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We study numerically the disappearance of normally hyperbolic invariant tori in quasiperiodic
systems and identify a scenario for their breakdown. In this scenario, the breakdown happens
because two invariant directions of the transversal dynamics come close to each other, losing their
regularity. On the other hand, the Lyapunov multipliers associated with the invariant directions
remain more or less constant. We identify notable quantitative regularities in this scenario, namely
that the minimum angle between the two invariant directions and the Lyapunov multipliers have
power law dependence with the parameters. The exponents of the power laws seem to be
universal. © 2006 American Institute of Physics. �DOI: 10.1063/1.2150947�
uasiperiodically forced systems occur in many situa-
ions in physics, mathematics, engineering, etc. In many
ases, the external quasiperiodic perturbations induce
uasiperiodic motions, which correspond to invariant
ori. It is important to understand when these invariant
ori persist under perturbations, and to identify the

echanisms of their breakdown. It has been known for a
ong time that the persistence of a torus is related to the
xponential growth of the linearization along certain di-
ections (normal hyperbolicity), and that normal hyper-
olicity may be lost because of bifurcations such as
addle-node and period doubling, among others. The
ommon feature of these standard bifurcations is that
ome Lyapunov multipliers approach 1, while the invari-
nt directions remain smooth. In this paper we propose a
ew mechanism, in which two invariant directions of the

inearized dynamics come close to each other, losing their
egularity, and the corresponding Lyapunov multipliers
emain more or less constant, away from each other and
way from 1. Hence, the phenomenon is described by two
bservables: the minimum angle between the invariant
irections and the Lyapunov multipliers. We also identify
otable universal power laws of these observables.

. INTRODUCTION

The long-term behavior of a dynamical system is orga-
ized by its invariant objects. Hence, it is important to un-
erstand which invariant objects persist under perturbations
f the system. It has been known for a long time that the
ersistence of an invariant object is related to the exponential
ate of growth of the perturbations of orbits starting on it.

For example Refs. 1–3 show that a manifold persists
nder all C1 small changes in the map if it is normally hy-
erbolic. The fact that this condition is also necessary for C1

ersistence was proven in Ref. 4.
A problem that has received a great deal of attention5–7 is

he study of the breakdown of normally hyperbolic invariant

anifolds.
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We recall that a manifold is normally hyperbolic if all
the perturbations transversal to the manifold grow at an ex-
ponential rate �either in the future or in the past�, and that
this exponential rate is bigger than the exponential rate of
growth for perturbations tangential to the manifold. We will
not give a precise definition of normal hyperbolicity in gen-
eral, but we refer to the literature quoted above. In Eq. �4� we
will give the definition of a more general concept �exponen-
tial dichotomy� tailored for the systems that we will consider
in this paper, which are quasiperiodically forced maps �see
Eq. �1��.

We note that the definition of hyperbolicity has two mea-
sures of quality. One is the asymptotic rate of growth �called
�± in Eq. �4�� and another is the prefactor in the exponential
�called C in Eq. �4��, which measures how long it is neces-
sary to wait to observe the asymptotic rate of growth.

Even if most rigorous studies of loss of hyperbolicity are
concerned with situations in which the rates of growth �±

degenerate, we emphasize �see also Ref. 8� that hyperbolicity
may well be lost because the prefactors C become un-
bounded.

Indeed, in this paper we report two situations in which
the hyperbolicity �or more generally the exponential di-
chotomy� is lost because the prefactors grow unbounded
even though the asymptotic exponential rates remain more or
less constant. In other words, even though the asymptotic
rates of growth remain more or less constant we have to
observe them for increasingly long time intervals till they
manifest themselves.

Interestingly, we find in the situations above that there
are quantitative regularities and scaling behaviors for several
observables. The scaling exponents seem to be universal in a
wide class of systems.

