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We review recent results on dynamical aspects of viscous fingering. The Saffman—Taylor instability
is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact
determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical
solvability scenario associated to surface tension in analogy with the traditional selection theory is
put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers.
The inherently dynamical singular effects of surface tension are clarified. The dynamical role of
viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman—Taylor
finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual
limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions.
We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows,
topological singularities and wetting effects, and also discuss future directions in the context of

viscous fingering. ©2004 American Institute of Physic§DOI: 10.1063/1.1784931

The study of viscous fingering in a Hele-Shaw cell is a
longstanding problem which has become an archetype of
interfacial pattern formation, but continues to bring up
new surprises which challenge our understanding of non-
local, nonlinear pattern dynamics of interfaces. The prob-
lem refers to the dynamics of the interface between two
immiscible viscous fluids confined in a quasi-two-
dimensional geometry, the Hele-Shaw cell, leading to pat-
tern formation through a morphological instability. In
this article we briefly review some recent developments
on the dynamics of fingering patterns. We discuss the
effects of surface tension as a singular perturbation show-
ing that the problem with and without surface tension are
essentially different. Within a dynamical systems ap-
proach, we describe how the introduction of surface ten-
sion dramatically modifies the global(topological) struc-
ture of the phase space flow of the system. We also
address, in more detail, the effect of varying the param-
eter viscosity contrast. We show that the dynamics of fin-
gered structures is highly sensitive to this parameter, and
that the long time asymptotics is dominated by the com-
petition between the usual SaffmanTaylor single-finger
stationary solution and other attractors defined by closed
bubbles. In this context and also taking into account re-
cent results on rotating Hele-Shaw flows, we discuss fu-
ture perspectives in the field concerning the existence of
topological singularities in the form of interface pinch-
off, wetting effects and applications to other problems
such interface roughening in fluid invasion of porous me-
dia.

dElectronic mail: jaume@ecm.ub.es

1054-1500/2004/14(3)/809/16/$22.00

809

I. INTRODUCTION

The study of the dynamics of an interface between two
viscous fluids in the confined geometry of a Hele-Shaw'cell,
leading to the phenomenon of viscous fingering, has been
studied in great detail from different points of view for more
than four decades.” While engineers, who first introduced
the termviscous fingeringwere interested in the so-called
secondary oil recovery from porous rockghysicists be-
came interested from a more fundamental point of view iden-
tifying the problem as a paradigm of morphological instabil-
ity leading to interfacial pattern formatioh
Mathematicians have also paid much attention to the also
called Hele-Shaw problem as a relatively simple and some-
times solvable free-boundary problért~2° Powerful ana-
lytical techniques have also exploited the conformal mapping
approach(see some recent examples in Refs. 21 and 22

The truly seminal work which originated much of these
studies is that of Saffman and Taylor in 1958he problem
of viscous fingering in a rectangular Hele-Shaw cell is often
named after them. While clarifying the nature of the instabil-
ity of a fluid displacing a more viscous one, together with
Chuoke?® in complete analogy with the Mullins—Sekeffa
instability in solidification, they also posed the so-calked
lection problem. This is the analogue of the Ivantsov prob-
lem for the needle crystal solution of free dendritic
solidification®® The full understanding and solution of this
selection problem, that is, of the mechanism by which a con-
tinuous degeneracy of solutions in the absence of surface
tension is reduced to a single observable one, was achieved
three decades later, with contributions of several
authors?®~2°The selection scenario that emerged from these
works, sometimes referred to as “microscopic solvability,”
has become a paradigm of pattern selection in a variety of
systems, including most remarkably free dendritic
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growth!?3and has been highlighted as an important breakWithin this spirit, one can remark that the Hele-Shaw flows

through in the field of pattern formation in genetél. and modifications of them have been used also as model
In the last decade the study of Hele-Shaw flows hasystems to explore more difficult or less controlled situations

slightly drifted towards more mathematically oriented re-(see, for instance, Ref. A9A recent and very illustrative

search. However, deep and fundamental questions have coexample of this is the use of a modified Hele-Shaw cell with

tinued to captivate the interest of physicists. In the context ofjuenched disorder to elucidate longstanding and controver-

Laplacian growth, for instance, important progress has beesial problems such as kinetic roughening in fluid invasion of

made towards an understanding of the generation of thporous medig’

anomalous dimensions of fractal growth¢ The under-

standing of the anomalous exponents characterizing Lapla¢t. FORMULATION OF THE PROBLEM

ian growth has escaped a controlled renormalization group

. : o We consider a Hele-Shaw cell of widiV in the y di-
handling though, since the problem has an infinite upper . o : C .
" . X ; . ._rection and infinite length in the direction, with a small gap
critical dimension. This point, and the very concept of uni-

. - : b between the plates. Fluid 1 is injectedat>—o at a
versality classes in interface growth, remain as some of the : . . o
. : S . constant velocityV,, and displaces fluid 2, and gravity is
outstanding challenges in nonequilibrium physics, but we. . . . o .
. ST . directed in the—x direction. The fluid flow in this system is
will not pursue this line here. On the other hand, some in-

triguing formal connections to apparently unrelated fields 013 ff'ectlvely two-dimensional and the velocity obeys Dar-
. : T cy’s law?

physics have been reported, for instance in string théany

in physics in the quantum Hall regini® These seem to con- B .

firm that the potential for surpridéin this apparently simple u=- E(VpﬂLpgx), @)

problem refuses to be exhausted. Even the most traditional

version of viscous fingering continues to yield surprising re_wherep s the fluid pressurey is the viscosityp is the fluid

sults and new insights for instance in the recent findings irgens'iy’ andy is gravity. Assur_mng that the fluids are incom-
the study of formation of fiords in radial growd:° pressible ¥-u=0) we obtain that the pressure satisfies

One of the most remarkable results of the last decade iiTapIace equation in the bulk
Hele-Shaw flows is due to Tanveer and co-work&ts*2and V2p=0. 2)

has opened a new way of looking at the dynamics of Ir]ter"l'his must be supplemented with the boundary conditions at

facg dynam|cs. I basmglly states that, in general, the limit Oinfinity and at the interface. At infinity, the pressure satisfies
vanishing surface tension does not converge to the exact

zero-surface tension solutions after a time of order unity, Jp 12u
even for exact solutions that behave smoothly, without any  gx ==z V="r9 G
finite-time singularity. This means that there is a time which ‘X‘Hmj ) ) o
is essentially independent of surface tension, after which th@nd at the interface, imposing the continuity of the normal
solution with and without surface tension do not approach/€locities yields
each other in the limit of vanishing surface tension. This  jp, . apy .
remarkable result and its consequences have been scrutinized n +p1gn-x= on +p29n-X, (4)
recently in the context of a dynamical systems appro&tf
to viscous fingering, with quite Surprising res[jﬁé{G We wherefi is the unit vector normal to the interface. The last
will briefly review those with the aim at clarifying the role of boundary condition, in the simplest and more traditional
surface tension as a singular perturbation in fingering dyform, is given by the Young—Laplace pressure jump at the
namics in Secs. IV and V. interface due to local equilibrium
Another line of surprises of viscous fingering appear in .=

. o e . » ; P1—P2=0k. ()
the study of fluids with similar viscosities. The old conjec- ] )
ture that the basin of attraction of the Saffman—Tay®T) o stands _fqr Sl_Jrface tension ardor curvature. This bound-
finger was indeed dependent on the viscosity conffd, ary condition is kn(_)wn to be ovei3|mpllf|ed for some pur-
has been put to the test recently, giving rise also to a neW©0Ses as we will k_)nefly _comment in Sec. VIC. These equa-
view on the problem. We will present these results in Seclions are made dimensionless usig2m to scale lengths
VI. The study of low viscosity contrast flows has also be-and the combination
come patrticularly interesting in the case of rotating Hele- b%(po—p1)
Shaw cells, where the possible existence of spontaneous in- U, =CVoc+gm,
terface pinch-off and the importance of wetting effects on the Mt e
morphology of the resulting patterns has also been remarked scale velocitieST wherec is the viscosity contrast or At-
as briefly discussed also in Sec. VI. wood ratio defined as

The main reason why the problem of viscous fingering

has become so popular for so many different purposes is its c¢= .
relative simplicity, both theoretical and experimental. For our M2t
purposes here, we would like to emphasize that it is particuAfter this scaling the dynamics is controlled by only two
larly instrumental in yielding new insights in a class of prob- dimensionless parameters: The dimensionless surface tension
lems for which an analytical handle is usually too difficult. B given by

b2

(6)

Ha— M1 @)
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w2h2g with the surface tension term yet is explicit in Fourier space.
B= , 8 i i .
3WA(q + ) U, ®  we _hav_e used a I_mear p_ropagator method that is segond_ or
der in time, combined with a spectrally accurate spatial dis-
and the viscosity contrast cretization.

