Influence of a series of pyridine ligands on the structure and photophysical properties of $\mathbf{C d}($ II) complexes \dagger

Daniel Ejarque, ${ }^{\text {a }}$ Teresa Calvet, ${ }^{\text {b }}$ Mercè Font-Bardia ${ }^{\mathrm{c}}$ and Josefina Pons ${ }^{*}{ }^{*}$

Departament de Química, Universitat Autònoma de Barcelona ,08193 Barcelona, Spain;
E-mail: josefina.pons@uab.es
b Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
c Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain

Abstract

Among the group 12 metal ions, the $\mathrm{Cd}(\mathrm{II})$ ion presents an ionic radius comparable to that of $\mathrm{Hg}(\mathrm{II})$, while its electronegativity resembles that of $\mathrm{Zn}(\mathrm{II})$. Thus, these characteristics make it a suitable candidate for the synthesis of fluorescent coordination complexes given that it tends to maximize the chelation enhanced effect (CHEF), while its electronegativity helps to prevent the quenching of fluorescence generated by the heavy atom effect. Accordingly, herein, we performed a systematic study using $\operatorname{Cd}($ II $)$ compounds bearing $\alpha-$ acetamidocinnamic acid (HACA) and different N -, $\mathrm{N}^{\wedge} \mathrm{N}-$ and $\mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}$-pyridine ligands (dPy), namely pyridine (py) (1), 3-phenylpyridine (3-phpy) (2), 2,2' -bipyridine (2, 2^{\prime} bipy) (3), 1,10-phenantroline (1,10-phen) (4) and 2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) (5). The elucidation of their crystal structures revealed the formation of one coordination polymer (1), one dimer (3) and three monomers (2,4 , and 5). All the synthesized compounds were characterized via analytical and spectroscopic techniques, and their molecular and supramolecular structures were discussed. The photophysical properties of $1-5$ in MeOH were studied and their quantum yields (Φ) were calculated, revealing an enhancement in the Φ value of the complexes generated by the CHEF of dPy.

1. Introduction

Recently, the design of coordination compounds for specific applications has attracted increasing attention owing to their mild reaction conditions, versatility and diverse applications.1-7 Furthermore, the understanding of their structure-property relationship has allowed the rational selection of appropriate metal nodes and organic ligands for the design of monomers, dimers, and coordination polymers (CPs), taking advantage of their structural mouldability.8,9

Accordingly, the synthesis of discrete coordination complexes with fluorescent properties in solution has been widely reported, benefiting from their better solvent processability compared with CPs.10,11 Moreover, their inherent capability to rigidify the precursor organic ligands through coordination with metal ions provides an enhancement in the resulting photophysical properties, benefiting from the chelation enhanced effect (CHEF) thus avoiding energy loss through bond vibrations or photoinduced electron transfer (PET) processes.12-15 However, coordination complexes also present some drawbacks, which can cause a reduction in the fluorescence efficiency (quantum yield, Φ) such as the heavy atom and steric crowding effect. The former is related to the large spin-orbit coupling constant (ζ) of heavy atoms, which promotes intersystem crossing to the triplet state, favoring the quenching process. 16,17 Nonetheless, the degree of covalency in coordination bonds also plays an important role, avoiding the heavy atom effect in the case of poorly covalent complexes such as lanthanide complexes. 18 Besides, the steric crowding effect is related to the elongation of coordination bonds in complexes with small ionic radii, which hinders CHEF, and therefore reduces the fluorescence efficiency through PET mechanisms.19,20

In this scenario, group 12 metal ions emerge as good candidates for the synthesis of efficient fluorescent complexes owing to the absence of potential quenching processes derived from d-d transitions and their zero-crystal field stabilization energy (CFSE), which offer a wide variety of possible geometries, making them ideal building blocks.21,22 Among them, $\mathrm{Cd}(\mathrm{II})$ stands out as the most promising metal ion in this group given that it presents a similar ionic radius to that of $\mathrm{Hg}(\mathrm{II})$, but its electronegativity resembles that of Zn (II).23,24 These characteristics permit it to maximize CHEF, while preventing the heavy atom effect. Therefore, several examples of $\mathrm{Cd}(\mathrm{II})$ complexes containing pyridine ligands (dPy) with enhanced Φ values produced by the maximization of CHEF and the prevention of heavy
atom effect have been reported in the literature.25,26 Additionally, the size of the $\mathrm{Cd}(\mathrm{II})$ metal core allows compounds with diverse coordination numbers to be obtained, usually between four and eight, thus allowing their structural modulation mainly based on steric requirements. 27,28

In previous contributions, our group studied the reactivity of α-acetamidocinnamic acid (HACA) towards $\mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$, obtaining monomeric complexes. 29 In addition, the incorporation of 4-phenylpyridine resulted in the formation of monomeric, dimeric, trimeric and polymeric compounds, depending on the synthetic conditions.29,30 Recently, we studied the effect of adding different $\mathrm{N}, \mathrm{N}^{\wedge} \mathrm{N}$, and $\mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}$ dPy ligands on the structure and photophysical properties of Zn (II) compounds bearing ACA, obtaining monomeric or polymeric complexes depending on the coordination of the acetamide moiety of ACA. In addition, the photophysical properties of these compounds were analyzed, observing the dominant impact of steric crowding over CHEF as the size of the coordinated dPy increased, which was reflected in the Φ values. 31

Following this study and aiming to prove the suitability of $\mathrm{Cd}(\mathrm{II})$ complexes as efficient fluorescent compounds, herein, we studied the impact of adding a series of N donors (pyridine, py; 3-phenylpyridine, and 3-phpy), $\mathrm{N}^{\wedge} \mathrm{N}$-donors (2,2' -bipyridine, 2,2' -bipy; 1,10-phenanthroline, and 1,10-phen) and $\mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}$-donor (2,2' $:^{\prime} \quad, 2^{\prime \prime}$-terpyridine, terpy) ligands on the structure and photophysical properties of $\mathrm{Cd}(\mathrm{II})$ complexes incorporating ACA in their structure. The increasing denticity of the selected dPy was expected to favor the formation of chelate coordination modes, maximizing CHEF. Moreover, the quenching effect produced by steric crowding was also prevented owing to the bigger ionic radii of Cd (II) $(0.95 \AA)$ compared with that of Zn (II) $(0.74 \AA) .23$

Within this frame, the reactions of $\mathrm{Cd}(\mathrm{OAc}) 2 \cdot 2 \mathrm{H} 2 \mathrm{O}, \mathrm{HACA}$ and the mentioned dPy ligands were performed, resulting in the formation of one coordination polymer (CP), one dimeric and three monomeric complexes, as follows: [CdIJ $\mu-\mathrm{O}, \mathrm{O}^{\prime}$ - ACA)IJACA)IJpy)]n (1), $[\mathrm{Cd}(\mathrm{ACA}) 2(3-\mathrm{phpy}) 2(\mathrm{H} 2 \mathrm{O}) 2] \cdot 2 \mathrm{H} 2 \mathrm{O}$ (2), $\left[\mathrm{Cd}(\mathrm{ACA}) 2\left(2,2^{\prime}\right.\right.$-bipy $\left.)\right] 2 \cdot 2 \mathrm{MeOH} \quad$ (3), $[\mathrm{Cd}(\mathrm{ACA}) 2(1,10-\mathrm{phen})] \cdot 3 \mathrm{EtOH}(4)$ and $[\mathrm{Cd}(\mathrm{ACA}) 2$ (terpy) $] \cdot 2 \mathrm{DMF}$ (5) (Scheme 1). These compounds were characterized via analytical and spectroscopic techniques, and their crystal structures elucidated. We further investigated their photophysical properties in MeOH solution and calculated their Φ values, which are related to the CHEF of the pyridines.

2. Results and discussion

Synthesis and characterization

Compounds 1-5 were prepared via the combination of $\mathrm{Cd}(\mathrm{OAc}) 2 \cdot 2 \mathrm{H} 2 \mathrm{O}$, HACA and the corresponding dPy $(\mathrm{dPy}=$ py (1), 3-phpy (2), 2,2' -bipy (3), 1,10-phen $\cdot \mathrm{H} 2 \mathrm{O}(4)$, and terpy (5)) in a $1: 2: 2(1), 1: 2: 3$ (2) or $1: 2: 1(3-5)$ molar ratio, using EtOH at room temperature (RT). The corresponding crystals suitable for X-ray crystallographic analysis were obtained by keeping the mother liquor sealed in a fridge (1), and by recrystallization of the obtained solid in MeOH (3), EtOH (2 and 4) or DMF (5), at RT. Further details of the synthetic methodologies and the procedure for obtaining single crystals are provided in the Experimental Section.

Compounds 1-5 were prepared via the combination of $\mathrm{Cd}(\mathrm{OAc}) 2 \cdot 2 \mathrm{H} 2 \mathrm{O}$, HACA and the corresponding $\mathrm{dPy}\left(\mathrm{dPy}=\mathrm{py}(1), 3-\mathrm{phpy}(2), 2,2^{\prime} \quad\right.$-bipy (3), 1,10-phen $\cdot \mathrm{H} 2 \mathrm{O}(4)$, and terpy (5))
in a $1: 2: 2(1), 1: 2: 3(2)$ or $1: 2: 1(3-5)$ molar ratio, using EtOH at room temperature (RT). The corresponding crystals suitable for X-ray crystallographic analysis were obtained by keeping the mother liquor sealed in a fridge (1), and by recrystallization of the obtained solid in MeOH (3), EtOH (2 and 4) or DMF (5), at RT. Further details of the synthetic methodologies and the procedure for obtaining single crystals are provided in the Experimental Section.

The EA of 1-5 agree with their proposed formula (Scheme 1). The FTIR-ATR spectra show the absence of a broad band between 2704 and $2405 \mathrm{~cm}-1$, which corresponds to $v(\mathrm{O}-$ H)HACA, indicating that HACA is deprotonated in the five complexes. The spectra show the characteristic bands in the range of 1559-1514 cm-1 for vas(COO) and 1406-1389 $\mathrm{cm}-1$ for $\mathrm{vs}(\mathrm{COO})(\mathrm{ESI}: \dagger$ Fig. S1-S5). The difference between these bands $[\Delta=\operatorname{vas}(\mathrm{COO})$ $-v s(C O O)]$ is 133 (1), 170 (2), 125 and 144 (3), 123 (4) and 130 (5) cm-1, suggesting chelate (1 and $3-5$), pseudo-bridged (2), 32,33 and bridged and chelate (3) coordination modes of the carboxylate groups.32,34 All the Δ values agree with the data obtained from the crystal structures. In addition, the NH and C O groups of ACA, and the signals of the aromatic rings, were also identified. 35

The presence of solvent molecules allowed further identification of some specific bands at $3638,3299(2), 3365$ (3) and 3388 (4) cm-1, corresponding to $v(\mathrm{O}-\mathrm{H})$ from the water or alcohol solvent. In the case of 2 , the sharp peak at $3638 \mathrm{~cm}-1$ suggests the coordination of water molecules to the $\mathrm{Cd}(\mathrm{II})$ center, which may promote strong hydrogen bonds with the carboxylate groups from ACA, affecting its Δ value. 32 Similarly, the presence of an additional $v\left(\begin{array}{ll}\mathrm{C} & \mathrm{O}\end{array}\right)$ signal at $1703 \mathrm{~cm}-1$ in 5 suggests the presence of DMF. 34,35 The $1 \mathrm{H}, 13 \mathrm{C}\{1 \mathrm{H}\}$ and DEPT-135 NMR spectra of $1-5$ were recorded in DMSO-d6 solution. The 1H NMR spectra show the characteristic signal of the NH moiety between 9.18 and 9.09 ppm . In addition, the aromatic protons from ACA together with the hydrogen atom from the alkene group appear between 7.51 and 7.22 ppm . The protons corresponding to the dPy ligands appeared between 9.19 and 7.41 ppm and the methyl protons from ACA between 1.96 and 1.93 ppm (ESI: \dagger Fig. S6-S10). Noteworthily, the spectrum of 5 at 300 K shows broad signals of the terpy ligand, which upon an increase in temperature from 300 to 340 K , exhibited improved resolution (ESI: \dagger Fig. S11). This behavior is attributed to the presence of planar interactions between the terpy ligands.36,37 Overall, the 1 H NMR spectra of 1 and 3-5 indicate a 2ACA : 1dPy molar ratio, while that in 2 is $1 \mathrm{ACA}: 1 \mathrm{dPy}$.