In this paper, we find invariant tori and study in detail
the dynamics of the linearized equations around them �see
Eq. �3��. In particular, we compute quite accurately the in-

variant directions and their corresponding Lyapunov multi-

© 2006 American Institute of Physics0-1

P license or copyright; see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.2150947
http://dx.doi.org/10.1063/1.2150947


p
r
t
c

s
s
a
s

t
t
h
o
r
e

a
p
i
p
g

m
s
c
i
p
t
c
c

i
“
t
c
t
c
a

I

w
T
s
�
f
s
i

fi

E
o
b

013120-2 À. Haro and R. de la Llave Chaos 16, 013120 �2006�

Dow
liers �see Eq. �5��. One of the techniques we use is the
eduction of the linearized system to a constant matrix. The
heory in Ref. 9 allows us to assess the reliability of the
alculations.

The most interesting finding of our studies is that, for
ome systems at the boundary of hyperbolicity, there are
calings in the asymptotic behavior of several observables,
nd that the scaling exponents do not seem to depend on the
ystem. See Assertion 1 for a detailed formulation.

At the moment, we do not have a rigorous explanation of
his universal scaling behavior. It is natural to conjecture that
here should be a renormalization group formulation, but we
ave also observed that the scaling does not seem to depend
n the frequency of the forcing as is the case with most
enormalization group formulations hitherto found in the lit-
rature.

Though we do not have an explanation, we present an
lternative description of the problem in terms of spectral
roperties of some linear operators associated naturally to the
nvariant tori, called transfer operators �see Eq. �10��. The
henomenon we have found is closely related to the sudden
rowth of the spectrum of those transfer operators.

The phenomenon observed can also be described in
ore geometric terms. It is well known that to a hyperbolic

ystem �more generally, to a system with an exponential di-
hotomy� one can associate invariant directions correspond-
ng to vectors with different asymptotic rates of growth. The
henomenon we have found corresponds to the fact that
hese directions get closer and that their distance satisfies
ertain scaling relations regardless of the family of maps
onsidered.

To understand geometrically the phenomenon of merg-
ng of the invariant directions, it is natural to look at the
projectivized dynamics,” that is, the dynamics in the direc-
ions of the vectors transversal to the torus. We find empiri-
ally that the phenomenon observed is visually very similar
o the collision mechanism for the formation of strange non-
haotic attractors described in Refs. 6 and 10–13. We present
detailed study in Sec. V.

I. SETUP OF THE PROBLEM

We study smooth dynamical systems of the form

x̄ = f�x,��, �̄ = � + � , �1�

here x�Rn, ��Td �defined �mod 1��, and ��Rd is fixed.
his class of dynamical systems models physical systems
ubject to external quasiperiodic perturbations, of frequency
. In this paper, we will report only numerical experiments

or n=2, d=1, � irrational, and we will restrict the discus-
ion to this case for the sake of simplicity. The general theory
n Refs. 9 and 14 works for arbitrary n ,d.

A natural way9 to study invariant tori K for Eq. �1� is to
nd a continuous map K :T→R2 in such a way that

f�K���,�� = K�� + �� . �2�

quation �2� shows that a point K���= �K��� ,�� is mapped
nto another point of the same form. Once a torus K has

een located, it is natural to consider the linearization around

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
it. The linearized dynamics is given by the cocycle M

v̄ = M���v, �̄ = � + � , �3�

where M���=Dxf�K��� ,��. We can think of the vectors v as
small perturbations transversal to the torus, and Eq. �3� de-
scribes their growth under iteration. �Notice that small per-
turbations tangential to the torus do not grow because the
dynamics on the torus is a rigid rotation.�

We denote by Mm���=M��+ �m−1���¯M��� the result
of advancing the linearized dynamics m units of time;
M−m���=M��−m��−1

¯M��−��−1 denotes the result of
moving back the linearized dynamics m units of time.

We say that the invariant torus has a spectral gap �or
that it has an exponential dichotomy, following Ref. 15�
when we can find numbers C�0, 0��−��+, and a splitting
R2=E�

−
� E�

+ in 1D subspaces E�
± characterized by

v � E�
− Û �M+m���v� � C��−�+m�v�, m � 0,

�4�
v � E�

+ Û �M−m���v� � C��+�−m�v�, m � 0.

Note that the definition implies that E�
± are invariant. That is,

M���E�
±=E�+�

± . Informally, E�
+ consists of the vectors based

at K��� that grow at an exponential rate bigger than �+ in the
future and those in E�

− grow at a rate smaller than �− in the
future. Moreover, the splitting R2=E�

−
� E�

+ defines two pro-
jections P�

±, over the spaces E�
±.

