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Simple Summary: In this study, we identified molecular markers for disease progression from ccRCC
tissue samples. Using the selected biomarkers and clinical data from the TCGA cohort, we developed
a gene expression-based signature which enhances the prognostic prediction of clinicopathological
variables and could help to provide personalized disease management.

Abstract: The inaccuracy of the current prognostic algorithms and the potential changes in the
therapeutic management of localized ccRCC demands the development of an improved prognostic
model for these patients. To this end, we analyzed whole-transcriptome profiling of 26 tissue samples
from progressive and non-progressive ccRCCs using Illumina Hi-seq 4000. Differentially expressed
genes (DEG) were intersected with the RNA-sequencing data from the TCGA. The overlapping
genes were used for further analysis. A total of 132 genes were found to be prognosis-related genes.
LASSO regression enabled the development of the best prognostic six-gene panel. Cox regression
analyses were performed to identify independent clinical prognostic parameters to construct a
combined nomogram which includes the expression of CERCAM, MIA2, HS6ST2, ONECUT2, SOX12,
TMEM132A, pT stage, tumor size and ISUP grade. A risk score generated using this model effectively
stratified patients at higher risk of disease progression (HR 10.79; p < 0.001) and cancer-specific death
(HR 19.27; p < 0.001). It correlated with the clinicopathological variables, enabling us to discriminate
a subset of patients at higher risk of progression within the Stage, Size, Grade and Necrosis score
(SSIGN) risk groups, pT and ISUP grade. In summary, a gene expression-based prognostic signature
was successfully developed providing a more precise assessment of the individual risk of progression.

Keywords: gene expression; clear-cell renal cell carcinoma; disease progression; prognostic factors;
biomarkers; RNA sequencing

1. Introduction

Renal cell carcinoma (RCC) ranks third among the urological cancers with the highest
incidence. Over 431,000 new cases and more than 170,000 RCC-related deaths were reported
worldwide last year [1]. Clear-cell RCC (ccRCC) is the most common histological subtype
and has the worst prognosis among all RCCs [2]. Currently, most of the newly diagnosed
ccRCC cases are organ-confined tumors; however, after curative treatment, up to 30–40%
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will develop tumor metastases. Unfortunately, metastatic patients have a very poor five-
year survival rate, varying between 0–20% [3,4].

According to the European Urological Guidelines, the standard management for all
localized ccRCCs receiving surgery is limited to radiographic surveillance. No adjuvant
treatment is approved for patients with a higher risk of progression [2]. Moreover, all
surveillance recommendations are only based on clinical parameters, even though these
have been proven insufficient to accurately predict disease progression, either to select
ccRCC patients for adjuvant treatments or guide disease management [5,6].

Gene expression profiling has been used extensively in cancer research and has led
to the discovery of new molecular prognostic markers and potential therapeutic targets.
Several genetic models have been proposed in ccRCC [7–10]; however, none of those classi-
fiers have been widely accepted nor implemented in routine clinical practice. Biomarker
research for ccRCC still faces multiple challenges, mainly due to tumor heterogeneity and
lack of validation studies. In addition, the use of high-throughput assays and the identifica-
tion of a significant number of markers in a relatively small number of patients increase the
complexity of data analysis [3]. The currently validated gene signatures comprise a large
number of biomarkers, hindering their applicability and reproducibility [8,9]. Therefore,
in this study we sought to develop a novel and high-performing gene expression-based
signature using data generated from our cohort and The Cancer Genome Atlas (TCGA)
cohort, to provide a more accurate assessment of the individual risk of progression for
patients with localized ccRCC.

2. Materials and Methods
2.1. Patients, Datasets Sources and Study Design

This study was split into a three-stage approach: an initial molecular profiling, a
selection and verification of prognosis-related genes and a signature development phase
(Figure 1). The initial molecular profiling phase included a total of 26 localized ccRCCs who
underwent partial or radical nephrectomy between 2001 and 2010 in our center (Hospital
Clinic of Barcelona, Barcelona, Spain). These 26 cases consisted of 13 progressive and 13 non-
progressive patients and met the following criteria: no neoadjuvant or adjuvant treatment,
no prior or concomitant malignancies or a history of inherited von Hippel-Lindau disease,
all patients had thoracoabdominal CT scan staging within two month before surgery to
ensure organ-confined disease. Tumors were considered progressive when local relapse or
distant metastasis developed during follow-up. All patients were followed up postopera-
tively according to the European Urology guidelines. Any progressive patient within two
months of surgery was excluded from the study. Non-progressive patients had a minimum
follow-up of 10 years to ensure their status as appropriate controls. Tissue samples were
obtained under institutional review board-approved protocols (HBC/2016/0333).

