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Abstract. We present a study of binary mixtures of Bose–Einstein condensates
confined in a double-well potential within the framework of the mean field
Gross–Pitaevskii (GP) equation. We re-examine both the single component
and the binary mixture cases for such a potential, and we investigate what
are the situations in which a simpler two-mode approach leads to an accurate
description of their dynamics. We also estimate the validity of the most usual
dimensionality reductions used to solve the GP equations. To this end, we
compare both the semi-analytical two-mode approaches and the numerical
simulations of the one-dimensional (1D) reductions with the full 3D numerical
solutions of the GP equation. Our analysis provides a guide to clarify the validity
of several simplified models that describe mean-field nonlinear dynamics, using
an experimentally feasible binary mixture of an F = 1 spinor condensate with
two of its Zeeman manifolds populated, m = ±1.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 13 (2011) 033012
1367-2630/11/033012+40$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:marina@ecm.ub.es
http://www.njp.org/


2

Contents

1. Introduction 2
2. Mean field approach: Gross–Pitaevskii (GP) equations 4
3. Two-mode approaches 5

3.1. Standard two-mode model for the single component case . . . . . . . . . . . . 6
3.2. Improved two-mode model for the single component case . . . . . . . . . . . . 8
3.3. Regimes for the single component case . . . . . . . . . . . . . . . . . . . . . . 9
3.4. Standard two-mode model for the binary mixture . . . . . . . . . . . . . . . . 12
3.5. Improved two-mode model for the binary mixture . . . . . . . . . . . . . . . . 14
3.6. Regimes for binary mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. Effective one-dimensional (1D) mean field approaches 20
4.1. 1D Gross–Pitaevskii-like equations (GP1D) . . . . . . . . . . . . . . . . . . . 20
4.2. Non-polynomial Schrödinger equation (NPSE) . . . . . . . . . . . . . . . . . 21

5. Numerical solutions of the 3D GP equation: a single component 21
5.1. GP3D results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2. Comparison between the different models . . . . . . . . . . . . . . . . . . . . 24

6. Numerical solutions of the 3D GP equations: a binary mixture 28
6.1. GP3D calculations: phase coherence and localization . . . . . . . . . . . . . . 30
6.2. Small oscillations around z0

a,b and δφ0
a,b = 0 . . . . . . . . . . . . . . . . . . . 30

6.3. Small oscillations around z0
a,b, δφ0

a = 0 and δφ0
b = π . . . . . . . . . . . . . . . 33

6.4. Small oscillations around z0
a,b and δφ0

a,b = π . . . . . . . . . . . . . . . . . . . 35
6.5. Effects beyond two-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7. Conclusions 37
Acknowledgments 39
References 39

1. Introduction

The phase coherence of a Bose–Einstein condensate (BEC) is an important and characteristic
property of ultracold bosonic gases that leads to fascinating macroscopic phenomena such as
interference effects or Josephson-type oscillations. Two condensates trapped in a double-well
potential exhibit interference fringes when the barrier is released and the two expanding con-
densates, with a well-defined quantum phase, overlap. Instead, if the barrier is not switched off
and is large enough to ensure a weak link between both condensates on each side of the trap, the
quantum phase difference will drive Josephson-like effects, which consist of fast oscillating tun-
neling, much faster than single particle tunneling, of atoms through the potential barrier [1, 2].

The first evidence of the phase coherence of a BEC was obtained in early interference
experiments [3], where clean interference patterns appeared in the overlapping region of two
expanding condensates. It is only recently that clear evidence of an external bosonic Josephson
junction in a weakly linked scalar BEC6 has been experimentally reported, first by the group of

6 The notation ‘scalar BEC’ is used as the equivalent of ‘single-component BEC’ in this paper.
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M Oberthaler in Heidelberg [4], followed by the group of J Steinhauer [5]. Internal Josephson
dynamics has also been reported experimentally in [6].

In the experiment of [4], two condensates are confined in a double-well potential with an
initial population imbalance between both sides that triggers the Josephson oscillations. The
tunneling of particles leads to a coupled dynamical evolution of the two conjugate variables, the
phase difference between the two weakly linked condensates and their population imbalance.
In spite of the system being very dilute, the inter-species interaction plays a crucial role in
the Josephson dynamics, leading to new regimes beyond the standard Josephson effect, e.g.
macroscopic quantum self-trapping (MQST).

The Gross–Pitaevskii (GP) mean-field theory provides a well-grounded framework for
investigating Josephson dynamics in weakly interacting systems provided that (a) the number
of atoms is large enough so that quantum fluctuations can be neglected and (b) the initial many-
body state is of mean-field type. Josephson oscillations in scalar BECs have been theoretically
studied by using different techniques [7]–[12], [13]–[24]. For a small number of atoms,
N . 100, the exact Josephson dynamics obtained by solving the corresponding many-body
Schrödinger equation has been recently shown to depart from the mean-field GP, as clearly
seen in the evolution of population imbalance or with the appearance of fragmentation [20].
For small N the transition from Josephson to self-trapped dynamics has also been shown,
by analyzing a many-body Bose–Hubbard, to involve the appearance of strongly correlated
quantum states [21].

For larger numbers of atoms, N & 1000, however, the quantum fluctuations involving
strongly correlated quantum states or fragmentation of the condensate are severely diminished.
Thus, the full three-dimensional (3D) time-dependent Gross–Pitaevskii equation (GP3D) shows
reasonable agreement with the experimental data of [4], [14, 15, 25], where N ∼ 1150 and the
system is allowed to evolve for less than a Rabi time.

However, since 3D dynamics need, in general, rather involved calculations, one can
benefit from the fact that the barrier is created along one direction and the tunneling of
particles is mainly 1D to investigate the Josephson dynamics by means of effective 1D GP-
like equations. Among these reduced GP equations, the non-polynomial nonlinear Schrödinger
equation (NPSE) proposed in [26] has shown the best agreement with the experimental results
on scalar condensates [25], whereas another effective 1D Gross–Pitaevskii equation (GP1D)
fails to describe the dynamics for a large number of trapped atoms in the same trapping
conditions as in the Heidelberg experiment [15, 25].

Interactions are important for understanding the different regimes of the tunneling
dynamics. Therefore, multi-component BECs in double-well potentials offer an interesting
extension to study phenomena related to phase coherence. In particular, the Josephson dynamics
will become richer due to the interplay between intra- and inter-species interactions.

Josephson oscillations in binary mixtures confined in double-well potentials have been
addressed in a number of recent papers. The case of two-component BECs with density–density
interactions has been studied within two-mode approaches in [27]–[35]. The papers [31, 34] go
one step further and also consider GP1D simulations. Spin-dependent interactions have been
addressed in [36, 37]. The Josephson dynamics in spinor condensates confined in double wells,
characterized by an exchange of population between different Zeeman components, has also
been investigated in [38, 39]. In [31, 36], the relevance of studying Josephson dynamics in
binary mixtures has been emphasized, as it can give one access to information about the different
scattering lengths present in the system.
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Recently, the equations for the tunneling dynamics in a binary mixture within the two-
mode approximation to the GP equations were derived in [30]. However, the authors have not
compared their two-mode analysis with direct numerical resolutions of the GP equation, and
have also not provided microscopic values to the parameters of the two-mode equations. Their
main result is the description of a symmetry breaking pattern occurring when the inter- and
intra-species interactions differ substantially. In [31], a comparison of the standard two-mode
approach and the coupled GP1D equations for the mixture has been presented for one specific
double-well potential that allows an analytical treatment.

For single component BECs, the range of validity of the different approximations to the
Josephson dynamics has already been studied comparing with GP3D calculations and with the
experimental results. However, no comparison with the full GP3D dynamics has been so far
performed for a binary mixture in a double-well potential.

The aim of this paper is to investigate systematically the tunneling dynamics of a binary
mixture of BECs trapped in a double-well potential, as well as the validity of the different
mean-field approximations. We consider a mixture of two components obtained by populating
two Zeeman states of an F = 1 87Rb condensate confined in the same double-well potential as
in the experiments [4]. This system corresponds to a natural extension of the experimental work
of [4], where only one of the Zeeman components was populated.

We provide a general overview of the different techniques used to investigate Josephson
dynamics within the two-mode model (standard and improved two-mode) and within the GP
framework (1D reductions of the GP equation, GP1D and NPSE). To this end, we solve the full
3D time-dependent GP equation for the mixture as a reference to assess and analyze the validity
of the previous approximations.

This paper is organized as follows. The general framework of the coupled GP equations for
a binary mixture is presented in section 2. In section 3, we derive analytic two-mode models both
for single and two-component systems. First we recall the standard two-mode model (S2M).
Then we derive the equations of the improved two-mode model (I2M) for a binary mixture,
generalizing the work for a single component BEC performed in [14]. We discuss the stability
of the dynamical equations and look for the stationary points for a binary mixture. In section 4,
we analyze the different 1D reductions of the GP3D equations for the mixture: GP1D and
NPSE. In section 5, we revisit the dynamics of a single component condensate in a double-well
potential with the same parameters as in the experiment [4]. The tunneling dynamics in two-
component systems is accurately discussed in section 6. We obtain the dynamics by solving the
coupled GP3D equations for the mixture and show that for certain conditions there exists good
agreement between I2M and GP3D, as well as for NPSE and GP3D. The range of validity of
the two-mode models is explored paying special attention to situations that fall beyond the two-
mode approximation. Finally, we discuss the cases that present characteristic features arising
from the mixture, with no analogue in the tunneling dynamics of a single component BEC. The
conclusions are presented in section 7.

2. Mean field approach: Gross–Pitaevskii (GP) equations

We consider a binary mixture of weakly interacting atoms at zero temperature, confined by
the same double-well potential, V (r). For dilute systems with a sufficiently large number of
particles, the GP equation provides a suitable framework for studying the dynamics. In the
mean field approximation, each condensate is described by the corresponding wave function
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9i(r; t), with i = a, b denoting each of the two components of the binary mixture. To avoid any
misunderstanding, let us remind the reader that we are describing two different kinds of atoms,
a and b, which evolve on a double-well external potential. In most situations, the system will
behave as if there were four weakly linked Bose–Einstein condensates, two per component of
the binary mixture per side of the potential barrier. The mean field description will reflect this
feature by the homogeneous quantum phase of 9i(r; t) at each side of the potential barrier, as
will be discussed in great detail in the following sections.

The dynamical evolution of the two wave functions can be obtained by solving the two
coupled GP equations:

ih̄
∂9a(r; t)

∂t
=

[
−

h̄2

2ma
∇

2 + V (r)+ gaa Na|9a(r; t)|2 + gab Nb|9b(r; t)|2
]
9a(r; t),

ih̄
∂9b(r; t)

∂t
=

[
−

h̄2

2mb
∇

2 + V (r)+ gba Na|9a(r; t)|2 + gbb Nb|9b(r; t)|2
]
9b(r; t).

(1)

For each component, the condensate wave function 9i(r; t) is normalized to 1, mi is the
atomic mass, and gi i = 4π h̄2ai/mi is the effective atomic interaction between atoms of the
same species, with ai being the corresponding s-wave scattering length. The coupling between
both components is governed by the inter-species interaction gab ≡ gba, which depends on the
specific nature of the binary mixture. The total number of atoms in the mixture is N = Na + Nb.