The $13 \mathrm{C}\{1 \mathrm{H}\}$ NMR spectra of the five complexes display a band that can be assigned to the carbon atom from the carbonyl group between $171.54-170.52 \mathrm{ppm}$ followed by the carbon atom from the carboxylate groups, which appear between 168.51 and 167.96 ppm . The carbon atoms from the dPy ligands are observed between 150.56 and 121.95 ppm , while the signals corresponding to the alkene group of ACA were observed at $135.51-135.23 \mathrm{ppm}$ and $128.25-127.87 \mathrm{ppm}$. Moreover, the aromatic carbon atoms from ACA were located between 129.90-128.21 ppm and the methyl carbon atoms between $23.22-23.05 \mathrm{ppm}$ (ESI: \dagger Fig. S12-S16). 35

The coordination of the ligands to the $\mathrm{Zn}(\mathrm{II})$ cores in solution was verified in $3-5$ by the chemical shift of o-H ($3: 8.81 ; 4: 9.19 ; 5: 8.99 \mathrm{ppm}$) of dPy and the carboxylate signals of ACA (3: 168.38; 4: 168.14; and 5: 167.96 ppm), which is consistent with their coordination compared with that of HACA (162.70 ppm) and the free dPy ligands (2,2' bipy: 8.55 ppm ; 1,10-phen: 8.80 ; and terpy: 8.55 ppm) in DMSO-d6. Besides, the 1 H NMR spectra of 1 and 2 do not show an apparent chemical shift for the dPy signals in comparison with that of the free py and 3-phpy, proving that they are not coordinated in this solvent. Therefore, $1 \mathrm{H}, 13 \mathrm{C}\{1 \mathrm{H}\}$ and DEPT-135 experiments in $\mathrm{MeOH}-\mathrm{d} 4$ for 1 and 2 were carried
out, showing that in these solvents, both ACA (1: 172.95 and 2: 172.87 ppm) and dPy (1 : 8.61 and 2: 8.81 and 8.52 ppm) are coordinated and display chemical shifts with respect to the free HACA (168.19 ppm) and dPy (py: 8.33 and 3-phpy: 8.75 and 8.48 ppm) (ESI: \dagger Fig. S17-S20). Finally, the $13 \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of 1 in MeOH-d4 suggests that after being dissolved, the coordination bond of the carbonyl group is broken, forming monomeric units.

Crystal structure analysis

The evaluation of the geometry of the $\mathrm{Cd}($ II) cores in compounds $1-5$ was performed using version 2.1 of the SHAPE software, 38 which is based on the low continuous shape measure (CShM) value $\mathrm{S}, 39$ giving information on the deviation of the desired polyhedron from the selected ideal geometry. In addition, the average twist angle (ata) 40,41 values were also calculated using the .cif files.

Crystal and extended structure of 1 . Compound 1 crystallizes in the monoclinic P21/n space group. It consists of a Cd (II) polymeric structure expanded in a zig-zag shape through the b axis by a ligand bridge involving one of the ACA ligands via carboxylate and carbonyl groups (Fig. 1a). Noteworthy, compound 1 is isostructural to a CP with the formula $[\mathrm{Zn}(\mu$ $\left.\left.-\mathrm{O}, \mathrm{O}^{\prime}-\mathrm{ACA}\right)(\mathrm{ACA})(\mathrm{py})\right] \mathrm{n}$ previously obtained by our group. 31 Furthermore, the same behavior of the carbonyl group was also observed in another Zn (II) CP bearing 4phenylpyridine. 30 The formation of these polymeric chains is attributed to the low size of the pyridine ligand, which allows the entry of the carbonyl group in the coordination sphere of the metallic centers. The metal centers present a [CdO5N] core composed of two asymmetrically bidentate chelate ($\mu 1-\eta 2$) ACA, one py ligand and one carbonyl group, generating a distorted trigonal prismatic geometry $(S=6.631)$. Additionally, the bond lengths and bond angles oscillate between 2.2502(14)- 2.4639(13) \AA and 55.98(4)$147.71(5)^{\circ}$, presenting similar values to that of other $\mathrm{Cd}(\mathrm{II}) \mathrm{CPs}$ with coordinated carboxylate and carbonyl moieties combined with dPy (ESI: \dagger Table S1). 42,43

Compound 1 presents different intramolecular interactions, which stabilize the polymeric array. These are mainly based on the $\mathrm{N}-\mathrm{H} \cdots \mathrm{OC}$ O synthon via contiguous amide groups combined with $\pi \cdots \pi$ stacking between ACA and the py aromatic rings and additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ associations, all supporting the polymeric structure (Fig. 1b and ESI: \dagger Table S1). The intermolecular interactions of 1 form 2D layers through the (220) plane (Fig. 1c), which are based on the reciprocal $\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(2) \mathrm{COO}$ synthon combined with $\mathrm{C}-\mathrm{H} \cdots \pi$ associations involving nearby ACA aromatic rings (Fig. 1d).

Crystal and extended structure of 2. Compound 2 crystallizes in the monoclinic P21/c space group. It consists of a $\mathrm{Cd}(\mathrm{II})$ monomeric structure with a [CdO4N2] core composed of two monodentate ($\mu 1-\eta 1$) ACA ligands, two twisted 3-phpy (41.02°), and two water molecules, where all of them are in a trans configuration. The geometry of the $\mathrm{Cd}(\mathrm{II})$ center displays an octahedral geometry $(\mathrm{S}=0.054)($ Fig. 2a). The bond lengths and bond angles oscillate between $2.2804(9)-2.3311(10) \AA$ and $87.54(3)-180^{\circ}$, presenting similar values to that of other monomeric hexacoordinated $\mathrm{Cd}(\mathrm{II})$ compounds bearing $\mu 1-\eta 1$ coordinated carboxylate moieties, dPy and water molecules (ESI: \dagger Table S2).44,45 Additionally, its crystal structure contains two occluded water molecules.

Compound 2 displays a strong intramolecular H -bond between the coordinated water molecules and non- coordinated oxygen atoms from the carboxylate groups of ACA (Fig. 2a). Their intermolecular interactions are based on the reciprocal $\mathrm{N}-\mathrm{H} \cdots \mathrm{OCOO}$ synthon combined with a pattern of H -bonds between the coordinated and non-coordinated water molecules, which are joined by consecutive H -bonds between their hydroxyl groups. Additionally, the occluded water molecules are also associated with nearby monomeric units by an H -bond involving the carbonyl oxygen atom from an ACA. These interactions expand the structure through the ac plane (Fig. 2b). Finally, a C-H…O interaction between one mH from ACA and the coordinated water molecules, and a $\mathrm{C}-\mathrm{H} \cdots \pi$ association between contiguous 3-phpy ligands expand the structure along the [011] direction, which in combination with the expansion along the ac plane forms a 3D network (Fig. 2c and ESI: \dagger Table S2).

Crystal and extended structure of 3 . Compound 3 crystallizes in the triclinic $\mathrm{P}^{-} 1$ space group. It consists of a dimeric structure with a [CdO5N2] core composed of four ACA and two twisted $2,2^{\prime}$-bipy (16.95°) ligands. Two of the ACA ligands exhibit both asymmetric bridged and chelate coordination modes ($\mu 2-\eta 2: \eta 1$), joining the $\operatorname{Cd}(I I)$ centers. Moreover, the remaining ACA and the $2,2^{\prime}$-bipy ligands display $\mu 1-\eta 2$ coordination modes (Fig. 3a). The metal core adopts a capped trigonal prismatic geometry ($\mathrm{S}=5.477$), where the capped position is occupied by one of the carboxylate oxygen atoms (O1). The bond lengths and angles are in the range of 2.3162(16)-2.4423(14) \AA and 54.58(4)$142.45(5)^{\circ}($ ESI: \dagger Table S3), which are similar to that of other reported hepta-coordinated $\mathrm{Cd}(\mathrm{II})$ compounds containing carboxylate ligands and 2, ${ }^{\prime}$-bipy.46-48 Additionally, its crystal structure presents two occluded MeOH molecules.

The dimeric structure contains intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{OCOO}$ interactions between the ACA ligands, while the $2,2^{\prime}$-bipy units interact with the ACA ligands via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ associations, both stabilizing the dimeric array (Fig. 3b). Their intermolecular interactions are driven by the reciprocal $\mathrm{N}-\mathrm{H} \cdots \mathrm{OCOO}$ synthon combined with additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ between the $2,2^{\prime}$ bipy and ACA ligands, which extend the structure through the a direction (Fig. 3c). In addition, these chains generate an accessible volume of $9.10 \AA 3(0.6 \%$ of the unit cell volume, calculated using the probe radius of $1.2 \AA$), 49 where the MeOH molecules join the dimeric arrays by H -bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, involving both ACA and $2,2^{\prime}$ bipy ligands supported by additional $\mathrm{C}-\mathrm{H} \cdots \pi$ associations. These group of interactions expand the structure along the bc plane (Fig. 3d), which in combination with the a-directed chains form a 3D network (ESI: \dagger Table S3).

Crystal and extended structure of 4 . Compound 4 crystallizes in the monoclinic P21/c space group. It consists of a $\mathrm{Cd}(\mathrm{II})$ monomeric structure, presenting a [CdO4N2] core composed of two asymmetric $\mu 1-\eta 2-A C A$ ligands and one $1,10-$ phen, forming a distorted trigonal prismatic geometry $(\mathrm{S}=6.397)$ (Fig. 4a). The bond lengths and bond angles range between $2.2939(17)-2.3637(14) \AA$ and $56.26(5)-154.07(6)^{\circ}$ (ESI: \dagger Table S4), presenting similar values to that of other hexacoordinated $C d(I I)$ compounds based on $\mu 1-\eta^{2}$ coordinated carboxylate moieties and 1,10-phen ligands.50,51

Their intermolecular interactions expand the structure along the bc plane, forming a 2D supramolecular structure (Fig. 4b). These interactions are based on the reciprocal NH \cdots OCOO synthon combined with a $\pi \cdots \pi$ pattern between the ACA and 1,10 -phen aromatic rings and between the $1,10-$ phen aromatic rings themselves. In addition, these interactions generate voids with an accessible volume of $361.05 \AA 3(9.3 \%$ of the unit cell volume, calculated using a probe radius of $1.2 \AA$), 49 where three EtOH molecules hold the monomeric units together through different H -bonds supported by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ associations (Fig. 4c and d and ESI: \dagger Table S4).

Crystal and extended structure of 5 . Compound 5 crystallizes in the triclinic $\mathrm{P}^{-} 1$ space group. It consists of a $\mathrm{Cd}(\mathrm{II})$ monomeric structure, presenting a [CdO4N3] core composed of two asymmetrically $\mu 1-\eta 2$-ACA ligands and one terpy adopting an intermediate geometry between capped octahedral ($\mathrm{S}=5.471$) and capped trigonal prismatic $(\mathrm{S}=5.517)$ (Fig. 5a). The bond lengths and bond angles oscillate between 2.237(2)-2.670(2) \AA and 52.74(7)$160.07(7)^{\circ}$, which are similar to that of other heptacoordinated $\mathrm{Cd}(\mathrm{II})$ compounds,
presenting carboxylate and terpyridine-based ligands (ESI: \dagger Table S5).52,53 In addition, the supramolecular scaffold of the compound generates voids with an accessible volume of $120.68 \AA 3$ (5.9% of the unit cell volume, calculated using a probe radius of $1.2 \AA$), 49 where two DMF molecules are placed.