The selection of prognosis-related genes and signature development phases was carried
out using The Cancer Genome Atlas (TCGA) dataset. Level 3 RNAseq expression data and the
corresponding clinical data from TCGA ccRCC samples were obtained from the portal (https:
//firebrowse.org (accessed on 8 October 2021) [11] (Supplementary Material Table S1). Survival
data were obtained from portal (https://www.sciencedirect.com/science/article/pii/S0
092867418302290?via%3Dihub#app2 (accessed on 8 October 2021) [12]. After selecting
samples matching our selection criteria and excluding patients without survival status or
missing clinical data, a total of 356 ccRCC samples from TCGA, 68 progressive and 288 non-
progressive, were selected and the gene expression of 20,532 genes was downloaded.

https://firebrowse.org
https://firebrowse.org
https://www.sciencedirect.com/science/article/pii/S0092867418302290?via%3Dihub#app2
https://www.sciencedirect.com/science/article/pii/S0092867418302290?via%3Dihub#app2
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Figure 1. Flowchart of the whole study. Abbreviations: ccRCC, clear-cell renal cell carcinoma; DEGs,
differentially expressed genes.

2.2. Tissue Specimens and RNA Isolation

Formalin-fixed paraffin-embedded (FFPE) tissue blocks were reviewed. The tumor
area was macro-dissected from slides (total thickness 80 µm) and RNA was isolated from
FFPE specimens using the kit RecoverAll™ Total Nucleic Acid Isolation for FFPE (Ambion,
Inc. Austin, TX, USA), following manufacturers’ instructions. RNA was quantified by
spectrophotometric analysis at 260 nm (NanoDrop Technologies, Wilmington, DE, USA)
and RNA integrity was assessed using Agilent 2100 Bioanalyzer System.

2.3. Molecular Profiling by RNA Sequencing

Library preparation and sequencing method: Following rRNA removal (Ribo-Zero®

rRNA Removal Kit, Illumina), RNA from 26 selected ccRCC samples was processed for
library preparation using the TruSeq® RNA Access Library Preparation Kit (Illumina, San
Diego, CA, USA) that allows generating libraries starting from degraded RNA. Briefly,
cDNA strands were synthetized from input RNA in order to be adaptor-tagged, labeled and
amplified. cDNA was then pooled and enriched by a double step of probes hybridization.
The enriched targets were captured by streptavidin labeled beads, cleaned up and amplified
to obtain the final multiplexed libraries. The libraries were then sequenced on an Illumina
HiSeq® 4000 platform (Illumina®).

Read alignment and differential gene expression analysis: Paired-end RNA-Seq FASTQ
files were trimmed from a 3′ end to a fixed length based on the Phred quality score (trimmed
if score fell below 20, with a minimum read length of 25) [13]. Trimmed RNA-seq reads were
aligned to the GRCh38 reference genome with STAR [14] and gene counts were determined
using quantMode GeneCounts. Trimmed reads were then aligned using STAR. We used
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limma-voom transformation and cyclic-loess to normalize the non-biological variability.
An assessment of differential expression between groups was evaluated using moderated
t-statistics [15].

Significant DEGs between progressive and non-progressive patients were identified
based on an adjusted p-value of <0.05 and a fold change (FC) ≥ ±2. The heatmap and
statistical analyses were performed using the R statistical package (v3.3.2). Gene set en-
richment analysis (GSEA) was performed using GSEA2-2.2.0 software for testing specific
gene sets based on Gene Ontology (GO) Biological Processes [16]. The “EnrichmentMap”
plug-in of Cytoscape was used to create an enrichment map of the GSEA results, depicting
the overlap among pathways, with similar biological processes grouped together as subnet-
works [17–19]. A conservative overlap coefficient (0.5) was used to build the enrichment
map. The “AutoAnnotate” plug-in identified clusters in an automated manner, visually
annotating them with a summary label [20]. RNAseq files and clinical information were
deposited in the Gene Expression Omnibus (GEO) with accession number GSE175648.