There are many experimental possibilities to study the dynamics of binary mixtures
of BECs. We will restrict our study to one of them, which is experimentally feasible. We
will consider binary mixtures made of F = 1 87Rb atoms populating the m = ±1 Zeeman
sublevels [40]. This implementation greatly simplifies the dynamics as the inter- and intra-
species couplings are very similar in magnitude. Of course this choice limits the phenomena
that can be observed; for example, the interesting symmetry breaking pattern discussed in [30],
which relies on the inter-species coupling being larger than the intra-species one, will not take
place; see section 6.5.

On the other hand, its simplicity allows us to discuss in detail the different approaches
taken in the literature, e.g. two-mode models of the GP equations, 1D reductions, etc. As
occurred in the scalar case, the dynamical features contained in equations (1) can, to a large
extent, be described by a simplified two-mode model for each component. In the next section,
we follow [7], [14] and [30] and derive two-mode expressions for the scalar and binary cases.
The usual assumption of neglecting the overlaps involving the right and left modes gives rise to
the so-called standard two-mode (S2M) equations; while retaining them one also gets a closed
system of equations, the improved two-mode (I2M). Both the S2M and I2M are also derived for
the binary mixture case.

3. Two-mode approaches

The two-mode approximation allows us to study the dynamics of weakly linked Bose–Einstein
condensates without solving the full GP3D and without reducing the dimensionality of the
GP equation [7, 14]. Depending on the specific double-well potential, e.g. on the energy gap
between the first two levels of the single particle Hamiltonian and the next two, it can provide
an excellent description of the full GP solution. The relevant physical quantity is the ratio
between the energy gap between the ground state and first excited state of the double-well
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potential, δE0;1 = E1 − E0,7 and the energy difference of the ground state and the second excited
state, δE0;2 = E2 − E0. Within the limits of applicability of the GP, a small ratio δE0;1/δE0;2

indicates that the second excited state will not play a role in the dynamics and thus the two-
mode approach will be accurate8. The two-mode description characterizes the dynamics of the
scalar condensate in a double-well potential with only two variables: the relative population and
the phase difference between the left and right sides of the potential barrier.

3.1. Standard two-mode model for the single component case

The GP equation for the scalar case corresponds to a particular limit of the GP equations for the
binary mixture, equations (1),

ih̄
∂9(r; t)

∂t
=

[
−

h̄2

2 m
∇

2 + V (r)+ gN |9(r; t)|2
]
9(r; t). (2)

We will make use of the following notation: H0 = −(h̄2/2 m)∇2 + V (r), and Hg[9] =

gN |9(r; t)|2. Let us recall the two-mode approximation for a single component condensate in
a double-well potential. We consider N interacting atoms with atomic mass m, and coupling
constant g, trapped in a symmetric double-well potential V (r). When both sides of the
potential barrier are weakly linked, the total wave function can be approximately written as
a superposition of two time-independent spatial wave functions 8L(R)(r) mostly localized on
the left (right) side of the trap:

9(r; t)=9L(t)8L(r)+9R(t)8R(r). (3)

The left and right modes can be expressed as linear combinations of the ground state (+) and the
first solitonic eigenstate (−) of the double-well potential including the interaction term. They
satisfy (H0 + Hg[8±])8± = µ±8±, and the left/right modes can be written as [14]

8L(r)=
8+(r)+8−(r)

√
2

, 8R(r)=
8+(r)−8−(r)

√
2

. (4)

We observe that in a symmetric double well,8± have a well-defined parity:8±(r)= ±8±(−r),
and therefore 〈8i8 j〉 = δi j with i, j = +, −. Since they are stationary solutions of the GP
equation,8± are real functions, and so are the left and right modes8L(R). The integrated density
in the z-direction, ρ(x, y)=

∫
dz|9(x, y, z)|2, associated with the ground (8+) and first excited

(8−) states is depicted in figure 1 together with the densities associated with the left and right
modes. The plots correspond to the experimental setup of [4].

From the phase coherence properties of a BEC, one can assume that the wave function
on each side of the trap has a well-defined quantum phase φ j(t), which is independent of the
position but changes during the time evolution. We can write

9 j(t)=
√

N j(t) eiφ j (t), (5)

where NL(R)(t) corresponds to the number of atoms on the left (right) side of the trap,
and the total number of atoms is N = NL(t)+ NR(t). The weak link condition is fulfilled if
(µ– −µ+)� (1/2)(µ+ +µ−).

7 Note that this is zero if the barrier is infinitely high.
8 Note that we explicitly stay within the GP applicability; for instance, if the barrier height were too high, the two
condensates would fragment.
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Figure 1. 3D depictions of the density, ρ(x, y)=
∫

dz|9(x, y, z)|2 in (µm)−2,
of (a) the ground state, (b) the first excited state, (c) the left mode and (d) the
right mode obtained by performing an imaginary time GP3D calculation with
the same conditions as in the experimental setup of [4].

As a first step, we consider the so-called standard two-mode approximation (S2M), which
neglects a certain set of overlapping integrals involving mixed products of 8L and 8R. This
approximation yields essentially the correct qualitative results in the scalar condensate when
compared with the GP equation although it may lead to different quantitative predictions
depending on the specific barrier properties [4, 14].

Inserting the two-mode ansatz (3) into the GP equation for a single component condensate
(2) and neglecting terms involving mixed products of 8L and 8R of order larger than 1
yields a system of equations for the two localized modes that can be written in terms of
two dynamical variables: the population imbalance z(t)= [N L(t)− NR(t)]/N and the phase
difference δφ(t)= φR(t)−φL(t) between each side of the barrier [7, 9, 10]

ż(t)= −ωR

√
1 − z2(t) sin δφ(t),

˙δφ(t)= ωR 1E +ωR
UL + UR

4 K
N z(t)+ωR

z(t)√
1 − z2(t)

cos δφ(t),
(6)

where ωR = 2 K/h̄ is the Rabi frequency and

1E =
E0

L − E0
R

2K
+

UL − UR

4K
N ,

E0
L(R) =

∫
dr
[

h̄2

2m
|∇8L(R)(r)|

2 +82
L(R)(r) V (r)

]
,

K = −

∫
dr
[

h̄2

2m
∇8L(r) · ∇8R(r)+8L(r) V (r)8R(r)

]
,

UL(R) = g
∫

dr84
L(R)(r).

(7)
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For a symmetric double well, E0
L = E0

R and UL = UR ≡ U ; therefore 1E = 0. Moreover, the
Rabi frequency only appears as a scale in the problem and thus can be absorbed in the time by
rescaling t → ωRt . Then, together with the definition 3≡ NU/(h̄ωR), we obtain

ż(t)= −
√

1 − z2(t) sin δφ(t),

˙δφ(t)=3z(t)+
z(t)√

1 − z2(t)
cos δφ(t).

(8)

Note that 3> 0 and 3< 0 correspond to repulsive and attractive atom–atom interactions,
respectively. There are different regimes depending on the initial values of the population
imbalance and phase difference, z(0) and δφ(0); see section 3.3.

From the energy functional of the GP equation (2),

E[9(r; t)] =

∫
dr
[

h̄2

2m
| E∇9(r; t)|2 + V (r)|9(r; t)|2 +

g

2
|9(r; t)|4

]
, (9)

and using the two-mode ansatz (3), we can define the conserved energy per particle of the
system as

H ≡
E[9(r; t)] − C

N K
=1E z(t)+

UL + UR

8K
N z2(t)−

√
1 − z2(t) cos δφ(t), (10)

where C is a rescaling constant. If we consider again a symmetric double well, we have

H =
3

2
z2(t)−

√
1 − z2(t) cos δφ(t). (11)

Note that the equations of motion (8) can be written in the Hamiltonian form

ż = −
∂H

∂δφ
, δφ̇ =

∂H

∂z
, (12)

with z and δφ being canonical conjugate variables.

3.2. Improved two-mode model for the single component case

Smerzi and collaborators [11, 12] noted that for a symmetric double well there was no need
to neglect any of the overlapping integrals to obtain a closed set of equations relating z
and δφ. Thus, remaining in the two-mode approximation but retaining all the overlaps it is
straightforward to write down the following set of equations (cf equations (22) of [14]), called
the ‘improved two-mode’ (I2M) equations,

ż(t)= −B
√

1 − z2(t) sin δφ(t)+ C(1 − z2(t)) sin 2δφ(t),

˙δφ(t)= Az(t)+
Bz(t)√

1 − z2(t)
cos δφ(t)− Cz(t) cos 2δφ(t).

(13)

Defining γi j = g
∫

dr82
i (r)8

2
j(r), i, j = +,−, we have A = N (10γ+− − γ++ − γ–)/4, B =

2K + N (γ– − γ++)/2, and C = gN
∫

dr82
L(r)8

2
R(r).

As discussed in detail in [14], the physics arising from the I2M is similar to that present
in the S2M if C is sufficiently small. This is the case for the potential considered in [4].
The overlaps included in B (and not the ones incorporated into C) when using the improved
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Table 1. Stationary points of the system for repulsive interactions, 3> 0, and
their stability.

(z0, δφ0) Stationary Minimum Saddle Maximum

(0, 0) ∀3 ∀3 — —
(0, π ) ∀3 — 3> 1 3< 1
(±
√

1 − 1/32, π ) 3> 1 — — 3> 1

Figure 2. Energy surface, equation (11), for 3= 2.5. The lines on the surface
correspond to possible trajectories of the system.

two-mode approach are responsible for much better quantitative agreement with the GP3D, as
we will see in section 5.

3.3. Regimes for the single component case

3.3.1. Stability analysis. In this section we use the S2M to analyze the stability of the single
component system and focus on the case of repulsive interactions3> 0. Using the Hamiltonian
(11) and the equations of motion (12), the stationary points (z0, δφ0) can be found by solving
the equations

∂H

∂z

∣∣∣∣
z0,δφ0

= 0,
∂H

∂δφ

∣∣∣∣
z0,δφ0

= 0. (14)

To assess the stability of these points, we need to study the Hessian matrix of the system,
which for the possible values of the phase difference, δφ0

= 0 or π , is always diagonal and
its eigenvalues are ∂2

z H |z0,δφ0 and ∂2
δφH |z0,δφ0 . Depending on the sign of these eigenvalues the

stationary points will be maxima, saddle points or minima. The stationary points and their
stability are summarized in table 1.

The evolution of the system can be represented on a z–δφ plane, where the system follows
trajectories with constant energy, H ; see curves in figure 2. Note that oscillations around a
stationary point, closed curves, occur only if the central point is either a maximum or a minimum
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Figure 3. Different regimes for a set of initial conditions, imbalance z(0) in the
y-axis and phase difference δφ(0) in the x-axis. The upper panels correspond
to repulsive interactions and the lower ones to attractive interactions. The values
of |3| are 0.5, 1.5 and 5 for the left, middle and right panels respectively. Grey
regions correspond to Josephson oscillations, blue regions to π -modes (upper
panels) and zero-modes (lower panels), and red regions to running phase modes.

of the energy, but not a saddle point. As we will see in the following sections, these orbits will
give rise to the Josephson oscillations and to the zero- and π-modes [9].

3.3.2. Symmetry between attractive and repulsive interactions. The stability analysis has been
presented only for repulsive interactions, but from the system (8) we can see that if we change
the interactions, 3−→ −3, we recover the same system of equations if δφ−→ π − δφ:

d

dt
z(t)= −

√
1 − z2(t) sin(π − δφ(t)),

d

dt
(π − δφ(t))= −3z(t)−

z(t)√
1 − z2(t)

cos(π − δφ(t)),
(15)

which means that the dynamics of the system and the different regimes are the same for both
interactions, with a phase shift of π . This can be seen in figure 3, which shows the behavior of
the system for a given set of initial conditions. The upper panels are for repulsive interactions
3> 0 and the lower ones for attractive interactions 3< 0. The grey regions correspond to
Josephson oscillations, the blue regions to zero- and π-modes and the red regions to running
phase modes, as will be seen in the following sections.