Their intermolecular interactions form a 2D plane along the ab axes (Fig. 5b). This expansion is promoted by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{OCOO}$ synthon supported by $\pi \cdots \pi$ associations between the terpy aromatic rings as well as weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Fig. 5 b and c). Moreover, the DMF molecules hold together the monomeric units via carbonyl oxygen atoms through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving the aromatic protons from ACA and terpy ligands of different monomeric units. These interactions extend the structure along the [$11^{-} 1$] direction, which in combination with the propagation along the ab plane form a 3D network (Fig. 5d and ESI: \dagger Table S5).

Structural overview

Geometric evaluation. The calculated S parameters and average twist angles (ata) for $1-5$ are provided in Table 1.

For the hexacoordinated compounds (1,2 and 4), the S parameter indicates that the trigonal prismatic $(1,4)$ and octahedral (2) geometries are a better fit, although the values above six in 1 and 4 show important distortions with respect to the ideal trigonal prismatic geometry. 39 In 1, the ACA acting as a ligand bridge (O6) generates most of the distortion from the ideal polyhedron, as indicated by its twist angles. The bond angle between the carbonyl oxygen atom and the pyridine nitrogen atom displays a value of $89.33(5)^{\circ}$, while the two chelate angles are $55.98(4)^{\circ}$ and $56.69(5)^{\circ}$, which contribute to the distortion. Besides, in complex 4 the presence of three $\mu 1-\eta 2$ coordination modes permit a better accommodation to the ideal geometry. Herein, the $\mu 1-\eta 2$ coordination of $1,10-\mathrm{phen}$, which forms a five-membered ring, is considered an important factor for the generated distortion, given that it presents a considerably higher twist angle compared with that of the two fourmembered rings of the two carboxylate moieties from ACA. Differently, the absence of $\mu 1-$ $\eta 2$ coordinated ligands in 2 avoid important distortions with respect to the ideal octahedral geometry, presenting ata and S values close to that of the ideal geometry (Table 1 and Fig. 6). 54 For 3 , the S parameter indicates that the capped trigonal prismatic is the most adequate geometry. Herein, the capped position is occupied by the oxygen atom of the carboxylate group with the $\mu 2-\eta 2: \eta 1$ coordination mode not involved in the bridge (O 1), while the two
faces of the trigonal prism show distortion with respect to the ideal polyhedron, presenting an ata value of 23.64°. Meanwhile, compound 5 does not fit well with a specific geometry, displaying an intermediate form between a capped octahedron and a capped trigonal prism with S values differing by less than 0.1 between these two geometries (Table 1 and Fig. 6).55,56

Structural comparison. The bond angles of 1-5 were analyzed to study the effect generated by the ligands around their $\mathrm{Cd}(\mathrm{II})$ cores. The chelate angles of ACA and the bite angles of dPy are summarized in the ESI \dagger (Table S6). The outer atom angles of dPy were also utilized for the analysis given that differently from the bite angles, they consider the planarity of the ligands and their steric effect in the coordination sphere of the complexes. 57

The lowest value of the outer atom angle of py in compound $1\left(77.04^{\circ}\right)$ permits the introduction of the carbonyl oxygen atom of ACA into the coordination sphere, promoting the formation of the CP . This behavior agrees with other $\mathrm{Zn}(\mathrm{II}) \mathrm{CPs}$ containing ACA and py or 4-phpy, observing a limit outer atom angle of $80.86^{\circ} .30,31$ In 2 , the increase in the outer atom angle up to 83.70° does not allow the coordination of the carbonyl oxygen atom of ACA. Instead, two water molecules are coordinated to the $\mathrm{Cd}(\mathrm{II})$ center, providing additional stabilization to the structure arising from the strong intramolecular interactions of the coordinated water molecules. 58 The introduction of these solvent molecules in the $\mathrm{Cd}(\mathrm{II})$ center agrees with the outer atom angle of previous Zn (II) complexes bearing ACA and 4phenylpyridine $\left(79.42^{\circ}\right)$, allowing the coordination of additional atoms into the coordination sphere (ESI: \dagger Table S6). 29

For 3 and 4, the introduction of 2,2' -bipy and 1,10-phen results in an increase in the outer atom angle in comparison with that of 1 and 2 (ESI: \dagger Table S6). The different nuclearity between 3 and 4 is promoted by the single bond between the aromatic rings of the $2,2^{\prime}$-bipy, which permit their rotation and better accommodation in the crowded cores. Indeed, the formation of a dimeric structure in 3 is probably influenced by the intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{OCOO}$ interactions, which force the acetamide moieties to point inside the dimer, differently from previous compounds described in the literature.30,31 In addition, this change in position also influences its supramolecular scaffold given that the non- usual position of the acetamide moieties approach the methyl groups of ACA to the 2,2'-bipy ligands, avoiding the possibility to form interactions involving the aromatic rings such in 1, 2, 4 and 5 (Fig. 7). These results differ from that obtained for Zn (II) complexes
with ACA and 2,2' -bipy or 1,10-phen ligands, whose bigger outer atom angles yield monomeric arrays. Finally, the coordination of terpy in 5, being a bulkier ligand and presenting an outer atom angle of 217.36°, only allows the formation of the monomeric specie as in its $\mathrm{Zn}(\mathrm{II})$ analogue. 31

Photophysical properties

UV-vis spectroscopy. All the samples were dissolved in MeOH and their UV-vis spectra recorded at 298 K . Additive measurements were performed for all the compounds and ligands in the concentration range of $\sim 1 \times 10-9$ to $1 \times 10-4 \mathrm{M}$ to select the optimal concentration at which aggregation does not occur, thus avoiding aggregation caused quenching (ACQ) processes (ESI: \dagger Fig. S21-S23). 59 Then, the standards L-tyrosine (L-tyr) for 1-4 and quinine sulphate (QS) for 5 were selected considering that the absorption and emission of $1-5$ must fall within the range of the absorption of the selected fluorescence standards with similar intensities. 60 The UV-vis spectra of L-tyr and QS were also recorded to obtain the absorptivity values of the standards in the same apparatus for comparison with the complexes to further calculate the corresponding Φ values (ESI \dagger Fig. S24). Additional details about the absorption maximum ($\lambda \max$) and molar absorptivity values (ε) of the complexes, ligands and standards are provided in the Experimental section and ESI \dagger (Table S7).

Complexes $1-5$ start to aggregate at $3.51 \times 10-6 \mathrm{M}(1), 3.00 \times 10-6 \mathrm{M}(2), 1.43 \times$ $10-6 \mathrm{M}(3), 5.71 \times 10-7 \mathrm{M}(4)$ and $1.99 \times 10-7 \mathrm{M}(5)$, presenting bathochromic shifts due to their intermolecular interactions. The aggregation of the complexes leads to the appearance of new bands in their spectra (ESI: \dagger Fig. S23). The formation of patterns of head-to- tail planar interactions such that identified in the structural descriptions of 4 and 5 agree with their aggregation at lower concentrations. Besides, the absence of strong patterns of $\pi \cdots \pi$ interactions in 1-3 suggest that they present a lower tendency to form aggregates. Therefore, the UV-vis measurements of $1-5$ were performed using $1.00 \times 10-7 \mathrm{M}$ solutions, in which aggregation was not observed (ESI: \dagger Fig. S25).

The UV-vis spectra of complexes $1-5$ show that their absorption intensity increases in the order of $1<5<2<4<3$. In these spectra, two bands appear for all the complexes, one at $200-205 \mathrm{~nm}$ and the other at $256-281 \mathrm{~nm}$. Moreover, compound 2 shows an additional band in the range of 256-281 nm, while 5 displays a third band at 330 nm (ESI: \dagger Table S7).

The bands appearing at higher wavelength values are attributed to the metal-to-ligand (MLCT) or ligand-to-metal (LMCT) charge transfer transitions, while that lying at lower energies are associated with the ligand centered (LC) or ligand-to-ligand charge transfer (LLCT) transitions, 21 involving either ACA and/or the corresponding dPy ligands.

Photoluminescence. All measurements were performed at 298 K using MeOH solutions of suitable concentrations, as extracted from the UV-vis data, and each complex was irradiated at their maximum excitation wavelength. The emission spectra of $1-5$ show that their emission intensity increases in the order of $2<1<4<5<3$ (Fig. 8). The spectra of $1-4$ present one shoulder at $\sim 310 \mathrm{~nm}$, while the emission maxima of all the compounds are centered at 344 (1), 337 (2), 345 (3), 346 (4) and 355 (5) nm. The resultant emission color ($\lambda \mathrm{max}-\mathrm{em}$) for $1-5$ at the selected excitation maximum ($\lambda \mathrm{exc}$) is blue violet (1 and 2), bright indigo (3 and 4) and azure (5), according with the CIE 1931 chromaticity diagrams (ESI: \dagger Fig. S26). 61 The effect of the coordination of the ligands in the $\mathrm{Cd}(\mathrm{II})$ centers was studied by comparing the emission of the free ligands and the resulting compounds excited at the λ exc of each complex (ESI $\dagger \dagger$ Fig. S27-S31). Herein, considering that d10 metal complexes present a closed shell configuration, only the charge transfer transitions (CTs) between either the metal and the ligand (MLCT/LMCT) or by the ligand itself (LLCT) are allowed. 62,63 The CTs between the $\pi \cdots \pi^{*}$ orbitals are less energetic, and thus display bathochromic shifts. In 1-4, the coordination of the ligands results in an important enhancement in their emission intensity with respect to both free ligands. Moreover, these emissions seem to arise from a combination of emissions of both the ACA and dPy ligands owing to the similarity of the curve profiles of these two ligands, which match the emission spectrum of their corresponding complexes. Meanwhile, the emission intensity of 5 is only derived from the terpy ligand given that HACA does not emit when it is excited at 320 nm (ESI: \dagger Fig. S31).

The efficiency of the fluorescence emission of all the complexes was calculated using the fluorescence quantum yield (Φ). 64 The relative quantum yield is calculated by determining the Φ of the desired compound and comparing it with that of a fluorescence reference. 65

The quantum yields of $1-5$ were calculated using eqn (1), as follows:

$$
\begin{equation*}
\Phi_{\mathrm{s}}=\Phi_{\mathrm{r}}\left(\frac{\mathrm{OD}_{\mathrm{r}}}{\mathrm{OD}_{\mathrm{s}}}\right)\left(\frac{\mathrm{I}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{r}}}\right)\left(\frac{\mathrm{n}_{\mathrm{s}}}{\mathrm{n}_{\mathrm{r}}}\right)^{2} \tag{1}
\end{equation*}
$$

where Φr and $\Phi \mathrm{s}$ are the quantum yields of the reference and sample, respectively. I is the area of the emission spectra, OD is the optical density (or absorbance), and n is the refractive index of the solvent. Herein, L-tyrosine $(\mathrm{L}-\mathrm{tyr}, \Phi \mathrm{s}=0.14)$ was used as the standard for $1-$ 4,66 while quinine sulphate $(\mathrm{QS}, \Phi \mathrm{s}=0.577)$ was used for 5,67 given that their emission range falls in the same region. The values of ODr and Ir were obtained using a $1.00 \times 10-7$ M solution of MilliQ water for L-tyr $(\mathrm{nr}=1.3325) 68$ and a $1.00 \times 10-7 \mathrm{M}$ solution of 0.1 M H2SO4 for $\mathrm{QS}(\mathrm{nr}=1.3325) 68$ at RT. The values of As and Is of the ligands and $1-5$ were recorded at 298 K using $1.00 \times 10-7 \mathrm{M}$ solutions with $\mathrm{MeOH}(\mathrm{ns}=13314)$ (ESI: \dagger Fig. S27-S31, respectively). 69 The relevant parameters extracted from the photophysical properties of the ligands are provided in the ESI \dagger (Table S7).

