
G_{t}(z)=\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(t) k_{z_{j}, p}(z)
$$

From Lemma 2.4 we know $\left\|G_{t}\right\|_{A_{\varphi}^{p}} \leq C\|\lambda\|_{\ell^{p}}$. If μ is a q-Carleson measure for A_{φ}^{p}, then

$$
\int_{\mathbb{D}}\left|G_{t}(z)\right|^{q} e^{-q \varphi(z)} d \mu(z) \leq\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{\mathbb { D }}, e^{-q \varphi} d \mu\right)}^{q}\|\lambda\|_{\ell^{p}}^{q} .
$$

Integrating with respect to t from 0 to 1, applying Fubini's theorem, and invoking Khintchine's inequality we obtain

$$
\int_{\mathbb{D}}\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}\left|k_{z_{j}, p}(z)\right|^{2}\right)^{\frac{q}{2}} e^{-q \varphi(z)} d \mu(z) \leq C\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)}^{q}\|\lambda\|_{\ell^{p}}^{q} .
$$

On the other hand, by Lemmas 2.1-2.3 and (2.7), one gets

$$
\begin{aligned}
\int_{\mathbb{D}}\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}\left|k_{z_{j}, p}(z)\right|^{2}\right)^{\frac{q}{2}} & e^{-q \varphi(z)} d \mu(z) \\
& \geq C \sum_{k=1}^{\infty} \int_{D^{r}\left(z_{k}\right)}\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}\left|k_{z_{j}, p}(z)\right|^{2}\right)^{\frac{q}{2}} e^{-q \varphi(z)} d \mu(z) \\
& \geq C \sum_{k=1}^{\infty} \int_{D^{r}\left(z_{k}\right)}\left|\lambda_{k}\right|^{q}\left|k_{z_{k}, p}(z)\right|^{q} e^{-q \varphi(z)} d \mu(z) \\
& \geq C \sum_{k=1}^{\infty}\left|\lambda_{k}\right|^{q} \rho\left(z_{k}\right)^{2-\frac{2 q}{p}} \widehat{\mu}_{r}\left(z_{k}\right)
\end{aligned}
$$

Therefore,

$$
\sum_{k=1}^{\infty}\left|\lambda_{j}\right|^{q}\left(\rho\left(z_{k}\right)^{2-\frac{2 q}{p}} \widehat{\mu}_{r}\left(z_{k}\right)\right) \leq C\|\mathrm{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)}^{q}\|\lambda\|_{\ell\left(\ell^{p}\right.}^{q}
$$

By the duality between $\ell^{p / q}$ and $\ell^{p /(p-q)}$ we have

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty} \rho\left(z_{k}\right)^{2} \widehat{\mu}_{r}\left(z_{k}\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}} \leq C\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)}^{q} \tag{2.11}
\end{equation*}
$$

Meanwhile, it is easy to verify that, for $z \in D^{r}\left(z_{k}\right)$,

$$
\rho\left(z_{k}\right)^{2} \widehat{\mu}_{r}(z)^{\frac{p}{p-q}} \leq C \sum_{j: D^{r}\left(z_{j}\right) \cap D^{r}\left(z_{k}\right) \neq \emptyset} \rho\left(z_{j}\right)^{2} \widehat{\mu}_{r}\left(z_{j}\right)^{\frac{p}{p-q}} .
$$

Therefore,

$$
\left\|\widehat{\mu}_{r}\right\|_{L^{\frac{p}{p-q}}}^{\frac{p}{p-q}} \leq \sum_{k=1}^{\infty} \int_{D^{r}\left(z_{k}\right)} \widehat{\mu}_{r}(z)^{\frac{p}{p-q}} d A(z) \leq C \sum_{j=1}^{\infty} \rho\left(z_{j}\right)^{2} \widehat{\mu}_{r}\left(z_{j}\right)^{\frac{p}{p-q}} .
$$

This and (2.11) imply (2.10).

To prove the other direction, for $f \in H(\mathbb{D})$ applying (2.7) and Hölder's inequality to obtain

$$
\begin{aligned}
& \int_{\mathbb{D}}|f(z)|^{q} e^{-q \varphi(z)} d \mu(z) \\
& \leq \sum_{j=1}^{\infty} \int_{D^{r}\left(z_{j}\right)}|f(z)|^{q} e^{-q \varphi(z)} d \mu(z) \\
& \leq C \sum_{j=1}^{\infty} \widehat{\mu}_{r}\left(z_{j}\right) \rho\left(z_{j}\right)^{2} \sup _{\xi \in D^{r}\left(z_{j}\right)}|f(\xi)|^{q} e^{-q \varphi(\xi)} \\
& \quad \leq C\left(\sum_{j=1}^{\infty} \widehat{\mu}_{r}\left(z_{j}\right)^{\frac{p}{p-q}} \rho\left(z_{j}\right)^{2}\right)^{\frac{p-q}{p}}\left(\sum_{j=1}^{\infty} \rho\left(z_{j}\right)^{2} \sup _{\xi \in D^{r}\left(z_{j}\right)}|f(\xi)|^{p} e^{-p \varphi(\xi)}\right)^{\frac{q}{p}} \\
& \quad \leq C\left(\sum_{j=1}^{\infty} \widehat{\mu}_{r}\left(z_{j}\right)^{\frac{p}{p-q}} \rho\left(z_{j}\right)^{2}\right)^{\frac{p-q}{p}}\left(\sum_{j=1}^{\infty} \int_{D^{2 r}\left(z_{j}\right)}|f(\zeta)|^{p} e^{-p \varphi(\zeta)} d A(\zeta)\right)^{\frac{q}{p}} \\
& \leq C\left\|\widehat{\mu}_{r}\right\|_{L^{\frac{p}{p-q}}}\|f\|_{L_{\varphi}^{p}}^{q} .
\end{aligned}
$$

This means

$$
\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)} \leq C\left\|\widehat{\mu}_{r}\right\|_{L^{\frac{p}{p-q}}}^{\frac{1}{q}}=C\left\|\left(\widehat{\mu}_{r}\right)^{\frac{1}{q}}\right\|_{L^{p q}} .
$$

From this and (2.10) we obtain (2.9).

3. Some $\bar{\partial}$-estimates

By Lemma 2.1 and Lemma 2.2 (iii) we have some $\alpha>0$ such that $K_{z}(\xi)=K(\xi, z)$ does not vanish for $\xi \in D^{\alpha}(z)$. Given any $r \in(0, \alpha / 3]$ and a (ρ, r)-lattice $\left\{z_{j}\right\}_{j=1}^{\infty}$, let $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ be some partition of unity subordinate to the covering $\left\{D^{r}\left(z_{j}\right)\right\}_{j=1}^{\infty}$. Precisely,

$$
\psi_{j} \in C^{\infty}(\mathbb{D}), \operatorname{Supp} \psi_{j} \subset D^{r}\left(z_{j}\right) \text { and } \psi_{j} \geq 0, \sum_{j=1}^{\infty} \psi_{j}=1
$$

Set

$$
G(z, \xi)=\frac{1}{(\xi-z) \rho(\xi)} \sum_{j=1}^{\infty} \frac{K_{z_{j}}(z) \psi_{j}(\xi)}{K_{z_{j}}(\xi)}
$$

Define an integral opertor T as

$$
T(f)(z)=\int_{\mathbb{D}} G(z, \xi) f(\xi) d A(\xi)
$$

Lemma 3.1. Let $\varphi \in \mathcal{W}_{0}$ and $1 \leq p \leq \infty$. Then T is a bounded linear operator on L_{φ}^{p}.
Proof. We will use interpolation to prove this lemma. By (2.7), and by Lemma 2.1, 2.2 we have

$$
\begin{aligned}
\sum_{j=1}^{\infty} \frac{\left|K_{z_{j}}(z)\right| \psi_{j}(\xi)}{\left|K_{z_{j}}(\xi)\right|} & \simeq \rho(\xi)^{2} e^{-\varphi\left(z_{j}\right)-\varphi(\xi)} \sum_{j \in\left\{k: \xi \in D^{r}\left(z_{k}\right)\right\}}\left|K_{z}\left(z_{j}\right)\right| \psi_{j}(\xi) \\
& \leq C e^{-\varphi(\xi)} \int_{D^{2 r}(\xi)}\left|K_{z}(\zeta)\right| e^{-\varphi(\zeta)} d A(\zeta)
\end{aligned}
$$

Write

$$
\begin{equation*}
Q(z, \xi)=\frac{e^{-\varphi(\xi)}}{|\xi-z| \rho(\xi)} \int_{D^{2 r}(\xi)}\left|K_{\zeta}(z)\right| e^{-\varphi(\zeta)} d A(\zeta) \tag{3.1}
\end{equation*}
$$

We have

$$
\begin{equation*}
|G(z, \xi)| \leq C Q(z, \xi) \tag{3.2}
\end{equation*}
$$

For f measurable on \mathbb{D}, set

$$
T_{1}(f)(z)=\int_{D^{r}(z)} Q(z, \xi) f(\xi) d A(\xi)
$$

and

$$
T_{2}(f)(z)=\int_{\mathbb{D} \backslash D^{r}(z)} Q(z, \xi) f(\xi) d A(\xi)
$$

To prove the conclusion of the lemma, from (3.2) we need only to prove that both T_{1} and T_{2} are bounded on L_{φ}^{p}. For T_{1}, by Lemma 2.2, we have

$$
\begin{aligned}
\left\|T_{1}(f)\right\|_{L_{\varphi}^{1}} & \leq \int_{\mathbb{D}}\left(\int_{\mathbb{D}} \chi_{D^{r}(z)}(\xi) Q(z, \xi)|f(\xi)| d A(\xi)\right) e^{-\varphi(z)} d A(z) \\
& =\int_{\mathbb{D}}|f(\xi)|\left(\int_{\mathbb{D}} \chi_{D^{r}(z)}(\xi) Q(z, \xi) e^{-\varphi(z)} d A(z)\right) d A(\xi) \\
& \leq \int_{\mathbb{D}}|f(\xi)|\left(\int_{D^{2 r}(\xi)} Q(z, \xi) e^{-\varphi(z)} d A(z)\right) d A(\xi) .
\end{aligned}
$$