2.4. Selection and Verification of Prognosis-Related Genes

The DEGs identified in the previous phase were intersected with the TCGA gene
expression dataset and overlapping genes were used for further analysis. The raw counts of
RNA-sequencing data from the TCGA cohort were normalized using log2-based transfor-
mation. This normalized expression was used to build a multigene signature panel. Firstly,
we performed univariate Cox regression analysis (considering 637 genes and 3 clinical
variables) to identify the potential prognosis-related variables. Then, LASSO (Least Abso-
lute Shrinkage and Selection Operator) regression was applied to construct the gene-based
signature for predicting tumor progression in ccRCC using the cvr.glmnet function from
ipflasso R package using ten-fold cross-validation and repeated it ten successive runs
to increase reliability and robustness [21]. In the machine learning procedure, we fixed
the three clinical variables. For all statistical analysis, a p-value < 0.05 was considered
significant. All statistical analyses were performed using SPSS 19.0 (Statistical Product and
Service Solutions; IBM Corporation, Armonk, NY, USA) and R version 3.4.2 (R Foundation
for Statistical Computing, Vienna, Austria).

2.5. Development of a Gene Expression-Based Signature

Based on the expression of each gene discovered and the three clinical variables,
each patient’s risk score (RS) was calculated according to the risk score model. The risk
score model was then used to evaluate the ccRCC prognosis according to the general
form RS = exp Σβixis, where i = 1, k index variables, βi represents the coefficient for each
variable estimated from the Cox regression model, and xis the corresponding value for each
variable in a given patient. RS was subjected to a Receiver Operating Characteristics (ROC)
curve analysis to choose the most appropriate threshold for predicting tumor progression.
Thereafter, Kaplan–Meier curves were generated using the selected cut-off point and
compared according to the log-rank test.

The endpoints were disease progression, defined as any local relapse or distant metas-
tasis demonstrated by radiological imaging, and cancer-specific survival. We investigated
the role of the gene panel alone, clinicopathological variables alone, and a combined model
including gene expression and clinicopathological variables as potential predictors of
disease progression and cancer-specific survival.

2.6. Pathway Enrichment Analysis

Ingenuity Pathway Analysis (IPA) software was used to identify interactions and
networks between the prognostic markers included in our gene signature, possible al-
tered canonical pathways, regulators, diseases and functions based on direct/indirect and
experimental targets.
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3. Results
3.1. Clinical Features of the Cohort

The clinicopathological characteristics of patients divided by study phase are summa-
rized in Table 1. The median (range) follow-up of the cohort was 45.6 (2.1–135.8) months.
During the follow-up period, a total of 68 patients (19.1%) developed tumor progression
and a total of 36 patients died of ccRCC. The median time to tumor progression and
cancer-related death was 19.9 (2.1–125.5) and 48.5 (2.5–151.2) months, respectively.

Table 1. Demographic and pathological characteristics of enrolled patients.

KERRYPNX Discovery Phase Hospital
Clinic Barcelona (n = 26)

Validation Phase TCGA
Cohort (n = 356)

Gender
Male 18 (69.2) 231 (64.9)
Female 8 (30.8) 125 (35.1)

Age at diagnosis (year) 59 (34–81) 60 (29–90)
Pathological tumor size (cm) 5.5 (1.9–17.5) 5.1 (1.0–25)
ISUP

ISUP 1 3 (11.5) 4 (1.1)
ISUP 2 12 (46.2) 173 (48.6)
ISUP 3 6 (23.1) 145 (40.7)
ISUP 4 5 (19.2) 34 (9.6)

Tumor stage
pT1 15 (57.7) 211 (59.3)
pT2 5 (19.2) 41 (11.5)
pT3 5 (19.2) 102 (28.7)
pT4 1 (3.8) 2 (0.6)

N stage
N0/x 24 (92.3) 346 (97.2)
N1 2 (7.7) 10 (2.8)

Necrosis 10 (38.5) 144 (40.4)
SSIGN score *

Low risk 12 (46.2) 143 (40.2)
Intermediate risk 8 (30.7) 141 (39.6)
High risk 6 (23.1) 72 (20.2)

* Stage, Size, Grade and Necrosis (SSIGN) score [22].