The relative quantum yields obtained for 1-5 are 0.99 (1), 0.057 (2), 0.13 (3), 0.069 (4) and 0.65 (5) (Table 2). These Φ s values show how the coordination of the ligands to the $\mathrm{Cd}(\mathrm{II})$ centers improves their efficiency in all the compounds, avoiding the PET mechanisms of dPy through their coordination. Furthermore, the coordination of the dPy ligands allows the formation of five-membered rings in $3-5$, resulting in CHEF, which enhances their fluorescence intensities. 18 Compound 1 presents the highest Φ s but it should be noted that the uncertainty for this value is probably larger than that of the other compounds owing to its low absorbance intensity, which present a large difference compared with that of the Ltyr standard. 60 Given that the terpy ligand of 5 displays two five-membered rings when coordinated to the $\mathrm{Cd}(\mathrm{II})$ center, its CHEF effect is more effective, showing a five-fold (3), nine-fold (4) and eleven-fold (2) fluorescent enhancement with respect to the remaining compounds (Table 2). Complex 3 shows CHEF produced by its two 2,2'-bipy ligands, which displays a two-fold enhancement with respect to that of 2 and 4 . This difference can be attributed to the presence of CHEF in 3 , which is not possible in 2 . Besides the difference in Фs between 3 and 4, both presenting CHEF, is attributed to the known $n \pi^{*}$ excited states of 1,10-phen, promoting nonradiative decay processes and avoiding low emission Φ values. 70 Finally, compound 2 shows the lowest Φ s, probably because of the presence of two coordinated water molecules, generating unwanted quenching of its fluorescence (Table 2). 71 The comparison of these results with that from our previous work based on Zn (II) complexes 31 shows that the higher ionic radius of Cd (II) $(0.95 \AA)$ than that of $\mathrm{Zn}(\mathrm{II})(0.74$ $\AA) 23$ can avoid the negative effects generated by steric crowding around the metal centers and maximize the positive effects of CHEF, obtaining complexes with enhanced fluorescent efficiencies.

Conclusions

We synthesized and characterized five $\mathrm{Cd}($ II) compounds bearing HACA and a set of N -, $\mathrm{N}^{\wedge} \mathrm{N}$ - and $\mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}$-pyridine ligands with increasing denticity and steric effect around their metal cores. It was shown how the size of the pyridines plays an important role in the final structure of the obtained complexes, allowing the introduction of additional atoms in the coordination sphere, which generates compounds with diverse nuclearity going from a CP (1), to dimeric (3) and monomeric (2,4 , and 5) complexes. The elucidation of the crystal structures of $1-5$ permitted the study of their molecular and supramolecular interactions, observing the formation of three hexacoordinated (1, 2, and 4) and two heptacoordinated (3 and 5) complexes, presenting trigonal prismatic (1 and 4), octahedral (2), capped trigonal prismatic (3), and an intermediate form between capped trigonal prismatic and capped octahedral (5) geometries. Furthermore, the carboxylate moieties of ACA display the $\mu 1-\eta 2$ coordination modes of the ACA ligands for all the compounds except 2, which displays the $\mu 1-\eta 1$ coordination modes of ACA stabilized by strong intramolecular H -bonds between the ACA ligands and the coordinated water molecules. Additionally, compound 3 presents the $\mu 2-\eta 2: \eta 1$ coordination mode of ACA, forming a dimeric array. Noteworthily, the coordination of the carbonyl oxygen atom of ACA in 1 was observed, which is responsible for its polymeric structure. The supramolecular structures of all the compounds were studied, observing that the complexes are associated by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{OCOO}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{OC} \mathrm{O}$ synthons and supported by $\pi \cdots \pi$ interactions and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ associations, generating 2D (1 and 4) and 3D (2,3 , and 5) supramolecular networks. The photoluminescence properties of 1-5 were measured and their Φ s values calculated, observing an enhancement in the Φ s of the complexes with respect to the ligands in all cases. Although showing the highest $\Phi \mathrm{s}$, the value of 1 exhibited high uncertainty owing to its low absorbance compared with that of the L-tyr standard, which made it difficult to compare it with the other complexes. In compound 2 , the presence of coordinated water molecules resulted in unwanted quenching of its fluorescence. In contrast, the favorable contributions the CHEF of dPy in 3-5 led to higher Φ s values, presenting a good strategy to obtain complexes with enhanced photoluminescence properties.

Experimental section

Materials and general methods

Cadmium(II) acetate dihydrate $(\mathrm{Cd}(\mathrm{OAc}) 2 \cdot 2 \mathrm{H} 2 \mathrm{O})$, α-acetamidocinnamic acid (HACA), pyridine (py), 3-phenylpyridine (3-phpy), 2, 2'-bipyridine (2,2'-bipy), 1,10phenantroline monohydrate (1,10 -phen • H 2 O), and $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) ligands; L-tyrosine (L-tyr) and quinine for the preparation of the fluorescence standards; and ethanol (EtOH), methanol (MeOH), dimethylformamide (DMF), diethyl ether (Et2O), sulfuric acid (H2SO4) and MilliQ water solvents were purchased from Sigma-Aldrich. Deuterated dimethylsulfoxide (DMSO-d6) and methanol ($\mathrm{MeOH}-\mathrm{d} 4$) were purchased from Eurisotop. All reagents were used as received without further purification. All the reactions and manipulations were carried out in air at room temperature (RT). Elemental analyses (C, H, N) were carried on a Thermo Scientific Flash 2000 CHNS analyzer. FTIR-ATR spectra were recorded on a Perkin Elmer spectrometer, equipped with an attenuated total reflectance (ATR) accessory model MKII Golden Gate with a diamond window in the range of 4000$500 \mathrm{~cm}-1.1 \mathrm{H}, 13 \mathrm{C}\{1 \mathrm{H}\}$ and DEPT-135 NMR spectra were recorded on a Bruker Ascend 400 MHz spectrometer in DMSO-d6 solution for $1-5$ and $\mathrm{MeOH}-\mathrm{d} 4$ for 1 and 2 at RT. All chemical shifts (δ) are presented in ppm relative to TMS as the internal standard. L-Tyrosine (L-tyr) was used as the fluorescence standard for the calculation of the quantum yield (Φ) values of $1-4$. For 5 , the calculation of Φ was performed using quinine sulphate (QS) as the standard, given that the wavelength corresponding to its maximum effective absorption is outside the range of L-tyr. The electronic spectra in MeOH solutions for all the ligands and $1-5$, MilliQ water for L-tyrosine (L-tyr) and 0.1 M H 2 SO 4 solution for quinine were recorded on an Agilent HP 8453 UV-vis spectrophotometer with a quartz cell having a path length of 1 cm in the range of 190-600 nm . The molar absorptivity values were calculated as $\log (\varepsilon)$. Fluorescence measurements were carried out at $25^{\circ} \mathrm{C}$ with a Perkin Elmer LS 55 50 Hz fluorescence spectrometer using a 1 cm quartz cell. The samples were excited at their excitation maximum ($\lambda \mathrm{exc}$) and their emission was recorded between λ exc and $2 \lambda e x c$. Both CIE 1931 chromaticity diagrams and corrected dilution effects were performed using the Origin 2019b software.

Synthesis and characterization of complexes 1-5

A $\mathrm{Cd}(\mathrm{OAc}) 2 \cdot 2 \mathrm{H} 2 \mathrm{O}(100 \mathrm{mg}, 0.375 \mathrm{mmol})$ solution in $\mathrm{EtOH}(10 \mathrm{~mL}$ for 1 and 3-5; 2 mL for 2) was prepared. Then, a mixture of HACA ($154 \mathrm{mg}, 0.750 \mathrm{mmol}$) and dPy (0.750
mmol, $1 ; 1.13 \mathrm{mmol}, 2$; and $0.375 \mathrm{mmol}, 3-5$) was dissolved in EtOH (5 mL for $1,3-5$; and 1 mL for 2). The metal solution was added dropwise to the ligand solution at RT and stirred overnight until a white solid precipitated. Afterwards, the reaction crude was kept in a freezer for one day. The resulting white solid was filtered, washed with 10 mL of cold Et2O (repeated twice) and dried under vacuum. Additionally, in the synthesis of 1 and 4, direct precipitation did not occur, and the obtained solutions were concentrated under vacuum to near dryness and kept in a fridge for two days until a white crystalline solid precipitated (1) or forced to precipitation using 10 mL of cold Et2O (4).

The synthesis of suitable crystals for X-ray diffraction was performed using different methods. For 1 , its mother liquor was kept in a fridge at $4{ }^{\circ} \mathrm{C}$ for seven days. For 2-5, the solid was recrystallized in EtOH and let to evaporate for three days (2) or recrystallized in EtOH for two days (4), MeOH for fifteen days (3), and DMF for six days (5) and kept sealed at RT.