Putting the expression of $Q(z, \xi)$ inside and using (2.1), we obtain

$$
\begin{aligned}
\left\|T_{1}(f)\right\|_{L_{\varphi}^{1}} & \leq \int_{\mathbb{D}}|f(\xi)| e^{-\varphi(\xi)}\left(\int_{D^{2 r}(\xi)} \frac{e^{-\varphi(z)}}{|\xi-z| \rho(\xi)} \int_{D^{2 r}(\xi)}\left|K_{\zeta}(z)\right| e^{-\varphi(\zeta)} d A(\zeta) d A(z)\right) d A(\xi) \\
& \leq \int_{\mathbb{D}}|f(\xi)| e^{-\varphi(\xi)}\left(\int_{D^{2 r}(\xi)} \frac{e^{-\varphi(z)}}{|\xi-z| \rho(\xi)}\left\|K_{z}\right\|_{L_{\varphi}^{1}} d A(z)\right) d A(\xi) \\
& \leq C \int_{\mathbb{D}}|f(\xi)| e^{-\varphi(\xi)} d A(\xi) \int_{D^{2 r}(\xi)} \frac{1}{|\xi-z| \rho(\xi)} d A(z)
\end{aligned}
$$

Using polar coordinates, it is easy to see that

$$
\int_{D^{2 r}(\xi)} \frac{1}{|\xi-z|} d A(z) \leq C \rho(\xi)
$$

so that, we finally obtain

$$
\left\|T_{1}(f)\right\|_{L_{\varphi}^{1}} \leq C \int_{\mathbb{D}}|f(\xi)| e^{-\varphi(\xi)} d A(\xi)=C\|f\|_{L_{\varphi}^{1}}
$$

proving that T_{1} is bounded on L_{φ}^{1}. Similarly,

$$
\begin{aligned}
\left\|T_{1}(f)\right\|_{L_{\varphi}^{\infty}} & =\sup _{z \in \mathbb{D}} e^{-\varphi(z)} \int_{D^{r}(z)} Q(z, \xi)|f(\xi)| d A(\xi) \\
& \leq C\|f\|_{L_{\varphi}^{\infty}} \sup _{z \in \mathbb{D}} \int_{D^{r}(z)} \frac{1}{|\xi-z| \rho(\xi)} \int_{D^{2 r}(\xi)}\left|K_{\zeta}(z)\right| e^{-\varphi(z)-\varphi(\zeta)} d A(\zeta) d A(\xi) \\
& \leq C\|f\|_{L_{\varphi}^{\infty}} \sup _{z \in \mathbb{D}} \int_{D^{r}(z)} \frac{1}{|\xi-z| \rho(\xi)} d A(\xi) \\
& \leq C\|f\|_{L_{\varphi}^{\infty}} .
\end{aligned}
$$

Set $M_{e^{\varphi}}$ to be the multiplier that $M_{e^{\varphi}}(f)=f e^{\varphi}$. It is easy to see $M_{e^{\varphi}}$ is an isometry from L^{p} to L_{φ}^{p} with the inverse $M_{e^{-\varphi}}$. Therefore, $M_{e^{-\varphi}} T_{1} M_{e^{\varphi}}$ is bounded both on L^{1} and L^{∞}. By interpolation, $M_{e^{-\varphi}} T_{1} M_{e^{\varphi}}$ is bounded on L^{p} which implies T_{1} is bounded on L_{φ}^{p}.

For T_{2}, applying Lemma 2.1, we have

$$
\begin{aligned}
\left|T_{2} f(z)\right| & \leq \int_{\mathbb{D} \backslash D^{r}(z)} \frac{|f(\xi)| e^{-\varphi(\xi)}}{|\xi-z| \rho(\xi)}\left(\int_{D^{2 r}(\xi)}|K(\zeta, z)| e^{-\varphi(\zeta)} d A(\zeta)\right) d A(\xi) \\
& \leq C \frac{e^{\varphi(z)}}{\rho(z)} \int_{\mathbb{D} \backslash D^{r}(z)} \frac{|f(\xi)| e^{-\varphi(\xi)}}{|\xi-z| \rho(\xi)}\left(\int_{D^{2 r}(\xi)} \frac{e^{-\sigma d_{\rho}(\zeta, z)} d A(\zeta)}{\rho(\zeta)}\right) d A(\xi) \\
& \leq C \frac{e^{\varphi(z)}}{\rho(z)^{2}} \int_{\mathbb{D} \backslash D^{r}(z)} \frac{|f(\xi)| e^{-\varphi(\xi)}}{\rho(\xi)^{2}}\left(\int_{D^{2 r}(\xi)} e^{-\sigma d_{\rho}(\zeta, z)} d A(\zeta)\right) d A(\xi) .
\end{aligned}
$$

On the other hand, $d_{\rho}(\cdot, \cdot)$ is a distance on \mathbb{D}. From Lemma 2.2, part (iii), there is some constant C such that, for $\zeta \in D^{2 r}(\xi)$,

$$
d_{\rho}(\xi, z) \leq d_{\rho}(\xi, \zeta)+d_{\rho}(\zeta, z) \leq C+d_{\rho}(\zeta, z) .
$$

Thus, for $\zeta \in D^{2 r}(\xi)$, we have $e^{-\sigma d_{\rho}(\zeta, z)} \leq C e^{-\sigma d_{\rho}(\xi, z)}$. It follows that

$$
\left|T_{2} f(z)\right| \leq C \frac{e^{\varphi(z)}}{\rho(z)^{2}} \int_{\mathbb{D} \backslash D^{r}(z)}|f(\xi)| e^{-\varphi(\xi)} e^{-\sigma d_{\rho}(\xi, z)} d A(\xi)
$$

With this estimate and [10, Corollary 3.1] we obtain

$$
\begin{aligned}
\left\|T_{2} f\right\|_{L_{\varphi}^{1}} & \leq C \int_{\mathbb{D}}\left(\int_{\mathbb{D}}|f(\xi)| e^{-\varphi(\xi)} e^{-\sigma d_{\rho}(\xi, z)} d A(\xi)\right) \frac{d A(z)}{\rho(z)^{2}} \\
& =C \int_{\mathbb{D}}|f(\xi)| e^{-\varphi(\xi)}\left(\int_{\mathbb{D}} \frac{e^{-\sigma d_{\rho}(\xi, z)}}{\rho(z)^{2}} d A(z)\right) d A(\xi) \\
& \leq C\|f\|_{L_{\varphi}^{1}} .
\end{aligned}
$$

Similarly, for $p=\infty$ we have

$$
\begin{aligned}
\left\|T_{2} f\right\|_{L_{\varphi}^{\infty}} & \leq \sup _{z \in \mathbb{D}} \frac{1}{\rho(z)^{2}} \int_{\mathbb{D} \backslash D^{r}(z)}|f(\xi)| e^{-\varphi(\xi)} e^{-\sigma d_{\rho}(\xi, z)} d A(\xi) \\
& \leq C\|f\|_{L_{\varphi}^{\infty}} \sup _{z \in \mathbb{D}} \int_{\mathbb{D}} \frac{e^{-\sigma d_{\rho}(\xi, z)}}{\rho(z)^{2}} d A(\xi) \\
& \leq C\|f\|_{L_{\varphi}^{\infty}} .
\end{aligned}
$$

With the same approach for T_{1}, by interpolation we know that T_{2} is bounded on L_{φ}^{p} as well.

Set C_{c}^{∞} to be the family of all C^{∞} functions with compact support in \mathbb{D}. Given f Lebesgue measurable on \mathbb{D}, for $z=x+i y$ one can define the weak derivative $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, see [4]. Set $\frac{\partial f}{\partial z}=\frac{1}{2}\left\{\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right\}$ and $\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left\{\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right\}$. Since we deal with functions of one complex variable, we can use $\bar{\partial} f$ to stand for $\frac{\partial f}{\partial \bar{z}}$ for short.

Theorem 3.2. Let $\varphi \in \mathcal{W}_{0}$. Given f be measurable on \mathbb{D} such that $\rho f \in L_{\varphi}^{1}$, set

$$
\begin{equation*}
u(z)=\sum_{j=1}^{\infty} K_{z_{j}}(z) \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{(\xi-z) K_{z_{j}}(\xi)} f(\xi) d A(\xi) \tag{3.3}
\end{equation*}
$$

Then u solves the equation $\bar{\partial} u=f$ weakly in \mathbb{D}. Furthermore, for $1 \leq p<\infty$ there is some constant $C>0$ such that

$$
\begin{equation*}
\|u\|_{L_{\varphi}^{p}} \leq C\|\rho f\|_{L_{\varphi}^{p}} . \tag{3.4}
\end{equation*}
$$

Proof. For a function f with $\rho f \in L_{\varphi}^{p}$, one has $u(z)=T(f \rho)(z)$. Then Lemma 3.1 implies $\|u\|_{L_{\varphi}^{p}} \leq C\|f \rho\|_{L_{\varphi}^{p}}$ which gives (3.4).