3.3.3. Josephson dynamics. This regime is characterized by fast oscillating tunneling of
population across the potential barrier. Plotted in a z–δφ map, the system evolves following
closed trajectories around a minimum or a maximum (z0

= 0, δφ0) configuration, with a zero
time average of the population imbalance, 〈z〉t = 0. The stability analysis shows that for
3>−1, which corresponds to repulsive or slightly attractive interactions, the stationary point
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Figure 4. z–δφ representation of different constant energy trajectories for three
values of 3: 0.5 (a), 1.5 (b) and 5 (c). Solid black lines correspond to Josephson
oscillations, dotted blue lines to π-modes and dashed red lines to running phase
modes.

(z0
= 0, δφ0

= 0) is a minimum permitting Josephson oscillations around it. Analogously, for
3< 1, either attractive or slightly repulsive interactions, the stationary point (z0

= 0, δφ0
= π )

becomes a maximum, and therefore also allows for closed orbits around it. For |3|> 1, there are
Josephson oscillations around only one point: (z0

= 0, δφ0
= 0) or (z0

= 0, δφ0
= π ). However,

in the region of weak interaction, |3|< 1, the oscillations around both points are allowed.
In panel (a) of figure 4, 3= 0.5, the black closed orbits around δφ0

= 0 or around
δφ0

= π correspond to Josephson dynamics around these points. In panel (b) however, as
3= 1.5> 1, only the origin can give rise to Josephson oscillations, so the closed orbits around
(z0

= 0, δφ0
= π) disappear.

It is also interesting to study the behavior of the system for small oscillations around
these two stationary points of zero imbalance, smallest orbits in figure 4(a). In this limit, the
system (8) can be linearized giving the dynamical equation: z̈(t)= −z(t)(1 +3 cos δφ0) with
cos δφ0

= ±1. The population imbalance performs sinusoidal oscillations with a frequency
ωJ = ωR

√
1 +3 cos δφ0, independent of the initial conditions. Note that this frequency only

exists when these points are either maxima or minima. The phase difference oscillates with
the same frequency but with a phase shift of π/2 with respect to the imbalance. If the initial
population imbalance increases, the dynamics of the system changes substantially to non-
sinusoidal oscillations, and the frequency becomes dependent on the initial conditions.

3.3.4. Macroscopic quantum self-trapping (MQST). In the case of repulsive interactions, we
have seen that for 3> 1, the stationary point (z0

= 0, δφ0
= π ) becomes a saddle point and

there appear two maxima, (z0
= ±

√
1 − 1/32, δφ0

= π ). Similar behavior is found for attractive
interactions. These stationary points allow for oscillations around them with 〈z〉t 6= 0. In fact,
in this regime, the imbalance has the same sign during the evolution, and therefore one of the
wells is always overpopulated.

This regime is called macroscopic quantum self trapping as the tunneling is strongly
suppressed and the particles remain mostly trapped in one of the wells. This is a phenomenon
arising from the atom–atom interaction, which appears as a nonlinearity in the Gross–Pitaevskii
equation.

The critical condition for the existence of the MQST regime can be found by imposing that
the system remains on one side of the trap [7]. For a given set of initial conditions, z(0) 6= 0 and

New Journal of Physics 13 (2011) 033012 (http://www.njp.org/)

http://www.njp.org/


12

δφ(0), the system will remain trapped if

3> 2

(√
1 − z(0)2 cos[δφ(0)] + 1

z(0)2

)
for3> 1,

3 < 2

(√
1 − z(0)2 cos[δφ(0)] − 1

z(0)2

)
for3<−1,

(16)

where the limits of the interaction parameter are due to the fact that only when |3|> 1 do the
(z0

6= 0, δφ0) stationary points exist.
In this regime however, there are two different kinds of MQST depending on whether the

phase difference evolves bounded, giving the so-called zero- and π -modes [9], or whether it
evolves unbounded, increasing (or decreasing) always in time, giving rise to the running phase
modes.

For values of the interaction parameter of 1< |3|< 2 the only MQST regime that one
can have is the zero mode for attractive interactions and the π -mode for repulsive interactions
(which are plotted in blue dotted lines in panel (b) of figure 4). In these regimes the phase
difference evolves bounded around δφ = 0 and δφ = π , respectively.

On the other hand, for values of |3|> 2 one can have both classes of MQST. In general
however, for a given set of initial conditions, the system will evolve following a running phase
mode (dashed red lines of panel (c) of figure 4), because the values of z0

= ±
√

1 − 1/32, which
allow closed orbits, are very close to 1 (see the small π -modes of panel (c) in blue dotted lines).

In panel (c), one can infer that the broadest closed orbit around (z0
6= 0, δφ0

= π ), for
3> 2, is the one that goes through (z = ±1, δφ = 0). Note that an orbit that crosses the δφ = 0
axis at any other point, z 6= ±1, would correspond to a running phase mode. The case of
attractive interactions can be understood by taking into account the phase shift of π in δφ.
The latter can be used to find the condition to have bounded or running phase difference modes.
For a given set of initial conditions (z(0), δφ(0)) fulfilling the self-trapping condition (16), the
system will evolve in a bounded phase mode only if

|3|<
2 cos δφ(0)√

1 − z2(0)
. (17)

Moreover, in a zero- or a π-mode MQST, we can study small oscillations around the
corresponding minima or maxima, z(t)= z0 + δz and δφ(t)= δφ0 + ˆδφ(t), so the linearized
system (8) becomes

δz̈(t)= −δz(t)

[
1 +3 cos δφ0 1 − 2(z0)2√

1 − (z0)2

]
, (18)

which gives sinusoidal behavior with a frequency

ω = ωR

√
1 +3 cos δφ0

1 − 2(z0)2√
1 − (z0)2

. (19)

3.4. Standard two-mode model for the binary mixture

Let us recall the two-mode approximation for weakly linked binary mixtures [27]–[30]. The
total wave function of each component is written as a superposition of two time-independent
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spatial wave functions localized in each well:

9 j(r; t)=9 j L(t)8 j L(r)+9 j R(t)8 j R(r), (20)

with 〈8iα|8 jβ〉 = δi jδαβ , i, j = a, b and α, β = L , R. For a given component, the condensates
on each side of the trap are weakly linked. Then, as in the scalar case, one can assume that
the wave function in each side of the trap has a well-defined quantum phase φ j,α(t), which is
independent of the position but which changes during the time evolution. Thus,

9 j,α(t)=
√

N j,α(t)e
iφ j,α(t). (21)

N j,L(R)(t) corresponds to the population of the j-component on the left (right) side of the trap,
with N j = N j,L(t)+ N j,R(t). Inserting the two-mode ansatz (20) in the coupled GP equations for
the mixture (1), retaining up to first order crossed terms yields the following system of coupled
equations [7]:

ża(t)= −
2Ka

h̄

√
1 − z2

a(t) sin δφa(t),

˙δφa(t)=1Ea,b +
UaaL + Uaa R

2h̄
Naza(t)+

UabL + UabR

2h̄
Nbzb(t)+

2Ka

h̄

za(t)√
1 − z2

a(t)
cos δφa(t),

żb(t)= −
2Kb

h̄

√
1 − z2

b(t) sin δφb(t),

˙δφb(t)=1Eb,a +
UbbL + UbbR

2h̄
Nbzb(t)+

UbaL + Uba R

2h̄
Naza(t)

2Kb

h̄

zb(t)√
1 − z2

b(t)
cos δφb(t),

(22)

where

1Ei, j =
E0

i L − E0
i R

h̄
+

Ui i L − Ui i R

2h̄
Ni +

Ui j L − Ui j R

2h̄
N j ,

E0
jα =

∫
dr
[

h̄2

2m j
|∇8 jα(r)|2 +82

jα V (r)
]
,

K j = −

∫
dr
[

h̄2

2m j
∇8 j L(r) · ∇8 j R(r)+8 j L(r) V (r)8 j R(r)

]
,

Ui jα = gi j

∫
dr82

iα(r)8
2
jα(r),

(23)

with i, j = a, b andα = L , R. Let us consider a mixture with the same atomic mass for
both components M ≡ ma = mb, which are trapped in the same symmetric double-well
potential. Then, the localized modes are the same for both components but depend on
the site 8L(R) ≡8a,L(R) =8b,L(R). Therefore, E0

aL = E0
bL = E0

a R = E0
bR ≡ E , UaaL = UbbL =

Uaa R = UbbR ≡ U and UabL = UbaL = UabR = Uba R ≡ Ũ , Ka = Kb ≡ K . Defining for each
component the population imbalance and phase difference between both sides of the
barrier,

z j(t)= (N j,L(t)− N j,R(t))/N j , δφ j(t)= φ j,R(t)−φ j,L(t), (24)
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the above equations can be rewritten as

ża(t)= −ωR

√
1 − z2

a(t) sin δφa(t),

˙δφa(t)=
NaU za(t)+ NbŨ zb(t)

h̄
+ωR

za(t)√
1 − z2

a(t)
cos δφa(t),

żb(t)= −ωR

√
1 − z2

b(t) sin δφb(t),

˙δφb(t)=
NbU zb(t)+ NaŨ za(t)

h̄
+ωR

zb(t)√
1 − z2

b(t)
cos δφb(t),

(25)

where ωR = 2 K/h̄ is the Rabi frequency, the same for both species. It is useful to define
3= NU/h̄ωR, 3̃= NŨ/h̄ωR, fa = Na/N , fb = Nb/N and rescale the time as t → ωRt ,

ża(t)= −
√

1 − z2
a(t) sin δφa(t),

˙δφa(t)= fa3za(t)+ fb3̃zb(t)+
za(t)√

1 − z2
a(t)

cos δφa(t),

żb(t)= −

√
1 − z2

b(t) sin δφb(t),

˙δφb(t)= fb3zb(t)+ fa3̃za(t)+
zb(t)√

1 − z2
b(t)

cos δφb(t).

(26)

These equations correspond to two coupled non-rigid pendulums. The stability of these systems
of equations has been analyzed recently in [29].

3.5. Improved two-mode model for the binary mixture

As was noted for the scalar case in [11], it is not mandatory to neglect any of the overlaps
to obtain a closed set of equations relating the population imbalances and phase differences
for a symmetric double-well potential. The complete set of two-mode equations was called the
improved two-mode (I2M) equations.

In principle, if the experimental setup is appropriately chosen such that the mean-field
conditions are valid, the GP equation is expected to show quantitative agreement with the
experimental results. Moreover, if the left and right modes are well localized on each side of
the trap, the S2M equations are expected to provide a good description of the GP equation.
When the two modes are not so well localized, it becomes necessary to consider the I2M to
have quantitative agreement with the GP results. In [14], the authors considered explicitly the
setup of the Heidelberg group and showed that the I2M is necessary in the single component
case in order to provide a quantitative understanding of the experimental data.

Following similar steps as in the previous section and assuming the double-well potential
to be symmetric as in the experiment, the wave functions for the ground state and first excited
state, 8 j±(r), have a well-defined parity. The symmetry properties and the orthonormalization
conditions are capital to derive the coupled equations within the I2M model: 8 j±(r)=

±8 j±(−r), 〈8iα|8 jβ〉 = δi j δαβ , for i, j = a, b and α, β = +,−. The I2M provides an exact
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description of the dynamics in the symmetric double-well potential, with no approximations
beyond the assumption of a two-mode ansatz of the total wave function 9 j(r; t), equation (20).