1. Yield: 140 mg (62% based on Cd). Elemental analysis calc. (\%) for C27H25CdN3O6 (599.91): C 54.06; H 4.20; N 7.00; found: C 53.98; H 4.01; N 6.84. FTIRATR (wavenumber, $\mathrm{cm}-1$): $3209(\mathrm{~m})[v(\mathrm{~N}-\mathrm{H})], 3165-3003(\mathrm{br})[v(\mathrm{C}-\mathrm{H}) \mathrm{ar}+v(\mathrm{C}-\mathrm{H})$ alk $]$, 2946(w) [v (C - H)al], 1658(w), 1644(w), 1624(m) [v (C O)], 1604(w), 1574(w), 1552(sh), 1530(s) [vas(COO)], 1521(s), 1489(s) [v (C C/C N)], 1446(m), 1397(s) [v $\mathrm{s}(\mathrm{COO})]$, 1355(s) [$\delta\left(\begin{array}{lll}\mathrm{C} & \mathrm{C} / \mathrm{C} & \mathrm{N})], 1315(\mathrm{~m}), 1285(\mathrm{~m}), 1241(\mathrm{w}), 1220(\mathrm{w}), 1209(\mathrm{~m}),\end{array}\right.$ 1188(w), 1138(w), 1070(w), 1040(m) [$\delta \mathrm{ip}(\mathrm{C}-\mathrm{H})], 1015(\mathrm{w}), 988(\mathrm{~m})$ [$\delta \mathrm{ip}(\mathrm{C}-\mathrm{H})], 935(\mathrm{w})$, 895(w), 846(w), 785(m), 774(s) [8oop(C-H)], 754(m), 704(s) [8oop(C-H)], 689(s) [$\delta 000(\mathrm{C}-\mathrm{H})], 651(\mathrm{~m}), 633(\mathrm{~m}), 614(\mathrm{~m}), 565(\mathrm{~m}), 551(\mathrm{~m}), 531(\mathrm{~m}), 523(\mathrm{~m}) .1 \mathrm{H}$ NMR (400 MHz; DMSO-d6; Me4 Si; 298 K): $\delta=9.18$ [2H, s, NHACA], 8.59 [2H, d, $3 \mathrm{~J}=4.1 \mathrm{~Hz}$, oHpy], $7.81[1 \mathrm{H}, \mathrm{td}, 3 \mathrm{~J}=7.6,4 \mathrm{~J}=1.6 \mathrm{~Hz}, \mathrm{p}-\mathrm{Hpy}], 7.51[4 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{o}-\mathrm{HACA}], 7.41$ [2H, m, m-Hpy], 7.35 [4H, t, $3 \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{~m}-\mathrm{HACA}], 7.29[4 \mathrm{H}, \mathrm{s}, \mathrm{p}-\mathrm{HACA}+\mathrm{HN}-\mathrm{C}-$ CHACA], 1.96 [6H, s, CO-CH3,ACA]. 1H NMR ($400 \mathrm{MHz} ; \mathrm{MeOH}-\mathrm{d} 4 ; \mathrm{Me} 4 \mathrm{Si} ; 298 \mathrm{~K}$): δ $=8.61[2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=6.0 \mathrm{~Hz}, 4 \mathrm{~J}=1.6 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hpy}], 7.87[1 \mathrm{H}, \mathrm{tt}, 3 \mathrm{~J}=7.8,4 \mathrm{~J}=1.7 \mathrm{~Hz}, \mathrm{p}-\mathrm{Hpy}]$, $7.47[6 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{HACA}+\mathrm{m}-\mathrm{HACA}], 7.37$ [1H, s, HN-C-CHACA], 7.27 [6H, m, p-HACA + m-Hpy], 2.04 [6H, s, CO-CH3,ACA].13C \{1H\} NMR (400 MHz; DMSO-d6; Me4Si; 298 K): $\delta=171.54$ [HN-COACA], 168.51 [COOACA], 149.76 [o-Cpy], 137.26 [p-Cpy], 135.26 [O2C-CACA], 129.68 [HN-C-CH-CACA], 129.42 [o-CACA], 129.18 [p-CACA], 128.43 [m-CACA], 128.25 [HN-C-CHACA], 124.39 [m-Cpy], 23.16 [OC-CH3,ACA]. 13C \{1H\} NMR (400 MHz; MeOH-d4; Me4Si; 298 K): $\delta=174.05$ [HN-COACA], 172.95
[COOACA], 150.59 [o-Cpy], 139.40 [p-Cpy], 135.99 [O2CCACA], 132.52 [HN-CCHACA], 130.52 [o-CACA], 130.03 [HN-C-CH-CACA], 129.75 [p-CACA], 129.52 [mCACA], 125.91 [m-Cpy], 22.85 [OC-CH3,ACA]. DEPT-135 NMR (400 MHz ; DMSO-d6; Me4Si; 298 K): $\delta=149.75$ [o-Cpy], 137.22 [p-Cpy], 129.41 [o-CACA], 129.17 [p-CACA], 128.43 [m-CACA], 128.25 [HN-C-CHACA], 124.38 [m-Cpy], 23.16 [OC-CH3,ACA]. DEPT-135 NMR (400 MHz; MeOH-d4; Me4Si; 298 K): $\delta=150.59$ [o-Cpy], 139.41 [pCpy], 132.52 [HN-C-CHACA], 130.52 [o-CACA], 129.75 [p-CACA], 129.52 [m-CACA], 125.91 [m-Cpy], 22.85 [OC-CH3,ACA]. UV-vis ($\mathrm{MeOH}, 1.00 \times 10-9-1.37 \times 10-4 \mathrm{M}$): $\lambda \max (\log \varepsilon)=200 \mathrm{~nm}(4.75), 276 \mathrm{~nm}(4.62)$. Fluorescence $(\mathrm{MeOH}, 1.00 \times 10-7 \mathrm{M}): \lambda e x c$ $=229 \mathrm{~nm} ; \lambda$ max-em $(\Phi$ based on L-tyr $)=344 \mathrm{~nm}(0.99)$.
2. Yield: 203 mg (60% based on Cd). Elemental analysis calc. (\%) for C44H46CdN4O10 (903.25): C 58.51; H 5.13; N 6.20; found: C 58.28; H 5.01; N 5.94. FTIRATR (wavenumber, cm-1): 3638(m) [$v(\mathrm{O}-\mathrm{H})], 3299(\mathrm{~m})[v(\mathrm{O}-\mathrm{H})], 3203(\mathrm{~m})[v(\mathrm{~N}-\mathrm{H})]$, 3147-3024(br) [v(C-H)ar + v(C-H)alk], 2980-2656(br) [$v(\mathrm{C}-\mathrm{H}) \mathrm{al}], 1670(\mathrm{~m})$ [$\mathrm{v}(\mathrm{C} \quad \mathrm{O})$], 1648(w), 1635(w), 1595(w), 1585(w), 1559(s) [v as(COO)], 1518(s) [v (C C/C N)], 1489(m), 1474(m), 1449(m), 1389(s) [$\mathrm{v} \mathrm{s}(\mathrm{COO})$], 1357(s) [$\delta(\mathrm{C} \quad \mathrm{C} / \mathrm{C} \quad \mathrm{N})$], 1315(w), 1282(s), 1209(w), 1199(w), 1157(w), 1140(w), 1112(w), 1077(w), 1029(w) [$\delta \mathrm{ip}(\mathrm{C}-\mathrm{H})$], 1012(w) [8ip(C-H)], 984(w), 957(w), 932(w), 920(w), 897(w), 848(w), 821(w), 764(s) [$\delta 000(\mathrm{C}-\mathrm{H})], 743(\mathrm{~s})[\delta \operatorname{oop}(\mathrm{C}-\mathrm{H})], 710(\mathrm{~s}), 692(\mathrm{~s})[\delta \operatorname{oop}(\mathrm{C}-\mathrm{H})], 646(\mathrm{~s}), 626(\mathrm{~s}), 589(\mathrm{w})$, 563(s), 557(s), 526(s). 1H NMR (400 MHz; DMSO-d6; Me4 Si; 298 K): $\delta=9.17$ [2H, s, NHACA], $8.88[2 \mathrm{H}, \mathrm{d}, 4 \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hpy}], 8.57[2 \mathrm{H}, \mathrm{dd}, 3 \mathrm{~J}=4.8 \mathrm{~Hz}, 4 \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hpy}]$, $8.08[2 \mathrm{H}, \mathrm{ddd}, 3 \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{~J}=2.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, \mathrm{p}-\mathrm{Hpy}], 7.72[4 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{Hph}(3-\mathrm{phpy})], 7.50$ $[10 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{HACA}+\mathrm{m}-\mathrm{Hpy}+\mathrm{m}-\mathrm{Hph}(3-\mathrm{phpy})], 7.43[2 \mathrm{H}, \mathrm{m}, \mathrm{p}-\mathrm{Hph}(3-\mathrm{phpy})], 7.35[4 \mathrm{H}, \mathrm{t}$, $3 \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{~m}-\mathrm{HACA}], 7.28$ [2H, d, $3 \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{p}-\mathrm{HACA}], 7.26[2 \mathrm{H}, \mathrm{s}, \mathrm{HN}-\mathrm{C}-\mathrm{CHACA}]$, 1.96 [6H, s, OC-CH3,ACA]. 1H NMR (400 MHz ; MeOH-d4; Me4 Si; 298 K): $\delta=8.81$ [$2 \mathrm{H}, \mathrm{s}, \mathrm{o}-\mathrm{Hpy}], 8.52[2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=4.3 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hpy}], 8.08[2 \mathrm{H}, \mathrm{ddd}, 3 \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{~J}=2.3 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, \mathrm{p}-\mathrm{Hpy}], 7.62[4 \mathrm{H}, \mathrm{ddd}, 3 \mathrm{~J}=4.5 \mathrm{~Hz}, 4 \mathrm{~J}=3.6 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hph}(3-\mathrm{phpy})], 7.51[2 \mathrm{H}$, dd, $3 \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{~J}=5.0 \mathrm{~Hz}, \mathrm{p}-\mathrm{Hph}(3-\mathrm{phpy})], 7.36[16 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{HACA}+\mathrm{m}-\mathrm{HACA}+\mathrm{p}-$ HACA, HN-C-CHACA, m-Hpy + m-Hph(3-phpy)], 2.04 [6H, s, OC-CH3,ACA]. 13C \{1H\} NMR (400 MHz ; DMSO-d6; Me4Si; 298 K): $\delta=171.39$ [HN-COACA], 168.44 [COOACA], 148.59 [o-Cpy], 147.71 [o-Cpy], 137.13 [py-Cph(3-phpy)], 135.76 [m-Cpy], 135.23 [O2C-CACA], 134.42 [p-Cpy], 129.65 [HN-C-CH-CACA], 129.38 [o-CACA], 129.31 [m-Cph(3-phpy)], 129.05 [p-CACA], 128.40 [p-Cph(3-phpy)], 128.33 [m-CACA],
128.21 [HN-C-CHACA], 127.02 [o-Cph(3-phpy)], 124.11 [m-CHpy], 23.11 [OCCH3,ACA]. 13C \{1H\} NMR (400 MHz; DMSO-d6; Me4 Si; 298 K): $\delta=173.91$ [HNCOACA], 172.87 [COOACA], 149.04 [o-Cpy], 148.66 [o-Cpy], 138.92 [py-Cph(3-phpy)], 138.30 [m-Cpy], 137.14 [p-Cpy], 135.98 [O2C-CACA], 132.45 [o-CACA], 130.52 [mCACA], 130.30 [p-CACA], 130.07 [$\mathrm{HN}-\mathrm{C}-\mathrm{CH}-\mathrm{CACA}$], 129.74 [$\mathrm{HN}-\mathrm{C}-\mathrm{CHACA}$], 129.56 [p-Cph(3-phpy)], 129.51 [o-Cph(3-phpy)], 128.16 [m-Cph(3-phpy)], 125.75 [m-CHpy], 22.85 [OC-CH3,ACA]. DEPT-135 NMR (400 MHz; DMSO-d6; Me4Si; 298 K): $\delta=148.59$ [o-Cpy], 147.71 [o-Cpy], 134.42 [p-Cpy], 129.38 [o-CACA], 129.31 [m-Cph(3-phpy)], 129.05 [p-CACA], 128.40 [p-Cph(3-phpy)], 128.33 [m-CACA], 128.21 [HN-C-CHACA], 127.01 [o-Cph(3-phpy)], 124.12 [m-CHpy], 23.12 [OC-CH3,ACA]. DEPT-135 NMR (400 MHz; MeOH-d4; Me4Si; 298 K): $\delta=149.04$ [o-Cpy], 148.65 [o-Cpy], 137.14 [p-Cpy], 132.45 [o-CACA], 130.52 [m-CACA], 130.29 [p-CACA], 129.74 [HN-C-CHACA], 129.56 [p-Cph(3-phpy)], 129.50 [o-Cph(3-phpy)], 128.15 [m-Cph(3-phpy)], 125.75 [mCHpy], 22.84 [OC-CH3,ACA]. UV-vis (MeOH, $2.43 \times 10-9-6.55 \times 10-5 \mathrm{M}$): $\lambda \max (\log$ $\varepsilon)=204 \mathrm{~nm}(4.78), 256 \mathrm{~nm}(4.56), 274 \mathrm{~nm}$ (4.53). Fluorescence (MeOH, $1.00 \times 10-7 \mathrm{M})$: $\lambda \mathrm{exc}=229 \mathrm{~nm} ; \lambda$ max-em $(\Phi$ based on L-tyr) $=337 \mathrm{~nm}(0.057)$.
3. Yield: 205 mg (77% based on Cd). Elemental analysis calc. (\%) for C66H64Cd2N8O14 (1418.08): C 55.90; H 4.55; N 7.90; found: C 55.78; H 4.43; N 7.74. FTIR-ATR (wavenumber, cm-1): 3388(br) [$v(\mathrm{O}-\mathrm{H})$], 3248(m) [$v(\mathrm{~N}-\mathrm{H})], 3198-3004(\mathrm{br})$ [$v(\mathrm{C}-\mathrm{H}) \mathrm{ar}+\mathrm{v}(\mathrm{C}-\mathrm{H}) \mathrm{alk}], 2924(\mathrm{w})[\mathrm{v}(\mathrm{C}-\mathrm{H}) \mathrm{al}], 1693(\mathrm{w}), 1670(\mathrm{w})[\mathrm{v}(\mathrm{C} O)]$, 1648(w), 1597(w), 1533(s) [v as(COO)], 1514(s) [v as(COO)], 1491(m), 1478(w), 1440(m) [v (C C/C N)], 1389(s) [v s(COO)], 1369(s), 1355(s) [$\delta\left(\begin{array}{lll}(\mathrm{C} & \mathrm{C} / \mathrm{C} & \mathrm{N}) \text {], 1319(m), 1288(m), }\end{array}\right.$ 1252(m), 1211(w), 1183(w), 1175(w), 1159(w), 1122(w), 1077(w), 1059(w), 1019(s) [$\delta \mathrm{ip}(\mathrm{C}-\mathrm{H})], 965(\mathrm{w}), 958(\mathrm{w}), 923(\mathrm{w}), 891(\mathrm{w}), 849(\mathrm{w}), 819(\mathrm{w}), 785(\mathrm{w}), 778(\mathrm{~s})$ [8oop(C-H)], 767(s) [δ oop(C-H)], 752(m), 739(m), 718(w), 687(s) [δ oop(C-H)], 649(m), 604(m), 592(s), 543(s), 525(s). 1H NMR (400 MHz ; DMSO-d6; Me4Si; 298 K): 9.16 [2H, s, NHACA], 8.81 $[2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=3.7 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hpy}], 8.52[2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=7.9 \mathrm{~Hz}, \mathrm{~m}-\mathrm{Hpy}], 8.13[2 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{p}-$ Hpy], 7.65 [2H, m, m-Hpy], 7.47 [4H, d, 3J $=5.8 \mathrm{~Hz}, \mathrm{o}-\mathrm{HACA}], 7.33$ [4H, m, m-HACA], $7.26[4 \mathrm{H}, \mathrm{m}, \mathrm{p}-\mathrm{HACA}+\mathrm{HN}-\mathrm{C}-\mathrm{CHACA}], 1.95[6 \mathrm{H}, \mathrm{s}, \mathrm{OC}-\mathrm{CH} 3, \mathrm{ACA}] .13 \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ (400 MHz ; DMSO-d6; Me4 Si; 298 K): $\delta=171.12$ [HN-COACA], 168.38 [COOACA], 150.56 [o-Cpy], 149.88 [o-CHpy], 139.71 [p-Cpy], 135.35 [O2C-CACA], 129.90 [HN-C-CH-CACA], 129.34 [o-CACA], 128.65 [p-CACA], 128.36 [m-HACA], 128.10 [HN-CCHACA], 125.81 [m-Cpy], 121.95 [m-Cpy], 23.17 [OC-CH3,ACA]. DEPT-135 NMR (400