For $f \in C^{1}(\overline{\mathbb{D}})$, Cauchy-Pompeiu formula tells us that (see Theorem 2.1.2 from [4])

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}} \int_{\mathbb{D}} \frac{f(\xi)}{\xi-z} d A(\xi)=f(z) \quad \text { for } z \in \mathbb{D} \tag{3.5}
\end{equation*}
$$

Then for $\phi \in C_{c}^{\infty}(\mathbb{D})$ and $f \in L_{l o c}^{1},(3.5)$ and the fact that $K_{z_{j}} \in H(\mathbb{D})$ imply

$$
\left\langle K_{z_{j}}(\cdot) \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{(\xi-\cdot) K_{z_{j}}(\xi)} f(\xi) d A(\xi), \frac{\partial \phi}{\partial z}\right\rangle_{L^{2}}=-\left\langle f \psi_{j}, \phi\right\rangle_{L^{2}} .
$$

Set

$$
U(z)=\sum_{j=1}^{\infty}\left|K_{z_{j}}(z)\right| \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{\left|(\xi-z) K_{z_{j}}(\xi)\right|}|f(\xi)| d A(\xi)
$$

We have

$$
|u(z)| \leq U(z) .
$$

By the fact that $\operatorname{Supp} \psi_{j} \subset D^{r}\left(z_{j}\right)$, applying Lemma 2.1 and Corollary 3.1 from [10] to get

$$
\begin{aligned}
U(z) & \leq C \sum_{j=1}^{\infty} \frac{e^{\varphi\left(z_{j}\right)+\varphi(z)}}{\rho\left(z_{j}\right) \rho(z)} \int_{D^{r}\left(z_{j}\right)} \frac{\psi_{j}(\xi)}{|\xi-z|}|f(\xi)| \frac{\rho\left(z_{j}\right) \rho(\xi)}{e^{\varphi\left(z_{j}\right)+\varphi(\xi)}} d A(\xi) \\
& \leq C \sum_{j=1}^{\infty} \frac{e^{\varphi(z)}}{\rho(z)} \int_{D^{r}\left(z_{j}\right)} \frac{\psi_{j}(\xi)}{|\xi-z|}\left|\rho(\xi) f(\xi) e^{-\varphi(\xi)}\right| d A(\xi) \\
& =C \sum_{j=1}^{\infty} \frac{e^{\varphi(z)}}{\rho(z)} \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{|\xi-z|}\left|\rho(\xi) f(\xi) e^{-\varphi(\xi)}\right| d A(\xi) .
\end{aligned}
$$

Write $\Omega=\operatorname{Supp} \phi$ which is compact. Then,

$$
\begin{aligned}
& \int_{\mathbb{D}} U(z)\left|\frac{\partial \phi}{\partial z}(z)\right| d A(z) \\
\leq & C \int_{\Omega}\left|\frac{\partial \phi}{\partial z}(z)\right| d A(z) \sum_{j=1}^{\infty} \frac{e^{\varphi(z)}}{\rho(z)} \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{|\xi-z|}\left|\rho(\xi) f(\xi) e^{-\varphi(\xi)}\right| d A(\xi) \\
\leq & C\left\|\frac{e^{\varphi(z)} \bar{\partial} \phi}{\rho(z)}\right\|_{L^{\infty}(\Omega)} \int_{\mathbb{D}}\left|\rho(\xi) f(\xi) e^{-\varphi(\xi)}\right| d A(\xi) \sum_{j=1}^{\infty} \psi_{j}(\xi) \int_{\Omega} \frac{1}{|\xi-z|} d A(z) \\
\leq & C\left\|\frac{e^{\varphi(z)} \bar{\partial} \phi}{\rho(z)}\right\|_{L^{\infty}(\Omega)} \int_{\mathbb{D}}\left|\rho(\xi) f(\xi) e^{-\varphi(\xi)}\right| \sum_{j=1}^{\infty} \psi_{j}(\xi) d A(\xi) \\
\leq & C\left\|\frac{e^{\varphi(z)} \bar{\partial} \phi}{\rho(z)}\right\|_{L^{\infty}(\Omega)} \int_{\mathbb{D}}\left|\rho(\xi) f(\xi) e^{-\varphi(\xi)}\right| d A(\xi) \\
< & \infty
\end{aligned}
$$

Hence, we can apply Fubini's theorem to obtain

$$
\begin{aligned}
\int_{\mathbb{D}} u(z) \frac{\overline{\partial \phi}}{\partial z}(z) d A(z) & =\int_{\mathbb{D}}\left(\sum_{j=1}^{\infty} K_{z_{j}}(z) \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{(\xi-z) K_{z_{j}}(\xi)} f(\xi) d A(\xi)\right) \frac{\overline{\partial \phi}}{\partial z}(z) d A(z) \\
& =\sum_{j=1}^{\infty} \int_{\mathbb{D}}\left(K_{z_{j}}(z) \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{(\xi-z) K_{z_{j}}(\xi)} f(\xi) d A(\xi)\right) \frac{\overline{\partial \phi}}{\partial z}(z) d A(z) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\langle u, \frac{\partial \phi}{\partial z}\right\rangle_{L^{2}} & =\sum_{j=1}^{\infty}\left\langle K_{z_{j}}(\cdot) \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{(\xi-\cdot) K_{z_{j}}(\xi)} f(\xi) d A(\xi), \frac{\partial \phi}{\partial z}\right\rangle_{L^{2}} \\
& =-\sum_{j=1}^{\infty}\left\langle f \psi_{j}, \phi\right\rangle_{L^{2}} \\
& =-\langle f, \phi\rangle_{L^{2}} .
\end{aligned}
$$

With this we know $\frac{\partial u}{\partial \bar{z}}=f$ weakly.

4. Hankel operators from A_{φ}^{p} TO L_{φ}^{q}

Recall that

$$
\Gamma=\left\{\sum_{j=1}^{N} a_{j} K_{z_{j}}: N \in \mathbb{N}, a_{j} \in \mathbb{C}, z_{j} \in \mathbb{D}, \text { for } 1 \leq j \leq N,\right\}
$$

and

$$
\mathcal{S}=\left\{f \text { measurable on } \mathbb{D}: f g \in L_{\varphi}^{1} \text { for } g \in \Gamma\right\}
$$

Corollary 4.2 from [10] tells us that Γ is dense in A_{φ}^{p} for all $0<p<\infty$. Hence, for $f \in \mathcal{S}$ the Hankel operator H_{f} is densely defined on A_{φ}^{p}. Therefore, a function $f \in \mathcal{S}$ can be used as the symbol to define a Hankel operator on A_{φ}^{p}.

The following lemma sets up a bridge between Hankel operators and the solution to $\bar{\partial}$-equation in Theorem 3.2.

Lemma 4.1. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and suppose that $f \in \mathcal{S}$ with $\rho \bar{\partial} f \in \mathcal{S}$, where the derivative is in the weak sense. Then for $g \in \Gamma$ there holds

$$
\begin{equation*}
H_{f}(g)=u-P(u), \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
u(z)=\sum_{j=1}^{\infty} K_{z_{j}}(z) \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{(\xi-z) K_{z_{j}}(\xi)} g(\xi) \bar{\partial} f(\xi) d A(\xi) \tag{4.2}
\end{equation*}
$$

Proof. Since $\rho \bar{\partial} f \in \mathcal{S}$, for $g \in \Gamma$ we have $g \rho \bar{\partial} f \in L_{\varphi}^{1}$. For u defined as in (4.2), Theorem 3.2 implies $u \in L_{\varphi}^{p}$ with

$$
\begin{equation*}
\|u\|_{L_{\varphi}^{p}} \leq C\|g(\rho \bar{\partial} f)\|_{L_{\varphi}^{p}} . \tag{4.3}
\end{equation*}
$$

Meanwhile, $f g \in L_{\varphi}^{1}$ for $g \in \Gamma$. Then, $f g-u \in L_{\varphi}^{1}$, and Theorem 3.2 tells us that $\bar{\partial}(f g-u)=g \bar{\partial} f-\bar{\partial} u=0$, showing that $f g-u \in A_{\varphi}^{1}$. Since $\left.P\right|_{A_{\varphi}^{1}}=I d$, we have

$$
P(f g-u)=f g-u
$$

Therefore,

$$
H_{f}(g)-(u-P(u))=f g-P(f g)-(u-P(u))=(f g-u)-P(f g-u)=0,
$$

from which (4.1) follows.
To characterize the boundedness (or compactness) of Hankel operators H_{f}, we need an auxiliary function $G_{q, r}(f)$ which is an analogue of the one first introduced in [13], when

Luecking studied Hankel operators on the standard Bergman space A^{p}. Let $q \geq 1$ and $0<r \leq \alpha$. For $f \in L_{l o c}^{q}$ we define $G_{q, r}(f)$ to be

$$
G_{q, r}(f)(z)=\inf \left\{\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}|f-h|^{q} d A\right)^{\frac{1}{q}}: h \in H\left(D^{r}(z)\right)\right\}, \quad z \in \mathbb{D} .
$$

For $f \in L_{l o c}^{1}(\mathbb{D}), 1 \leq q<\infty$ and $0<r \leq \alpha$, write

$$
M_{q, r}(f)(z)=\left\{\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}|f|^{q} d A\right\}^{\frac{1}{q}}
$$

to be the q-th mean of $|f|$ over $D^{r}(z)$.
Our analysis on the Hankel operator going from A_{φ}^{p} to L_{φ}^{q} will be carried out in two cases: $1 \leq p \leq q<\infty$ and $1 \leq q<p<\infty$.
Theorem 4.2. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and let $1 \leq p \leq q<\infty$. Set $s=\frac{1}{q}-\frac{1}{p}$. Then for $f \in \mathcal{S}$, the following statements are equivalent:
(A) $H_{f}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ is bounded;
(B) For some (or any) $0<r \leq \alpha, \rho^{2 s} G_{q, r}(f) \in L^{\infty}$;
(C) f admits a decomposition $f=f_{1}+f_{2}$, where $f_{1} \in C^{1}(\mathbb{D})$ satisfying

$$
\begin{equation*}
\rho^{2 s+1}\left|\bar{\partial} f_{1}\right| \in L^{\infty} \tag{4.4}
\end{equation*}
$$

and f_{2} has the property that, for some (or any) $0<r \leq \alpha$,

$$
\begin{equation*}
\rho^{2 s} M_{q, r}\left(f_{2}\right) \in L^{\infty} . \tag{4.5}
\end{equation*}
$$

Furthermore, for $0<r \leq \alpha$,

$$
\begin{equation*}
\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \simeq\left\|\rho^{2 s} G_{q, r}(f)\right\|_{L^{\infty}} . \tag{4.6}
\end{equation*}
$$

Proof. $(A) \Rightarrow(B)$. For α as in Lemma 2.2, Lemma 2.1 tells us that there is some constant $C>0$ such that

$$
\inf _{\xi \in D^{\alpha}(z)}\left|k_{z, p}(\xi)\right| \geq C \rho(z)^{-\frac{2}{p}} e^{\varphi(\xi)}>0 \quad \text { for } z \in \mathbb{D}
$$