The resulting system of equations relating the population imbalance and phase difference
for each component within the I2M approximation reads9

ża(t)= −
2Kab

h̄

√
1 − z2

a(t) sin δφa(t),

˙δφa(t)=
1a(t)

h̄
+

2Kab(t)

h̄

za(t)√
1 − z2

a(t)
cos δφa(t),

żb(t)= −
2Kba(t)

h̄

√
1 − z2

b(t) sin δφb(t),

˙δφb(t)=
1b(t)

h̄
+

2Kba(t)

h̄

zb(t)√
1 − z2

b(t)
cos δφb(t)

(27)

with
1a(t)= 2 γ aa

+−
Na za(t)+ 2 γ aabb

+−+−
Nbzb(t),

1b(t)= 2 γ bb
+−

Nbzb(t)+ 2 γ bbaa
+−+−

Naza(t),
(28)

where we have defined

γ
i j
αβ = gi j

∫
dr82

iα(r)8
2
jβ(r),

γ aabb
+−+−

= γ bbaa
+−+−

= gab

∫
dr8a+(r)8a−(r)8b+(r)8b−(r),

(29)

and

2Kab(t)= (µa
−

−µa
+)+ 1

2

[
Na

(
γ aa

++ − γ aa
−−

)
+ Nb

(
γ ab

++ − γ ab
−−

− γ ab
+−

+ γ ab
−+

)
−Na

(
γ aa

++ + γ aa
−−

− 2γ aa
+−

)√
1 − z2

a(t) cos δφa(t)

−Nb

(
γ ab

++ + γ ab
−−

− γ ab
+−

− γ ab
−+

)√
1 − z2

b(t) cos δφb(t)
]
. (30)

µ
j
+ and µ j

− are the chemical potentials of the ground and first excited states of the j component,
which can be calculated from the time-independent GP equation for 8 j±, respectively.
Analogously, one can define 2Kba by exchanging the subscripts a and b in the previous
expression.

Note that we have kept the full 3D dependence of the wave functions 8 j±(r), instead of
averaging the transverse spatial dependence as in [14, 30]. Thus, the coupling parameters gi j in
equations (29) are the 3D ones and are not renormalized.

The equations for the I2M are essentially similar to the S2M. The main difference is that
the tunneling term, Kab(t), is time dependent and contains effects due to the interactions. As
expected, if the localization of the modes is increased, i.e. by increasing the barrier height,
Kab(t) approaches the constant value, 2Kab → µa

−
−µa

+, which equals 2K of equation (23).
The coupled equations obtained in the I2M model reduce to well-known dynamical equations

9 Our system of equations differs slightly from the previously derived ones, cf the appendix of [30]. We believe
that their system has some minor errors, which do not affect their discussion, which is based on the S2M equations.
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in two limiting cases:

(i) Setting to zero the overlapping integrals that involve mixed products of left and right
modes of order larger than 1, the I2M equations reduce to the S2M model for the mixture,
equations (25).

(ii) Assuming a non-interacting mixture, the inter-species interaction is gab = 0, and the I2M
equations for the mixture reduce to two non-coupled system of equations, which are the
dynamical equations of the I2M for a single component, section 3.2.

As discussed in the introduction, we are interested in the particular case of a binary mixture
made of atoms populating two different hyperfine states. Then, both components have the same
mass M , and are trapped in the same symmetric double-well potential. We initially restrict
ourselves to the case in which the inter-species interaction is also almost equal to the intra-
species one, g ≡ gaa = gbb ∼ gab. This is the situation for F = 1, m = ±1 of 87Rb. This case
allows straightforward comparisons between the results of the I2M and the ones obtained by
solving the NPSE or GP1D for a mixture explained in section 4.

The ground and first excited states in a symmetric double-well potential are the same for
both components. Moreover, since g = gab the overlap integrals (29) reduce to

γ aa
++ = γ bb

++ = γ ab
++ ≡ γ++,

γ aa
−−

= γ bb
−−

= γ ab
−−

≡ γ−−, (31)

γ aa
+−

= γ bb
+−

= γ ab
+−

= γ ab
−+ = γ aabb

+−+−
≡ γ+−,

and the chemical potentials µa
α = µb

α ≡ µα with α = +,−. This yields the following relations:
Kab = Kba and 1a =1b. The I2M system reduces to

ża(t)= −
2Kab(t)

h̄

√
1 − z2

a(t) sin δφa(t),

˙δφa(t)=
2(Naza(t)+ Nbzb(t))γ+−

h̄
+

2Kab(t)

h̄

za(t)√
1 − z2

a(t)
cos δφa(t),

żb(t)= −
2Kab(t)

h̄

√
1 − z2

b(t) sin δφb,

˙δφb(t)=
2(Naza(t)+ Nbzb(t))γ+−

h̄
+

2Kab(t)

h̄

zb(t)√
1 − z2

b(t)
cos δφb(t).

(32)

In this case both components obey the same system of coupled differential equations. Then, if
the initial conditions are the same for both za(0)= zb(0) and δφa(0)= δφb(0), they will evolve
with the same imbalance and phase, and no mixture effects will be observed.

3.6. Regimes for binary mixtures

We proceed now to analyze the stability of the system of equations (26), cf the appendix of [27].
As in the single component case, and in order to get analytical results that allow for a physical
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insight, we perform the study in the framework of the S2M approximation. First we note that a
stationary point, defined by the equations żi = 0 and ˙δφi = 0, necessarily fulfills

sin δφa = 0,⇒ δφ0
a = 0, π,

sin δφb = 0,⇒ δφ0
b = 0, π,

(33)

and the following system of equations:

z0
a = −z0

b

3
3̃

+
1

3̃ fb

√
1 − (z0

b)
2 cos δφ0

b

 ,
z0

b = −z0
a

(
3

3̃
+

1

3̃ fa

√
1 − (z0

a)
2 cos δφ0

a

)
.

(34)

Therefore there are four different cases: (δφ0
a = 0, δφ0

b = 0), (δφ0
a = 0, δφ0

b = π), (δφ0
a = π,

δφ0
b = 0), (δφ0

a = π, δφ0
b = π), noting that in all of them there is an obvious stationary point,

z0
a = z0

b = 0. These stationary points will be referred to as ‘trivial stationary points’. We need to
find the conditions for non-trivial solutions in each case.

The stability of the system is analyzed by considering small variations around the stationary
points for each of the four situations. Defining the displacements ηi ,

za(t)= z0
a + ηa(t),

zb(t)= z0
b + ηb(t),

(35)

the following system of equations for the η’s can be derived from equations (26)(
η̈a

η̈b

)
= −�2

(
ηa

ηb

)
, (36)

where

�2
= ω2

R

(
1 + ( fa3z0

a + fb3̃z0
b)

2 0

0 1 + ( fa3̃z0
a + fb3z0

b)
2

)

+ω2
R

 fa3
√

1 − (z0
a)

2 cos δφ0
a fa3̃

√
1 − (z0

a)
2 cos δφ0

a

fb3̃

√
1 − (z0

b)
2 cos δφ0

b fb3

√
1 − (z0

b)
2 cos δφ0

b

 . (37)

In table 2 we give the explicit values of the eigenfrequencies of � for the trivial stationary
points, z0

i = 0. These are obtained for 3> 0 and 3̃ > 0. Approximate simpler expressions for
these eigenfrequencies can be derived when 3̃∼3. Defining 3̃=3(1 +β) and retaining up to
terms of order β, one obtains the frequencies listed in table 3.

3.6.1. Stationary points with (δφ0
a = 0, δφ0

b = 0). In this case, the condition for the existence
of non-trivial solutions to equations (34) depends on the slope at the origin of the two curves
(34) [27]. The condition(

3

3̃
+

1

fb3̃

)(
3

3̃
+

1

fa3̃

)
< 1 (38)
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Table 2. Square of the frequencies of the eigenmodes of the S2M system,
equations (26), linearized around the trivial stationary points, z0

i = 0 for the four
different δφ0

i combinations.

(δφ0
a , δφ

0
b ) ω2

1/ω
2
R ω2

2/ω
2
R

(0, 0) 1 +
3

2

(
1 +

√
( fa− fb)2 + 4 fa fb(3̃/3)2

)
1 +

3

2

(
1 −

√
( fa− fb)2 + 4 fa fb(3̃/3)2

)
(π, π) 1 −

3

2

(
1 −

√
( fa− fb)2 + 4 fa fb(3̃/3)2

)
1 −

3

2

(
1 +

√
( fa− fb)2 + 4 fa fb(3̃/3)2

)
(π , 0) 1 +

3

2

(
( fb− fa)+

√
1 − 4 fa fb(3̃/3)2

)
1 +

3

2

(
( fb− fa)−

√
1 − 4 fa fb(3̃/3)2

)
(0, π ) 1 +

3

2

(
( fa− v fb)+

√
1 − 4 fa fb(3̃/3)2

)
1 +

3

2

(
( fa− fb)−

√
1 − 4 fa fb(3̃/3)2

)

Table 3. The same as table 2 but retaining up to the first order in β, where
3̃=3(1 +β). We assume fa > fb.

(δφa, δφb) ω2
1/ω

2
R ω2

2/ω
2
R

(0, 0) 1 +3(1 + 2β fa fb) 1 − 23β fa fb

(π, π) 1 + 23β fa fb 1 −3(1 + 2β fa fb)

(π, 0) 1 −
2β fa fb3

fa − fb
1 + ( fb − fa)3+

2β fa fb3

fa − fb

(0, π) 1 + ( fa − fb)3−
2β fa fb3

fa − fb
1 +

2β fa fb3

fa − fb

guarantees the existence of two additional solutions in addition to the trivial one. However,
in the particular case 3̃∼3> 0, the condition (38) cannot be fulfilled and therefore the only
stationary point is the trivial one, z0

a = z0
b = 0.

In this case, the insertion of the stationary point, z0
a = z0

b = 0 and δφ0
a = δφ0

b = 0, into
equation (37) yields

�2
= ω2

R

(
1 0

0 1

)
+ω2

R

(
fa3 fa3̃

fb3̃ fb3

)
, (39)

which has two eigenvalues, listed in table 2.
In a very polarized mixture, fa ∼ 1, fb ∼ 0, the population imbalance of the most populated

component decouples from the less populated one and oscillates with the Josephson frequency
wJ = ω1 (see equation (26)). The less populated component is driven by the other component
and follows its dynamics, thus giving rise to ‘anti-Josephson’ oscillations. The smaller
frequency oscillation observed in the population imbalance of the less populated component
is ω2 (figure 13(a)), which is very similar to ωR [36].

Also interesting is the non-polarized mixture, fa = fb = 1/2; then (assuming 3̃∼3,
which is the case for 87Rb),

z̈a(t)= −3/2(za(t)+ zb(t))− za(t),

z̈b(t)= −3/2(za(t)+ zb(t))− zb(t),
(40)
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and defining 1z(t)= za(t)+ zb(t), δz(t)= za(t)− zb(t), we have

1̈z(t)= −(3+ 1)1z(t), ¨δz(t)= −δz(t).

Therefore, 1z behaves as a single component, oscillating with the usual Josephson frequency,
wJ = ωR

√
1 +3, while δz oscillates with the Rabi frequency, as would a single component in

the absence of atom–atom interactions. This mode can be further enhanced by imposing that
za(0)= −zb(0), thus forcing both imbalances to oscillate with the same frequency.