The problem can also be formulated by means of the
stream function?, the harmonic conjugate of the presstire. 1ll. BEYOND THE SAFFMAN-TAYLOR INSTABILITY
It satisfiesAW =—T" wherel is the vorticity distribution,

singular and localized on the interfac&:(r)= y(s)d[r A. Weakly nonlinear analysis of fingering

—r(s)]. The interface is parameterized with the arclergyth pattermns
and the(dimensionlessvorticity y reads* The morphological instability of the interface between a
less viscous fluid displacing a more viscous one under the
y=2CW-5+ 2%-8+ 2Bk (9 conditions of Darcy flow, such as in a porous medium or a

Hele-Shaw cell, the so-called ST instability was established

in Refs. 2 and 23. Since then, most efforts have concentrated

in the so-called steady state selection problem. This subtle

zX[r(s,t)—r(s",)] | and deep problem has to do with the singular perturbation
[r(s,t)—r(s’,1)|? ¥(s\Y), nature associated to the surface tension parameter and has

(10 now become a prototype example of the so-caflsgmptot-

ics beyond all orders’ Most analytical progress has been

possible only in the limit of small surface tension. In a series

f recent papers, however, it has been pointed out that con-

erning the dynamics of the early nonlinear stages and for

the process of finger competition in finger arrays, the dimen-

. ) . "~ sionless surface tension must be considered to all effects as a

interface isu=upy+Ww. In the particular case of an inviscid quantity of order on&%° That is, the typical scale of the

l;lmd %'Sptlau?gt. a V'?Ctﬁus bone ce1) i explicit Izlme- ; interface morphology which results from the linear ST insta-
ependent solutions ol the above equalions are known Qrgility is necessarily that in which the stabilizing forces of

—( 1552,53 ; ; !
B=0. These solutions are a valuable mstru_mem to UNsurface tension are of the same order than the destabilizing
derstand the subtle role of surface tension in th

. aa—46 Qiscous forces. With the intention to have an analytical
dynamics: . o

The introducti f . it trast diff Cf handle which was not perturbative in any of the two param-

ekm rt% ue 'OQI 0 ? wscomg_fgonltr?s h 'dergnth :com eters of the problem, we introduced a weakly nonlinear ex-

OQE ma t_es | € gro em far mo;el ' !Cf: fo_s u g (;h :Ompansion of the dynamical equations in Refs. 58 and 59. This

a‘d zoﬁ ||casar1]n a;l] eXpe”Tgi? E)O'fn 0 dwtew. OI(/I ek Vtvo'allows one to extend the linear dynamics into the weakly

sided rele-shaw TIows, wi reférred 1o as Muskal o pjinear regime in a systematic way and to elucidate the

problem m_the mathematics literatirthe wide plasses of interplay between the distinct parameters and the different
exact solutions foc=1 (andB=0) are not available, and nonlinearities

the basic available tool left to study the fully nonlinear re- The basic idea is to define a formal gradient expansion

gime is numerical computation. The reason for this increaseﬂn a nonlocal problemin terms of a book-keeping param-
difficulty of the ¢ 1 case in comparison =1 is that, for etere as a ratio of the scale of variation of the heigifk,t)

arbitrary c, the two fluids are _coupl_ed, V\.'h”.e fa=1 the of the interface to a horizontal scaleof the form
pressure of the fluid of negligible viscosity is constant and

the pressure of the viscous fluid is formally decoupled from
the other one.

In our numerical computations we employ the method
introduced by Hotet al®* and used in other numerical stud-
ies of the dynamics of Hele-Shaw flows?*?455556The

method is described in detail in Ref. 54. It is a boundary lication in Sec. VI A. this f i ided ; .
integral method in which the interface is parameterized aprication In Sec. A, this formalism provided a systematic

equally spaced points by means of an equal-arclength vart: &> {o obtain the different nonlinear orQer§ of the nonloc_al
able a. Thus, ifs(a,t) measures arc length along the inter- mterf.ace. equation re;levant to renormalization group studies
face then the quantitg,(«,t) is independent otr and de- of kinetic _roughéepnlng i Hele-Shaw flows  subject to
pends only on time. The interface is described using thguenched disordet.

tangent anglé(«,t) and the interface length(t), and these
are the dynamical variables instead of the interfa@ndy
positions. The evolution equations are written in terms of  In close connection with this analysis, an exact result has
0(a,t) and L(t) in such a way that the high-order terms, been reported which uncovers the full nonlinear structure of
which are responsible of the numerical stiffness of the equathe ST instability, as a subcritical bifurcati6hlt has been
tions, appear linearly and with constant coefficients. This facehown that, for any given set of parameters, one can find
is exploited in the construction of an efficient numerical modes that are linearly stable but nonlinearly unstable, that
method, i.e., one that has no time step constraint associatésl that finite-sized perturbations may grow unstable if they

In two dimensions the velocity of the interface due to a
vortex sheet is given by Birkhoff integral formula

1
w=w(s,t)= ZPJ ds’

where P indicates Cauchy’s principal value. Equati@h0)
only accounts for the rotational part of the velocity, the
one induced by the vortex sheet. In general, the velocity oﬁ
the interface has also a contributian, from a potential
velocity field, in our case/..X, so that the velocity of the

dh
E:F[h]+eez[h]+ezHg[h]+..., (11)

where F[h] is a linear(nonloca) operator,G,[h] a qua-
dratic one, etc. Apart from useful insights into the interplay
between parameters, geometry and nonlinedsge an ap-

B. Nonlinear Saffman—Taylor instability
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times referred to as “microscopic solvability!® The term
“microscopic” is inherited from the context of solidification
growth, due to the fact that it is the presence of a micro-
scopic length scaléthe capillary length what is crucial in
fixing the macroscopic scale of the dendrite.

Once this problem was understood, a new generation of
results started to arise concerning tgnamicsof Hele-
Shaw flows. On the one hand, it was pointed out that the
picture of finger competition based on the idea of simple
Laplacian screening to explain the evolution towards the
single finger solution was too naive at least in two respects:
First, for viscosity contrasts not very high, the dynamics was
observed to be qualitatively differefft*® and second, the
role of surface tension on the dynamics was recognized as far
from being trivial. We will address the effects of viscosity
contrast in Sec. VI. Here we now concentrate on the singular
effects of a small surface tension.