Then, $\frac{1}{k_{z, p}} P\left(f k_{z, p}\right) \in H\left(D^{r}(z)\right)$, and

$$
\begin{align*}
\left\|H_{f}\left(k_{z, p}\right)\right\|_{L_{\varphi}^{q}}^{q} & =\int_{\mathbb{D}}\left|f k_{z, p}(\xi)-P\left(f k_{z, p}\right)(\xi)\right|^{q} e^{-q \varphi(\xi)} d A(\xi) \\
& \geq \int_{D^{r}(z)}\left|k_{z, p}(\xi)\right|^{q}\left|f(\xi)-\frac{1}{k_{z, p}(\xi)} P\left(f k_{z, p}\right)(\xi)\right|^{q} e^{-q \varphi(\xi)} d A(\xi) \tag{4.7}\\
& \geq C \rho(z)^{-\frac{2 q}{p}} \int_{D^{r}(z)}\left|f(\xi)-\frac{1}{k_{z, p}(\xi)} P\left(f k_{z, p}\right)(\xi)\right|^{q} d A(\xi) \\
& \geq C\left\{\rho(z)^{2 s} G_{q, r}(f)(z)\right\}^{q} .
\end{align*}
$$

On the other hand, $\left\|H_{f}\left(k_{z, p}\right)\right\|_{L_{\varphi}^{q}}^{q} \leq\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}^{q}\left\|k_{z, p}\right\|_{L_{\varphi}^{p}}^{q}=\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}^{q}$. Therefore, we have

$$
\begin{equation*}
\rho(z)^{2 s} G_{q, r}(f)(z) \leq C\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \quad \text { for all } z \in \mathbb{D} \text {. } \tag{4.8}
\end{equation*}
$$

From this, the statement (B) follows.
$(B) \Rightarrow(C)$. Suppose $\left\|\rho^{2 s} G_{q, r}(f)\right\|_{L^{\infty}}<\infty$ for some $r \in(0, \alpha]$. Fix a $\left(\rho, \frac{r}{2}\right)$-lattice $\left\{z_{j}\right\}_{j=1}^{\infty}$, and take $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ to be a partition of the unity subordinate to $\left\{D^{\frac{r_{2}}{2}}\left(z_{j}\right)\right\}_{j=1}^{\infty}$,
satisfying $\rho\left(z_{j}\right)\left|\bar{\partial} \psi_{j}\right| \leq C$ for $j=1,2, \cdots$. With a normal family argument we may find some function $h_{j} \in H\left(D^{r}\left(z_{j}\right)\right)$ such that

$$
\begin{equation*}
\frac{1}{\left|D^{r}\left(z_{j}\right)\right|} \int_{D^{r}\left(z_{j}\right)}\left|f-h_{j}\right|^{q} d A=G_{q, r}^{q}(f)\left(z_{j}\right), \quad j=1,2, \cdots \tag{4.9}
\end{equation*}
$$

Set

$$
f_{1}(z)=\sum_{j=1}^{\infty} h_{j}(z) \psi_{j}(z) \in C^{\infty}(\mathbb{D})
$$

and $f_{2}=f-f_{1}$. Define $J_{z}=\left\{j: z \in D^{r}\left(z_{j}\right)\right\}$. Then, $\rho\left(z_{j}\right) \simeq \rho(z)$ for $j \in J_{z}$, and

$$
\begin{equation*}
\left|J_{z}\right|:=\sum_{j=1}^{\infty} \chi_{D^{r}\left(z_{j}\right)}(z) \leq C . \tag{4.10}
\end{equation*}
$$

As that on pages 254-255 in [14], for $z \in \mathbb{D}$ there holds

$$
\begin{equation*}
\rho(z)\left|\bar{\partial} f_{1}(z)\right| \leq C \sum_{j \in J_{z}} G_{q, r}(f)\left(z_{j}\right) \tag{4.11}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\rho(z)^{2 s+1}\left|\bar{\partial} f_{1}(z)\right| \leq C| | \rho^{2 s} G_{q, r}(f) \|_{L^{\infty}} \text { for } z \in \mathbb{D} \tag{4.12}
\end{equation*}
$$

On the other hand, $f_{2}(z)=\sum_{j=1}^{\infty}\left(f(z)-h_{j}(z)\right) \psi_{j}(z)$, and by (2.5) only at most N terms are not zero in this summation. Hölder's inequality implies

$$
\left|f_{2}(z)\right|^{q} \leq C \sum_{j=1}^{\infty}\left|f(z)-h_{j}(z)\right|^{q} \psi_{j}(z)
$$

Then, by (4.9),

$$
\begin{align*}
M_{q, r}\left(f_{2}\right)(z) & \leq C \sum_{j=1}^{\infty}\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|\left(f-h_{j}\right)\right|^{q} \psi_{j} d A\right)^{\frac{1}{q}} \\
& \leq C \sum_{j=1}^{\infty}\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z) \cap D^{r / 2}\left(z_{j}\right)}\left|f-h_{j}\right|^{q} d A\right)^{\frac{1}{q}} \tag{4.13}\\
& \leq C \sum_{j \in J_{z}}^{\infty} G_{q, r}(f)\left(z_{j}\right) .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\rho(z)^{2 s} M_{q, r}\left(f_{2}\right)(z) \leq C\left\|\rho^{2 s} G_{q, r}(f)\right\|_{L^{\infty}} \text { for } z \in \mathbb{D} . \tag{4.14}
\end{equation*}
$$

Something more, the condition (4.5) is independent of $r \in(0, \alpha]$. We reach the condition (C) from (4.12) and (4.14).
$(C) \Rightarrow(A)$. If we set $d \mu=\left|f_{2}\right|^{q} d A$, then

$$
\begin{equation*}
\widehat{\mu}_{r}(z)^{\frac{1}{q}}=M_{q, r}\left(f_{2}\right)(z) \tag{4.15}
\end{equation*}
$$

The assumption (4.5) and Proposition 2.6, imply that μ is a q-Carleson measure for A_{φ}^{p} with $\|\operatorname{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)} \simeq\left\|\rho^{2 s} M_{q, r}\left(f_{2}\right)\right\|_{L^{\infty}}$. By the boundedness of the Bergman
projection on L_{φ}^{q},

$$
\begin{align*}
\left\|H_{f_{2}} g\right\|_{L_{\varphi}^{q}} & \leq C\left\|f_{2} g\right\|_{L_{\varphi}^{q}} \\
& =C\left(\int_{\mathbb{D}}|g|^{q} e^{-q \varphi} d \mu\right)^{\frac{1}{q}} \tag{4.16}\\
& \left.\leq C\|\mathrm{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi}\right.} d \mu\right) \\
& \leq C\| \|_{L_{\varphi}^{p}} \\
& \left\|\rho^{2 s} M_{q, r}\left(f_{2}\right)\right\|_{L^{\infty}}\|g\|_{L_{\varphi}^{p}} .
\end{align*}
$$

Next, we suppose that f_{1} satisfies (4.4). With the fact that $s \leq 0$ and $\rho^{2 s+1} \bar{\partial} f \in L^{\infty}$, we know $\rho\left|\bar{\partial} f_{1}\right| \in L^{\infty}$. Now, for $g \in \Gamma$, take u as in (4.1) so that

$$
u(z)=\sum_{j=1}^{\infty} K_{z_{j}}(z) \int_{\mathbb{D}} \frac{\psi_{j}(\xi)}{(\xi-z) K_{z_{j}}(\xi)} g(\xi) \bar{\partial} f_{1}(\xi) d A(\xi)
$$

Theorem 3.2 and Lemma 4.1 tell us

$$
H_{f_{1}}(g)=u-P(u) \text { and }\|u\|_{L_{\varphi}^{q}} \leq C\left\|g\left(\rho \bar{\partial} f_{1}\right)\right\|_{L_{\varphi}^{q}} .
$$

From the boundedness of P on L_{φ}^{q} we obtain

$$
\begin{equation*}
\left\|H_{f_{1}} g\right\|_{L_{\varphi}^{q}} \leq\left(1+\|P\|_{L_{\varphi}^{q} \rightarrow L_{\varphi}^{q}}\right)\|u\|_{L_{\varphi}^{q}} \leq C\left\|g\left(\rho \bar{\partial} f_{1}\right)\right\|_{L_{\varphi}^{q}} \tag{4.17}
\end{equation*}
$$

Meanwhile, if we consider the measure $d \nu=\left[\rho\left|\bar{\partial} f_{1}\right|\right]^{q} d A$, it is easy to see that

$$
\begin{equation*}
\widehat{\nu}_{r}(z)^{\frac{1}{q}} \leq C \sup _{\xi \in D^{r}(z)} \rho(\xi)\left|\bar{\partial} f_{1}(\xi)\right| \tag{4.18}
\end{equation*}
$$

Hence, $\rho(z)^{2 s} \widehat{\nu}_{r}(z)^{\frac{1}{q}} \leq C\left\|\rho^{2 s+1}\left|\bar{\partial} f_{1}\right|\right\|_{L^{\infty}}$. It follows from (4.4) and Proposition 2.6 that ν is a q-Carleson measure for A_{φ}^{p} with $\|\mathrm{Id}\|_{A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \nu\right)} \simeq\left\|\rho^{2 s+1}\left|\bar{\partial} f_{1}\right|\right\|_{L^{\infty}}$. Then

$$
\left\|g\left(\rho \bar{\partial} f_{1}\right)\right\|_{L_{\varphi}^{q}} \leq C\left\|\rho^{2 s+1}\left|\bar{\partial} f_{1}\right|\right\|_{L^{\infty}} \cdot\|g\|_{L_{\varphi}^{p}}
$$

Hence,

$$
\left\|H_{f_{1}} g\right\|_{L_{\varphi}^{q}} \leq C\left\|\rho^{2 s+1}\left|\bar{\partial} f_{1}\right|\right\|_{L^{\infty}} \cdot\|g\|_{L_{\varphi}^{p}}
$$

With this and (4.16), we obtain

$$
\begin{equation*}
\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \leq C\left\{\left\|\rho^{2 s+1}\left|\bar{\partial} f_{1}\right|\right\|_{L^{\infty}}+\left\|\rho^{2 s} M_{q, r}\left(f_{2}\right)\right\|_{L^{\infty}}\right\} \tag{4.19}
\end{equation*}
$$

This gives the implication $(C) \Rightarrow(A)$ finishing the proof of the equivalence among (A), (B) and (C). The norm estimates (4.6) come from (4.8), (4.12), (4.14) and (4.19).