We have proposed in [36] to use these two configurations to extract the frequencies
governing the dynamics of the system in order to obtain the microscopic atom–atom interaction.
The idea was to profit from the fact that the difference between the inter- and intra-species
interactions is small for the case of 87Rb, 3̃=3(1 +β), so we can use the expressions listed
in table 3, ω2

1 = ω2
R(1 +3(1 + 2β fa fb)) and ω2

2 = ω2
R(1 − 23β fa fb). Note that in the anti-

Josephson case the oscillation with larger period is ω2
2 = ω2

R(1 +O(β fb)) and the shorter is
ω2

1 = ω2
R(1 +3+O(β fb)), with β � 1 and fb � 1, allowing us to extract both the Rabi and

Josephson frequencies with good precision. The second configuration only has one frequency,
which is ω2

1 = ω2
R(1 +3(1 +β/2)), which allows us to isolate the value of β.

3.6.2. Stationary points with (δφ0
a = π, δφ0

b = 0). In this case, the condition for the existence
of three stationary points is(

3

3̃
−

1

fa3̃

)(
3

3̃
+

1

fb3̃

)
> 1. (41)

For the case considered here, 3̃∼3 and, in most applications,3> 1. Therefore, an appropriate
choice of fa can ensure the existence of three stable points.

The stability of the trivial solution is checked by studying

�2
= ω2

R

(
1 0
0 1

)
+ω2

R

(
fa3 fa3̃

− fb3̃ − fb3

)
, (42)

whose eigenvalues are listed in table 2. The stability of the other two solutions is easy to study
with the same tools. Simple analytic expressions are only attainable for the case 3̃=3. Then
we have

�2
= ω2

R

(
1 +3( faz0

a + fbz0
b)

2 0

0 1 +3( faz0
a + fbz0

b)
2

)

+ω2
R3

 fa

√
1 − (z0

a)
2 fa

√
1 − (z0

a)
2

− fb

√
1 − (z0

b)
2 − fb

√
1 − (z0

b)
2

, (43)

whose eigenvalues are

ω2
1 = ω2

R(3
2( faz0

a + fbz0
b)

2), ω2
2 = ω2

R(1 +32( faz0
a + fbz0

b)
2). (44)

3.6.3. Stationary points with (δφ0
a = π, δφ0

b = π ). The condition for the existence of three
stationary points is in this case [27](

3

3̃
−

1

fb3̃

)(
3

3̃
−

1

fa3̃

)
< 1. (45)
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The eigenvalues corresponding to small oscillations around the trivial point are listed in table 2.
Its dynamical stability depends on the specific values of fi , 3̃, 3 and ωR. For the case 3̃=3,
it is stable provided that ωR >3.

The eigenfrequencies for the non-trivial solution are the same as for the case (δφa =

0, δφb = π ). For the simplest case, 3̃=3, they are

ω2
1 = ω2

R

(
32
(

faz0
a + fbz0

b

)2
)
, ω2

2 = ω2
R

(
1 +32

(
faz0

a + fbz0
b

)2
)
. (46)

4. Effective one-dimensional (1D) mean field approaches

In the experimental realization [4] the condensate is confined by an asymmetric harmonic trap,
characterized by ωx , ωy and ωz, with a barrier on the x-direction. Thus, in a first approximation,
one can assume that the dynamics takes place mostly along the x-axis and derive descriptions
of the system where the other two dimensions have been integrated out reducing the GP3D
equation to an effective 1D equation. There are different procedures for deriving effective 1D
GP-like equations starting from the 3D one. Their generalization to binary mixtures, with two
coupled GP equations, or spinor BEC, with three or more coupled GP equations, is presented
below together with the single component case.

4.1. 1D Gross–Pitaevskii-like equations (GP1D)

Assuming that most of the dynamics occurs in the direction that contains the barrier, the
x-direction in our case, one can approximate the wave function of the system by

9(x, y, z; t)∼91D(x; t) ϕg.s.(y) ϕg.s.(z), (47)

where ϕg.s. are the corresponding ground state wave functions for the trapping potential in the
y- or z-direction in the absence of interactions (in the case of harmonic traps they are Gaussian).
In this way, it can be shown [41] that 91D(x; t) fulfills a GP1D equation,

ih̄
∂91D(x; t)

∂t
=

[
−

h̄2

2 m
∂2

x + V (x)+ g1D N |91D(x; t)|2
]
91D(x; t), (48)

where the corresponding 1D coupling constant is obtained rescaling the 3D one, g1D =

g/(2πa2
⊥
), with a⊥ being the transverse oscillator length, a⊥ =

√
h̄/mω⊥, with ω⊥ =

√
ωzωy .

The extension to binary mixtures (and also to spinor condensates [42]) may be written
down readily,

ih̄
∂91D

a (x; t)

∂t
=

−
h̄2

2 m
∂2

x + V (x)+
∑
j=a,b

ga j;1D N j |9
1D
j (x; t)|2

91D
a (x; t),

ih̄
∂91D

b (x; t)

∂t
=

−
h̄2

2 m
∂2

x + V (x)+
∑
j=a,b

gb j;1D N j |9
1D
j (x; t)|2

91D
b (x; t),

(49)

where the rescaled couplings are gi j;1D = gi j/(2πa2
⊥
).
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4.2. Non-polynomial Schrödinger equation (NPSE)

A more sophisticated reduction that includes to some extent the transverse motion of the
elongated BEC in the corresponding potential is the so-called NPSE, proposed for a scalar BEC
in [26]. The NPSE recovers the previously discussed 1D reduction in the weakly interacting
limit, but it has been shown to provide the best agreement with the experimental results on
Josephson oscillations between two coupled BECs [25]. The NPSE for the scalar case reads

ih̄
∂9(x; t)

∂t
=

[
−

h̄2

2 m
∂2

x + V (x)+ g1D
N |9(x; t)|2√

1 + 2as N |9(x; t)|2

+
h̄ω⊥

2

(
1√

1 + 2as N |9(x; t)|2
+
√

1 + 2as N |9(x; t)|2

)]
9(x; t). (50)

The generalization of the NPSE for two components in a binary mixture of BECs has been
addressed in [43]. The system of equations, which become rather involved, can be greatly
simplified in the case when all the interactions, both intra- and inter-species, are equal:

ih̄
∂9 j(x; t)

∂t
=

[
−

h̄2

2m j
∂2

x + V + g1D
ρ(x; t)

√
1 + 2asρ(x; t)

+
h̄ω⊥

2

(
1

√
1 + 2asρ(x; t)

+
√

1 + 2asρ(x; t)

)]
9 j(x; t) (51)

where ρ(x; t)= Na|9a(x; t)|2 + Nb|9b(x; t)|2, j = a, b and, as before, g1D = g/(2πa2
⊥
),

g ≡ gaa = gbb = gab = gba and
∫

dx |9 j(x)|2 = 1.

5. Numerical solutions of the 3D GP equation: a single component

Before analyzing the binary mixtures in the next section, we will present here numerical results
for the single component to illustrate the main differences between the various two-mode
models and 1D reductions.

As discussed in the introduction, we consider the same setup and the same trap parameters
as in the experiments of the Heidelberg group [4]. There, a condensate of 87Rb with 1150 atoms
is confined to a fairly small region of ∼5µm through the potential

V (r)=
1
2 M(ω2

x x2 +ω2
y y2 +ω2

z z2)+ V0 cos2(πx/q0) (52)

with ωx = 2π × 78 Hz, ωy = 2π × 66 Hz, ωz = 2π × 90 Hz, q0 = 5.2µm and V0 = 413 h Hz.
In figure 5, we show the potential in the x-direction together with the first four energy levels of
the single particle Hamiltonian and the corresponding modes. The energy levels of the single
particle Hamiltonian show a clear separation between the two first eigenvalues, ground and
first excited states, which are almost degenerate, and the next two. As stated in section 3, the
existence of this gap supports the validity of the two-mode approach.

The atom–atom interaction strength is, in this case, g = 4π h̄2a/M . The scattering length
for 87Rb is a = 100.87aB ; therefore g/h̄ = 0.04878 kHzµm3. Noting that the number of atoms
is known up to 10% in the experiment, the relevant product, gN/h̄, is in the range [51.22, 60.98]
kHzµm3. The paper [14] uses a value of 58.8 kHzµm3 to simulate the experimental setup. This
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Figure 5. (Left) Depiction of the potential in the x-direction in units of h̄. The
horizontal lines correspond to the single particle eigenenergies of the single
particle Hamiltonian. (Right) The first four single particle modes corresponding
to the energies depicted on the left.

large value of gN corresponds to a situation similar to panel (c) of figure 4, where the possible
dynamical situations are: Josephson oscillations, i.e. closed orbits around the stationary point
(z0, δφ0)= (0, 0), and self-trapping regimes, usually running phase modes.

In the experiments, the system is prepared in a slightly uneven double-well potential,
which produces an initial population imbalance between both sides of the barrier. At t = 0
the asymmetry is removed and the BEC is left to evolve in a symmetric double-well potential.
In our numerical simulations, the initial states with either δφ(0)= 0 or π are constructed in a
different way from in the experiment. We build initial states that are by construction two mode
like. First, we obtain numerically the ground and first excited states of the condensate in the
double-well potential by solving the time-independent GP equation (both for the 1D reductions
and the 3D case), then use those to build the left and right modes, equation (4), and finally
construct initial states of any given initial imbalance, z0: 9z0(r; t = 0)= αφL(r)+ elıπβφR(r),
with α2 +β2

= 1, α2
−β2

= z0 and l = 0, 1. The ground and first excited states are obtained by
a standard imaginary time evolution of the equation from an initial state with the proper parity.
The density profiles of the ground, first excited and left and right modes computed numerically
are plotted in figure 1. As can be seen, the left/right modes are indeed well localized at each side
of the barrier.

From these ground and first excited states we compute all the parameters entering the S2M
and I2M descriptions presented in sections 3.1 and 3.2. The actual values of the parameters are
K/h̄ = 0.00799 kHz and NU/h̄ = 1.19841 kHz for the S2M and A/h̄ = 1.19372 kHz, B/h̄ =

0.03683 kHz and C/h̄ = 0.0023590 kHz for the I2M10. The small value of C implies that the
main difference between the I2M and S2M is not due to the term proportional to C in equation
(13), which would imply qualitative differences between both, but mostly to a change in the
tunneling rate due to the extra overlaps included in computing B in I2M.

The values of the overlaps are Nγ++/h̄ = 0.581 746 kHz, Nγ+−/h̄ = 0.598 03 kHz and
Nγ−−/h̄ = 0.623 769 kHz. These numbers are used to generate the comparisons to S2M or I2M
in the following figures.

10 These values compare reasonably well with the ones provided on page 33 of Albiez’s PhD thesis [25]; there they
are given in units of ωx : A/ωx = 2.43572, B/ωx = 0.0751497, C/ωx = 0.0048 and K/ωx = 0.0163.
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In the full GP3D simulations, we define the number of atoms in the left well as
NL(t)=

∫ 0
−∞

dx
∫

∞

−∞
dy
∫

∞

−∞
dz |9(r; t)|2. The number of atoms in the right well is computed

as NR(t)= N − NL(t). From these values, the population imbalance reads z(t)= (NL(t)−
NR(t))/N . Analogous definitions are used in the GP1D and NPSE equations.

