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We study the existence of strange nonchaotic attractors �SNA� in the family of Harper maps. We
prove that for a set of parameters of positive measure, the map possesses a SNA. However, the set
is nowhere dense. By changing the parameter arbitrarily small amounts, the attractor is a smooth
curve and not a SNA. © 2006 American Institute of Physics. �DOI: 10.1063/1.2259821�
n the last two decades there has been an enormous in-
erest in the so-called strange nonchaotic attractors
SNA). These attracting invariant objects of dynamical
ystems capture the evolution of a large subset of the
hase space and are very relevant for their description.
n particular, SNA are geometrically complicated (they
re strange) and their dynamics is regular (in most of the
xamples, quasiperiodic). SNA are typically observed in
ystems where there is a coupling between different dy-
amics. In contrast to the vast amount of numerical and
xperimental work in the area, there are only few rigor-
us proofs. The goal of this paper is to prove the existence
nd abundance of SNA in the family of Harper maps.
his family arises from a model in mathematical physics
nd it is a paradigm of a 1D quasiperiodically forced
ap. Our approach connects the spectral theory of

chrödinger operators and the theory of nonuniformly
yperbolic systems. So, even if the proof is made for a
oncrete family, many of the arguments apply to other
amilies.

. INTRODUCTION

The study of the attractors of a dynamical system is a
opic of great interest, because these invariant sets capture
he asymptotic behavior of the system. It has been known for
long time that attractors can be strange,1 i.e., geometrically

omplicated. The first examples of strange attractors were
haotic, i.e., with sensitive dependence on initial conditions.2

n many physically relevant situations, one has to consider
ystems subject to external forcing, which may depend on
everal frequencies in a quasiperiodic way. In such dissipa-
ive systems, one expects attractors which retain part of the
uasiperiodicity. This was observed in Ref. 3 where strange
ttractors that are nonchaotic were found, and it has stimu-
ated much numerical experimentation �see the review in
ef. 4� as well as rigorous analysis of some particular
odels.5–9

Our goal in this paper is to prove the existence and abun-
ance of strange nonchaotic attractors �SNA� in the family of
arper maps. This is a family of 1D quasiperiodically forced

aps that many authors have suggested, based on numerical
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experiments and heuristic arguments, as a scenario in which
SNA appear,10–15 but proofs are scarce. This equation also
arises naturally from problems in mathematical physics and
it is a paradigm of a 1D quasiperiodically forced map.

In plain words, by SNA we mean in this paper an invari-
ant set which is the graph of a measurable and nowhere
continuous function �it is strange�, that carries a quasiperi-
odic dynamics �it is nonchaotic� and it attracts exponentially
fast almost every orbit in phase space �it is an attractor�. A
more precise definition will be given later, see Definition 1.

We prove that these SNA are typical but not robust in the
family of Harper maps, in the sense that they exist for a
positive measure Cantor set of the parameter space. That is
to say, SNA are abundant, but an arbitrarily small perturba-
tion can make them continuous �in fact analytic� attracting
invariant curves.

In our analysis, we exploit the connections between �a�
the dynamical properties of the Harper map �a 1D quasiperi-
odically forced map�; �b� the spectral properties of the
Harper operator �an example of a quasiperiodic Schrödinger
operator�; �c� the geometrical properties of the Harper linear
skew product �a 2D quasiperiodically forced linear map�.

In recent years our knowledge of the spectral properties
of the Harper operator, also known as the almost Mathieu
operator, and related quasiperiodic Schrödinger operators has
advanced spectacularly.

In particular, the connections between �b� and �c� have
been successfully applied to solve the “Ten Martini
Problem”16–18 on the Cantor structure of the spectrum of the
Harper operator. The connection between �a� and �c� in simi-
lar models has been used to study the linearized dynamics
around invariant tori in quasiperiodic systems.19 Specifically,
the formation of SNA in this linearized dynamics is sug-
gested to be a mechanism of breakdown of invariant tori.20

Even if we deal with one-dimensional quasiperiodically
forced systems, many of the techniques that we use in this
paper also apply to higher dimensional or less regular set-
tings, including other types of dynamics on the external

forcing.