The next result describes the compactness of H_{f} when $p \leq q$. For $q \geq 1$, we understand that $H_{f}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ is compact if and only if whenever $\left\{g_{m}\right\}_{m=1}^{\infty}$ is a bounded sequence in A_{φ}^{p} converging to zero on compact subsets of \mathbb{D}, it follows that $\left\|H_{f} g_{m}\right\|_{L_{\varphi}^{q}}$ tends to zero.
Theorem 4.3. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and let $1 \leq p \leq q<\infty$. Set $s=\frac{1}{q}-\frac{1}{p}$. Then for $f \in \mathcal{S}$, the following statements are equivalent:
(A) $H_{f}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ is compact;
(B) For some (or any) $0<r \leq \alpha, \lim _{|z| \rightarrow 1} \rho^{2 s} G_{q, r}(f)(z)=0$.
(C) f admits a decomposition $f=f_{1}+f_{2}$, where $f_{1} \in C^{1}(\mathbb{D})$ satisfying

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \rho(z)^{2 s+1}\left|\bar{\partial} f_{1}(z)\right|=0 \tag{4.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \rho(z)^{2 s} M_{q, r}\left(f_{2}\right)(z)=0 \tag{4.21}
\end{equation*}
$$

for some (or any) $0<r \leq \alpha$.

Proof. Let H_{f} be compact from A_{φ}^{p} to L_{φ}^{q}. It is easy to see that $\left\{k_{z, p}: z \in \mathbb{D}\right\}$ tends to 0 weakly in A_{φ}^{p} as $|z| \rightarrow 1$. Then, for $0<r \leq \alpha$ fixed, from (4.7) we have

$$
\rho(z)^{2 s} G_{q, r}(f)(z) \leq C\left\|H_{f}\left(k_{z, p}\right)\right\|_{L_{\varphi}^{q}} \rightarrow 0
$$

as $|z| \rightarrow 1$. So, (A) implies (B).
Suppose now that (B) is holds for some $r \in(0, \alpha]$. From (4.11) and (4.13) we know

$$
\rho(z)^{2 s+1}\left|\bar{\partial} f_{1}(z)\right| \leq C \sum_{j \in J_{z}} \rho\left(z_{j}\right)^{2 s} G_{q, r}(f)\left(z_{j}\right)
$$

and

$$
\rho(z)^{2 s} M_{q, r}\left(f_{2}\right)(z) \leq C \sum_{j \in J_{z}} \rho\left(z_{j}\right)^{2 s} G_{q, r}(f)\left(z_{j}\right) .
$$

From these estimates, the statement (C) follows easily.
Finally, we prove the implication $(\mathrm{C}) \Rightarrow(\mathrm{A})$. As in the proof of Theorem 4.2, we know that both $d \mu=\left|f_{2}\right|^{q} d A$ and $d \nu=\left[\rho\left|\bar{\partial} f_{1}\right|\right]^{q} d A$ are vanishing q-Carleson measures for A_{φ}^{p}. With (2.7) we know that the unit ball of A_{φ}^{p} is a normal family. Then, for any bounded sequence $\left\{g_{m}\right\}$ in A_{φ}^{p} converging to zero uniformly on compact subsets of \mathbb{D}, we have

$$
\left\|H_{f_{2}}\left(g_{m}\right)\right\|_{L_{\varphi}^{q}} \leq C\left(\int_{\mathbb{D}}\left|f_{2}\right|^{q}\left|g_{m}\right|^{q} e^{-q \varphi} d A\right)^{\frac{1}{q}} \rightarrow 0
$$

and, by (4.17),

$$
\left\|H_{f_{1}}\left(g_{m}\right)\right\|_{L_{\varphi}^{q}} \leq C\left\|\left(\rho\left|\bar{\partial} f_{1}\right|\right) g_{m}\right\|_{L_{\varphi}^{q}} \rightarrow 0
$$

Then, $\lim _{m \rightarrow \infty}\left\|H_{f}\left(g_{m}\right)\right\|_{L_{\varphi}^{q}}=0$, and this tells us that H_{f} is compact from A_{φ}^{p} to L_{φ}^{q}.
Next, we proceed to characterize the boundedness and compactness in the case that $1 \leq q<p<\infty$.
Theorem 4.4. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and let $1 \leq q<p<\infty$. Set $s=\frac{1}{q}-\frac{1}{p}$. Then for $f \in \mathcal{S}$, the following statements are equivalent.
(A) $H_{f}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ is bounded.
(B) $H_{f}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ is compact.
(C) For some (or any) $0<r \leq \frac{\alpha}{2}, G_{q, r}(f)(z) \in L^{\frac{1}{s}}$.
(D) f admits a decomposition $f=f_{1}+f_{2}$, where

$$
\begin{equation*}
f_{1} \in C^{1}(\mathbb{D}), \rho\left|\bar{\partial} f_{1}\right| \in L^{\frac{1}{s}}, \quad \text { and } M_{q, r}\left(f_{2}\right) \in L^{\frac{1}{s}} \tag{4.22}
\end{equation*}
$$

for some (or any) $0<r \leq \alpha$.
Furthermore, for $0<r \leq \frac{\alpha}{2}$ fixed,

$$
\begin{equation*}
\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \simeq\left\|G_{q, r}(f)\right\|_{L^{\frac{1}{s}}} . \tag{4.23}
\end{equation*}
$$

Proof. (B) \Rightarrow (A) is trivial. We need only to prove the implications $(A) \Rightarrow(C),(C) \Rightarrow(D)$ and $(\mathrm{D}) \Rightarrow(\mathrm{B})$.
$(\mathrm{A}) \Rightarrow(\mathrm{C})$. For $r \in(0, \alpha]$ fixed, take $\left\{z_{j}\right\}_{j=1}^{\infty}$ to be some $(r / 4, \rho)$-lattice. By Lemma 2.4, for $\lambda=\left\{\lambda_{j}\right\} \in \ell^{p}$, we have $\left\|\sum_{j=1}^{\infty} \lambda_{j} k_{z_{j}, p}\right\|_{L_{\varphi}^{p}} \leq C\|\lambda\|_{\ell^{p}}$. As in [14] again, take $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ to be a sequence of Rademacher functions in [0, 1]. From the boundedness of H_{f}, we have

$$
\begin{aligned}
\left\|H_{f}\left(\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(t) k_{z_{j}, p}\right)\right\|_{L_{\varphi}^{q}} & \leq\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \cdot\left\|\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(t) k_{z_{j}, p}\right\|_{L_{\varphi}^{p}} \\
& \leq C\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}\|\lambda\|_{\ell p} .
\end{aligned}
$$

Meanwhile, by Khintchine's inequality,

$$
\begin{aligned}
& \int_{0}^{1}\left\|H_{f}\left(\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(t) k_{z_{j}, p}\right)\right\|_{L_{\varphi}^{q}}^{q} d t \\
& =\int_{\mathbb{D}} e^{-q \varphi(z)} d A(z) \int_{0}^{1}\left|\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(t) H_{f}\left(k_{z_{j}, p}\right)(z)\right|^{q} d t \\
& \simeq \int_{\mathbb{D}}\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}\left|H_{f}\left(k_{z_{j}, p}\right)(z)\right|^{2}\right)^{\frac{q}{2}} e^{-q \varphi(z)} d A(z) .
\end{aligned}
$$

This, together with the previous estimate, gives

$$
\int_{\mathbb{D}}\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}\left|H_{f}\left(k_{z_{j}, p}\right)(z)\right|^{2}\right)^{\frac{q}{2}} e^{-q \varphi(z)} d A(z) \leq C\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}^{q}\|\lambda\|_{\ell^{p}}^{q} .
$$

On the other hand,

$$
\begin{aligned}
& \int_{\mathbb{D}}\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{2}\left|H_{f}\left(k_{z_{j}, p}\right)(z)\right|^{2}\right)^{\frac{q}{2}} e^{-q \varphi(z)} d A(z) \\
& \quad \geq C \sum_{k=1}^{\infty} \int_{D^{r}\left(z_{k}\right)}\left(\left|\lambda_{k}\right|\left|H_{f}\left(k_{z_{k}, p}\right)(z)\right|\right)^{q} e^{-q \varphi(z)} d A(z) \\
& \quad=C \sum_{k=1}^{\infty}\left|\lambda_{k}\right|^{q} \int_{D^{r}\left(z_{k}\right)}\left|f(z) k_{z_{k}, p}(z)-P\left(f k_{z_{k}, p}\right)(z)\right|^{q} e^{-q \varphi(z)} d A(z)
\end{aligned}
$$

As in (4.7),

$$
\int_{D^{r}\left(z_{k}\right)}\left|f(z) k_{z_{k}, p}(z)-P\left(f k_{z_{k}, p}\right)(z)\right|^{q} e^{-q \varphi(z)} d A(z) \geq C\left\{\rho\left(z_{k}\right)^{2 s} G_{q, r}(f)\left(z_{k}\right)\right\}^{q}
$$

Therefore, joining the previous estimates, we obtain

$$
\sum_{k=1}^{\infty}\left|\lambda_{k}\right|^{q}\left\{\rho\left(z_{k}\right)^{2 s} G_{q, r}(f)\left(z_{k}\right)\right\}^{q} \leq C\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}^{q}\left\|\left\{\left|\lambda_{j}\right|^{q}\right\}\right\|_{\ell^{p} / q} .
$$