Among the results that triggered most interest in study-
ing the nonlinear dynamics of viscous fingering at an ana-
lytical level, we can remark the obtention of explicit, exact
time-dependent solutions of the problem for zero surface ten-
sion, thanks to the wuse of conformal mapping
techniques>16195362Remarkably, the classes of solutions
found were very broad and included also large classes of
solutions behaving smoothly, that is, not leading to finite-
time singularities of any type. The rare and remarkable fact
of having exact time-dependent solutions of a strongly non-
FIG. 1. Sample of egact stat.ionary splutions of the ST problgm vyith finitelinear and nonlocal free-boundary problem was indeed a
surface tensior(elastica solutiong which balance capillary with viscous . . . L . . .
forces. Each interface configuration is a point in the subcritical branch of thegoocj opportunity to gain analytical insight into interfacial
nonlinear ST instability. dynamics in general. The natural question then arose as to

whether a selection mechanism, analogous to that which
. . works for the staticgselection of a stationary single finger
surpass a certain amplitude threshold. The latter has been uld be defined for the dynamics. That is, whether one

determined exactly and has been identified as a branch d e d icalsolvabil , i-ted
exact solutions that bifurcate from the instability and ends up?ou conce|ye ynamicaisoivabi |t.y scgnano as;ouate to
surface tension. Note that the situation was indeed com-

at a topological singularity. These solutions had been re= k .
ported befor®* in a different context and have a clear physi- pletely parallel to the steady state selection problem, that is:

cal interpretation. They consist of interface shapes whicti) One neglects surface tensidii) one solves the problem
balance exactly capillary and viscous forces, yielding a famand finds it is degenerate and, in a sense, unphysicalone

ily of solutions which coincided, in the case of channel ge-restores surface tension to show that the degeneracy is bro-
ometry, with the so-calle@lasticasolutions of ideal rods. ken and that the physical solution survives. The idea is that,
The precise prediction of the amplitude-threshold associatedlthough the physical problem is not degenerate and, there-
to these results has been checked directly in experimenfere, the “selection” problem is actually introduced by the
using a new experimental procedure to prepare initial condiremoval of a crucial physical ingredient, through this proce-
tionSé la cartefor the interface Shape in a Hele-Shaw égll dure an important |ns|ght was gained into the mathematical
Examples of such solutions are shown in Fig. 1. Incidentallygng physical nature of the problem. It could then be interest-
the above procedure to prepare arbitrary initial conditions fo'ing to follow a similar scheme for the dynamics and try to

the interface shape in a Hele-Shaw experiment does 0P, gomething from the mathematical nature of the prob-
new and interesting possibilities to study transient dynam|c§.em by following a similar procedure. This was in principle

possible because the exact solutions were available. The pur-
suit of this idea originated a series of pafér§>¢54yhich
A. Extending solvability theory we will summarize in the following sections. The need to

The understanding of the delicate role of surface tensioflefine and compare different types of dynamics lead us to
as a singular perturbation yielding an effect “beyond all or-adopt a dynamical systems point of view, which deals basi-
ders” has been celebrated as a major achievement in pattegally with global (topologica) properties of ensembles of
formation. This surprising and indeed generic mechanism ofrajectories in phase space rather than looking at specific
steady state selection in interfacial growth problems is sometrajectorie$®

IV. DYNAMIC SOLVABILITY
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Continuum of 1-finger
a ) ) Saffman-Taylor
( ) fixed points finger
. . (STABLE)
L ] L]
L] L ]
Unfolding
B>0
FIG. 2. (Color onling. Schematic rep-
resentation of the unfolding of nonhy-
perbolic fixed points into hyperbolic
ones by the introduction of surface
2-finger fixed point tension, in the case of single-finger
(b) Continuum of 2-finger (SADDLE) and two-finger selection.
fixed points
L] [ ]
L L ] =
L] L] —
Unfolding
B>0
B. Multifinger selection: A dynamical systems bolicity of the fixed points by isolating a single stable fixed
approach point (the ST fingey, while the rest ofinow isolated fixed

A first step in this direction was to try to generalize the points are unstable and thus unobservable. Within this con-

steady state selection theory of the single finger solution t¢&Xt, the extended solvability theory to multifinger configu-
the case of multifinger solutiofé.It was indeed known that rations can also be interpreted as the restoring the hyperbo-
steady state solutions with coexisting unequal fingers existelicity of the flow through the unfolding provided by surface
for zero surface tension, while only the symmetry degeneratéenSiO”- The crucial difference now is that the solution which
case of equal fingers could seenpriori physically accept- is singled out is not the stable fixed poittte global attractor
able. Furthermore, there was a continuum degeneracy & the problem but a saddle fixed point, which corresponds
such multifinger solutions so it seemed natural to try to ex10 the symmetry-degenerate equal finger solutions. The rest
tend solvability theory to these cases. This was indeed ac@f discrete and isolated fixed points are also unstable. The
complished explicitly for two-finger configurations in a saddle point structure of the flow is actually a consequence
channef* We showed that by a mechanism similar to that ofof the stability of the single finger ST solution on the one
the single-finger solvability, the correct introduction of sur- hand (responsible of the attracting part of the floand of
face tension collapsed the two-parameter continuous familjhe global instability of a periodic finger array, as described
of two-finger solutions into a discrete set of solutions de-by Kessler and Levin& on the other hand, which is respon-
scribed by two integer indices. Those solutions were supsible for the phenomenon of finger competition and thus
posed to be unstable except for one, corresponding to theriginates the unstable directions of the flow, corresponding
symmetry-degenerate double ST finger, which had a saddke modes that break the symmetry of the equal finger con-
point structure, that is, with some stable directidinberited  figuration. Figure 2 depicts a schematic representation of this
from the single finger stabilityand some unstable directions. discussion.

In the spirit and language of dynamical systems theory, An important difference between multifinger solvability
we can recast the traditional solvability theory and the abovéheory and the traditional single-finger one, is precisely the
extension to the multifinger case in the following way. Thesaddle-point structure of the selected solution. In this case
phase space flow emerging from the planar interface unstabtbis has dramatic consequences for the phase space flow
fixed point, in the absence of surface tension, ends up at structure in regions far away from both the attracttre
continuum of fixed points. This yields a nonhyperbolic flow, stable ST single finggrand the planar interfac@unstable
since the line of fixed points is marginally stable. The intro-fixed point. That is, by restoring the saddle-point structure of
duction of surface tension yields a natural unfolding of thisthe equal-finger fixed points, the global phase space structure
otherwisestructurally unstabl& flow and restores the hyper- is essentially modified. This is qualitatively different from
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FIG. 3. (Color onling. Schematic rep-

resentation  of  different  two-
B>0 dimensional(2D) dynamical systems

embedded in the infinite-dimensional
phase space. The flat surface is the
zero surface tension dynamics. The
curved surface intersects the other by
construction in a line of initial condi-
tions, and is defined by the evolution
of these with finite surface tension.
Single-finger and two-finger fixed
points are depicted as 1ST and 2ST,
with the prime designating the case
with B#0.

the static solvability case, in which only the local structurefrom a line of initial conditions corresponding to the class
around the attractor is unfolded. In this sense we refer tavhich is solvable for the zero surface tension dynamics. The
multifinger selection adynamicsolvability theory. Itis nota two surfaces defining two different dynamical systems of the
dynamical selection in the sense that surface tension selectame dimensionality do intersect, by construction, in one
particular sets of trajectories. However, the solvability of theline. They also have in common the planar interface fixed
multifinger fixed points corresponds to the unfolding of apoint. If we now take the limit of vanishing surface tension
structurally unstable flow and, therefore, it transforms theye can ask in which way the two surfaces will approach each
global (topologica) structure of phase space. In the next secother. It is clear that, consistently with solvability theory,
tion we will pursue this general qualitative picture in more poth single finger and two-finger fixed points with finite sur-
detail to reach a more quantitative scenario and to assess {§ce tension will approach the corresponding solutions with
what extent trajectories evolving with and without surface;erg surface tension. Since the flow topology cannot be the
tension can depart from each other even if reaching the samgme in the two cases, it is necessary to study more system-

final attractor. atically the effect of surface tension in specific trajectories.