Notice also that with fixed ��T, the directions of the
future iterates Mm���v of a vector v�E�

− will tend to the
directions of E�+m�

+ . For this reason, we will refer to E�
+ as the

attracting direction, and to E�
− as the repelling direction.

When �−�1��+ the torus is normally hyperbolic, of
saddle type, and E�

± are the unstable ��� and stable �	� di-
rections. If �−��+�1, the torus is also normally hyperbolic,
of attracting-node type, and E�

± are the slow ��� and fast �	�
stable directions.

The invariant directions E�
± are also characterized by the

Lyapunov multipliers. These are the asymptotic rates of
growth 
± given by


+ = lim
m→±�

�Mm���v�1/m, v � E�
+ \ �0� ,

�5�

− = lim

m→±�
�Mm���v�1/m, v � E�

− \ �0� .

In our case, if the invariant torus is normally hyperbolic,
then the fact that the dynamics on the torus is a rotation
implies that the torus is smooth9 and its invariant directions
E�

± depend smoothly on �.9,16,17 Furthermore, using the facts
that irrational rotations are uniquely ergodic and the direc-
tions are one-dimensional, it is shown in Ref. 18 that if the
bundles are continuous the limits in Eq. �5� are reached uni-
formly in � and the bundles are analytic if the system is
analytic. Indeed, in Refs. 9 and 19 we can find formulas for
these rates of growth. In this case, the fact that the limits in
Eq. �5� are reached uniformly in � implies that 
± are the
optimal values for �± in Eq. �4�.

One consequence of the formulas of the theory in Ref. 9
is that the product of both Lyapunov multipliers is the geo-

+ −
metric mean of the determinant of M: 
 
 =�, where
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=exp �T log�det M����d�. �In the examples in this paper, the
eterminant is constant.� Hence, given one multiplier,
+=
, we can obtain the other for “free,” 
−=� /
.

Since the spaces E�
± depend smoothly on �, the angle

etween them is bounded away from zero. So, the distance 

etween the directions E±, defined as


 = min
��T

� �E�
+,E�

−� ,

s strictly positive.
We note that 
 is closely related to the constant C in the

efinition of exponential dichotomy in Eq. �4�. It is not dif-
cult to obtain upper bounds for the angle in terms of C.
euristically, if the two directions are very close, the rates of
rowth of vectors on them have to remain close for a long
ime and, therefore, the constants in Eq. �4� must be large.

The theory of normally hyperbolic manifolds3,20 has ex-
licit formulas of the sizes of perturbations for which the
ersistence of the manifold can be guaranteed. These sizes
ecome very small if the constant C becomes very large or,
quivalently, if the norms of the projections P�

± over the in-
ariant directions E�

± become large. Hence, the dichotomy or
ormal hyperbolicity may become weak even if 
± remain
afely away from each other but C becomes large.

In this paper we study mechanisms for the disappearance
f splittings satisfying Eq. �4�. In the literature, one can find
everal descriptions of the mechanisms in which the
yapunov multipliers converge to 1 as in a saddle-node
ifurcation.21 The goal of this paper is to propose a new
echanism based on invariant directions coming closer to-

ether while the Lyapunov multipliers remain away from 1
nd from each other. We will report several quantitative
egularities of this mechanism.

A very recent paper dealing with qualitative features of
uasiperiodic systems in which the invariant directions ap-
roach each other is Ref. 22.

Our main finding is that, in the situation when the direc-
ions come together but the Lyapunov multipliers remain dif-
erent, there are universal scaling laws. See Assertion 1.

II. THE DIRECTIONS-MERGING SCENARIOS

. Preliminaries

We consider a system, Eq. �1�, depending on a parameter
: f = f�. The algorithms in Ref. 14 allow us to continue a
mooth torus K� that satisfies Eq. �4�, which is normally
yperbolic.

Hence, it is very natural to use the algorithms in ex-
mples and keep on increasing � till the continuation runs
nto trouble. Since we have a well-developed theory that al-
ows us to assess the reliability of the calculation,9,14 we can
e sure that the observations reported are truly phenomena
hat happen at the breakdown of hyperbolicity �or exponen-
ial dichotomy� and are not artifacts of the calculation.