By the duality between $\ell^{p / q}$ and $\ell^{p /(p-q)}$, we have

$$
\sum_{k=1}^{\infty}\left[G_{q, r}(f)\left(z_{k}\right)\right]^{\frac{p q}{p-q}} \rho\left(z_{k}\right)^{2}=\sum_{k=1}^{\infty}\left[\rho\left(z_{k}\right)^{2 s} G_{q, r}(f)\left(z_{k}\right)\right]^{\frac{p q}{p-q}} \leq C\left\|H_{f}\right\|_{A_{\varphi} \rightarrow L_{\varphi}^{q}}^{\frac{p q}{p-q}} .
$$

This can be viewed as the discrete version of the statement (C). Since

$$
\begin{equation*}
G_{q, \frac{r}{2}}(f)(w) \leq C G_{q, r}(f)(z) \quad \text { for } w \in D^{\frac{r}{2}}(z) \tag{4.24}
\end{equation*}
$$

we have

$$
\begin{align*}
\int_{\mathbb{D}} G_{q, \frac{r}{2}}(f)^{\frac{p q}{p-q}} d A & \leq \sum_{k=1}^{\infty} \int_{D^{\frac{r}{2}}\left(z_{k}\right)} G_{q, \frac{r}{2}}(f)^{\frac{p q}{p-q}}(u) d A(u) \\
& \leq C \sum_{k=1}^{\infty}\left|D^{\frac{r}{2}}\left(z_{k}\right)\right| G_{q, r}(f)^{\frac{p q}{p-q}}\left(z_{k}\right) \tag{4.25}\\
& \leq C\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}^{\frac{p q}{p-q}} .
\end{align*}
$$

This gives the statement (C).
$(\mathrm{C}) \Rightarrow(\mathrm{D})$. As in the proof of Theorem 4.2, set $f_{1}=\sum_{j=1}^{\infty} h_{j} \psi_{j} \in C^{\infty}(\mathbb{D})$, and $f_{2}=$ $f-f_{1}$. By (4.24),

$$
G_{q, \frac{r}{2}}(f)^{\frac{p q}{p-q}}\left(z_{j}\right) \leq C \frac{1}{\left|D^{\frac{r}{2}}\left(z_{j}\right)\right|} \int_{D^{\frac{r}{2}}\left(z_{j}\right)} G_{q, r}(f)^{\frac{p q}{p-q}}(u) d A(u) .
$$

From (4.11) we have

$$
\begin{aligned}
{\left[\rho(z)\left|\bar{\partial} f_{1}(z)\right|\right]^{\frac{p q}{p-q}} } & \leq C \sum_{j \in J_{z}} G_{q, \frac{r}{2}}(f)^{\frac{p q}{p-q}}\left(z_{j}\right) \\
& \leq \frac{C}{\left|D^{r}(z)\right|} \sum_{j \in J_{z}} \int_{D^{r}\left(z_{j}\right)} G_{q, r}(f)^{\frac{p q}{p-q}}(u) d A(u) \\
& \leq \frac{C}{\left|D^{r}(z)\right|} \int_{D^{2 r}(z)} G_{q, r}(f)^{\frac{p q}{p-q}}(u) d A(u)
\end{aligned}
$$

Integrating both sides on \mathbb{D} against the measure $d A$, and applying Fubini's theorem, one gets

$$
\begin{align*}
\int_{\mathbb{D}} & {\left[\rho(z)\left|\bar{\partial} f_{1}(z)\right|\right]^{\frac{p q}{p-q}} d A(z) } \\
& \leq C \int_{\mathbb{D}} \frac{1}{\left|D^{r}(z)\right|} d A(z) \int_{\mathbb{D}} \chi_{D^{2 r}(z)}(u) G_{q, r}(f)^{\frac{p q}{p-q}}(u) d A(u) \tag{4.26}\\
& \leq C \int_{\mathbb{D}} G_{q, r}(f)^{\frac{p q}{p-q}}(u) d A(u) .
\end{align*}
$$

Notice that $\frac{1}{s}>1$. By (4.13) and (4.24) we obtain

$$
\begin{aligned}
M_{q, r}\left(f_{2}\right)(z) & \leq C \sum_{j=1}^{\infty}\left(\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z) \cap D^{r / 2}\left(z_{j}\right)}\left|\left(f-h_{j}\right)\right|^{q} d A\right)^{\frac{1}{q}} \\
& \leq C \frac{1}{\left|D^{r}(z)\right|} \int_{D^{2 r}(z)} G_{q, 2 r}(f)(\xi) d A(\xi) \\
& \leq C\left\{\frac{1}{\left|D^{r}(z)\right|} \int_{D^{2 r}(z)} G_{q, 2 r}^{\frac{1}{s}}(f)(\xi) d A(\xi)\right\}^{s} .
\end{aligned}
$$

This and Fubini's theorem turn out

$$
\begin{equation*}
\left\|M_{q, r}\left(f_{2}\right)\right\|_{L^{\frac{1}{s}}} \leq C\left\|G_{q, 2 r}(f)\right\|_{L^{\frac{1}{s}}} \tag{4.27}
\end{equation*}
$$

And it is trivial that the condition $M_{q, r}\left(f_{2}\right) \in L^{\frac{1}{s}}$ is independent of r. We see that (4.26) and (4.27) give the statement (D).

Now we prove $(\mathrm{D}) \Rightarrow(\mathrm{B})$. First, we claim that both f_{1} and $\rho\left|\bar{\partial} f_{1}\right| \in \mathcal{S}$. In fact, apply Lemma 3.3 from [10] to get

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|f_{2}(\xi) K_{z}(\xi)\right| e^{-\varphi(\xi)} d A(\xi) \\
& \leq C \int_{\mathbb{D}}\left|f_{2}(\xi)\right|\left(\frac{1}{\rho(\xi)^{2}} \int_{D^{r / 2}(\xi)}\left|K_{z}(\zeta)\right| e^{-\varphi(\zeta)} d A(\zeta)\right) d A(\xi) \\
&=C \int_{\mathbb{D}}\left|K_{z}(\zeta)\right| e^{-\varphi(\zeta)} \int_{\mathbb{D}} \chi_{D^{r / 2}(\xi)}(\zeta)\left|f_{2}(\xi)\right| \frac{1}{\rho(\xi)^{2}} d A(\xi) d A(\zeta) \\
& \leq C \int_{\mathbb{D}} M_{1, r}\left(\left|f_{2}\right|\right)(\zeta)\left|K_{z}(\zeta)\right| e^{-\varphi(\zeta)} d A(\zeta) \\
& \leq C \int_{\mathbb{D}} M_{q, r}\left(\left|f_{2}\right|\right)(\zeta)\left|K_{z}(\zeta)\right| e^{-\varphi(\zeta)} d A(\zeta)
\end{aligned}
$$

By Hölder's inequality with exponent $\frac{1}{s}=\frac{p q}{p-q}$ and its conjugate exponent denoted by t, notice also that $\left\|K_{z}\right\|_{L_{\varphi}^{t}}<\infty$,

$$
\int_{\mathbb{D}}\left|f_{2}(\xi) K_{z}(\xi)\right| e^{-\varphi(\xi)} d A(\xi) \leq C\left\|M_{q, r}\left(f_{2}\right)\right\|_{L^{\frac{1}{s}}} \cdot\left\|K_{z}\right\|_{L_{\varphi}^{t}}<\infty
$$

This implies $f_{2} \in \mathcal{S}$, and $f_{1}=f-f_{2} \in \mathcal{S}$. For $\rho\left|\bar{\partial} f_{1}\right|$, notice that $\rho\left|\bar{\partial} f_{1}\right| \in L^{\frac{1}{s}}$ with $\frac{1}{s}=\frac{p q}{p-q}>1$. Then

$$
\int_{\mathbb{D}} \rho(\xi)\left|\bar{\partial} f_{1}(\xi) K_{z}(\xi)\right| e^{-\varphi(\xi)} d A(\xi) \leq\left\{\int_{\mathbb{D}}\left|\rho(\xi) \bar{\partial} f_{1}(\xi)\right|^{\frac{1}{s}} d A(\xi)\right\}^{s}\left\|K_{z}\right\|_{L_{\varphi}^{t}}<\infty
$$

It follows that $\rho\left|\bar{\partial} f_{1}\right| \in \mathcal{S}$.
As before, write $d \nu=\left[\rho\left|\bar{\partial} f_{1}\right|\right]^{q} d A$. Applying Hölder's inequality with exponent $\frac{p}{p-q}$ and its conjugate p / q, we get

$$
\begin{aligned}
\left\|\widehat{\nu}_{r}\right\|_{L^{\frac{p}{p-q}}}^{\frac{p}{p-q}} & =\int_{\mathbb{D}}\left\{\frac{\int_{D^{r}(\xi)}\left[\rho\left|\bar{\partial} f_{1}(\zeta)\right|\right]^{q} d A(\zeta)}{\left|D^{r}(\xi)\right|}\right\}^{\frac{p}{p-q}} d A(\xi) \\
& \leq C \int_{\mathbb{D}}\left\{\int_{D^{r}(\xi)}\left[\rho(\zeta)\left|\bar{\partial} f_{1}(\zeta)\right|\right]^{\frac{p q}{p-q}} d A(\zeta)\right\} \frac{1}{\rho(\xi)^{2}} d A(\xi) \\
& \simeq C \int_{\mathbb{D}}\left[\rho(\zeta)\left|\bar{\partial} f_{1}(\zeta)\right|\right]^{\frac{1}{s}} d A(\zeta)<\infty
\end{aligned}
$$

Lemma 2.6 tells us that ν is a q-Carleson measure for A_{φ}^{p}. Equivalently, the embedding $\mathrm{Id}: A_{\varphi}^{p} \hookrightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \nu\right)$ is compact with

$$
\|\operatorname{Id}\|_{A_{\varphi}^{p} \hookrightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \nu\right)}^{q} \leq C\left\|\widehat{\nu}_{r}\right\|_{L^{\frac{p}{p}-q}} \leq C\left\|\rho \mid \bar{\partial} f_{1}\right\|_{L^{\frac{1}{s}}}^{q}<\infty .
$$

Meanwhile, since both f_{1} and $\rho\left|\bar{\partial} f_{1}\right|$ are in \mathcal{S}, for $g \in \Gamma$, as in (4.17), we have

$$
\left\|H_{f_{1}} g\right\|_{L_{\varphi}^{q}} \leq C\left\|g\left(\rho \bar{\partial} f_{1}\right)\right\|_{L_{\varphi}^{q}}=C\|\operatorname{Id}(g)\|_{L^{q}\left(\mathbb{D}, e^{-q \varphi} d \nu\right)} .
$$

Hence $H_{f_{1}}$ is bounded from A_{φ}^{p} to L_{φ}^{q} with the norm estimate

$$
\begin{equation*}
\left\|H_{f_{1}}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \leq C\left\|\rho\left|\bar{\partial} f_{1}\right|\right\|_{L^{\frac{1}{s}}} . \tag{4.28}
\end{equation*}
$$

We claim that $H_{f_{1}}$ is compact as well. To see this, let $\left\{g_{m}\right\}_{m=1}^{\infty}$ be any bounded sequence in A_{φ}^{p} with the property that $\lim _{m \rightarrow \infty} \sup _{z \in K}\left|g_{m}(z)\right|=0$ on any compact subset $K \subset \mathbb{D}$.