This can be accomplished thanks to the asymptotic theory
V. SINGULAR EFFECTS OF SURFACE TENSION: developed by Tanveer and co-workers, and with the help of
BEYOND DYNAMIC SOLVABILITY numerical Computation_

In the preceding description, it has been established that. Asymptotic theory
the introduction of a vanishingly small surface tension has a ) ) ,
strong impact on the global structure of the phase space flow. ' he starting point of the perturbative framework devel-
The idea that the flow with and without surface tension wa®Ped by _Ta_nveé? is the fact that the zero-surface tension
not topologically equivalent was already recognized in RefProblem is ill-posed as an initial-value problem. Once the
43 with the study of the simplest exact solutions. However/ll-POsedness is cure7d through the proper analytical continu-
one could hope for making a step further and have a mor@tlon_ of the problen§! a well defined perturbative scheme is
detailed description of the effect of surface tension on the?0Ssible.
trajectories in phase space. Our proposal was then to focus The remarkable and surprising result that this analysis
on specific low-dimensional invariant subspaces of the dyunveiled is the fact that, in general, the limit of trajectories
namics, taking advantage of the exact solutions availabldor vanishingly small surface tension can only converge to
These yield sets of ODE’s for the finite sets of parameters irffajectories evolved with zero surface tension for a time of
the conformal mapping describing the solutioisee more order one, that is, a time that does not diverge as surface
details in Refs. 44—46The idea is then to look at those sets tension tends to zer8:** While this would be an expected
of ODE'’s as low dimensional dynamical systems and discuskesult for solutions leading to finite-time singularities in the
their properties. A geometrical way to illustrate the compari-case o8=0, it is not at all intuitive for smooth evolutions of
son between zero-surface tension dynamics and small supoth cases, and even more surprising if the two evolutions
face tension dynamics, for two-finger configurations, isevolve towards the same attractor at infinite time, as will be
shown in Fig. 3. Note that the invariant manifolds of the twothe case. For the linearizédr weakly nonlinear dynamics
different dynamics, when imbedded in thénfinite- of the problem, for instance, the time for which the B
dimensiongl space of interface configurations cannot coin-=0 and theB#0 converge scales as=—logB. The phe-
cide. We can construct a two-dimensional dynamical systemomenon reported by Siegel and Tanveer, thus, concerns the
with nonzero surface tension dynamics as the one defined kstrongly nonlinear dynamics.
the evolution to infinite timéforward and backwandstarting The basic idea of Tanveer’s asymptotic theory is that one
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B=0+
FIG. 4. (Color online. Comparison of
the two invariant manifolds of Fig. 3
B=0+ ' for B=0 and for the limitB=0". The
J two surfaces coincide until the impact
B=O ‘\\ of daughter singularities and separate

' < B_O from each other after that.

Line of impact of daughter singularities

can construct a correction to the zero-surface tension dynam- The most striking result was the observation that non-
ics which depends only on that zeroth order dynamics andero measure sets of initial conditions corresponding to un-
which predicts its own failure according to the following equal fingers could be found for which the evolution with
scenario. The leading surface tension correction modifies theero surface tension would give the wrong output of finger
analytical structure of the conformal mapping which de-competition. That is, in a configuration with two unequal
scribes the interface shape by giving rise to a localized cloudingers, the one approaching the single finger stationary so-
of the so-called daughter singularities. This cloud has a sizgution (the winney would be different for zero surface ten-
of orderB*3 and its evolution is determined once the zerothsjon than for any arbitrary value of surface tension, no matter
order is solved. Generically, one of these daughter singularihow small. Therefore, the attracting fixed point B0 and

ties may hit the unit circléwhich is mapped to the interface  for B=0" do coincide, but the path in phase space to reach
within a finite time. This then signals the failure of the per-thjs attractor is completely different. Notice that this is an
turbation scheme. For times after this event, the two dynammntrinsically dynamic phenomenon, unrelated to the steady

ics may differ significantly. state selection problem, since the width of the selected finger
_ _ at the end is the same in both cases. Remarkably, this sur-
B. Numerical results and general picture prising behavior is encountered in a finite measure region of

Tanveer and co-workers checked this scenario with nuPhase spac€:*® The modification of the phase space flow
merical simulations in the case of single-finger Structure by surface tension is thus dramatically manifest in
evolutions**? For instance, they showed how the evolution this region.
with B=0 of the interface leading to a finger with the wrong [N Refs. 45 and 46 it is shown in explicit examples how
width (different from the 1/2 relative size predicted by selec-the impact of the daughter singularity signals the time after
tion theory, was indeed correct until a finite time well into Which the evolution wittB= 0 differs significantly form that
the strongly nonlinear regimevith a well developed finggr ~ of small but finite surface tension. From this scenario, then,
After that time, identified by the impact of a daughter singu-we can conclude that the trajectories with finite surface ten-
larity, the dynamics with small but finite surface tensionsion converge one to one to those &0 for a finite time
abruptly modified the evolution towards the correct finger(which can be evaluated in terms of tBe=0 dynamics.
width. The resulting picture in the limit dB=0" can thus be illus-

The challenge was then to check this scenario in situatrated schematically as in Fig. 4. This results from the con-
tions where different fingers coexist and compete. A comprestruction of Fig. 2, taking the limit of the line of intersection
hensive study of these situations for very small surface tenef initial conditions to approach the planar interface fixed
sion is very demanding numerically and was performed inpoint, and then taking the limB— 0. Then, the two surfaces
Refs. 45 and 46. The most interesting configurations studiedescribing the two dynamical systems will coincide in a fi-
were those in which the competing fingers were consistentite region containing, in addition to the planar interface
with the correct final width selected by surface tension. Infixed point, the single-finger and the doubly degenerate
these cases, the dynamical role of surface tension could Hsaddlg fixed point. This region will end at the line of impact
isolated from the selection phenomenon itself. While the picof the daughter singularities. The subsequent evolution in
ture of the asymptotic theory was checked to be consistent, laoth cases will differ then, and thus the surfaBes0 and
series of quite surprising results were found. B=0" do split beyond that line.
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The general conclusion is thus that, for a time of orderVl. DYNAMICS OF FINGER COMPETITION: THE ROLE
one (which depends on the specific initial condition but canOF VISCOSITY CONTRAST

be determined exactly from the zero-surface tension dynam- e general picture of finger competition where fingers
ics) surface tension behaves as a regular perturbation and thg; 1 screen the Laplacian pressure field from each other
effect of introducing a small value @ is small. After that  enging up at a single finger surviving and approaching the
time, the evolution is not only quantitatively different but ST solution, even including the singular effects of surface
also qualitatively, since the topology of the phase space flowension, is restricted to the one-sided Saffman—Taylor prob-
is different. While it is not ruled out that some initial condi- |em, that is, to viscosity contrast=1 where c=(u,
tions do not differ qualitatively, it can also occur that in some — ;, )/(u,+ ;). Already in the 1980s, Tryggvason and
finite ranges of initial conditions the trajectories with the two Aref°! observed numerically that the viscosity contrast has a
dynamics depart completely from each other, even if thestrong influence on the dynamics of Hele-Shaw flows and
eventually approach the same final attractor. consequently in the morphology of the fingering patterns
formed. Their analysis was rather qualitative though, due to
some extent to the computer limitations of that time. This
numerical evidence was later confirmed by the experimental
results obtained by Mah® using a experimental setup
C. Noise and the limit of small surface tension where the instability was driven by gravity and the fluid used

In the above discussion we have been dealing with th&/as the binary-liquid mixture isobutyric acid plus water at
role of surface tension as a singular perturbation in the d critical composition, that allowed to reach very low values of

namics corresponding to the high viscosity contrast limit. Int€ ViScosity contrast parameter. Simgite/o fingej con-

this case, it has been commonly believed that, in the channd@urations were also studi€tby means of direct numerical

geometry, the single-finger ST solution is the universal atiNtegration that confirmed the dramatic differences between
’ igh ¢ and lowc dynamics. The conclusion was that for low

tractor of the dynamics. However, in the case of very smalf1 ) : i
cosity contrast the finger competition process was

surface tension this view has been questioned on the basis )Sf v inhibited d th . b df
the effect of noise, stating that for very small surface tensior?sq rongly inhibited, ang INe coarsening process observed for

the behavior of the system is essentially chaStithe argu- _|gh V'S.COS'ty contrast ™ that leads to the formation of a
) . - . . ... single finger does not seemed to take place.
ment is based on the instability of fingers to tip-splitting

o . o In an attempt to clarify the issue on more rigorous
when surface tension is small. In this respect it is worth rounds. in Refs. 47 and 48 we developed a tonoloaical an-
clarifying that the tip-splittings observed in simulations such? ’ ; P holog P

as those of Ref. 68 are spurious effects of round-off noisg roagh to study f|nger.compet|t|on that allgwed for a differ-
: P ent view and new insights on the dynamics of lowWe
which can be suppressed by a proper noise filtering schem