That is, we expand the torus as a Fourier series and solve
q. �4� using the Newton method. We perform a continuation
f the invariant torus with respect to the parameter �. We

ake the numerical experiments in the regions of the param-

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
eter space for which the error estimates are small, say of the
order of 10−8 �in most of the continuation, the errors are
smaller than 10−15�.

Hence, the theory of Ref. 9 tells us that there is a true
invariant torus and that its distance to the computed torus is
comparable to the error in solving Eq. �4�. Hence, we think
that most of the time 10-12 figures of our calculations are
correct and, in the worse cases, at least 4.

Notice that, furthermore, if the torus is attracting we can
compute it by using direct iteration of points in phase space.
This is used to make additional checks.

The main experiment consists of computing reliably the
Lyapunov multipliers 
�

± and the minimum angle between
the invariant directions 
�. The main finding of this paper is
that both observables fit very well into a scaling relation �see
Assertion 1�.

The scaling relation predicts that the minimum distance
goes to zero as a power of ��c−��, where �c is a critical
value. Moreover, each Lyapunov multiplier goes to a limiting
value also as a power of ��c−��.

The exponents in the power laws seem to be universal in
the sense that small modifications of the system do not alter
them. Nevertheless, we have found different universality
classes by considering very different systems.

B. The two scenarios studied

We have studied families in which

�a� The splitting corresponds to two contracting directions
�the Lyapunov multipliers do not straddle 1�;

�b� The splitting corresponds to one stable and one un-
stable direction �the Lyapunov multipliers straddle 1�.
The systems we consider here are area preserving.

In case �a�, the attracting-node torus can be continued
without difficulty beyond �c, because it survives after this
transition. In case �b� the saddle torus presumably breaks
down as a smooth manifold at �=�c for typical perturbations
according to Ref. 4 �unless the perturbation is so special that,
e.g., it is zero on the torus�.

IV. MAIN QUANTITATIVE RESULTS

The main result reported in this paper is that in these
situations there is some quantitative regularity. Based on nu-
merical evidence, discussed in more detail in Sec. V, we
conjecture that:

Assertion 1. For an open set of families f�, we have:
The observables 
 and 
± satisfy the asymptotics


� 	 ���c − ���, 
�
± 	 
c

± + A±��c − ��B, � � �c, �6�

where � ,� ,A± ,B �and 
c
±� are fitting parameters.

For systems in case (a), we have: �=1, B=0.5.
For systems in case (b), we have: �=1, B=1.
To compare the above powers with some known smooth

bifurcations of tori, we note that the saddle-node bifurcation
has �=0.5, B=0.5, 
c

±=1, and the transcritical bifurcation
has �=1, B=1, 
c

±=1. Since in those the invariant directions
remain smooth, one can derive the exponents �, B using

normal form techniques. In our case, since the invariant di-
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ections become more and more complicated as � approaches

c, there does not seem to be a readily available smooth
ormal form theory.

In case �a�, in which the torus is attracting and survives
fter the collapse of the fast and slow stable bundles in the
ritical value �c, we can also make estimates of the observ-
bles after this critical value. Our numerical computations
uggest the following:

Assertion 2. For an open set of families f� in case (a),
e also have the approximations


� 
 0, 
�
± 
 
c

± + Ā±�� − �c�B̄, � � �c, �7�

here B̄=1.
While Assertion 1 conjectures asymptotic formulas for

he observables, Assertion 2 gives only approximations.
This is quite standard in numerics. When a quantity is

ot zero, it is easy to ascertain the relative error in its mea-
urement. When the measurement approaches zero, it is pos-
ible that a more refined measurement will show some effect.

We also note that the numerics of Assertion 1 can be
alidated using the well-developed theory of normally hyper-
olic systems. Assertion 2 lies in what Ref. 23 refers to as
the dark realm, beyond hyperbolicity, where even the prob-
ems are hard to pose clearly,” so it is not easy to assess the
eliability of the calculations.