We are going to prove $H_{f_{1}}\left(g_{m}\right) \rightarrow 0$ in L_{φ}^{q} as $m \rightarrow \infty$. For this purpose, for each m pick some $h_{m} \in \Gamma$ so that $\left\|g_{m}-h_{m}\right\|_{L_{\varphi}^{p}}<\frac{1}{m}$. Set

$$
u_{m}(z)=\sum_{j=1}^{\infty} K_{z_{j}}(z) \int_{\mathbb{D}} \frac{\phi_{j}(\xi)}{(\xi-z) K_{z_{j}}(\xi)} h_{m}(\xi) \bar{\partial} f_{1}(\xi) d A(\xi)
$$

Then, $\bar{\partial} u_{m}=h_{m} \bar{\partial} f_{1}$ and

$$
\left\|u_{m}\right\|_{L_{\varphi}^{q}} \leq C\left\|h_{m}\left(\rho \bar{\partial} f_{1}\right)\right\|_{L_{\varphi}^{q}}=C\left\|h_{m}\right\|_{L^{q}\left(\mathbb{D}, e^{-q \varphi} d \nu\right)}
$$

Notice that Id : $A_{\varphi}^{p} \hookrightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \nu\right)$ is compact, so $\lim _{m \rightarrow \infty}\left\|h_{m}\right\|_{L^{q}\left(\mathbb{D}, e^{-q \varphi} d \nu\right)}=0$, showing that

$$
\lim _{m \rightarrow \infty}\left\|u_{m}\right\|_{L_{\varphi}^{q}}=0
$$

Then, as $H_{f_{1}}\left(h_{m}\right)=u_{m}-P\left(u_{m}\right)$, we get

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|H_{f_{1}}\left(h_{m}\right)\right\|_{L_{\varphi}^{q}} \leq\left(1+\|P\|_{L_{\varphi}^{q} \rightarrow L_{\varphi}^{q}}\right) \lim _{m \rightarrow \infty}\left\|u_{m}\right\|_{L_{\varphi}^{q}}=0 \tag{4.29}
\end{equation*}
$$

On the other hand, by (4.28),

$$
\lim _{m \rightarrow \infty}\left\|H_{f_{1}}\left(g_{m}-h_{m}\right)\right\|_{L_{\varphi}^{q}} \leq\left\|H_{f_{1}}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \lim _{m \rightarrow \infty}\left\|g_{m}-h_{m}\right\|_{L_{\varphi}^{p}}=0
$$

This, together with (4.29), implies

$$
\lim _{m \rightarrow \infty}\left\|H_{f_{1}}\left(g_{m}\right)\right\|_{L_{\varphi}^{q}} \leq \lim _{m \rightarrow \infty}\left\{\left\|H_{f_{1}}\left(g_{m}-h_{m}\right)\right\|_{L_{\varphi}^{q}}+\left\|H_{f_{1}}\left(h_{m}\right)\right\|_{L_{\varphi}^{q}}\right\}=0
$$

which gives the compactness of $H_{f_{1}}$ from A_{φ}^{p} to L_{φ}^{q}.
Finally, we consider the compactness of $H_{f_{2}}$. Similarly, $d \mu=\left|f_{2}\right|^{q} d A$ is a vanishing q-Carleson measure for A_{φ}^{p}. Equivalently, Id : $A_{\varphi}^{p} \rightarrow L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)$ is compact. By

$$
\begin{equation*}
\left\|H_{f_{2}}(g)\right\|_{L_{\varphi}^{q}} \leq C\left\|f_{2} g\right\|_{L_{\varphi}^{q}}=C\|\operatorname{Id}(g)\|_{L^{q}\left(\mathbb{D}, e^{-q \varphi} d \mu\right)}, \tag{4.30}
\end{equation*}
$$

with the similar approach for $H_{f_{1}}$ above we know $H_{f_{2}}$ is compact from A_{φ}^{p} to L_{φ}^{q} as well. This finishes the proof of implication $(\mathrm{D}) \Rightarrow(\mathrm{B})$.

Furthermore, from (4.28), (4.30) and (4.26), (4.27) we have

$$
\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \leq C \inf \left\{\left\|H_{f_{1}}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}+\left\|H_{f 2}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}\right\} \leq C\left\|G_{q, r}(f)\right\|_{L^{\frac{1}{s}}},
$$

where the "inf" is taken over all decomposition $f=f_{1}+f_{2}$ as (4.22). This and (4.25) imply (4.23). The proof is completed.

5. Simultaneously boundedness of H_{f} and $H_{\bar{f}}$

For $f \in L_{l o c}^{q}(\mathbb{D})$ with $1 \leq q<\infty$ and $0<r<\alpha$, set $f_{D^{r}(z)}=\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)} f d A$,

$$
M O_{q, r}(f)(z)=\left\{\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|f-f_{D^{r}(z)}\right|^{q} d A\right\}^{\frac{1}{q}}
$$

and

$$
\operatorname{Osc}_{r}(f)(z)=\sup _{\xi \in B(z, r)}|f(\xi)-f(z)|
$$

Lemma 5.1. Let $1 \leq q<\infty, 0<s \leq \infty,-\infty<\gamma<\infty$, and let $f \in L_{\text {loc }}^{q}(\mathbb{D})$. Then the following statements are equivalent:
(A) For some (or any) $0<r \leq \alpha$, both $\rho^{\gamma} G_{q, r}(f)$ and $\rho^{\gamma} G_{q, r}(\bar{f})$ are in L^{s};
(B) For some (or any) $0<r \leq \alpha$, one has $\rho^{\gamma} M O_{q, r}(f) \in L^{s}$;
(C) $f=f_{1}+f_{2}$ with $f_{1} \in C(\mathbb{D})$, and for some (or any) $0<r \leq \alpha$

$$
\begin{equation*}
\rho^{\gamma} O s c_{r}\left(f_{1}\right) \in L^{s} \quad \text { and } \rho^{\gamma} M_{q, r}\left(f_{2}\right) \in L^{s} . \tag{5.1}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\left\|\rho^{\gamma} G_{q, r}(f)\right\|_{L^{s}}+\left\|\rho^{\gamma} G_{q, r}(\bar{f})\right\|_{L^{s}} \simeq\left\|\rho^{\gamma} M O_{q, r}(f)\right\|_{L^{s}} \tag{5.2}
\end{equation*}
$$

Proof. By definition, we know

$$
\begin{equation*}
G_{q, r}(f)(z) \leq M O_{q, r}(f)(z) \text { and } G_{q, r}(\bar{f})(z) \leq M O_{q, r}(f)(z) \tag{5.3}
\end{equation*}
$$

which gives the implication $(A) \Rightarrow(B)$.
Similar to the estimate (2.7) in [11], for fixed $r>0$, we have some constant C independent of z such that

$$
\|u-u(z)\|_{L^{q}\left(D^{r}(z), d A\right)} \leq C\|v\|_{L^{q}\left(D^{r}(z), d A\right)}
$$

for all real valued functions u and v so that $u+i v \in H\left(D^{r}(z)\right)$. From this, as done in Proposition 2.5 in [11], we know

$$
\begin{equation*}
M O_{q, r}(f)(z) \leq C\left\{G_{q, r}(f)(z)+G_{q, r}(\bar{f})(z)\right\} \tag{5.4}
\end{equation*}
$$

This means that (B) implies (A).
Suppose $f=f_{1}+f_{2}$ is as in statement (C). From

$$
\begin{aligned}
M O_{q, r}\left(f_{1}\right)(z) & =\left\{\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left|\frac{1}{\left|D^{r}(z)\right|} \int_{D^{r}(z)}\left(f_{1}(\xi)-f_{1}(\zeta)\right) d A(\zeta)\right|^{q} d A(\xi)\right\}^{\frac{1}{q}} \\
& \leq 2 O s c_{r}\left(f_{1}\right)(z)
\end{aligned}
$$

and $M O_{q, r}\left(f_{2}\right)(z) \leq 2 M_{q, r}\left(f_{2}\right)(z)$, we know that f satisfies (A).
To prove the implication $(\mathrm{B}) \Rightarrow(\mathrm{C})$ we set $f_{1}(z)=f_{D^{r}(z)}$ and $f_{2}=f-f_{1}$. As in the proof of Lemma 8.3 in [18] we have

$$
O s c_{r / 2}\left(f_{1}\right)(z) \leq C M O_{q, r}(f)(z) \text { and } M_{q, r / 2}\left(f_{2}\right)(z) \leq C M O_{q, r}(f)(z)
$$

And it is easy to see that the condition (5.1) is independent of $r \in(0, \alpha]$. Then (C) follows from (B). The equivalence (5.2) comes from (5.3) and (5.4).
Lemma 5.2. Let $1 \leq q<\infty, 0<s \leq \infty,-\infty<\gamma<\infty$, and let $f \in L_{\text {loc }}^{q}(\mathbb{D})$. Then the following statements are equivalent:
(A) For some (or any) $0<r \leq \alpha, \lim _{|z| \rightarrow 1}\left\{\rho(z)^{\gamma} G_{q, r}(f)(z)+\rho(z)^{\gamma} G_{q, r}(\bar{f})(z)\right\}=0$;
(B) For some (or any) $0<r \leq \alpha, \lim _{|z| \rightarrow 1} \rho(z)^{\gamma} M O_{q, r}(f)(z)=0$;
(C) $f=f_{1}+f_{2}$ with $f_{1} \in C(D)$, and for some (or any) $0<r \leq \alpha$

$$
\lim _{|z| \rightarrow 1}\left\{\rho(z)^{\gamma} \operatorname{Osc}_{r}\left(f_{1}\right)(z)+\rho(z)^{\gamma} M_{q, r}\left(f_{2}\right)(z)\right\}=0
$$

The proof of this lemma can be carried out with the same approach as that of Lemma 5.1 and will be omitted here.