The difficulty lies in the fact that th Hivity 10 th : Sbnjectured that the size of the basin of attraction of the
€ difmicuty fies I the fact that the Sensitivity to the noise ffman—Taylor depended on the valuecofThat is, even

. L . a
is enhanced as surface tension is decreased. This makes %‘augh a ST finger solution exists and is stable for any value

numerical simulation of small surface tension flows very de—Of ¢, it might not be the universal attractor of the dynamics

manding. A careful analysis clearly shows that once the noisg, . 5y viscosity contrast. Obviously this raises the question
is appropriately filtered, however, the intrinsic dynamics ;¢ the Jong time fate of the system when not attracted to
does lead the interface to the ST finger, no matter how fap gjngje finger configuration. With the current computer
from it. The conclusion that this is the universal attractorjustEOWer and the substantial progress made on the numerical
needs to be taken prudently if there is a finite amount oby4rithms for this kind of problems, it seemed thus appro-
noise. Then if one takes the limit of small surface tension, for,iate to reconsider those open questions and try to shed new
a fixed amount of noise, one would certainly reach a pomﬁght into the problem, both testing the scenario conjectured
where the ST finger is not stable to finite perturbations ang, Refs. 47 and 48 and providing a more quantitative char-
then the chaotic picture described in Ref. 68 would be relycterization of the sensitivity to viscosity contrast. In addi-
evant. This issue is thus only a matter of noncommutingjon, there is another fundamental reason to explore this issue
limits (small surface tension vs weak nois&he intrinsic  \ith precise numerics, that is, the relevance to the fundamen-
dynamics of the free boundary problem as defiiedthe  ta] question on the occurrence of topological singularities
absence of nOigehOWGVEr, does have a Umque and Universabssociated to interface breakup through pinchz%ﬁor low
attractor, namely the ST finger. viscosity contrast, indeed, one observes both in experiments
This last statement refers to the case of high viscosityand simulations, an enhanced tendency to interface pinch-
contrast limitc=1. However, in the following section we off. While we will not specifically address here the nontrivial
will see that the dynamics is much reacher and puzzling oncquestion of whether the dynamics leads spontaneously to
the viscosity contrast, the other dimensionless parameter dinite-time pinch-off, we will push the idea that the tendency
the problem, is allowed to depart from that limiting value. to pinch-off can be related to the fact that attractors with
Then, the ST attractor has only a finite basin of attractiondifferent topology coexist and compete. Recently, the prob-
even for surface tension of order one, and new physics i'em of Hele-Shaw flows with arbitrary viscosity contrast,
found. In this case, however, this phenomenon is intrinsic tdargely neglected in the literature in comparison to the high
the dynamics and has nothing to do with the noise sensitivityiscosity case, has received some attention also from a math-
just discussed above. ematical point of view. Howisdfi has presented a formal
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technique for finding explicit solutions to the two-phase flow  2x
in a Hele-Shaw cell, with the confessed intention to drive the
attention of the community to this fundamental problem.

A. Basin of attraction of the Saffman—Taylor finger - T

The aim of the present subsection is to present a first
attempt to confirm and characterize in a quantitative way the
dependence of the basin of attraction of the ST finger on
viscosity contrast.*®’* Obviously, the numerical explora- 0
tion of the infinite-dimensional phase space of the problem o . .
can only be undertaken partially. It is thus crucial to devise ? ' '

0

-~ T

an optimal strategy in selecting the class of interface con- ) ) |

figurations which will be most useful to elucidate the generic
guestions posed on the dynamics with a minimal nhumerical
effort.

It seems clear that two-finger configurations will be ad-
equate to study finger competition. We will choose initial
conditions with two sinusoidal modes, with wave numbers 0 . L . L
and X, with small amplitudes so that their growth is initially 10 20
linear. Furthermore, we will first choose surface tension in
such a way that the two modes have exacﬂy the same line&tG. 5. Evolution of the initial conditiora; =0.05 anda,=0.072 85, with
growth rate. This is always possible and has the great advaf- /7 andc=0.0 (upper plo} andc=0.8 (lower plod.
tage that the ratio between the two mode amplitudes is kept

cr?_nstant as Iong as_ltlhg_ dynlam_lcs 'f Ilnelgr. De_watlons_ frorTi}ltrinsic differences between high and low viscosity contrast
': IS gg_r:_stant r.?rt]'otr:'Y' |redc_:_y S|?hna|_non Inear Tr':erz_aclgons. refer only to the process of finger competition, that is, they
n adartion, wi IS condition the linéar growin yields a 4.6 manifest as long as unequal fingers coexist.

selfsimilar solution and the actual initial amplitude of the We have numerically computed the evolution of the ini-
modes is thus an irrelevant parameter. The amplitude ratio iﬁ‘al condition Eq.(12) for various values of the viscosity

then t.he on]y parametgr th_at spans the phas_e space. ngntrast, surface tension and initial conditions. We have ob-
qne-dlmensmr_]al prmechqn IS opwously a dr.aSt.'C S'mpl'flca'served that for long times the interface exhibits two different
tlon. but we will see that it prpwdes use.ful' insights. It can kinds of configurations, illustrated in Fig. 5 and consistently
obviously be made less restrictigeposteriorito assess the with the two types of finger dynamics observed in Refs. 47
range of validity of the partial conclusions. In any case We_ 4 48 for the two extreme values ot 1 andc=0. The

WélLdlealNW'tth t(;l}lrr:ensmtnltesds sburfac?h_tensmn Off orclier u_n'%two types of dynamics give rise to two distinct morphologies
(B~1). Note that, as stated above, this range o Values IS s tollows. As usually seen for high viscosity contrast, in
&vhat we call type | dynamics the leading finger screens out

n_eouslt)k/] from the Imeqr ;nSt?tt"r:'ty of lthe rpl)lanar m_t”erface, e trailing one by suppressing its growth to the point that the
since they occur precisely at the scale where capiflary and, finger is completely halted or exhibits a residual evo-

viscous forces are of the same order. We will not addres tion driven by surface tension. The key defining point of

here the small surface tension limit for general viscosity con;[yloe | dynamics is that the leading finger widens to attain a

trlait,l although Wt?l recovg\jlnlze.”thl;s' L?I a mteresntng a?ﬁ tcc_’métationary shape close to the single-finger solution predicted
pietely open probiem. Ve will brietly comment on that in by selection theory, thus absorbing all the injected flux, while