MHz; DMSO-d6; Me4Si; 298 K): $\delta=149.87$ [o-CHpy], 139.71 [p-Cpy], 129.34 [o-CACA], 128.66 [p-CACA], 128.35 [m-HACA], 128.10 [HN-C-CHACA], 125.81 [m-Cpy], 121.95 [m-Cpy], 23.17 [OC-CH3,ACA]. UV-vis (MeOH, $5.50 \times 10-10-2.94 \times 10-5 \mathrm{M}$): $\lambda \max (\log$ $\varepsilon)=203 \mathrm{~nm}(5.34), 279 \mathrm{~nm}(5.12)$. Fluorescence $(\mathrm{MeOH}, 1.00 \times 10-7 \mathrm{M})$: $\lambda \mathrm{exc}=229 \mathrm{~nm}$; λ max-em (Φ based on L-tyr) $=345 \mathrm{~nm}(0.13)$.
4. Yield: 208 mg (66% based on Cd). Elemental analysis calc. (\%) for C40H46CdN4O9 (839.22) C 57.25; H 5.52; N 6.68; found: C 57.04; H 5.28; N 6.43. FTIRATR (wavenumber, $\mathrm{cm}-1$): $3365(\mathrm{w})[v(\mathrm{O}-\mathrm{H})], 3216(\mathrm{w})[v(\mathrm{~N}-\mathrm{H})], 3180-3021(\mathrm{br})[v(\mathrm{C}-$ H) ar $+v(\mathrm{C}-\mathrm{H})$ alk $], 2999-2884(\mathrm{br})[\mathrm{v}(\mathrm{C}-\mathrm{H}) \mathrm{al}], 1682(\mathrm{~m}), 1667(\mathrm{~m})[\mathrm{v}(\mathrm{C} O)], 1640(\mathrm{w})$, 1554(m), 1540(br), 1519(s) [v as(COO)], 1488(s) [v (C C/C N)], 1448(m), 1428(sh), 1396(s) [$\mathrm{v} \mathrm{s}(\mathrm{COO})]$, 1360(s) [$\delta(\mathrm{C} \quad \mathrm{C} / \mathrm{C} \quad \mathrm{N})]$, 1268(m), 1207(w), 1142(w), 1101(w), 1081(w), 1042(w) [$8 \mathrm{ip}(\mathrm{C}-\mathrm{H})$], 1002(w), 980(w), 929(w), 894(w), 866(w), 845(m), 775(sh), 766(s) [8oop(C-H)], 754(sh), 725(s) [8oop(C-H)], 693(s) [8oop(C-H)], 656(w), 642(m), 621(m), 593(m), 556(m), 524(s). 1H NMR (400 MHz ; DMSO-d6; Me4Si; 298 K): $\delta=9.19$ [$2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=3.2 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hpy}], 9.12$ [2H, s, NHACA], $8.80[2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=8.1 \mathrm{~Hz}, \mathrm{p}-\mathrm{Hpy}], 8.21$ $[2 \mathrm{H}, \mathrm{s}, \mathrm{Hph}(1,10-\mathrm{phen})], 8.05[2 \mathrm{H}, \mathrm{dd}, 3 \mathrm{~J}=7.9 \mathrm{~Hz}, 4 \mathrm{~J}=4.7 \mathrm{~Hz}, \mathrm{~m}-\mathrm{Hpy}], 7.45[4 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=$ $6.4 \mathrm{~Hz}, \mathrm{o}-\mathrm{HACA}], 7.32[4 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{~m}-\mathrm{HACA}], 7.25[2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{p}-\mathrm{HACA}]$, 7.22 [2H, s, HN-C-CHACA], 1.93 [6H, s, OC-CH3,ACA]. 13C $\{1 \mathrm{H}\}$ NMR (400 MHz ; DMSO-d6; Me4Si; 298 K): $\delta=170.52$ [HN-COACA], 168.14 [COOACA], 150.31 [oСНру], 140.28 [o-Cру], 139.05 [p-CHpy], 135.24 [O2C-CACA], 129.82 [$\mathrm{HN}-\mathrm{C}-\mathrm{CH}-$ CACA], 129.24 [o-CACA], 128.64 [m-Cpy], 128.35 [p-CACA], 128.21 [m-CACA], 127.94 [HN-C-CHACA], 126.97 [CHph(1,10-phen)], 125.10 [m-CHpy], 23.05 [OC-CH3,ACA]. DEPT-135 NMR (400 MHz; DMSO-d6; Me4Si; 298 K): $\delta=150.31$ [о-CHpy], 139.05 [pCHpy], 129.24 [o-CACA], 128.37 [p-CACA], 128.22 [m-CACA], 127.94 [HN-CCHACA], 126.98 [CHph(1,10-phen)], 125.10 [m-CHpy], 23.06 [OC-CH3,ACA]. UV-vis $(\mathrm{MeOH}, 1.00 \times 10-9-7.06 \times 10-5 \mathrm{M}): \lambda \max (\log \varepsilon)=205 \mathrm{~nm}(4.97), 269 \mathrm{~nm}(4.96)$. Fluorescence $(\mathrm{MeOH}, 1.00 \times 10-7 \mathrm{M}): ~ \lambda e x c=229 \mathrm{~nm} ; \lambda \max -\mathrm{em}(\Phi$ based on L-tyr $)=346$ nm (0.069).
5. Yield: 220 mg (65% based on Cd). Elemental analysis calc. (\%) for C43H45CdN7O8 (900.27) C 57.37; H 5.04; N 10.89; found: C 57.12; H 4.93; N 10.77. FTIR-ATR (wavenumber, cm-1): 3329(w), 3210(w) [v(N-H)], 3084-3024(br) [v(C-H)ar + v (C - H)alk], 2999-2945(br) [v (C - H)al], 1703(w) [v (C=O)DMF], 1675(m) [v
$(\mathrm{C}=\mathrm{O}) \mathrm{ACA}], 1642(\mathrm{w}), 1575(\mathrm{~m}), 1547(\mathrm{~s}), 1536(\mathrm{sh})$ [v as(COO)], 1488(m), 1476(m) [v $(\mathrm{C}=\mathrm{C} / \mathrm{C}=\mathrm{N})$], 1447(m), 1441(sh), 1406(sh) [$\mathrm{v} \mathrm{s}(\mathrm{COO})]$, 1381(s) [$\delta(\mathrm{C}=\mathrm{C} / \mathrm{C}=\mathrm{N})$], 1373(sh), 1359(sh), 1315(m), 1255(m), 1207(w), 1190(w), 1163(w), 1101(w), 1076(w), 1036(w), 1013(m) [8ip(C-H)], 976(w), 921(w), 891(w), 843(w), 831(w), 796(w), 771(s) [δ oop $(\mathrm{C}-\mathrm{H})], 749(\mathrm{~m}), 731(\mathrm{~m}), 689(\mathrm{~s})[800 p(\mathrm{C}-\mathrm{H})], 651(\mathrm{~m}), 637(\mathrm{~m}), 624(\mathrm{~m}), 604(\mathrm{~m}) .1 \mathrm{H}$ NMR (400 MHz; DMSO-d6; Me4Si; 340 K): $\delta=8.99[2 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=4.3 \mathrm{~Hz}$, o-Hpy], 8.79 [2H, s, NHACA], 8.64 [4H, m, m-Hpy-side +m -Hpy-center], $8.36[1 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=8.0 \mathrm{~Hz}$, p-Hpy-center], $8.20[2 \mathrm{H}, \mathrm{td}, 3 \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{~J}=1.6 \mathrm{~Hz}, \mathrm{p}$-Hpy-side], $7.74[2 \mathrm{H}, \mathrm{dd}, 3 \mathrm{~J}=7.0 \mathrm{~Hz}$, $3 \mathrm{~J}=5.2 \mathrm{~Hz}, \mathrm{~m}-\mathrm{Hpy}$-side], 7.45 [4H, m, o-HACA], 7.32 [4H, m, m-HACA], 7.23 [4H, m, pHACA + HN-C-CHACA], 1.90 [6H, s, OC-CH3,ACA]. 13C NMR (400 MHz; DMSOd6; Me4Si; 298 K): $\delta=170.99$ [HN-COACA], 167.96 [COOACA], 150.35 [o-CHpy-side], 149.31 [o-Cpy-center], 148.47 [o-CHpy-side], 142.04 [p-Cpy-center], 140.24 [p-Cpy-side], 135.51 [O2C-CACA], 129.71 [HN-C-CH-CACA], 129.22 [o-CACA], 128.22 [p-CACA + m-CACA], 127.87 [HN-C-CHACA], 126.53 [m-Cpy-side], 123.17 [m-Cpy-side], 122.66 [m-Cpy-center], 23.22 [OC-CH3,ACA]. DEPT-135 NMR (400 MHz; DMSO-d6; Me4 Si; $298 \mathrm{~K}): \delta=150.33$ [o-CHpy-side], 142.00 [p-Cpy-center], 140.30 [p-Cpy-side], 129.20 [oCACA], 128.22 [p-CACA], 127.88 [m-CACA + HN-C-CHACA], 126.54 [m-Cpy-side], 123.12 [m-Cpy-side], 122.64 [m-Cpy-center], 23.19 [OC-CH3,ACA]. UV-vis (MeOH, 1.00 $\times 10-9-6.31 \cdot 10-5 \mathrm{M}): \lambda \max (\log \varepsilon)=203 \mathrm{~nm}(5.27), 281 \mathrm{~nm}(4.95), 320 \mathrm{~nm}(4.43)$. Fluorescence $(\mathrm{MeOH}, 1.00 \times 10-7 \mathrm{M}): \lambda$ exc $=320 \mathrm{~nm} ; \lambda$ max-em $(\Phi$ based on QS $)=355$ $\mathrm{nm}(0.65)$.

X-ray crystallographic data

For compounds $1-5$, colorless prism-like specimens were used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a D8 Venture system equipped with a multilayer monochromate and Mo microfocus ($\lambda=0.71073 \AA$). The frames were integrated with the Bruker SAINT Software package using a narrow-frame algorithm. All hydrogen atoms were refined using a riding model (AFIX) with an isotropic temperature factor equal to 1.2 , and thus the bond lengths of $\mathrm{X}-\mathrm{H}$ were fixed. For 1 , the integration of the data yielded 7615 independent reflections ($\mathrm{R} \operatorname{sig}=2.87 \%$) and 6430 (84.44%) were greater than $2 \sigma(|\mathrm{~F}| 2)$. For 2, the integration of the data yielded 6266 independent reflections ($\mathrm{Rsig}=1.88 \%$) and $5565(88.81 \%)$ were greater than $2 \sigma(|F| 2)$. For 3, the integration of the data yielded 10043 independent reflections ($\mathrm{Rsig}=3.35 \%$) and 8961 (89.23%) were greater than $2 \sigma(|\mathrm{~F}| 2)$. For 4, the integration of the data yielded 11696 independent reflections (Rsig
$=3.70 \%)$ and $9642(82.44 \%)$ were greater than $2 \sigma(|\mathrm{~F}| 2)$. For 5, the integration of the data yielded 12616 independent reflections $($ Rsig $=2.76 \%)$ and $10746(85.18 \%)$ were greater than $2 \sigma(|F| 2)$.