Here are three theorems for simultaneous boundedness (or compactness) of Hankel operators H_{f} and $H_{\bar{f}}$ from A_{φ}^{p} to L_{φ}^{q}.

Theorem 5.3. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and let $1 \leq p \leq q<\infty$. Set $s=\frac{1}{q}-\frac{1}{p}$. Then for $f \in \mathcal{S}$, the following statements are equivalent:
(A) $H_{f}, H_{\bar{f}}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ are simultaneously bounded;
(B) For some (or any) $0<r \leq \alpha, \rho^{2 s} M O_{q, r}(f) \in L^{\infty}$;
(C) f admits a decomposition $f=f_{1}+f_{2}$, where $f_{1} \in C^{1}(\mathbb{D})$ satisfying

$$
\rho^{2 s} O s c_{r}\left(f_{1}\right) \in L^{\infty}, \text { and } \rho^{2 s} M_{q, r}\left(f_{2}\right) \in L^{\infty}
$$

for some (or any) $0<r \leq \alpha$.
Furthermore,

$$
\begin{equation*}
\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}}+\left\|H_{\bar{f}}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \simeq\left\|\rho^{2 s} M O_{q, r}(f)\right\|_{L^{\infty}} \tag{5.5}
\end{equation*}
$$

Theorem 5.4. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and let $1 \leq p \leq q<\infty$. Set $s=\frac{1}{q}-\frac{1}{p}$. Then for $f \in \mathcal{S}$, the following statements are equivalent:
(A) $H_{f}, H_{\bar{f}}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ are simultaneously compact;
(B) For some (or any) $0<r \leq \alpha, \lim _{|z| \rightarrow 1} \rho^{2 s}(z) M O_{q, r}(f)(z)=0$;
(C) f admits a decomposition $f=f_{1}+f_{2}$, where $f_{1} \in C^{1}(\mathbb{D})$ satisfying

$$
\lim _{|z| \rightarrow 1} \rho^{2 s}(z) O s c_{r}\left(f_{1}\right)(z)=0, \text { and } \lim _{|z| \rightarrow 1} \rho^{2 s}(z) M_{q, r}\left(f_{2}\right)(z)=0
$$

for some (or any) $0<r \leq \alpha$.
Theorem 5.5. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and let $1 \leq q<p<\infty$. Set $s=\frac{1}{q}-\frac{1}{p}$. Then for $f \in \mathcal{S}$, the following statements are equivalent:
(A) $H_{f}, H_{\bar{f}}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ are bounded.
(B) $H_{f}, H_{\bar{f}}: A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}$ are compact.
(C) For some (or any) $0<r \leq \alpha, M O_{q, r}(f) \in L^{\frac{1}{s}}$.
(D) $f=f_{1}+f_{2}$ with $f_{1} \in C(\mathbb{D})$,

$$
O s c_{r}\left(f_{1}\right) \in L^{\frac{1}{s}}, \quad \text { and } \quad M_{q, r}\left(f_{2}\right) \in L^{\frac{1}{s}}
$$

for some (or any) $0<r<\alpha$.
Furthermore, $\left\|H_{f}\right\|_{A_{\varphi}^{p} \rightarrow L_{\varphi}^{q}} \simeq\left\|M O_{q, r}(f)\right\|_{L^{\frac{1}{s}}}$.
Proof. The proof of Theorem 5.3, 5.4 and 5.5 are in the same approach, so we only write out the one for Theorem 5.3 here.

Theorem 4.2 tells us that the statement (A) is equivalent to

$$
\rho^{2 s} G_{q, r}(f)+\rho^{2 s} G_{q, r}(\bar{f}) \in L^{\infty} .
$$

And this, by Lemma 5.2, is equivalent to Statement (B). The equivalence between (B) and (C) comes from Lemma 5.2 as well.

When f is holomorphic, it is trivial that $H_{f}=0$. Furthermore, for fixed $0<r \leq \alpha$ there are two positive constant C_{1} and C_{2} such that

$$
C_{1} \rho(z) \sup _{\xi \in D^{r}(z)}\left|f^{\prime}(\xi)\right| \leq M_{q, r}(f)(z) \leq C_{2} \rho(z) \sup _{\xi \in D^{r}(z)}\left|f^{\prime}(\xi)\right| .
$$

Therefore we have the following theorem on Hankel operators with conjugate holomorphic symbols. The case $\varphi \in \mathcal{B D K}$ and $p=q=2$, was previously obtained in [9].

Theorem 5.6. Let $\varphi \in \mathcal{W}_{0}$ with $\frac{1}{\sqrt{\Delta \varphi}} \simeq \rho \in \mathcal{L}_{0}$, and set $s=\frac{1}{q}-\frac{1}{p}$ for $1 \leq p, q<\infty$. Then for $f \in \mathcal{S} \cap H(\mathbb{D})$ the following statements are true.
(A) For $p \leq q, H_{\bar{f}}$ is bounded from A_{φ}^{p} to L_{φ}^{q} if and only if $\rho^{2 s+1} f^{\prime} \in L^{\infty} ; H_{\bar{f}}$ is compact from A_{φ}^{p} to L_{φ}^{q} if and only if $\lim _{|z| \rightarrow 1} \rho^{2 s+1} f^{\prime}(z)=0$.
(B) For $p>q, H_{\bar{f}}$ is bounded from A_{φ}^{p} to L_{φ}^{q} if and only if $H_{\bar{f}}$ is compact from A_{φ}^{p} to L_{φ}^{q} if and only if $\rho f^{\prime} \in L^{\frac{1}{s}}$

Acknowledgments. Part of the work was done while the first author visited the Department of the University of Barcelona to which the first author would like to express thanks for the hospitality and stimulating environment. The authors would also like to thank the referee for his (her) carefully reading and valuable suggestions.

ZHANGJIAN HU AND JORDI PAU

References

[1] H. Arroussi, Function and operator theory on large Bergman spaces, PhD Dissertation, Servei Publicacions UB, 2016.
[2] H. Arroussi, I. Park, J. Pau, Schatten class Toeplitz operators acting on large weighted Bergman spaces, Studia Math. 229 (2015), 203-221.
[3] A. Borichev, R. Dhuez, K. Kellay, Sampling and interpolation in large Bergman and Fock spaces, J. Funct. Anal. 242 (2007), 563-606.
[4] S. Chen, M. Shaw, "Partial Differential Equations in Several Complex Variables". AMS/IP Studies in AdAanced Mathematics, 19. American Mathematical Society, Providence, RI; International Press, Boston, MA, (2001).
[5] O. Constantin, J. Ortega-Cerdà, Some spectral properties of the canonical solution operator to $\bar{\partial}$ on weighted Fock spaces, J. Math. Anal. Appl. 377 (2011), 353-361.
[6] O. Constantin, J. A. Peláez, Boundedness of the Bergman projection on L^{p} spaces with exponential weights, Bull. Sci. Math. 139 (2015), 245-268.
[7] O. Constantin, J. A. Peláez, Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, J. Geom. Anal. 26 (2016), 1109-1154.
[8] O. El-Fallah, H. Mahzouli, I. Marrhich, H. Naqos, Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces, J. Funct. Anal. 270 (2016), 4614-4630.
[9] P. Galanopoulos, J. Pau, Hankel operators on large weighted Bergman spaces, Ann. Acad. Sci. Fenn. Math. 37 (2012), 635-648.
[10] Z. Hu, X. Lv, A. P. Schuster, Bergman spaces with exponential weights, J. Funct. Anal. 276 (2019), 1402-1429.
[11] Z. Hu, E. Wang, Hankel Operators Between Fock Spaces, Integral Equations Operator Theory 90 (2018), no 3, Art. 37, 20 pp.
[12] S. Janson, Hankel operators between Bergman spaces, Ark. Mat. 26 (1988), 205-219.
[13] D. H. Luecking, Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk, J. Funct. Anal. 110 (1992) 247-271.
[14] D. H. Luecking, Embedding theorems for spaces of analytic functions via Khinchine's inequality, Michigan Math. J. 40 (1993), 333-358.
[15] J. Pau, Hankel operators on standard Bergman spaces, Complex Anal. Oper. Theory 7 (2013), 12391256.
[16] J. Pau, J. A. Peláez, Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal. 259 (2010), 2727-2756.
[17] J. Pau, J. A. Peláez, Volterra type operators on Bergman spaces with exponential weights, Contemporary Math. 561 (2012), 239-252.
[18] K. Zhu, "Operator Theory in Function Spaces". Second edition. Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007).

Zhangjian Hu, Department of Mathematics, Huzhou University, Huzhou 313000, China E-mail address: huzj@zjhu.edu.cn

Jordi Pau, Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

E-mail address: jordi.pau@ub.edu

[^0]: 2010 Mathematics Subject Classification. Primary 47B35; Secondary 30H20 .
 Key words and phrases. weighted Bergman spaces; Hankel operators; $\bar{\partial}$-equation.
 The first author is supported by National Natural Science Foundation of China (No.11771139). The second author is supported by the grants MTM2017-83499-P (Ministerio de Educación y Ciencia) and 2017SGR358 (Generalitat de Catalunya).