Even if we conjecture that 
�c
=0, the equality 
�=0 for

��c would imply that the collapse is produced in an open
et of the parameter space. In view of recent mathematical
esults,24,25 this is unlikely to be true. It seems quite possible
hat there are pockets—perhaps even dense ones!—of pa-
ameter values where the values of 
, even smaller than the
recision of the present computation, are nevertheless posi-
ive.

In summary, the only thing that Assertion 2 claims is that
n the region after collapse, the splitting of the bundles is
ignificantly smaller.

. NUMERICAL EVIDENCE

In this section we summarize the numerical evidence we
ave for Assertion 1 and Assertion 2. We have verified the
esults for several other systems similar to the ones presented
elow, which we hope are representative of different classes
f systems.

Of course, it would be interesting to obtain more detailed
umerical verifications �more systems, more precision, etc.�
nd much more interesting still to obtain a justification based
n theoretical tools �asymptotic expansions, renormalization
roup, etc.� or a mathematical proof.

. Directions merging for an attracting torus

Our first study is of the rotating Hénon map,26,27 a qua-
iperiodic dissipative map given by

x̄ = 1 + y − ax2 + � cos�2���, ȳ = bx, �̄ = � + � , �8�

here a and b are the parameters of the Hénon map and � is
he strength of the forcing with frequency �. In the follow-

1 �
ng, a=0.68, b=0.1, and �= 2 � 5−1�, but we have also con-

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
sidered other families obtained by changing a ,b, adding ex-
tra terms at the map. The results reported in detail below are
representative.

For �=0, the torus K���= �x0 ,bx0 ,�� with

x0 =
1

2a
�b − 1 + ��b − 1�2 + 4a�

is invariant and of saddle type. There is also an attracting
2-periodic torus. We continue with respect to �, the invariant

FIG. 1. Observables 
 and 
 as a function of �.

FIG. 2. Fits of 
 and 
 to Eqs. �6� and �7� for the transition b, which
is produced between �=0.463 254 and �=0.463 255 �see Fig. 3�. The fit-
ting parameters are: �c=0.463 254 471 12, �=3.949 33, �=0.999 979,

¯ ¯

c=0.542 312 2, A=1.015, B=0.5020, A=−0.7409, and B=1.000 35.
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orus, and compute the observables 
 and 
=
+ �notice that
−= �b� /
+�.

The continuation crosses a period-doubling bifurcation,
fter which the torus is attracting. The computation is very
eliable until, say, �=0.62, at which point the torus starts to
rinkle more wildly and we have to use Fourier expansions
f 950 harmonics �although the error estimate is still small,
ay 
10−18�. Since the torus is attracting, we continue be-
ond this value using direct iteration of the map. We can
arry out this continuation even after the invariant object is
o longer a smooth manifold.

The results are displayed in Fig. 1, where we observe
everal transitions labeled with the letters a, b, c, d, e. Notice
lso that throughout the continuation the Lyapunov multipli-
rs remain different �they would be equal only if 
=��b�
0.316�.

In a, �a�0.2540, there is a standard period “halving”
ifurcation, after which the torus is of the attracting-node
ype. In b, �b�0.4633, the slow directions merge with the
ast directions. In c, �c�0.5256, we have the same phenom-
non in reverse and the slow and fast stable directions merge
gain in d, �d�0.5475. In e, �e�0.8337 and 
�1, the torus
s destroyed.

We focus our discussion on b, for which the computa-
ions are very reliable. We compute the observables for val-
es of � in �0.463 240, 0.463 270�, and fit parameters in Eqs.

6� and �7� �see Fig. 2�. Notice that ��1, B�0.5, B̄�1.
As an additional verification, we explore the behavior of

IG. 3. x projection of an attracting torus and � curves of its slow and fast d
nvariant objects of the linearization of the dynamics around the torus.
he attractor and its invariant directions close to their col-

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
lapse. Each 1D space E�
± is described by an angle ��

± in
�0,��; hence, the invariant directions E�

± are represented by
curves, the angles ��

± depending on �. We can compute those
� curves �the invariant directions as a function of �� using
forward and backward iteration of the cocycle M �see
Fig. 3�.