3.2. Molecular Profiling of ccRCC Samples

Overall, we identified 1380 transcripts that were differentially expressed (p < 0.05)
between progressive and non-progressive ccRCC samples. Of these, 639 were protein-
coding genes; 217 were downregulated and 422 upregulated in progressive compared with
non-progressive cases. A heat map based on the most DEGs between the two groups of
ccRCC patients is shown in Figure 2A. Gene set enrichment analysis (GSEA) identified
several enriched biological processes, such as the dependent toll-like receptor signaling
pathway, metabolic process and immune response regulating cell surface receptor signaling
pathway (Figure 2B). The full list of GO biological processes is available in Supplementary
Materials (Table S2). To aid interpretation of these enriched pathways, we used enrichment
maps to create a network-based representation of our results. The most prominent cluster of
significantly enriched pathways recapitulated changes in the Catabolism Biological Process
and Toll Signaling Pathway (Figure 2C).
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Figure 2. DEGs in the discovery phase and gene-set enrichment analysis. (A) Heat map dis-
playing the 50 most DEGs between progressive and non-progressive localized ccRCC patients.
Red pixels correspond to upregulated genes, whereas green pixels indicate downregulated genes.
(B) GSEA shows positive correlation of DEGs in biological processes involved in tumor progression.
(C) Enrichment map where nodes represent gene sets (pathways) and edges (blue lines) denote
overlapping genes between 2 pathways. Node size denotes gene set size. Predicted pathways are
grouped as circles, where shades in red correspond to up-regulated gene-sets and shades in light
blue correspond to down-regulated gene-sets. Highly redundant gene sets are grouped together as
clusters. Abbreviations: DEGs, differentially expressed genes. GSEA, gene set enrichment analysis.
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3.3. Identification of Prognosis-Related Genes in an External Data Set

To validate the 639 genes identified as DEGs in the previous study phase, these genes
were intersected with the 20,532 genes from the TCGA cohort (Figure 1). As a result, we
obtained 637 overlapping genes. Of those, univariate Cox regression analysis identified
132 prognosis-related DEGs and three clinicopathological variables (pT stage, tumor size
and ISUP grade).

LASSO regression analysis was used to select the best combination of genes sig-
nificantly associated with disease progression and to build a six-gene signature. The
expressions of five of these genes: CERCAM, HS6ST2, ONECUT2, SOX12 and TMEM132A
were upregulated, while MIA2 expression was downregulated in progressive compared
with non-progressive cases. According to Ingenuity Pathway Analysis (IPA), these six vali-
dated genes were enriched in cancer, organismal injury, abnormalities, cell-to-cell signaling
and interactions, cell-mediated immune response, cellular development, cellular growth
and proliferation, carbohydrate metabolism, and angiogenesis, among others. Significant
IPA canonical pathways are depicted in Supplementary Material Table S3. The network
generated shows that there were no direct interactions between the six prognostic genes
(Figure S1).

Gene expression values for each selected gene were used for Cox regression analysis.
High expression of CERCAM, HS6ST2, ONECUT2, SOX12 and TMEM132A and low ex-
pression of MIA2 related to poor outcomes for progression-free survival (Figure S2) and
cancer-specific survival (Table 2). Moreover, the clinicopathological variables pT stage,
tumor size and ISUP were also found as to be prognostic factors for both survival endpoints.

Table 2. Univariate Cox regression analysis of statistically significant genetic and clinical variables in
the validation set (TCGA cohort).

Progression-Free Survival Cancer-Specific Survival

p 95% CI HR p 95% CI HR

CERCAM <0.001 1.387–3.807 2.298 <0.001 1.036–1.075 1.055
HS6ST2 <0.001 1.164–3.106 1.902 0.034 1.043–2.866 1.729
MIA2 <0.001 0.222–0.632 0.375 <0.001 0.825–0.935 0.878
ONECUT2 0.015 1.111–2.952 1.811 <0.001 2.443–5.942 3.810
SOX12 0.001 1.354–3.748 2.252 <0.001 1.177–1.488 1.323
TMEM132A <0.001 1.526–4.288 2.558 <0.001 1.070–1.156 1.112
pT Stage <0.001 1.775–3.024 2.317 <0.001 2.547–9.940 5.032
Tumor size <0.001 1.154–1.273 1.212 <0.001 1.125–1.271 1.195
ISUP <0.001 1.568–3.158 2.225 0.001 1.628–7.845 3.574