Sec. VII. ) L
. L . ) .. the secondary finger is either completely suppressed or fro-
The simplest initial condition to study finger competition zen y 1ing pietely supp

is thus a two-fingeXor two-bump interface, with two Fou- In the second type of behavidor type 1), which is

rier modes of the form typical of lower viscosity contrast, the growth of the second
x(y)=—a, cogy)+a,cog2y), (12) f[nger is not halted,. although its speed may decrease a con-
siderable amount with respect to the speed of the large finger.
where botha, anda, are real and positive. The form Eq. At long times the large finger advances approximately at
(12) describes an interface with one or two bumps, dependeonstant velocity, but with a substantial difference with re-
ing on the ratioa,/a,: If a;<4a, the interface has two spect the previous case: The finger sides bend to give rise to
bumps, and one otherwise. The valuespfanda, are cho- a narrow neck behind the leading head. This neck can be-
sen small enough to guarantee that the initial interface is weltome extremely narrow to the point of approaching a pos-
inside the linear regime. The two modes present in(#8)  sible topological singularity in the form of interface pinch-
have equal growth rates for a surface tension va@eel/7.  off. The appearance of some sort of a neck is rather usual
It is important to stress at this point that the evolution ineven for high viscosity contrast, since fingers typically de-
the case where any of the two amplitudes is zero leads to theelop overhangs. Indeed, at short times both fingers are sub-
ST finger(single or doublg regardless of viscosity contrast. stantially narrower than half the channel width, and later in
The basin of attraction of the ST is thus always finite. Thethe evolution the region of the leading finger that is ahead
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widens also in type | competition. The key point here, how- 1 - T - T T |
ever, is that the narrow neck in type Il dynamics supports a
vanishingly small flux, so that the leading head or bubble
increases its area only very slowly. On the other hand, there 0.75
is an amount of flux that feeds the secondary finger which
then exhibits a nontrivial dynamics which persists in one
way or another for all times. 0.5 Type II .
When a pronounced necking develops, the shape of the
guasi-bubble formed is very close to the zero surface tensior
bubble shape described in Ref. 75. The secmndhalle) fin- 025 i
ger exhibits a variety of behaviors: It may or may not de-
velop necking, and it can also present tip-splitting, but in all
cases it will exhibit some sort of “persistent” dynamics. 0 , ! , . .
Note that the whole system is becoming more and more 9 0.25 0.5 0.75 1
elongated with time so there is increasing space for the sec-
ondary finger to evolve independently of the leading tip re-FiG. 6. ¢, vs d, for an initial condition of the form Eq(12) and surface
gion of the primary finger. We have not observed any cleatensionB=1/7.
indication of a steady state behavior of the secondary finger
in type Il dynamics, although the tip region of the leading ] _
finger often reaches a practically stationary shape in a redh® small finger approaches a constant value for long times,
sonably short time. The two morphologies and correspondingnd type Il otherwise. We have applied this criterion to study
dynamics just introduced were described and characterizedyStematically the dependence of the viscosity contrast tran-
with topological properties of the fluid flow in Refs. 47 and Sition valuecr on the initial condition. In Fig. &7 versusd
48 for the extreme values @f Here we will see that for a 1S plotted, for an initial condition of the form Eq12) and
given initial condition, the system will display unambigu- Surface tensionB=1/7. d=0 corresponds to two equal
ously one of the two behaviors depending on the viscositPUmps, andd—1 corresponds to a single bump. From the
contrast. Remarkably the transition between the two behaw!Ot it can be seen that, as the lengths of the two initial
iors is quite sharp, with slight changes in the value of thefm_gers become cl_ose_ to each other, the ws_cosny contrast that
viscosity contrast driving the system from one kind of be-drives the dynamics into the type | dynamics tendsol.
havior to the other one. For c=1, regardless of how small the initial difference in
With the simplest choice of surface tensiBrdescribed finge_r tip position is, the long time iqterface configuration
above to assure the same linear growth of the two mode&0nsists of a steady Saffman—Taylor finggmpe I). In oppo-

according to the linear dispersion relation of the proBfem sition to this limit, when the length of the small finger tends
to zero, type | dynamics occurs for any value of the viscosity

w(k)=|k|(1-Bk?), (13 contrast. Then, if the initial interface consists of a single

we are left, in our first analysis, with a uniparametric family Pump the long time interface will be a Saffman—Taylor fin-
of self-similar initial conditions in the linear reginfé.The ~ ger. The convexity of the curver(d) shows that type II
quantity we will use to parameterize the two-bump initial dynamics has a larger basin of attraction than type | dynam-
condition Eq.(12) is the ratio between the tip difference and ics. Furthermore, the very small slope of the boundary be-
the total width of the interface, measured as the length diffween the two behaviors in Fig. 6 when approactirgl is
ference between the maximum and the minimum of the inielling us that the maximal sensitivity to viscosity contrast is
terface. This parameter will be calle and for our initial ~ Precisely atc~1. The physical picture of finger competition

Type I

conditions it reads based upon Laplacian screening, which is the common one
for the high viscosity contrast case, happens to be less ge-
d= 1 _ (14) neric than the low contrast behavior. Figure 6 describes the
1 1a a variation and sensitivity of the basin of attraction of the ST
2" 16 a, + a, finger to viscosity contrast, and tells us, given a value of

. . _ ) and d, whether or not the dynamics is attracted to the ST
d is a function of the ratioa;/a,, and since the surface finger

tension is Chosen to make the growth rate of k@;mndaz_ The weakly nonlinear approach described in Sec. Il A
the samed remains constant throughout the linear regime

‘and Ref. 58 can be applied to the present problem in order to
Then, the value of the viscosity contrast at which the transi- PP b v

. . ain some insight into the dependence of the dynamics on

tion bet_w.e.en type .l .and type Il-dynam|csf takes p"'?‘ce depenc%e viscosity contrast at the early nonlinear stages of the

on the initial c_:ondl'qon., or equwalgntly, IS a.lfl.mc'_[lon of evolution. According to the weakly nonlinear equations, the
As a precise criterion to establish the distinction bEtweer}implitudesal(t) anda,(t) of the two relevant modes obey

types | and Il dynamics, we have used the area covered b@ﬁe following equations:

the small finger and the bottom line of the interface. This

definition has no ambiguity for our class of initial conditions, ~ ai(t) ’ 2 3,
and the results do not depend significantly on the details of a,(t) 7 1+2cay(t) +[4c"—1]ay(t) — zai(t),
such definition. Then, the dynamics is of type | if the area of (159
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or well below one. Thus, in situations with arbitrary viscosity
contrast, finger competition is generically absent or weak,
and the ST finger may not be reached. Instead, a more com-
plex situation arises, and attractors absent for high viscosity

09+ contrast appear. This will be discussed in the section below.

B. Taylor—Saffman bubbles: The competing attractors

0.8 We have observed that within type Il behavior, in certain

cases the leading finger evolves for long times to a configu-
ration consisting of a bubble-shaped tip connected to the rest
of the interface by a long, narrow neck, that can be extremely
0.7 : ' : ' - ! - thin next to the bubble region. This bubble formation process
0 0.25 0.5 0.75 1 . X :
d has been observed for a wide range of values of the viscosity
contrast, except for values very close to 1. Formation of
FIG. 7. ¢y vs d, for an initial condition of the form Eq(12) and surface  bubbles for low viscosity contrast has been previously re-
tensionB=1/14. ported by Ref. 51 in more complex interfacial configurations.
Bubble shapedclosed exact solutions are known foB
at) 6 =0,® and similarly to the ST finger, bubbles are also solu-
= —{1+4a5(1)}. (15h)  tions with finite B via a similar selection mechanism.

() 7 A detailed study of the long time asymptotics of type Il
From these equations it can be observed that the viscosigynamics and, in particular, the issue of whether the dynam-
contrast reinforces the growth of the mokle 1 through a ics leads to finite-time pinch-off, is much beyond the scope
quadratic coupling with the mode= 2. On the contrary, for of this section, and is indeed one of the future directions to
c close to zero this quadratic term is small and the cubic terntbe explored. The basic idea we would like to push here is
is negative, thus weakening the growth of the mieel in  that, regardless of whether or not there is finite-time pinch-
front of the modek=2. Hence, in the weakly nonlinear re- off, it seems clear that the isolated bubble solutions do be-
gime the reinforced growth of,(t) pushes the interface have in practice as attractors of the dynamics, at least par-
towards the single finger configuration fodarge, and foc tially. The fact that the attractor of the dynamics may have a
small the growth ofa,(t) is weakened and the dynamics different topology than the initial interface is an interesting
tends to the two-finger configuration. and unusual situation which in a sense explains, in the lan-