The phase difference between both sides of the potential barrier is computed in the
following way. The phase at each point at a certain time, φ(x, y, z; t), is

9(x, y, z; t)=
√
ρ(x, y, z; t) exp(ı φ(x, y, z; t)), (53)

where the local density, ρ(x, y, z; t)= |9(x, y, z; t)|2 .
Averaged densities are defined as, i.e. integrating over the z-component,

ρ(x, y; t)=

∫
∞

−∞

dz ρ(x, y, z; t). (54)

To visualize the phase coherence along some of the planes, we define an average phase,
e.g. integrating the z-component,

φ(x, y; t)=
1

ρ(x, y; t)

∫
∞

−∞

dz ρ(x, y, z; t) φ(x, y, z; t). (55)

The phase on the left, φL(t), is defined as

φL(t)=
1

NL(t)

∫ 0

−∞

dx
∫

∞

−∞

dy
∫

∞

−∞

dz ρ(x, y, z; t) φ(x, y, z; t). (56)

The phase on the right is defined accordingly.
The way to implement the above averages over the phase has been done in the

following way:

φ(x, y; t)= arctan

∫
∞

−∞
dz Im[9(x, y, z; t)] ρ(x, y, z; t)∫

∞

−∞
dz Re[9(x, y, z; t)] ρ(x, y, z; t)

,

φL(t)= arctan

∫ 0
−∞

dx
∫

∞

−∞
dy
∫

∞

−∞
dz Im[9(x, y, z; t)] ρ(x, y, z; t)∫ 0

−∞
dx
∫

∞

−∞
dy
∫

∞

−∞
dz Re[9(x, y, z; t)] ρ(x, y, z; t)

.

(57)

5.1. GP3D results

In figures 6 and 7, we present full GP3D simulations for a Josephson regime and a running
phase mode self-trapped case, respectively. These figures clearly show two relevant aspects of
the problem. Firstly, it is clear that during the full time evolution, which covers up to t = 80 ms
in the figure, the system remains mostly localized on the two minima of the potential. Therefore,
the density has a two-peaked structure over the considered time period. Secondly, the atoms in
each of the two wells remain to a large extent in a coherent phase at all times. This can be seen
from the uniform color, constant phase, on each side of the barrier in the right panels of the
figures. These two characteristics of the time evolution of the 3DGP equation support the use of
two-mode approximations.

The modulation of the density profiles on the transverse direction is seen to be small, with
a mostly constant quantum phase in the region populated by the atoms. This indicates that the
transverse dynamics can be integrated out to a large extent, as is done in the 1D reductions
discussed in section 4.
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Figure 6. The two smaller plots above depict in solid black line the GP3D
time evolution of z (left) and δφ (right), computed as explained in the text
compared with the I2M predictions in dashed red. Then we show 3D pictures
complemented with contour plots, left, of ρ(x, y; t), ρ(x, z; t) and ρ(y, z; t)
at three different times, 0.5 ms (top), 30 ms (middle) and 75 ms (bottom),
respectively. On the right of each plot, we present a contour plot of the averaged
quantum phase φ(x, y; t), φ(x, z; t) and φ(y, z; t) at the same times. They
correspond to the first run presented in figure 8(a), z(0)= 0.1 and δφ(0)= 0.

The Josephson dynamics, figure 6, is clearly seen in the small upper panels depicting z(t)
and δφ(t). They both oscillate with the same period but with a phase shift of π/2.

A self-trapped case is shown in figure 7. The atoms remain trapped mostly on the left side
of the trap (they start with an imbalance of z(0)= 0.7) and remain trapped in this potential well
during the considered time evolution. The coherence of the phase on each side of the potential
barrier can also be appreciated in the figure, although here we should note that the right side of
the barrier, being less populated, is concentrated on a smaller (x, y) domain.

5.2. Comparison between the different models

The GP3D cases described above indicate that within the configuration considered here the two
commonly employed two-mode models and 1D equations are expected to be reasonable. In this
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Figure 7. Similar to figure 6 but for a self-trapped case, z(0)= 0.7, δφ(0)= 0,
for three different times, 10, 30 and 75 ms and showing the averages over z. We
plot ρ(x, y; t) and contour plots. In the right panels, we present contour plots of
the averaged quantum phase, φ(x, y; t). The phase coherence of the condensates
on each side of the barrier is clearly seen.

section, we present comparisons between the different approaches described in the previous
sections: 1D reductions (NPSE and GP1D) and two-mode models, S2M and I2M.

5.2.1. GP3D versus 1D reductions: GP1D and NPSE. In figure 8, we present the time
evolution of the population imbalance for the different dynamical regimes described in
section 3.3, i.e. Josephson and self-trapping. We compare the full GP3D (solid red) with the
two previously described 1D reductions, GP1D (dotted black) and NPSE (dashed blue).

First, we note that the dynamics emerging from the GP3D is indeed similar to what was
predicted by analyzing the S2M equations in section 3.3. Qualitatively, the GP3D simulations
follow the patterns predicted by the two-mode approximations. Lets us briefly describe each of
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Figure 8. Dynamical evolution of the population imbalance, z, between both
sides of the barrier for a single component condensate. Solid (red) line
corresponds to the GP3D, the dashed (blue) line to the NPSE and the dotted
(black) stands for the GP1D. Panel (a) contains δφ(0)= 0 cases, with z(0)=

0.1, 0.35 and 0.6. Panel (b) corresponds to the critical value, z(0)= 0.39 and
δφ(0)= 0. Panel (c) depicts two self-trapped cases with an initial δφ(0)= π ,
with z(0)= 0.2 and 0.4.

the results:

(a) The first panel, (a), contains simulations performed with zero initial phase difference, i.e.
Josephson oscillations and self-trapping cases. For the Josephson cases, z(0)= 0.1, 0.35,
the imbalance oscillates with a frequency that is mostly independent of the initial imbalance
(for small imbalances). With z(0)= 0.1 the oscillations are almost sinusoidal, while as we
increase the initial imbalance their shape becomes more involved while remaining periodic.
In the self-trapped case, z(0)= 0.6, the atoms remain mostly on the initial side of the trap
and there are short and small periodic oscillations as predicted by the two-mode models.
At longer times, the imbalance is seen to decrease smoothly, implying a departure from the
predicted two-mode dynamics [44].

The two 1D reductions give qualitatively similar results in most situations to GP3D,
but not quantitatively in all cases. The NPSE is seen to reproduce very well the GP3D in all
the runs up to times near ∼40 ms. Above those times, the period of oscillation predicted by
the NPSE is slightly shorter than the GP3D one. The GP1D, on the contrary, only captures
the amplitude of oscillation in the Josephson dynamics, failing in all cases to give the same
period as the GP3D or the NPSE. Moreover, the GP1D departs notably from two-mode for
the self-trapped case. It does predict self-trapping, but more than two modes contribute to
the time evolution.

(b) Panel (b) is computed very close to the critical value of the full GP3D, z(0)= 0.39 for
δφ(0)= 0. The GP1D and NPSE predict a critical initial imbalance close to the GP3D
value.

(c) Panel (c) contains two self-trapped cases obtained with an initial δφ(0)= π and z(0)= 0.2
and 0.4. Note that for δφ(0)= π the critical imbalance is smaller than for δφ(0)= 0. The
discussion is similar to the Josephson case, i.e. the NPSE captures most of the dynamical
features of the GP3D, while the GP1D only provides a qualitative understanding of the
problem.
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Figure 9. Snapshots of the axial density profiles, ρ(x; t) (µm)−1 at t = 50 ms,
calculated by means of the GP3D evolution (solid red line), the NPSE (dashed
blue line) and the GP1D (dotted black line). The initial conditions correspond to
the ones used to generate figure 8.

To further explore the quality of the 1D reductions, we present in figure 9 the
density profiles in the x-direction after integrating the y- and z-components, ρ(x; t)=∫

∞

−∞
dy

∫
∞

−∞
dz |9(x, y, z; t)|2 at t = 50 ms. The agreement between the NPSE and the GP3D

is very good in most situations, except for the critical case, as expected. In all cases the
density profiles show a clear bi-modal structure. The GP1D, as could be inferred from the
previous results, does not predict the correct density profiles and, as seen in the self-trapped
case, (z(0)= 0.6, δφ(0)= 0), does show the contribution of higher modes. The critical initial
imbalance starting with no phase difference that we find numerically by means of the GP3D is
the same as that found in [14], zc = 0.39, and differs from the one reported in [4], zc = 0.5.

The agreement of the NPSE with GP3D results justifies the use of NPSE in [4] to analyze
their experiment.

5.2.2. GP3D versus two-mode approximations, S2M and I2M. As explained above, the use of
two-mode models is suggested by the GP3D results, see figures 6 and 7. What is, a priori,
not clear is whether the extra assumption used in deriving the S2M (which are the most
commonly employed equations) will work for each specific double-well potential. As discussed
in section 3.2, the conditions of the Heidelberg experiment are such that the S2M predictions are
not good. However, this does not mean that the dynamics is not two-mode but that the overlaps
involving high powers of the two localized modes are not negligible as assumed in deriving the
S2M equations.

In figure 10, we compare GP3D (solid red), the S2M (dotted black) and the I2M (dashed
blue) results using the parameters calculated microscopically from the ground and first excited
states of the GP3D. Both two-mode schemes predict the same phenomenology and thus
qualitatively capture the dynamics of the system. At the quantitative level, however, the I2M
is clearly better. In the run with z(0)= 0.1 and δφ(0)= 0 (panel (a)), both the S2M and I2M
predict similar behavior with the correct amplitude and oscillation period close to the GP3D
one. As the imbalance is increased, e.g. ([4] considers z(0)= 0.28), the S2M fails to describe the
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Figure 10. Dynamical evolution of the population imbalance between the two
sides of the barrier for a single component condensate. The GP3D (solid red)
is compared to the I2M (dashed blue) and the S2M (dotted black) results. The
parameters entering the two-mode descriptions are given in the text. Panel (a)
contains runs for δφ(0)= 0, with z(0)= 0.1, 0.35 and 0.6. Panel (b) corresponds
to the critical value for z(0)= 0.39 and δφ(0)= 0. Panel (c) depicts two self-
trapped states obtained by an initial δφ(0)= π , with z(0)= 0.2 and 0.4.

correct period and predicts smaller amplitudes. This is analyzed in full detail in [14]. The critical
initial imbalances determined by both two-mode approaches are smaller than the GP3D one, see
panel (b). Finally, for the self-trapped cases with δφ(0)= π (panel (c)) the I2M gives similar
oscillation amplitudes with shorter periods than the GP3D. The S2M fails both in reproducing
the amplitudes and the periods.

6. Numerical solutions of the 3D GP equations: a binary mixture

As discussed in section 2, one feasible way of experimentally preparing binary mixtures of
BECs is to consider a number of atoms populating the m = ±1 Zeeman components of an
87Rb F = 1 spinor. The experimental observation of Josephson tunneling phenomena by the
Heidelberg group seems to be possibly extended to trap both Zeeman components [40]. In this
case, the two components of the mixture have the same mass, M ≡ ma = mb, and equal intra-
species interactions, gaa = gbb ≡ g. With respect to the inter-species interaction we will consider
the case of 87Rb, which implies gab ∼ g.