3.4. Development of a Prognostic Signature

The risk score (RS) for disease progression was calculated for each patient according
to a mathematical algorithm containing the six-gene expression values; pT stage, tumor
size and ISUP grade (Supplementary Material Table S4). An ROC analysis of this combined
gene expression–clinicopathological model was performed and allowed the selection of
a threshold of 0.789 (sensitivity 90% and specificity 60%) and 0.799 (sensitivity 94% and
specificity 55%) to categorize patients into high- and low-risk groups for tumor progression
and cancer-related death, respectively. The Kaplan–Meier curve of the combined generated
gene expression-based model was able to discriminate two groups with significantly
different probabilities of tumor progression (hazard ratio (HR) 10.79; 95%, p < 0.001) and
cancer-specific survival (HR 19.27; 95%, p < 0.001) (Figure 3). Notably, the performance
of the combined gene expression-based model (Area under the Curve [AUC] 0.824) was
higher than that of clinicopathological variables alone (AUC 0.766) or gene expression data
alone (AUC 0.753) (Figure S3).
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Figure 3. Kaplan–Meier curves of the combined gene expression-based model for (A) disease
progression-free survival and (B) cancer-specific survival for TCGA cohort.

3.5. Correlation Analysis of the RS with Clinical Characteristics for Disease Progression

Given the clinical significance of the RS in ccRCC, we sought to investigate the potential
correlation between RS and clinical features. The Mann–Whitney test revealed that higher
RSs correlated with a higher risk group within the SSIGN model, higher pT stage and
higher ISUP grade (Figure 4). Furthermore, the Kaplan–Meier curve indicated that our
established RS was capable of identifying ccRCC patients at the highest risk of progression
within the groups stratified by SSIGN, pT stage and ISUP grade (all p < 0.05; Figure S4).

Figure 4. Box plots for the correlation analysis of RS with clinical characteristics for disease progres-
sion. (A) SSIGN risk groups, (B) pT stage and (C) ISUP grade.

4. Discussion

Currently, clinicopathological variables are the most valuable tool for predicting
disease outcomes in ccRCC. However, due to the highly variable behavior of ccRCC, the
prediction of tumor progression is still an important clinical challenge. For decades, surgery



Cancers 2022, 14, 3754 9 of 13

has remained the only treatment approved for localized ccRCC [2]. At present, disease
management of these patients at high risk of progression is changing and new adjuvant
treatments are being considered, opening a door to more personalized medicine in localized
renal carcinoma [23,24].

Molecular profiling helps our understanding of the molecular mechanism underlying
ccRCC and affords great potential to identify new biomarkers of clinical utility [25,26].
However, intratumor heterogeneity and the methodology for sample processing, readout
and expression normalization have been a strong challenge in the development of a robust
gene signature. Next-generation sequencing is the most advanced technique for gene
expression profiling [27]; here, we used this technology to analyze the entire transcriptome
profiling of tissue samples from progressive and non-progressive ccRCC patients. We
then established a gene signature for predicting disease progression based on the gene
expression and clinical data obtained from the TCGA cohort. We improved the gene
selection and accuracy of the model by using LASSO regression analysis; this allowed us to
include all DEGs found in the training set and avoid the preselection and validation of only
a subset of these DEGs [28].

This study demonstrated that our gene expression-based signature was able to identify
localized ccRCC patients with high and low risk of disease progression in the whole cohort
and within the SSIGN risk groups. It properly correlated with clinical parameters and
was proven to enhance the predictive value of the current clinicopathological variables.
Furthermore, it was also predictive of cancer-specific survival. Therefore, our signature
may constitute an important step forward in treatment decisions for ccRCC patients.

Remarkably, the developed gene-based panel demonstrated a greater value for prog-
nostic prediction (HR 10.79, p < 0.001; AUC = 0.824) compared with similar, previously
described models. Dai et al. proposed a four-gene signature with an HR of 3.1, p < 0.001,
whereas Zhao et al. described a 15-gene model with an AUC of 0.737 [29]. Unfortunately,
the different designs and methodologies of several other studies thwart any performance
comparisons with their proposed genetic models. Thus, Brook et al. [9] assessed the
performance of ClearCode34, which classifies ccRCC into ccA and ccB subtypes, ccB pre-
sented tumor relapse more frequently (HR 2.1; p = 0.001), whereas Rini et al. [8] generated a
16-gene signature associated with tumor recurrence with an HR per 25-unit increase in score
of 3.37 (p < 0.001). Likewise, other authors have built molecular signatures aiming to predict
overall survival (OS), thus making the classifiers’ performance non-comparable [30–32].