For � close to the computed critical value �b there is a
very dramatic change in the linearized dynamics around the
torus �see Figs. 3 and 4�. Notice also the visual similarity to
the phenomena mentioned in Refs. 11–13. Similar results
happen in c and d.

The transition e differs substantially from those men-
tioned above. Numerically, for ���e it seems that there are
no continuous invariant directions even if there are two
Lyapunov multipliers �see Fig. 5�. At �e the maximal
Lyapunov multiplier crosses 1 and the torus ceases to be
normally hyperbolic; presumably it disappears, leaving be-
hind a more complicated object, which is hard to analyze.
The remaining values ���e in Fig. 1 would correspond to
this object.

Conventionally, this transition around �e is called the
“fractalization route”26 �see Ref. 28 for a similar phenom-
enon in a rotating logistic map�, and the invariant object is
called strange attractor, nonchaotic if ���e or chaotic if
���e, though its exact nature is not clear. Further numerical
experiments add support to the picture mentioned above, i.e.,
that the torus survives for ���e, although it wrinkles quite a

29,30

ons, before and after their collapse. The dramatic change is produced in the
irecti
bit. �see also Refs. 31 and 32 for a study in a rotating

P license or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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ogistic map�. This transition deserves further study, both
rom a numerical and a theoretical perspective.

1. Other external frequencies
Among many other verifications of universality we have

arried out, we display in Fig. 6 an analog of Fig. 2 when
=e /4. Note that even if e /4 is numerically close to ��5
1� /2, its detailed number theoretical properties are very
ifferent.

. Directions merging causing breakdown
or a saddle torus

Our second study is of the rotating standard map,33,34 a
uasiperiodic conservative map given by

= x + ȳ, ȳ = y −
K + � cos�2���

2�
sin�2�x�, �̄ = � + � ,

�9�

here K is the parameter of the standard map and � leads to
quasiperiodic forcing. In the following, K=0.2 and

=�−1, where � is the largest root of p�t�= t3− t2− t−1.
We continue with respect to �, an elliptic periodic orbit

f period 3 of the standard map. The torus is hyperbolic
eyond ��0.173. The continuation reaches �=0.377 950,
here we use 1200 Fourier harmonics to expand the torus,

nd the invariance equation Eq. �2� is solved up to an error
10−9.14,35 The torus looks rather irregular and about to

reak and, moreover, the stable and unstable directions are
xtremely close �see Fig. 7�.

FIG. 4. Zooms of
FIG. 5. The x projection of an attracting torus close to bre

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
The merging of the invariant directions implies the loss
of hyperbolicity and the breakdown of the torus �although
the torus can persist as a Cantorus or as a topological mani-
fold�. We plan to come back to this problem.

In this case as well we check the scaling laws of the
observables 
 and 
=
+ �notice that 
−=1/
+� by fitting
all the parameters �see Fig. 8�. Notice that ��1 and B�1,
and we produce an estimate of the critical value �c in which
the torus is destroyed.

Compared with the previous example, in this case the
torus is destroyed and so is its linearized dynamics, while in
the previous one the torus persists after the collapse of the
invariant directions.

VI. SOME CONSEQUENCES OF ASSERTION 1

In the following, we list some mathematical conse-
quences of Assertion 1. The proofs will be published else-
where since they seem to require a large variety of tools.

We just point out that Assertion 1 lies at the interface of
the geometric and functional approaches to normal hyperbo-
licity.

If Assertion 1 were strictly true, it would have several
mathematical consequences, which we list below.

�1� If the attracting and repelling directions coincide at
one point, they have to coincide in all the images. Therefore,
the collision set, in which the splitting is not defined, has to
be dense. Moreover, the invariant directions have to be dis-
continuous in �=�c. According to Ref. 36, the splitting is

curves of Fig. 3.
akdown, and � curves of its slow and fast directions.
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efined in a set of full measure and the invariant directions
re measurable as a function of �. Hence, the measure of the
ollision set is zero.

�2� The direction-merging mechanism corresponds to the
ollision of the � curves that describe the invariant direc-
ions. The phenomenon is visually very similar to the forma-
ion of strange nonchaotic attractors, which has been de-
cribed several times in the literature11–13,37 �see Figs. 3, 4,
nd 7�.