A change in the surface tension value yields qualitativelyguage of dynamical systems, why the tendency to pinch-off
similar results, but now the two initial modes have differentis observed so often and indeed generically in the problem.
growth rates and the interface can suffer significant changes Taylor and Saffmaf? found a two-parametric family of
even in the linear regime: A second bump can develop fronexact solutions of the problem with zero-surface tension con-
a configuration which initially had one bumpBf<1/7, or a  sisting of symmetric bubbles advancing with constant veloc-
bump of a two-bump configuration can be suppresse if ity 2. Its functional form is

>1/7. Then, from this simple linear regime considerations 2 U—1 -

one can infer that a plot of; versusd will have a major Xx=———tanh ! sinz(—u)\)

difference from the plot depicted in Fig. 6: Fde=1 (single ™ U 2

bump ct will be greater than zero iB<1/7. In Fig. 7,ct T u = \1¥2

versusd is plotted forB=1/14. As predictedcr(d=1) is —COSZ(EL{)\ tarf i EUH , (16)

larger than zero and for this value Bfit is closer to 1 than
to 0. However, one must keep in mind that B 1/7 the and contains two parameters, tii@¢imensionless bubble
linear growth rates for the two modes are different, and convelocity® &/ and the maximum width. of the bubble(mea-
sequently the initial condition Eq12) is not described by a sured in channel-width unitsThe areaS bounded by the
single parameter in the linear regime. Then, if we had cominterface reads
puted ct(d) with different values of the ratim;/a, we U—1
would have obtained a curve different from the one of Fig. 7, S= 16uﬁtanh‘1
but qualitatively equivalent. On the other hand,Bf>1/7
cr(d) will reach zero ford<1. In the limit /N — 1 with I/ fixed, the are&S of the bubble
Figures 6 and 7 show that type Il dynamics occupies thaliverges and the steady-state Saffman—Taylor finger solution
larger part of the phase diagrams. In particular, for low val-is recovered. The area of the bubble does not spétégpd\
ues ofd the behavior of the system is type Il except for since Eq.(17) only provides one relation between them, and
viscosity contrasts very close to one. Taking into account thathere exists a continuum of solutions with arbitrary speed
the fingers arising spontaneously from the linear instabilitythat satisfy the area condition. Thus, we encounter a selec-
of the planar interface have similar length, thatdds close  tion problem fully analogous to the classical finger-width
to zero in real experiments, type Il dynamics seems to be theelection problem, where the zero-surface tension solution
dominant behavior as long as the viscosity contrast is slightlyor a steadily translating Saffman—Taylor finger has an arbi-

tarf

ZL{)\” (17)
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2n

3m/2

FIG. 9. Evolution of two different initial conditions witta;=0.02, a,

=0.089 72(solid line) anda;=0.07, a,=0.059 88(dashed ling The vis-

ok | . | . | ] cosity contrast i€=0.8 and surface tension B=1/14. The final times are
18 20 27 t=9.25(solid line) andt=8.0 (dashed lingin some dimensionless units.

FIG. 8. Bubble region of the computed interface with initial conditan : iB
=0.038 223,a,=0.009 728 55¢=0.5 andB=0.01 together with the inter- The area of the bubble Shaped region, for a g d

face obtained from Eq18) with 2/=1.975 anda=0.8969. ¢ depends also on the particular initial condition. This is
illustrated in Fig. 9, where the evolution of two different
initial conditions but with same values 8fandc is plotted.

The area of the two bubble shaped areas, although not com-
,%Ietely formed yet, is clearly distinct, showing that the two
evolutions are being attracted, at least during a certain time,
to different bubble fixed points. Apparently, the area of the

trary width. Tanvee?’’ showed that the introduction of a
finite surface tension removes the degeneracy in the bubb
speed/, and that families of bubbles that do not contain the

symmetries present in the solution Ed6) exist. ) ; I~ .

Since the bubble-shaped region of the interface thaphubglebgranggs cpngngously W'thdthe (;r.]f'ft'al cond_mon, far;]d
forms for some parameter values resembles the TaylorL € bubble region IS being attracte -to fiterent points of the
Saffman bubble solution, we have compared the bubble reqontlnuum of_Taonr—Saffman SOIUt'.OnS' AS a gene_rgl rule,
gion of the computed interface with fini and the bubble our qompgtatlons ShO.W that, for a given initial condition, as
given by solution Eq(16). For convenience the conformal the viscosity contrast IS decrgased, thg area of Fhe bubble gets
mapping version of Eq(16) is used. The bubble shape in smal_ler. A p_oss_|ble e>_(planat|on for th|s_ behavior and more
terms of the complex variable=x+iy read<’ details _of this dls_cussmr_l can be found in Refs. 46 and 74.

_ _ While many interesting questions remain open, most re-
1 2 1)In 1+eBa

- markably those concerning finite-time pinch-off, the conclu-
u 1—e'Sy sions of this analysis are clear. On the one hand, the dynam-
where the constant parametertakes values in the range

ics of low viscosity contrast seems to be more generic than
(0,2) and the interface shape is described by€3<27. The

that (most usual in the literatuyeof high viscosity contrast,
. o . in the sense that only for values ofvery close to one the
interface width is 2ZrA and the bubble is centered along the y y
mid-channel axis. The parameter relates ton and U

standard finger competition scenario is typical. There is thus
through the equation

z(s)=In + +i, (18

e+«

a very strong sensitivity of the dynamics ¢oin the neigh-
borhood ofc=1. On the other hand, we have reinforced the
2a conjecture that there is a continuous reduction of the basin of
1— az)- (19 attraction of the Saffman—Taylor with. Furthermore, we

_ _ ) _ have identified the isolated Taylor—Saffman bubbles as the
In Fig. 8 the bubble region of an evolution with=0.5 and  yissing attractors which compete with the Saffman—Taylor
B=0.01 is plotted together with the analytical bubble with finger Having a different topology than that of the interface
U=1.975 anda=0.8969. The agreement between the tWojn, the initial configuration, the generic tendency to pinch-off

curves is extremely accurate, except for the neighborhood Qfserved in experiments and simulation finds a natural ex-
the neck connection. For larger values of surface tension, thgianation.

agreement is still remarkably good. The excellent agreement
between the bubble region of the computed interface and th8
Taylor—Saffman bubble is a strong indication that the inter-
face is being(locally) attracted to the Taylor—Saffman A variation of the traditional viscous fingering problem
bubble fixed point. In addition, this also suggests that then radial geometry which has been studied more recently is
dynamics of the bubble-shaped region is almost independetitat of rotating Hele-Shaw flows. This has been explored
of the rest of the interface. Note, however, that through theheoretically following parallel steps to the case of channel
neck that connects the two parts of the interface there is geometry. It was shown that exact solutions for the case of
residual finite flux of fluid that allows a slight increase of the zero surface tension can be found and that rotation, under
bubble area. This variation is slow enough to keep it verycertain circumstances, may prevent the formation of cusp
close to a stationary solution on the time scale of interfaceingularities®® The weakly nonlinear analysis has also been
displacement. extended to this casé.On the experimental side a series of

1

A= ;atan

. Rotating Hele-Shaw flows
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FIG. 10. Typical experimental pattern of low viscosity contrast fingering
under rotation. Note that fingers do not appear to compete and develog1
narrow filaments which lead to experimental pinch-off.