The structures were solved and refined using SHELX (version 2018/3). 72 The final cell constants and volume are based on the refinement of the XYZ-centroids of the reflections above $20 \sigma(\mathrm{I})$. Data were corrected for absorption effects using the multi-scan method (SADABS). The crystal data and relevant details of the structure refinement for compounds $1-5$ are reported in Tables 3 and 4.

Complete information about the crystal structure and molecular geometry is available in CIF format via CCDC 2124508 (1), 2124510 (2), 2124511 (3), 2124509 (4), 2124512 (5). Molecular graphics were generated using the Mercury 4.3 .1 software $73-75$ using the POVray image package. 76 The color codes for all the molecular graphics are light orange (Cd), red (O), light blue (N), dark gray (C), and white (H).

Author Contributions

Conceptualization, J. P.; data curation, D. E. and M. F.-B.; formal analysis, D. E. and M. F.B.; funding acquisition, J. P.; investigation, D. E.; methodology, D. E.; project administration, J. P.; resources, J. P.; T. C.; software, D. E.; supervision, J. P.; validation, J. P. and T. C.; visualization, D. E.; writing-original draft preparation, D. E.; writing-review and editing, J. P., T. C. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

There are no conflicts to declare.

Acknowledgements

J. P. acknowledges financial support from the CB615921 project, the CB616406 project from "Fundació La Caixa", and the 2017SGR1687 project from the Generalitat de Catalunya. D. E. acknowledges the PIF predoctoral fellowship from the Universitat Autònoma de Barcelona.

References

1 R. Kumar, A. Sharma, H. Singh, P. Suating, H. S. Kim, K. Sunwoo, I. Shim, B. C. Gibb and J. S. Kim, Chem. Rev., 2019, 119, 9657-9721.

2 H. Wang, X. Ji, Z. A. Page and J. L. Sessler, Mater. Chem. Front., 2020, 4, 1024-1039.
3 A. M. Alsharabasy, A. Pandit and P. Farràs, Adv. Mater., 2021, 33, 2003883.
4 R. Adam, M. Mon, R. Greco, L. H. G. Kalinke, A. Vidal-Moya, A. Fernandez, R. E. P. Winpenny, A. Doménech-Carbó, A. Leyva-Pérez, D. Armentano, E. Pardo and J. FerrandoSoria, J. Am. Chem. Soc., 2019, 141, 10350-10360.

5 X.-G. Yang, X.-M. Lu, Z.-M. Zhai, Y. Zhao, X.-Y. Liu, L.-F. Ma and S.-Q. Zang, Chem. Commun., 2019, 55, 11099-11102.

6 J.-H. Qin, Y.-D. Huang, Y. Zhao, X.-G. Yang, F.-F. Li, C. Wang and L.-F. Ma, Inorg. Chem., 2019, 58, 15013-15016.

7 X.-G. Yang, X.-M. Lu, Z.-M. Zhai, J.-H. Qin, X.-H. Chang, M.-L. Han, F.-F. Li and L.-F. Ma, Inorg. Chem. Front., 2020, 7, 2224-2230.

8 B. J. Holliday and C. A. Mirkin, Angew. Chem., Int. Ed., 2001, 40, 2022-2043.
9 Z. Ji, R. Freund, C. S. Diercks, P. Hirschle, O. M. Yaghi and S. Wuttke, Adv. Mater., 2021, 2103808.

10 Y. He, S. Xiang and B. Chen, J. Am. Chem. Soc., 2011, 133, 14570-14573.
11 J . Su, J. Zhang, X. Tian, M. Zhao, T. Song, J. Yu, Y. Cui, G. Qian, H. Zhong, L. Luo, Y. Zhang, C. Wang, S. Li, J. Yang, H. Zhou, J. Wu and Y. Tian, J. Mater. Chem. B, 2017, 5, 5458-5463.

12 E. Molenbroek, N. Straathof, S. Dück, Z. Rashid, J. H. van Lenthe, M. Lutz, A. Gandubert, R. J. M. Klein Gebbink, L. De Cola and S. Bonnet, Dalton Trans., 2013, 42, 2973-2984.

13 Y. Jeong, Y.-M. Kook, K. Lee and W.-G. Koh, Biosens. Bioelectron., 2018, 111, 102-116.
14 C. V. Esteves, J. Costa, H. Bernard, R. Tripier and R. Delgado, New J. Chem., 2020, 44, 65896600.

15 N. Sinha, L. Stegemann, T. T. Y. Tan, N. L. Doltsinis, C. A. Strassert and F. E. Hahn, Angew. Chem., Int. Ed., 2017, 56, 2785-2789.

16 A. Rodriguez-Serrano, V. Rai-Constapel, M. C. Daza, M. Doerr and C. M. Marian, Phys. Chem. Chem. Phys., 2015, 17, 11350-11358.

17 B. C. De Simone, G. Mazzone, N. Russo, E. Sicilia and M. Toscano, Molecules, 2016, 21, 1093.

18 R. D. Hancock, Chem. Soc. Rev., 2013, 42, 1500-1524.
19 N. J. Williams, W. Gan, J. H. Reibenspies and R. D. Hancock, Inorg. Chem., 2009, 48, 14071415.

20 Z. Dai, Molecules, 2016, 21, 1647.

21 A. Barbieri, G. Accorsi and N. Armaroli, Chem. Commun., 2008, 2185-2193.
22 S. Purkait, G. Aullón, E. Zangrando and P. Chakraborty, Dalton Trans., 2017, 46, 2184-2195.
23 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, 32, 751-767.
Y. Mikata, A. Kizu, K. Nozaki, H. Konno, H. Ono, S. Mizutani and S. Sato, Inorg. Chem., 2017, 56, 7404-7415.
M. Wang, J. Zhang, Y. Sun, J. Wei, C. Tan and X.-F. Wang, CrystEngComm, 2020, 22, 39653974.
D. Ejarque, F. Sánchez-Férez, T. Calvet, M. Font-Bardia and J. Pons, Inorg. Chim. Acta, 2020, 509, 119695.
D. Ejarque, T. Calvet, M. Font-Bardia and J. Pons, Molecules, 2020, 25, 3615.

31 D. Ejarque, T. Calvet, M. Font-Bardia and J. Pons, CrystEngComm, 2021, 23, 6199-6213.

34 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, Wiley Interscience, Hoboken, New Jersey, USA, 6th edn, 2009.

35 I . Fleming and D. Williams, Spectroscopic Methods in Organic Chemistry, Springer International Publishing, Cham, Switzerland, 7th edn, 2019. $71-80$.

50 P. K. Yadav, N. Kumari, P. Pachfule, R. Banerjee and L. Mishra, Cryst. Growth Des., 2012, 12, 5311-5319.

51 J. Nath, A. Tarai and J. B. Baruah, ACS Omega, 2019, 4, 18444-18455. Sci., 2012, 124, 577-585.

54 S. Alvarez, Chem. Rev., 2015, 115, 13447-13483.

55 D. Casanova, P. Alemany, J. M. Bofill and S. Alvarez, Chem. - Eur. J., 2003, 9, 1281-1295.

56 S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, Coord. Chem. Rev., 2005, 249, 1693-1708.

57 F. Sánchez-Férez, J. M. Rius-Bartra, T. Calvet, M. Font-Bardia and J. Pons, Inorg. Chem., 2021, 60, 3851-3870.

58 J. M. Andrić, G. V. Janjić, D. B. Ninković and S. D. Zarić, Phys. Chem. Chem. Phys., 2012, 14, 10896-10898.

59 Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011, 40, 5361-5388.

60 M. Levitus, Methods Appl. Fluoresc., 2020, 8, 033001.
61 P. J. Alessi, E. C. Carter, M. D. Fairchild, R. W. G. Hunt, C. S. McCamy, B. Kránicz, J. R. Moore, L. Morren, J. H. Noobs, Y. Ohno, M. R. Pointer, D. C. Rich, A. R. Robertson, J. D. Schanda, R. Sève, P. W. Trezona, K. Witt and H. Yaguchi, CIE 15: Technical Report: Colorimetry, International Comimission on Illumination, Washington, D.C., 3rd edn, 2004.

62 J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic chemistry: principles of structure and reactivity, HarperCollins College Publishers, New York, 4th edn, 1993.

63 D. Sutton, Electronic Spectra of Transition Metal Complexes, McGraw-Hill, London, UK, 1975.

64 M. E. Sommer, M. Elgeti, P. W. Hildebrand, M. Szczepek, K. P. Hofmann and P. Scheerer, in Methods in Enzymology, Elsevier Inc., 1st edn, 2015, vol. 556, pp. 563-608.

65
C. Würth, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, Nat. Protoc., 2013, 8, 15351550.

66
R. F. Chen, Anal. Lett., 1967, 1, 35-42.

67
J. W. Eastman, Photochem. Photobiol., 1967, 6, 55-72.
G. M. Hale and M. R. Querry, Appl. Opt., 1973, 12, 555-563.

69
H. El-Kashef, Phys. B, 2000, 279, 295-301.

70
G. Accorsi, A. Listorti, K. Yoosaf and N. Armaroli, Chem. Soc. Rev., 2009, 38, 1690-1700.

71 F. Doettinger, Y. Yang, M.-A. Schmid, W. Frey, M. Karnahl and S. Tschierlei, Inorg. Chem., 2021, 60, 5391-5401.

72 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.

73 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr., 2006, 39, 453-457.

74 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466-470.

75 C. F. MacRae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J. Appl. Crystallogr., 2020, 53, 226 235.

76 Persistence of Vision Pty. Ltd., Persistence of Vision (TM) Raytracer, Persistence of Vision Pty. Ltd., Williamstown, Australia, 2004.

Table 1. Geometry distortion analysis of the Cd(II) cores in 1-5 using S parameter calculated with SHAPE, 38,39 and ata values 40,41

Compound	Geometry ${ }^{\text {a }}$	S value	ata value (${ }^{\circ}$)	Twist angles ${ }^{\text {b }}$ (${ }^{\circ}$)
1	OC-6	8.968	21.61	$\mathrm{N}(3)-\mathrm{Cg}(4)-\mathrm{Cg}(5)-\mathrm{O}(6): 18.87$
	TPR-6	6.631		$\mathrm{O}(2)-\mathrm{Cg}(4)-\mathrm{Cg}(5)-\mathrm{O}(1)=18.84$
				$\mathrm{O}(5)-\mathrm{Cg}(4)-\mathrm{Cg}(5)-\mathrm{O}(4): 27.11$
2	OC-6	0.054	59.67	$\mathrm{O}(4)-\mathrm{Cg}(2)-\mathrm{Cg}(3)-\mathrm{N}(2): 58.79$
	TPR-6	16.480		$\mathrm{O}(1)-\mathrm{Cg}(2)-\mathrm{Cg}(3)-\mathrm{O}(4): 60.81$
				$\mathrm{N}(2)-\mathrm{Cg}(2)-\mathrm{Cg}(3)-\mathrm{O}(1): 59.40$
3	PBPY-7	6.197	23.64	$\mathrm{N}(3)-\mathrm{Cg}(2)-\mathrm{Cg}(3)-\mathrm{N}(4): 23.63$
	COC-7	6.472		$\mathrm{O}(2) 41-\mathrm{Cg}(2)-\mathrm{Cg}(3)-\mathrm{O}(5): 15.81$
	CTPR-7	5.477		$\mathrm{O}(2)-\mathrm{Cg}(2)-\mathrm{Cg}(3)-\mathrm{O}(4): 31.48$
4	OC-6	10.444	18.83	$\mathrm{O}(1)-\mathrm{Cg}(5)-\mathrm{Cg}(6)-\mathrm{O}(2): 17.18$
	TPR-6	6.397		$\mathrm{O}(4)-\mathrm{Cg}(5)-\mathrm{Cg}(6)-\mathrm{O}(5): 12.98$
				$\mathrm{N}(4)-\mathrm{Cg}(5)-\mathrm{Cg}(6)-\mathrm{N}(3): 26.34$
5	PBPY-7	9.349	46.10	$\mathrm{N}(3)-\mathrm{Cg}(4)-\mathrm{Cg}(5)-\mathrm{N}(4): 46.04$
	COC-7	5.471		$\mathrm{O}(4)-\mathrm{Cg}(4)-\mathrm{Cg}(5)-\mathrm{O}(2): 65.95$
	CTPR-7	5.517		$\mathrm{O}(5)-\mathrm{Cg}(4)-\mathrm{Cg}(5)-\mathrm{N}(5): 26.32$