© 2006 American Institute of Physics7-1
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A consequence of our approach is that neither the arith-
etic properties of the frequency of the quasiperiodic forc-

ng nor the localization properties of the Harper operator are
rucial for the existence of SNA. These two hypotheses lie at
he heart of many heuristic arguments for establishing the
xistence of SNA in Harper maps.10,11,14,21,22

I. HARPER MAPS, COCYCLES, AND OPERATORS

The family of quasiperiodically forced dynamical sys-
ems under investigation in this paper is the family of Harper
aps

�1�

here y� R̄= �−� , +�� and ��T=R /Z are the phase space
ariables, a, b are the parameters, and � is the frequency �it
s assumed to be irrational�. Notice that a Harper map is a
kew product map Fa,b,��yn ,�n�= �fa,b�yn ,�n� ,�n+��, defin-

ng a dynamical system in R̄�T whose evolution from an
nitial condition �y0 ,�0� is described by the Nth power

a,b,�
�N� �y0 ,�0�= �fa,b

�N��y0 ,�0� ,�0+N��, for N�Z.
In a Harper map the parameter a is called the energy or

he spectral parameter because after writing yn=xn−1 /xn this
amily is equivalent to the family of Harper equations, which
re second-order difference equations

xn+1 + xn−1 + b cos�2���0 + n���xn = axn. �2�

These equations are physically relevant because they
how up as eigenvalue equations of Harper operators �also
nown as almost Mathieu operators�,

�Hb,�,�0
x�n = xn+1 + xn−1 + b cos�2���0 + n���xn. �3�

hese are bounded and self-adjoint operators on �2�Z� whose
pectrum �b,�, that does not depend on �0, describes the
nergy spectrum of an electron in a rectangular lattice sub-
ect to a perpendicular magnetic flux.23,24 Their study is rel-
vant for the explanation of phenomena such as the quantum
all effect.25

The formulation of the second-order difference equation
2� as a first-order system is the Harper linear skew product

�4�

hose evolution is given by the Harper cocycle

Ma,b,�
�N� ��0� = �Ma,b��N−1� . . . Ma,b��0� if N � 0,

I if N = 0,

Ma,b
−1 ��N� . . . Ma,b

−1 ��−1� if N � 0.
� �5�

Note that �1� describes the evolution of the slope yn of

ectors vn evolving under the action of the linear skew prod-

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
uct �4�. That is, �1� is the projectivization of �4�. In polar
coordinates, 	=arctan y�P��−� /2 ,� /2�, this projectiv-
ization becomes

�6�

This polar Harper map is a skew product map

F̃a,b,��	n ,�n�= � f̃ a,b�	n ,�n� ,�n+��, defining a dynamical
system in P�T whose evolution from an initial
condition �	0 ,�0� is described by the Nth power

F̃a,b,�
�N� �	0 ,�0�= � f̃ a,b

�N��	0 ,�0� ,�0+N��, for N�Z. The projec-
tive and the polar formulations are equivalent, but we will
mostly use the polar one for simplicity.

III. EXISTENCE AND ABUNDANCE OF SNA
IN HARPER MAPS

In this section we establish the main result of this paper,
on existence and abundance of SNA in Harper maps. Let us
start with some generalities.

A �continuous, smooth, analytic� skew product map in
P�T of the form

	n+1 = f̃�	n,�n�, �n+1 = �n + � �mod 1� , �7�

where � is irrational, defines a quasiperiodically forced sys-
tem in P. In both T and P we consider the Lebesgue mea-
sure, and in P�T the corresponding product measure.

In this setting, we consider the following working defi-
nition of SNA. We emphasize that the definition itself of
SNA is a subject of much debate and the definition given
here may not be suitable for other models.

Definition 1: Let 
�P�T be a subset of the phase
space of the form


 = ��	���,��,� � �	 �8�

where ��T is a full measure set and 	 :�→P is a measur-
able function. That is, 
 is the graph of a measurable func-
tion. Then

• We say that 
 is strange if 	 cannot be extended to a graph
of a continuous function in T.

• We say that 
 is invariant under �7� if for all ��� we

have �+��� and f̃�	��� ,��=	��+��. Moreover, 
 is a
nonchaotic invariant set because its dynamics is quasiperi-
odic.

• We say that 
 is an attractor of �7� if it is invariant and for
almost all initial condition �	 ,���P�T,

lim
N→+�


 f̃ a,b,�
�N� �	,�� − 	��N�
P = 0, �9�

where 
 · 
P denotes the distance of two angles in P.

We say that 
 is a strange nonchaotic attractor if 
 satisfies
the three properties above.
The main result of this paper is
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Main Theorem: For 
b
�2, the Harper map �6� has a
NA for all the values a in a Cantor set of measure

4−2
b

�0.

V. PROOF OF THE MAIN THEOREM

In this section we prove the Main Theorem. The proof is
ased on the relation among the hyperbolicity properties of
arper linear skew products �4�, the dynamics of �polar�
arper maps �6� and the spectral properties of Harper opera-

ors �3�.