IG. 6. Fits of 
 and 
 to Eqs. �6� and �7� for a direction-merging bi-
urcation in an attracting torus of the rotating Hénon map with frequency
=e /4, and a=0.68, b=0.1. The transition is produced between
=0.628 960 and �=0.628 961. The fitting parameters are:

c=0.628 960 041 95, �=3.0546, �=1.000 098, 
c=0.604 847 35,

=0.7428, B=0.4993, Ā=0.93, and B̄=0.983.
FIG. 7. The x projection of a period 3 torus of the rotating standard map clo

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
Note that, in spite of their apparent complexity, for
���c, for the examples considered, the invariant tori and the
invariant directions are analytic as a function of �.

�3� Define the transfer operator M acting on bounded
vector fields v :T→R2 by

�Mv���� = M�� − ��v�� − �� . �10�

It is known that the spectrum of this operator is related to the
existence of invariant splittings as in Eq. �4�.38,39 Further-
more, using the theory in Refs. 16, 17, and 39, it is possible
to show that when the spaces E�

± are one-dimensional, the
spectrum is just two circles in the complex plane, centered in
the origin. Then, for ���c the spectrum is just two circles of
radii 
�

±, but for �=�c, the spectrum has to be the full annu-
lus enclosed by these circles. In particular, the spectrum of
M grows discontinuously.

It is well known that the spectrum of a family of
bounded linear operators is upper semicontinuous. That is,
the spectrum of a limit cannot be smaller than the limit of the
spectra but it can be strictly larger. See Ref. 40, IV, Sec. 3.1
for a proof and Ref. 40, IV, Sec. 3.2 for an example of lower
semidiscontinuity.

This phenomenon of sudden growth �lower semidiscon-
tinuity� of the spectrum of a family of bounded linear opera-
tors is closely related to the fact that the norm of the spectral
projections becomes unbounded. The size of the perturba-
tions allowed for the preservation of the gap is smaller if the
norm of the spectral projections is larger. In our case, the
norm of the spectral projections is precisely �
��−1.

�4� We emphasize that in Assertion 1 we have included
the fact that the exponent of the observed power laws is
largely independent of the external frequency � �see Figs. 2
and 8�.

Of course, the exponents of the power laws cannot be
completely independent of the frequency. If the frequency is
rational, there is no chance that the results are true since the
invariant directions solve a finite dimensional equation and,
therefore, just experience the standard finite dimensional bi-
furcations. One can expect that for frequencies given by very
Liouville numbers one can produce effects other than the
scaling laws mentioned in Assertion 1.

On the other hand, we present numerical evidence that,
provided that the frequency is a reasonably irrational num-
se to breakdown, and the � curves of its unstable and stable directions.
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Dow
er, the results do not depend on the detailed number theo-
etic properties.

�5� For the systems we are considering, 
�0 implies
hat the torus is reducible, that is there exists a linear change
f variables �Floquet transformation� that reduces the corre-
ponding cocycle to a constant diagonal matrix16,17 �assum-
ng that � is Diophantine�. Otherwise, 
=0 implies that the
orus is not reducible.

Even if we present numerical evidence for 

0 in an
pen set of the parameter space �see Assertion 2�, it is, of
ourse, quite possible that 
�0 in small pockets of the pa-
ameter space that require more precision than that of the
umerical computation reported in detail. For instance, one
f those pockets is the interval �0.471 86, 0.472 07� of the
arameter � in the example of Sec. V A �in which we have
lso verified Assertion 1�. A more detailed study is underway.
learly, feedback between the studies in the recent math-
matical literature24,25 and the computation will be very im-

IG. 8. Fits of 
 and 
 to Eq. �6� near the breakdown of the period 3 torus
n the rotating standard map. The fitting parameters are: �c=0.379 696 5,
=0.4063, �=0.9693, 
c=1.195 33, A=−1.6, and B=1.00.
ortant for progress.

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
VII. CONCLUSIONS

We have introduced a scenario for the loss of hyperbo-
licity. We have empirically found that it satisfies scaling re-
lations. There are mathematical consequences of the conjec-
tured scenario.
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