The mean field GP3D system of equations governing the dynamics of the three components
of an F = 1 spinor BEC can be written as [45]

ih̄
∂ψ±1

∂t
= [Hs + c2(n±1 + n0 − n∓1)]ψ±1 + c2ψ

2
0ψ

∗

∓1,

ih̄
∂ψ0

∂t
= [Hs + c2(n1 + n−1)]ψ0 + c22ψ1ψ

∗

0ψ−1,

(58)

with Hs = −h̄2/(2M)∇2 + V + c0n being the spin-independent part of the Hamiltonian. The
density of the mth component is given by nm(r)= |ψm(r)|2, while n(r)=

∑
m |ψm(r)|2 is the

total density normalized to the total number of atoms N . The couplings are c0 = 4π h̄2(a0 +
2a2)/(3M) and c2 = 4π h̄2(a2 − a0)/(3M), where a0 and a2 are the scattering lengths describing
binary elastic collisions in the channels of total spin 0 and 2, respectively. Their values for
87Rb are a0 = 101.8aB and a2 = 100.4aB [46]. Since the spin-dependent coupling, c2, is much
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Figure 11. (Left) Values of the frequencies, ω/ωR, listed in table 3 for the
specific conditions considered in the numerical simulations as a function of the
fraction of atoms in the a component, fa. The notation is as follows: ωi;αβ ,
with i = 1, 2 being the index of the eigenfrequency and α, β = 0, π the phase
difference of the stationary point for each component. (Right) The conditions for
the existence of the non-trivial equilibrium points given in equations (38), (41)
and (45), upper panel, as a function of fa for the conditions described in the text.
The lower panel contains the explicit equilibrium points z0

a, z0
b as a function of fa

obtained by solving equations (34). Note that each equilibrium point has a trivial
partner, which is obtained by flipping the sign of z0

a, z0
b.

smaller than the spin-independent one, c0, and the total number of atoms that we will consider
is relatively small N = 1150, the population transfer between the different components can be
neglected [36]. Therefore, in our calculation the number of atoms in each sublevel remains
constant in time, allowing us to treat the system as a binary mixture of components a and b.
Comparing the system of equations (1) and (58) the value of the couplings can be read off,
gaa = gbb = c0 + c2 and gab = gba = c0 − c2.

Once the total number of atoms is fixed we want to investigate the Josephson-like dynamics
for different numbers of atoms populating each component Na = fa N and Nb = fb N and for
different initial conditions, za(0), zb(0), δφa(0) and δφb(0).

The values of 3= NU/h̄ωR and 3̃= NŨ/h̄ωR are 3= 74.278 and 3̃= 74.968. With
3/3̃= 0.99. These are obtained from the microscopic 3D parameters computed in the scalar
case, with the same total number of particles, see section 5. This is reasonable for the case
we are considering where gaa = gbb ∼ gab, which implies that the ground state wave functions
for the GP equations of the mixture do not depend on fa and fb for a fixed total number of
particles. This would certainly not be the case if gaa = gbb 6= gab; in such case, one would need
to recompute the ground state wave functions for a and b for each value of fa.

Following the discussion in section 3.6, where the predictions of the S2M were discussed in
detail, the system has the trivial equilibrium points, listed in table 3 with β = 0.009. In figure 11,
we show the values of the two eigenfrequencies for each of the trivial equilibrium points listed
in table 3 for the specific conditions described above. The figure shows a number of important
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features about the stability of the trivial equilibrium points. Firstly, the (z0
a, δφ

0
a, z0

b, δφ
0
b)=

(0, 0, 0, 0) is always stable regardless of the total polarization of the system (measured by
fb − fa). Secondly, the (z0

a, δφ
0
a, z0

b, δφ
0
b)= (0, π, 0, π) mode is always unstable, as seen by

the negative value taken by the square of the frequencies. Thirdly, the (z0
a, δφ

0
a, z0

b, δφ
0
b)=

(0, 0, 0, π) mode should be stable for fb . 0.43, correspondingly the (z0
a, δφ

0
a, z0

b, δφ
0
b)=

(0, π, 0, 0) is stable for fa . 0.43 and therefore there is a range of polarizations, given by 0.43.
fa . 0.57, where the only trivial mode that is stable is the (z0

a, δφ
0
a, z0

b, δφ
0
b)= (0, 0, 0, 0).

The non-trivial equilibrium points in this case can be obtained by analyzing the conditions
given in section 3.6. For (δφ0

a, δφ
0
b)= (0, 0) there are no equilibrium points apart from the trivial

one, due to3∼ 3̃. In the other three cases there are non-trivial equilibrium points depending on
the specific values of fa. In figure 11 (right) we analyze their existence. First, we note that there
are non-trivial points corresponding to (δφ0

a, δφ
0
b)= (0, π) provided fa . 0.37, correspondingly

there are also equilibrium points for (δφ0
a, δφ

0
b)= (0, π) if fb . 0.37. There is also a non-trivial

equilibrium point for (δφ0
a, δφ

0
b)= (π, π) regardless of fa. As can be seen in the figure, all these

non-trivial equilibrium points correspond to fairly imbalanced conditions and can in most cases
be understood in simple terms from the analysis of the scalar case. For instance, the equilibrium
point for (δφ0

a, δφ
0
b)= (π, π) corresponds to z0

a ∼ z0
b ∼ 1 (or −1), which can be understood as

having both components locked in a π -mode. Similarly, the equilibrium points in the (0, π)
or (π, 0) cases exist whenever the most abundant component is populated enough to drive the
dynamics close to being π locked.

6.1. GP3D calculations: phase coherence and localization

The numerical solutions of the GP3D presented in section 5 for the single component system
showed two features. Firstly, the atoms remained mostly localized in the two minima of the
potential well and, secondly, each group of atoms had to a large extent the same quantum
phase. This clearly supported the picture of having two BECs, one on each side of the barrier,
with a well-defined phase on each side during the dynamical evolution. Essentially those are
the premises used to derive the two-mode models, both for single component and for binary
mixtures, as we did in section 3.

As in the scalar case, our exact GP3D numerical solutions of the dynamics of the binary
mixture in several initial conditions of population imbalances and phase differences show two
distinctive features, see figure 12. Firstly, the density of atoms for each component is always bi-
modal, with the two atom bunches centered around the minima of the potential well. Secondly,
the phase of the wave function is mostly constant for each species on each side of the potential
trap. Thus, we find that the GP3D does predict the dynamics to be mostly bi-modal also for the
binary mixture case.

At the end of the section we will consider some deviations from the bi-modal behavior that
are found in very specific conditions, e.g. for very large population imbalances and also when
analyzing a case with gab 6= gaa = gbb.

6.2. Small oscillations around z0
a,b and δφ0

a,b = 0

The two predictions of the two-mode described in section 3.6, namely the ‘anti-Josephson’
behavior and the enhancement of the Rabi mode, are confirmed by the NPSE and GP1D
simulations as can be seen in figure 13. In figure 13 (left panels), we consider a very polarized
case, fa = 0.8. As expected from the two-mode analysis the dynamics of the most populated
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Figure 12. Full GP3D calculations of the dynamics of a binary mixture with
za(0)= 0.5, zb(0)= 0.2, δφa(0)= 0, δφb(0)= 0, fa = 0.25 and fb = 0.75. The
upper four plots depict, from left to right, za(t), δφa(t), zb(t) and δφb(t) in
solid black compared to the I2M prediction, dashed red. Then each row contains
from left to right: 3D depictions complemented by contour plots of ρa(x, y; t), a
contour plot of the averaged phase φa(x, y; t), 3D depictions complemented by
contour plots of ρb(x, y; t), and a contour plot of the averaged phase φb(x, y; t).
Each row corresponds to a different time, 0.5 ms (upper), 20 ms (middle) and
60 ms (lower), respectively.

component should to a large extent decouple from the less populated one and perform fast
Josephson oscillations with a frequency close to the corresponding one for the scalar case,
ωJ = ωR

√
1 +3. The GP3D simulation is seen to confirm the above and follow closely the

predictions of the I2M. The less abundant component is strongly driven by the most populated
one and shows anti-Josephson behavior as described in [36].

Another prediction is related to the behavior of za + zb and za − zb in the non-polarized
case, fa = fb. As explained in section 3.6, in this case the difference, za − zb, should enhance
the long mode that oscillates with the Rabi frequency of the system, while the sum za + zb

should mostly oscillate with the Josephson frequency. In the right part of figure 13 we present
the extreme case when za(0)= −zb(0) computed with GP3D, NPSE and I2M. In this case, both
population imbalances and phase differences oscillate mostly with the Rabi frequency of the
system, keeping during the time evolution za + zb ∼ 0.
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Figure 13. Behavior of the population imbalance, za(t) (solid lines) and zb(t)
(dashed lines) and phase difference, δφa(t) (solid lines) and δφb(t) (dashed
lines), computed using GP3D (black lines), NPSE (blue lines) and I2M (red
lines) in a polarized case, fa = 0.8, left and a zero polarization case, fa = 0.5,
right, respectively. The initial conditions are za(0)= 0.1, zb(0)= −0.15 and
δφa(0)= δφb(0)= 0 for the left panels and za(0)= −zb(0)= 0.15 and δφa(0)=

δφb(0)= 0 for the right panels.

Figure 14. Behavior of the population imbalance in NPSE (red) and GP1D
(black) simulations in the zero magnetization case, fa = fb. The initial
conditions are za(0)= 0.1, zb(0)= 0.2 and δφ(0)= 0. The upper panels
correspond to (a) za(t) (solid line) and zb(t) (dashed line) obtained with the
GP1D equations, (b) za(t) and zb(t) obtained with the NPSE equations, (c)
behavior of za(t)− zb(t) for GP1D (solid) and NPSE (dashed) and (d) behavior
of za(t)+ zb(t).

As seen in figure 14 both 1D reductions produce qualitatively similar physics. The only
important difference is that the frequency of the Josephson oscillations is higher in the GP1D,
as occurred already for the single component, see section 5.
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Figure 15. (Left panels) Evolution of the population imbalance of each com-
ponent for a binary mixture with fa = 0.25. The top panel shows za(t), and the
bottom panel zb(t). The solid (black) line corresponds to the I2M model and the
dashed (red) line to the NPSE. The initial conditions are za(0)= 0.5, zb(0)= 0.2,
δφa(0)= δφb(0)= 0. (Right panels) As in the left panels, but with fa = 0.6 and
initial conditions za(0)= 0.45, zb(0)= −0.35, δφa(0)= δφb(0)= 0.

Interestingly, they predict different Josephson oscillations while the Rabi frequencies are
similar. In panel (c) of figure 14 the long oscillation corresponding to the Rabi mode is seen
to agree well with the corresponding long oscillation seen in the right panels of figure 13.
The Josephson-like oscillations of binary mixtures of spinor F = 1 87Rb BECs around the
(z0

a, δφ
0
a, z0

b, δφ
0
b)= (0, 0, 0, 0) are therefore essentially controlled by two frequencies, ωR

and ωJ.
As a general statement, in the conditions of the Heidelberg experiment, as occurred for the

scalar case, the I2M produces more reliable results than the S2M model, which are not shown
in the figures. Note that the parameters that we use for the I2M are extracted from the GP3D
calculation as given in section 5. Other representative cases with (δφa(0), δφb(0))= (0, 0) but
with larger initial imbalances, zi(0)∼ 0.5, are shown in figure 15. On the left side of this figure
we show the population imbalance of each component for a simulation with fa = 0.25. In this
case, the dynamics is controlled by ωJ. The panel on the right depicts a simulation with fa = 0.6
and close to opposite initial population imbalances. In this case, both frequencies ωJ and ωR

show up in the evolution. The I2M provides a satisfactory description of the dynamics.