Biologically, the genes from our panel are unrelated to each other and many of them
have been shown to have either prognostic or biologic relevance in tumor metastasis de-
velopment. According to previous reports, some of our selected genes were consistent
with previously discovered biomarkers; therefore, we have further validated their value for
ccRCC progression. Briefly, CERCAM (cerebral endothelial cell adhesion molecule) is an
adhesion molecule found to be an unfavorable prognostic marker in several tumors [33–35].
Its overexpression promotes cell viability, proliferation and invasion, it is involved in the
PI3K/AKT pathway [36] and is part of an immune prognostic signature for colon and
rectal cancer [35]. HS6ST2 (heparan sulfate D-glucosaminyl 6-O-sulfotransferase-2) is a
glycolysis-related gene and has also been associated with poor disease outcomes in nu-
merous malignancies [10,37]. Interestingly, our group previously validated this gene as an
independent prognosis biomarker in intermediate/high-risk ccRCC and found it to be asso-
ciated with angiogenesis, epithelia–mesenchymal transition (EMT), and indirectly related
to the PD-1, PDL-1 cancer immunotherapy pathway [37–39]. MIA2 (melanoma inhibitory
activity 2) has been found in several malignancies and can act as a tumor suppressor [40]
or as a proto-oncogene depending on the receptor-related signaling differences [41]. We
found MIA2 to be downregulated in progressive ccRCC. This is congruent with the human
protein atlas findings, where high expression was a favorable prognostic factor in renal
cancer [33,42]. ONECUT2 (One cut domain family member 2) is a transcription factor able
to activate oncogenic pathways and lineage-specific genes; hence, it is involved in EMT,
angiogenesis, neural differentiation, proliferation, extracellular matrix organization, cell
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locomotion and migration, among others. Overexpression of ONECUT2 has been described
in several tumors and is related to poor prognosis [43–46]. SOX12 (Sex-determining region
Y-box12) is a transcription factor, its upregulation promotes tumor progression and it is
involved in EMT, apoptosis and cell proliferation [47–49]. It functions as an oncogene-
regulating Wnt/B-catenin signaling to promote the growth of multiple myeloma cells [50].
As for TMEM132A, few studies were found in the literature, so further investigations are
required to establish its role in tumor development.

Our study has multiple strengths. The first advantage of our gene expression-based
signature is that it contains a low number of genes, making its clinical application easier.
Our model did match genes from previous models and some of them exceeded the mere
field of ccRCC, highlighting the prognostic power of the selected genes. The fact that they
are involved in different carcinogenic mechanisms confers an advantage to our signature
compared with others that only target one single pathway [10,51]. The high-throughput
technology used to analyze the samples and the statistical methodology makes our gene
model a reliable tool for predicting disease progression in ccRCC and adds important
prognostic information to the clinicopathological parameters. However, we acknowledge
that this study has several limitations. First, the retrospective design and the relatively
small sample might have influenced our findings. Second, the definition of CSS in the
TCGA cohort should be taken with caution since it was estimated [12]. Finally, despite the
good performance of our six-gene model, further validations in larger cohorts are required.

5. Conclusions

A gene expression-based prognostic signature to predict disease progression in ccRCC
was successfully developed; it could discriminate two groups with different probabilities
of tumor recurrence. In addition, our model was also useful in predicting cancer-specific
survival. The combination of genetic and clinical information enhanced the current risk
stratification of the localized ccRCC patients. Refining prognostic algorithms could help to
improve the disease management and follow-up of ccRCC patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14153754/s1, Figure S1. Network of gene-gene interactions
for the six genes from the gene expression-based signature. Figure S2. Kaplan–Meier curves of each
gene of the model evaluating progression free survival (data from the TCGA cohort). Figure S3.
ROC curves showing the performance of the gene expression-based signature. The figure depicts
that the combined gene expression-based model outperforms clinicopathological variables alone or
gene expression data alone. Figure S4. Kaplan–Meier curves of the combined gene expression-based
model to evaluate progression-free survival within (A) SSIGN risk groups (low, intermediate and
high), (B) pT stage groups (pT1/2 and pT3/4) and (C) ISUP grade groups (ISUP 1/2 and ISUP 3/4)
(data from the TCGA cohort). Table S1. Clinical database of TCGA cohort used in this study. Table S2.
List of GO biological processes from 1380 differentially expressed transcripts between progressive
and non-progressive ccRCC samples. Table S3. Significant IPA canonical pathways from the six genes
of the signature. Table S4. Risk Score for disease progression.
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