Close values are highlighted in bold. ${ }^{a}$ OC-6 $=$ octahedron; TPR-6 $=$ trigonal prism; PBPY-7 $=$ pentagonal bipyramid; COC-7 $=$ capped octahedron; CTPR-7 = capped trigonal prism. ${ }^{b}$ 1: $\operatorname{Cg}(4)=\mathrm{O}(2) \mathrm{N}(3) \mathrm{O}(5) ; \operatorname{Cg}(5)=\mathrm{O}(1) \mathrm{O}(4) \mathrm{O}(6) .2: \operatorname{Cg}(2)=\mathrm{O}(1) \mathrm{O}(4) \mathrm{N}(2) ; \operatorname{Cg}(3)=\mathrm{O}(1) \# 1 \mathrm{O}(4) \# 1$ $N(2) \nmid 1$. 3: $\operatorname{Cg}(2)=O(2) O(2) \nmid 1 N(3) ; \operatorname{Cg}(3)=O(4) O(5) N(4)$. 4: $\operatorname{Cg}(5)=O(1) O(4) N(4) ; \operatorname{Cg}(6)=O(2) O(5) N(3) .5: \operatorname{Cg}(4)=O(2) O(4) N(3) ; \operatorname{Cg}(5)=$ $\mathrm{O}(2) \mathrm{N}(4) \mathrm{N}(5)$.

Table 2. Detailed parameters extracted from the photophysical properties of 1-5a

Sample	$\lambda_{\text {max-abs }}(\log (\varepsilon))$	$\lambda_{\text {exc }}$	$\lambda_{\text {max em }}$	Φ_{s}
1	200 (4.75), 276 (4.62)		344	$0.99^{\text {b }}$
2	204 (4.78), 256 (4.56), 274 (4.53)		337	$0.057^{\text {b }}$
3	203 (5.34), 279 (5.12)		345	$0.13{ }^{\text {b }}$
4	205 (4.97), 269 (4.96)		346	$0.069^{\text {b }}$
5	203 (5.27), 281 (4.95), 320 (4.43)	320	355	$0.65{ }^{\text {c }}$
${ }^{a}$ All the wavelengths are given in $\mathrm{nm} . \varepsilon$ values are given in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$. $\lambda_{\text {maxabs }}=$ maximum of absorption; $\lambda_{\text {exc }}=$ excitation maximum; $\lambda_{\text {max }}$ em $=$ maximum of emission; $\Phi_{s}=$ quantum yield samples. ${ }^{b}$ Relative quantum yield values using i-tyrosine as the standard $(\Phi=0.14)$. ${ }^{66}$ ${ }^{c}$ Relative quantum yield values using quinine sulphate as the standard ($\Phi=0.577$). ${ }^{\text {. }}$				

	1	2	3
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{CdN}_{3} \mathrm{O}_{6}$	$\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{CdN}_{4} \mathrm{O}_{10}$	$\mathrm{C}_{66} \mathrm{H}_{64} \mathrm{Cd}_{2} \mathrm{~N}_{3} \mathrm{O}_{14}$
Formula weight	599.90	903.25	1418.05
$T(\mathrm{~K})$	100(2)	100(2)	100(2)
Wavelength (\AA)	0.71073	0.71073	0.71073
System, space group	Monoclinic, $P 2_{1} / n$	Monoclinic, $P 2{ }_{1} / c$	Triclinic, $P \overline{1}$
Unit cell dimensions			
a (\AA)	14.2599(5)	8.5444(3)	9.1064(7)
b (\AA)	10.0971(4)	$22.0061(8)$	12.4497(10)
$c(\AA)$	$17.8998(6)$	11.1259(4)	14.1999(12)
$\alpha\left({ }^{\circ}\right)$	90	90	101.718(3)
$\beta\left({ }^{\circ}\right)$	103.0770(10)	98.9050(10)	106.897(3)
$y\left({ }^{\circ}\right)$	90	90	$90.206(3)$
$V\left(\mathrm{~A}^{3}\right)$	2510.44(16)	2066.77(13)	1504.9(2)
Z	4	2	1
$D_{\text {ceak }}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$	1.587	1.451	1.565
$\mu\left(\mathrm{mm}^{-1}\right)$	0.918	0.592	0.782
$F(000)$	1216	932	724
Crystal size $\left(\mathrm{mm}^{-3}\right)$	$0.150 \times 0.140 \times 0.080$	$0.180 \times 0.140 \times 0.060$	$0.180 \times 0.040 \times 0.020$
$h k l$ ranges	$\begin{aligned} & -20 \leq h \leq 20, \\ & -14 \leq k \leq 14, \\ & -25 \leq l \leq 25 \end{aligned}$	$\begin{aligned} & -12 \leq h \leq 9, \\ & -31 \leq k \leq 31, \\ & -15 \leq l \leq 15 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 13, \\ & -18 \leq k \leq 18 \\ & -20 \leq l \leq 20 \end{aligned}$
θ range (${ }^{\circ}$)	2.331 to 30.527	2.584 to 30.530	2.343 to 31.596
Reflections collected/unique/[$R_{\text {int }}$]	40461/7615/0.0371	44 074/6266/0.0295	56350/10043/0.0434
Completeness to θ (\%)	99.6	99.4	99.8
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6583	0.7461 and 0.6718	0.7463 and 0.6966
Refinement method	Full-matrix least-squares on $\|F\|^{2}$	Full-matrix least-squares on $\|F\|^{2}$	Full-matrix least-squares on $\|F\|^{2}$
Data/restrains/parameters	7615/0/340	6266/6/281	10043/6/416
Goodness-on-fit on $\|F\|^{2}$	1.101	1.054	1.060
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0262 \\ & w R_{2}=0.0530 \end{aligned}$	$\begin{aligned} & R_{1}=0.0232 \\ & w R_{2}=0.0566 \end{aligned}$	$\begin{aligned} & R_{1}=0.0315 \\ & w R_{2}=0.0750 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0387 \\ & w R_{2}=0.0626 \end{aligned}$	$\begin{aligned} & R_{1}=0.0285 \\ & w R_{2}=0.0614 \end{aligned}$	$\begin{aligned} & R_{1}=0.0391 \\ & w R_{2}=0.0803 \end{aligned}$
Extinction coefficient	n/a	n/a	n/a
Largest diff-peak and hole (e \AA^{-3})	0.872 and -0.632	0.442 and -0.516	1.020 and -1.029

Table 3. Crystal data and structure refinement for 1-3

Table 4. Crystal data and structure refinement for 4 and 5

	4	5
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{CdN}_{4} \mathrm{O}_{5}$	$\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{CdN}_{5} \mathrm{O}_{8}$
Formula weight	839.21	900.26
T (K)	100(2)	100(2)
Wavelength ($\hat{\AA}$)	0.71073	0.71073
System, space group	Monoclinic, $P 2_{1} / \mathrm{c}$	Triclinic, P1
Unit cell dimensions		
$a(\AA)$	15.1674(4)	11.8826(7)
b (\AA)	16.9696(4)	13.1721(9)
$c\left(\begin{array}{l}\text { A }\end{array}\right.$	15.2451(4)	13.5190(10)
$\alpha\left({ }^{\circ}\right)$	90	78.902(3)
$\beta\left({ }^{\circ}\right)$	98.5900(10)	88.255(3)
$y\left({ }^{\circ}\right.$)	90	83.346 (2)
$V\left(A^{3}\right)$	3879.84(17)	2062.3(2)
z	4	2
$D_{\text {cak }}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$	1.437	1.450
$\mu\left(\mathrm{mm}^{-1}\right)$	0.623	0.592
$F(000)$	1736	928
Crystal size (mm^{-3})	$0.200 \times 0.150 \times 0.060$	$0.080 \times 0.045 \times 0.040$
$h k l$ ranges	$\begin{aligned} & -21 \leq h \leq 21, \\ & -24 \leq k \leq 24, \\ & -21 \leq l \leq 21 \end{aligned}$	$\begin{aligned} & -16 \leq h \leq 16, \\ & -18 \leq k \leq 18, \\ & -19 \leq l \leq 19 \end{aligned}$
θ range (${ }^{\circ}$)	2.136 to 30.527	2.300 to 30.563
Reflections collected/unique/[R $\mathrm{Rint}^{\text {] }}$]	41832/11696/0.0363	93667/12 616/0.0447
Completeness to θ (\%)	99.4	99.8
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6641	0.7461 and 0.6861
Refinement method	Full-matrix least-squares on $\|F\|^{2}$	Full-matrix least-squares on $\|F\|^{2}$
Data/restrains/parameters	11696/2/494	12616/3/605
Goodness-on-fit on $\|F\|^{2}$	1.063	1.055
Final R indices [$I>2 \sigma(I)]$	$\begin{aligned} & R_{1}=0.0336, \\ & w R_{2}=0.0726 \end{aligned}$	$\begin{aligned} & R_{1}=0.0400, \\ & w R_{2}=0.1002 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0479, \\ & w R_{2}=0.0828 \end{aligned}$	$\begin{aligned} & R_{1}=0.0518, \\ & w R_{2}=0.1109 \end{aligned}$
Extinction coefficient	n/a	n/a
Largest diff-peak and hole (e \AA^{-3})	1.521 and - 1.130	1.130 and -1.174

Figures Captions

Scheme 1. Outline of the synthesis of complexes 1-5.
Figure 1. (a) Molecular structure of 1. (b) Detailed view of the intramolecular interactions of each polymeric chain. (c) General view of the (220) plane. (d) Detailed view of the intermolecular interactions between adjacent chains.

Figure. 2 (a) Molecular structure of 2 with its intramolecular interactions assigned. General view of the supramolecular expansions along the (b) ac plane and (c) [011] direction.

Figure 3. (a) Molecular structure of 3. (b) Detailed view of the intramolecular interactions. General view of: (c) a-directed supramolecular chain and (d) bc supramolecular plane.

Figure 4. (a) Molecular structure of 4. (b) General view of the supramolecular bc plane. (c and d) Detailed views of the intermolecular interactions

Figure 5. (a) Molecular structure of 5. (b) General view of the ab plane. (c) Detailed view of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ synthon and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions forming the ab plane. (d) General view of the chain formed along the $\left[111^{-}\right]$direction

Figure 6. Representation of the geometry of the Cd (II) cores in (a) 1, (b) 2, (c) 3 , (d) 4 , and (e) 5 .

Figure 7. Orientation of the methyl groups and the aromatic rings of dPy in complexes (a) 1 , (b) 2, (c) 3 , (d) 4 and (e) 5 .

Figure 8. Emission spectra of complexes 1-5 excited at their corresponding excitation maxima ($229 \mathrm{~nm}(1-4)$ and $320 \mathrm{~nm}(5)$) in MeOH solution ($1.00 \times 10-7 \mathrm{M}$).

Scheme 1.
Scheme

$\left[\mathrm{Cd}(\mathrm{ACA})_{2}(3-\mathrm{phpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(2)$

Figure 2

b)

c)

Figure 3

Figure 4

Figure 6

Figure 7
a)

b)

c)

e)

Figure 8