6.3. Small oscillations around z0
a,b, δφ0

a = 0 and δφ0
b = π

As explained above, for these conditions there can exist up to three stationary points depending
on the specific value of fa considered. The trivial equilibrium point exists provided fa . 0.43,
see figure 11. This prediction of the two-mode models is observed in both the GP3D and the
NPSE as can be seen in figure 16. In the figure, we consider a simulation with za(0)= 0.1,
zb(0)= −0.15 and fb = 0.2< 0.43 (left panels). The population imbalance (upper panel)
of both components oscillates in the usual Josephson regime. At the same time, the phase
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Figure 16. Two simulations with the same initial conditions, za(0)= 0.1,
zb(0)= −0.15, δφa(0)= 0 and δφb(0)= π but with different compositions of
the mixture. The case on the left has fb = 0.2, while the case on the right
fb = 0.8. The blue lines are obtained by means of a full GP3D, the black lines
are the NPSE results and the red lines are the I2M results. Solid and dashed lines
correspond to the a and b components, respectively.

difference oscillates with its characteristic phase shift of π/2 with respect to the imbalance
(lower panel). The phase of the a component oscillates around δφa = 0, while δφb oscillates
around δφb = π .

A completely different picture emerges when the fraction of atoms in both components is
exchanged, fa = 0.2< 0.43 (right panels), with most of the atoms populating the b component.
In this case, the oscillation amplitude is large, both components remain trapped on their original
sides and the phase difference becomes unbounded. This should be considered as a genuine
effect of the binary mixture as each component follows a running phase mode on each side of
the potential barrier.

The comparison between the NPSE and the GP3D is very satisfactory. The NPSE captures
almost completely the dynamics up to times of 100 ms. In all cases, the NPSE reproduces
correctly both the phase difference and population imbalance. The only sizeable discrepancies
occur for times &80 ms in the run without equilibrium point (right panel).

The I2M gives a good qualitative picture of both cases but fails to provide predictions as
accurate as the NPSE, as happened in the scalar case; see for instance figures 8 and 10. In
particular the predicted periods of oscillation are much longer than the actual ones.

An example of simulations around non-trivial equilibrium points is presented in figure 17.
As explained previously, these involve very large and opposite initial population imbalances
for both components. In figure 17, we consider a case with initial conditions very close to
the predicted equilibrium point using the standard two-mode, and described in figure 11,
za(0)= −0.78, and zb(0)= 0.99, with fa = 0.1. Also in the same figure, we consider a similar
run but with fa = 0.9. In both cases, the NPSE and GP3D predict very similar dynamics. These
simulations will be discussed again in section 6.5 as they exhibit effects that clearly go beyond
a two-mode approximation.
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Figure 17. Two simulations with the same initial conditions, za(0)= −0.78,
zb(0)= 0.99, δφa = 0 and δφb = π , but with different compositions. The case
on the left has fa = 0.1, while the case on the right has fa = 0.9. The red lines
are obtained by means of a full GP3D, while the black lines are the NPSE results.
Solid and dashed lines correspond to the a and b components, respectively.

6.4. Small oscillations around z0
a,b and δφ0

a,b = π

The trivial equilibrium point is not stable in the considered conditions as seen in figure 11.
The non-trivial one, however, is only attainable if extremely imbalanced configurations for both
components are considered. This case would correspond essentially to having both components
in a π mode state, which in our conditions only exists for z ∼ 1 as can be seen in the blue spots
in panel (c) of figure 4. In figure 18, we present two simulations with different initial conditions.
First, we consider a simulation with za(0)= 0.4 and zb(0)= −0.2, with fa = 0.9. The behavior
is understood in simple terms; the most populated component remains self-trapped, while the
other component is forced by the other one. The phase evolves unbounded. The figure again
contains GP3D and NPSE simulations.

The second simulation (right panels) is closer to a non-trivial equilibrium point, we
consider za(0)= 0.9 and zb(0)= 0.85 with fa = 0.9. In this case, both components remain
self-trapped, the phase difference is unbounded, but we do not get the expected behavior of two
π modes because the initial imbalances are not close enough to z0

∼ 1.

6.5. Effects beyond two-mode

Most of the dynamics described in the previous sections can to a large extent be understood
within the two-mode models developed in section 3. There are, however, a number of situations
where the two-mode fails. Some are a direct consequence of having two components evolving
in the same double-well potential; others are due to having initial configurations, mostly with
large initial imbalances, producing situations where the atom–atom interaction energy per atom
is comparable to the gap between the first excited state and the second/third excited states.
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Figure 18. Two simulations corresponding to (left) za(0)= 0.4, zb(0)= −0.2,
δφa(0)= π , δφb(0)= π and fa = 0.9 and (right) za(0)= 0.9, zb(0)= 0.85,
δφa(0)= π , δφb(0)= π and fa = 0.9. The blue lines are obtained by means of
a full GP3D while the black lines are the NPSE results. Solid and dashed lines
correspond to the a and b components, respectively.

We can distinguish two different cases: (i) involving excitations along the coordinate that
contains the barrier and (ii) involving excitations of the transversal coordinates.

An example of (i) is seen in figure 17. There, as clearly seen in the density profiles along the
x-direction, the two-mode approximation is clearly not valid. The simplest way of seeing this
is by noting the zero in the density of one of the components at x ∼ 2µm. This effect beyond
two-mode is well taken care of by the NPSE, which reproduces the density profile quite well
during most of the time evolution considered in the simulation. Thus, the excitations of higher
modes along the direction that has not been integrated out in the 1D reduction do not pose a
great difficulty to the 1D reductions.

The second type, (b), of effects beyond two-mode involve excitations of the transverse
components. These effects are present in any binary mixture calculation whenever the intra- and
inter-species interactions are not equal. To enhance this effect, and also to explore the interesting
symmetry breaking phenomena described in [30], we consider a case with gaa = gbb, but with
gab = gba = 2.3gaa. Therefore, now the inter-species interaction strength is larger than the intra-
species one. The two-mode prediction for this case, S2M, which was analyzed in [30] shows
a large symmetry breaking pattern during the time evolution of the system. In figure 19, we
consider a full GP3D simulation of a representative example with za(0)= −0.2, zb(0)= 0.1,
δφa(0)= δφb(0)= 0 and fa = 0.7.

The qualitative prediction of the I2M also shows symmetry breaking, and the two
components separate from each other and mostly concentrate on one of the wells as time
evolves. But, as can be seen in the 3D depictions of ρ(x, y; t) at three different times, the
evolution of the system departs, almost from the beginning, from the two-mode. At t = 1 ms
we have the density distributions of each component corresponding to a small initial imbalance.
Then at t = 11 ms, we can already see that the most populated component is expelling the other
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Figure 19. Full GP3D calculations of the dynamics of a binary mixture with
za(0)= −0.2, zb(0)= 0.1, δφa(0)= 0, δφb(0)= 0, fa = 0.7 and fb = 0.3. As
explained in the text in this case, gaa = gbb and gab = 2.3gaa. The upper two
plots depict za(t) (left) and zb(t) (right). Then each row contains, from left to
right, 3D depictions complemented by contour plots of ρa(x, y; t), a contour
plot of the averaged phase φa(x, y; t), 3D depictions complemented by contour
plots of ρb(x, y; t) and a contour plot of the averaged phase φb(x, y; t). Each row
corresponds to a different time, 1 ms (upper), 11 ms (middle) and 51 ms (lower),
respectively. In all cases, solid black lines are computed with GP3D and dashed
red ones with I2M.

one from the minima of the potential. This fact can be appreciated as a four peaked distribution,
ρb(x, y; t). After that, each of the components starts to accumulate on their original sides
following qualitatively the prediction of the I2M and thus presenting the symmetry breaking
pattern discussed in [30]. The two-mode approximation is in this case broken for a short period
of time, when the first modes along the transverse directions are excited due to the large inter-
species interaction.

7. Conclusions

We have presented a thorough investigation of the mean-field dynamics of a binary mixture of
BECs trapped in a double-well potential. As explained in the introduction, we have considered
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systems with a large enough number of atoms and initial configurations of mean-field type, so
that the use of mean-field approximations is justified.

The rich dynamical regimes that take place in binary mixtures, like double self-trapped
modes, Josephson oscillations, or zero and π bound phase modes, have been scrutinized by
performing full GP3D simulations covering all the relevant initial conditions. The 3D numerical
solutions of the GP equations have been used to critically discuss the validity of the most
common 1D reductions of the GP equations, GP1D and NPSE, and the often employed simple
two-mode reductions, S2M and I2M.

The full 3D solutions of the binary mixture have been shown to have a large amount of
phase coherence and localization at each side of the potential barrier for both components,
predicting a dynamics that is mostly bi-modal. This feature permits us to speak of BECs on
each side of the barrier, where the atoms mostly share a common phase, and to support the use
of two-mode approximations, whose analytical solutions allow us to gain physical insight into
the problem.

To fix the conditions of the dynamics, we have focused on one particular setup that
corresponds to a natural extension of the experiments reported in [4]: the case of a binary
mixture made by populating two of the Zeeman states of an F = 1 87Rb condensate. As
discussed in the present paper, this setup already allows us to observe and characterize
a large variety of phenomena that are genuine of the binary mixture, e.g. anti-Josephson
oscillations in highly polarized cases, long Rabi-like oscillating modes, zero- and π -locked
modes, etc.

For the sake of completeness and to better frame the physics of the binary mixture, we have
provided a detailed description of the single component dynamics, with explicit expressions for
all the commonly employed approximations to the 3D mean field GP equation. The natural
extension of the latter to the binary mixture, i.e. S2M and I2M equations and 1D reductions, has
been consistently derived providing a self-contained reference, easy to read, with all the relevant
formulae used in the paper.

The standard two-mode model, with its microscopic parameters computed with the GP3D,
has been used to reexamine the existence and stability of the different regimes that can occur in
both single component and binary mixture condensates, describing the Josephson oscillations
and the MQST, including running phase modes and zero- and π-modes.

The comparisons between the two-mode models and the numerical solutions of the GP3D
show excellent agreement for conditions close to the stable stationary regimes predicted by the
two-mode models. As we depart from those stable points, the S2M fails to show quantitative
agreement with the results obtained with the GP3D equations. The range of validity of the I2M
is much larger, fully capturing the dynamics of single and binary mixtures for a larger set of
initial conditions.

The two most commonly employed dimensional reductions of the GP3D, the GP1D and
NPSE, have been shown to differ substantially from each other, with the NPSE being clearly
in much better agreement with the original 3D dynamics in a broader set of conditions. In
general, the GP1D describes essentially the correct physics but quantitatively far from the GP3D
predictions. Also, for self-trapped cases already in the single component case, it departs from
the two-mode behavior earlier than the GP3D or the NPSE. The agreement between the NPSE
and the full 3D dynamics is astonishingly good both for single component and the considered
binary mixtures, where the intra- and inter-species are very similar and the NPSE equations are
particularly easy to handle. This agreement is not only seen on fully integrated magnitudes, for
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instance population imbalances, but also on the density profiles predicted along the direction
hosting the barrier.

We have also considered two situations where the two-mode approximation fails. This
is naturally due to the excitation of higher modes. Two different cases have been described:
firstly, the excitation of modes in the direction of the barrier and, secondly, excitation of modes
in the transverse direction. The NPSE has been shown to capture perfectly the excitations along
the barrier direction, reproducing the integrated density profiles obtained with the GP3D. The
second case has been studied in a simulation performed with different intra- and inter-species,
which can be achieved in principle experimentally through Feshbach resonance modulation of
the scattering lengths. In this case, the dynamics of the less populated component on each side
of the trap departs notably from the two-mode with clear excitations of transverse modes, seen
already in the density profiles along a transverse direction.

This paper is intended both to motivate the experimental effort to study binary mixtures of
BECs, where we have shown that a large variety of phenomena related to phase coherence and
localization can be observed, and to serve as a tool in the analysis of such experiments providing
a concise and self-contained derivation of the most commonly used models.
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