FIG. 11. Typical experimental pattern for= 1, with air as the outer fluid, if
e cell is initially dry.

contrast. While in rotating Hele-Shaw flows it can be proven

) that interface pinch-off occurs at least at infinite time, the

works of Ortn and co-workers have explored systematicallydetailed study of the pinch-off itself, in particular for the case
several aspects of rotating Hele-Shaw floits** of two viscous fluids, is inherently different from that of

One of the interests of this experimental setup is theordinary Hele-Shaw flows and is one of the interesting prob-
possibility to explore the region of low viscosity contrast |ems that is currently under stul§?®*
while driving the instability by density contrast, in analogy
with gravity-driven viscous f|_nger|ng in channel geoméﬁy._ VII. SUMMARY AND PERSPECTIVES
The lack of competition in this case leads to completely dif-
ferent morphologies than those observed for high viscosity In this article we have briefly reviewed some of the re-
contrast(see an example in Fig. L0Both cases, however cent results on the study of viscous fingering after the full
differ even more strongly from the traditional fingering pat- understanding of the steady state selection problem. Since
terns for fluid injection. An exhaustive experimental study ofthen, the interest has focussed primarily on dy@amicsof
low viscosity contrast fingering in a rotating Hele-Shaw cellfingering patterns. A leading idea of this article has been the
can be found in Ref. 81. fact that the dynamics of this highly nonlinear and nonlocal

The importance of wetting effects on the boundary con{free-boundary problem hides surprising and nontrivial dy-
ditions at the interface has also been made clear in the casmmical features which challenge our intuition and question
of rotating Hele-Shaw flows, for instance giving rise to very our qualitative understanding of Laplacian screening as the
different patterns depending on whether the cell is prewettetasic mechanism of finger competition and growth in this
or nof?#(see an example in Fig. LIThe traditional bound- class of problems.
ary condition has been shown to be valid in general if the At the level of the ST instability itself we have recalled
cell has been uniformly wetted by a thin film of the wetting very recent systematic extensions of the linear stability
fluid. Otherwise, if the wetting fluid displaces the nonwettinganalysis to the weakly nonlinear regime, and the identifica-
one in a dry cell, the resulting patterns differ significantly. tion of a class of exact solutions with finite surface tension,
The need to incorporate the physics of the motion of contacthe elasticasolutions, as the unstable subcritical branch of
lines in the boundary condition then brings up a new microthe ST instability. In the experimental test of the resulting
scopic length scale into the problgmelated to the thickness nonlinear ST instability, a new experimental procedure has
of the precursor wetting layemwhich, remarkably enough, been developed to generate arbitrary interface configurations
fixes some basic morphological features of the macroscopifor the initial condition. This opens a wide range of possi-
pattern. This point is now a promising direction of currentbilities to explore dynamical behaviors in a direct way that
research. was not conceivable before.

Another important aspect that has originated in the study  Concerning the role of surface tension we have reviewed
of rotating Hele-Shaw flows is that of topological singulari- the basic leitmotif of a series of contributions aiming at elu-
ties. While the tendency to pinch-off has already been demeidating the possible extension to the dynamics of the tradi-
onstrated in low-contrast fingering in the channel geometrytional solvability theory. The remarkable obtention of broad
such phenomenon is strongly enhanced by rotasee Fig. classes of exact time-dependent solutions for zero surface
10). This has been worked out in detail in terms of viscositytension was the starting point. The use of concepts of dy-
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namical systems theory, together with the extension of statisolutions. The fact that these have a different topology than
solvability theory to multifinger configurations, leaded us tothe initial condition provides an explanation of the observed
the definedynamic solvabilityas the scenario in which sur- tendency to interface pinch-off.
face tension unfolds the structurally unstable phase flow as- The effect of viscosity contrast has only been studied for
sociated to the degeneracy of multifinger stationary soludimensionless surface tension of order one. It remains an
tions, restoring hyperbolicity of multifinger fixed points and, open and challenging question to explore how the perturba-
consequently modifying essentially the topology of the phaséive picture of small surface tension is modified if viscosity
space flow in regions far apart from the attractor itself. For-contrast is different front= 1. While classicalstatig solv-
mally, this phenomenon makes contact with stdtiadi-  ability theory is not fundamentally modified by varyirgy
tional) solvability theory in the analysis that isolates a dis-the situation for the time-dependent behavior is expected to
crete set out of a continuum of stationary solutigalkso a  be much more involved, as suggested by the lack of explicit
process of restoring hyperbolicity in the single-finger selectime-dependent solutions f@&=0 andc# 1. To our knowl-
tion cas¢. However, we call idynamicbecause of the quali- edge the only exact time-dependent solution for arbitary
tative modification of the global phase space flgphase (B=0) is the (time-dependentsingle-finger ST finger of
portrait as a consequence of the saddle-point structure urrelative widthx = 1/2.8° Remarkably, other filling fractions
folded for the surviving multifinger solution. have time-dependent single-finger solutions only for
The pursuit of this idea and the completion of the gen-c=1.2%8 This result unveils an intriguing connection be-
eral picture arising from the comparison of the dynamicstween the width selection problem and the dynamical role of
with strictly zero and with vanishingly small surface tension, viscosity contrast.
has been possible thanks to the asymptotic theory developed The case of rotating Hele-Shaw flows has been studied
by Tanveer and co-workers. Their main conclusion, namelonly quite recently both theoretically and experimentally and
that after a time of order one the two dynamics are signifi-has revealed a wealth of new phenomena and new interesting
cantly different, has been put to the test and has shown spequestions. Apart from the interplay between dynamics and
tacular divergences between trajectories evolving from thénterface morphology, the most salient feature in terms of
same initial conditions but with the two dynamics abovefuture research has been the enhanced occurrence of topo-
(with and without surface tensipin sufficiently generic re- logical singularities and their relation to viscosity contrast.
gions of phase space. While pinch-off singularities have been studied in Hele-
The general picture for the comparison of the dynamicsShaw problems in the past, it was usually in rather particular
with and without surface tension is thus as follows. In gen-setups, specifically designed to produce pinch-off. In the case
eral, the dynamics with zero surface tension can only be af rotating Hele-Shaw flows, however, it has been shown that
good approximation of that with a small surface tensionthe dynamics leads naturally to situations approaching pinch-
(regular perturbationfor a time of order unity, and it is in off. However, a detailed study of the asymptotic approach to
general completely wrong after that tinf@hich can be de- pinch-off within a lubrication approximation is still lacking.
termined in terms of the dynamics of zero surface tension This point is currently being explored both analytically and
The dramatic effect on the structure of the phase space flomumerically®*
which we calldynamic solvabilityis only manifest after that The study of rotating flows has also pointed out the need
time of order unity. Most remarkably, even families of tra- for a more careful study of the effective boundary condition
jectories evolving towards the same attracttre single- at the interface when the wetting fluid is displacing the non-
finger solution predicted by static solvabilitwith both dy-  wetting one, a situation that is usual for centrifugally driven
namics may follow phase space paths completely apart frorflows but that is atypical in more traditional experiments. In
each other. This occurs for finite-measure sets of initial conthe former case, having the cell prewetted makes a real dif-
ditions and clearly points out to an inherentlynamic sin-  ference. The description of the wetting fluid advancing in a
gular effect of surface tension. We thus see that the globalry cell relates then to the motion of a contact line, a com-
restructuring of phase space introduced by surface tensiamon but generally unsolved problem in fluid mechanics. A
goes much beyond the modification of local flow structurevery exciting preliminary study shows that, even with a
around the fixed pointgas for static solvability, and there- rather crude description of the contact line motion, the effect
fore, the qualification ofdynamic solvability makes full  is not only appreciable quantitatively but also qualitatively in
sense. the overall morphology of the resulting patterns. The treat-
Another class of results which question the naive picturement of the contact line requires indeed the introduction of a
of finger competition are those referring to the dynamicalmicroscopic length scal@elated to the thickness of the pre-
role of viscosity contrast. We have shown that the basin otursor wetting film. It is thus remarkable, in a way that is
attraction of the Saffman—Taylor finger is only the full phasereminiscent of the effect of the capillary length on pattern
space for the strict limit of high viscosity contrast=1), selection in themicroscopic solvabilityscenario, that such a
while it decreases gradually with to a small but not van- microscopic length scale has a drastic effect on the macro-
ishing region forc=0. The maximum sensitivity to is pre-  scopic pattern morphology. This open question is also of
cisely atc=1, while the behavior for lowee, for which no  great interest and also sets forth a promising future perspec-
finger competition is observed, must be considered as mortive.
generic. Thepartia) attractors of the dynamics which com- Finally, one of the most interesting lines of future re-
pete with the ST finger have been identified as closed bubblgearch in the context of Hele-Shaw flows consists in adding
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