. Lyapunov exponents and hyperbolicity

To understand the dynamics of Harper linear skew prod-
cts it is important to know the growth properties of the
olutions. The exponential growth is measured by the
yapunov exponents which we now define. Given any non-

rivial initial condition of the skew product �4�, �v0 ,�0� with

0�0, the �forward� Lyapunov exponent for �v0 ,�0� is the
imit

a,b,��v0,�0� = lim
N→+�

1

N
log
vN
 = lim

N→+�

1

N
log
Ma,b,�

�N� ��0�v0


�10�

henever the limit exists �in which case it is finite�.
If v0= �x−1 ,x0� and 	0=arctan�x−1 /x0�, then one can also

efine the �forward� Lyapunov exponent of the Harper map
6� for the initial condition �	0 ,�0� by


a,b,��	0,�0� = lim
N→+�

1

N
log� �	N

�	0
�	0,�0��

= lim
N→+�

1

N
log
ma,b,�

�N� �	0,�0�
 �11�

here

ma,b,�
�N� �	0,�0� =

� f̃ a,b

�	
�	N−1,�N−1� . . .

� f̃ a,b

�	
�	0,�0� .

n easy computation shows the relation


a,b,��	0,�0� = − 2�a,b,��v0,�0� .

ackward Lyapunov exponents are defined by replacing
imN→+� with limN→−� in the above formulation.

Oseledec26 showed that for almost every initial condition
v0 ,�0� the Lyapunov exponent exists and it is almost every-
here a constant value. This value is precisely the averaged
yapunov exponent

�̄a,b,� = lim
N→+�

1

N
�

T
log
Ma,b,�

�N� ���
d� ,

hich is non-negative and exists by Kingman’s subadditive
rgodic theorem.27

The case of the nonzero averaged Lyapunov exponent

�̄�0� which we call hyperbolic, is important for our pur-
oses. In this case, there exists a full measure set ��T such
hat for every ��� one has a splitting
nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
R2 = Ws��� � Wu��� �12�

characterized by, for v�0,

v � Ws��� ⇔ lim
N→±�

1

N
log
M�N����v
 = − �̄ �13�

and

v � Wu��� ⇔ lim
N→±�

1

N
log
M�N����v
 = + �̄ . �14�

Ws��� and Wu��� are the stable and unstable subspaces at �,
respectively.26 The elements of the set � are referred to as
the Lyapunov regular points.

In the phase space R2�T, one can form the product sets
Ws and Wu whose elements are pairs �v ,�� with v�Ws���
and Wu��� respectively �whenever these subspaces are de-
fined�. These are the stable and unstable subbundles. By
Oseledec26 the � dependence of the decomposition is mea-
surable but not necessarily continuous.

B. Nonuniform hyperbolicity and SNA

The property of hyperbolicity of the Harper cocycle �4�
transfers to the dynamics of the Harper map �6�, which re-
flects how the linear skew product �4� changes directions of
vectors. So, if we define 	s��� and 	u��� as the angles of the
subbundles Ws��� and Wu���, respectively, that is, they are
the elements of P such �cos 	s��� , sin 	s����T and
�cos 	u��� , sin 	u����T belong to Ws��� and Wu���, respec-
tively, the product sets


s = ��	s���,��,� � �	 and 
u = ��	u���,��,� � �	

are invariant under the Harper map and have quasiperiodic
dynamics. Thus 
s and 
u are nonchaotic invariant sets.

Moreover, the decomposition of R2 into the direct sum
of Ws��� and Wu���, for ���, implies that every initial con-
dition �v ,�� not lying on the stable subbundle is attracted to
the unstable subbundle and grows exponentially in norm un-
der the evolution given by �4�. Looking at directions �which
is what the polar Harper map �6� retains�, forward orbits with
initial condition �	 ,�� �other than �	s��� ,��� are exponen-
tially attracted to 
u, that is


�	,�� = lim
N→+�

1

N
log
 f̃ a,b,�

�N� �	,�� − 	u��N�
P = − 2�̄ � 0,

�15�

while backward orbits other than �	u��� ,��� are exponen-
tially attracted to 
s. Thus 
u is a nonchaotic attractor for
the Harper map: for almost every initial condition, orbits are
exponentially attracted to it. Similarly 
s is a nonchaotic
repellor.

Remark 1: The notation 
u for an attractor and 
s for a
repellor may look paradoxical, but it is kept for consistency.

u is the projectivization of Wu and 
s is the projectivization
of Ws.

The regularity properties of the invariant subbundles
Ws ,Wu of the Harper linear skew product are inherited by the

s u
invariant curves 
 ,
 of the Harper map.

P license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



=
b
t
o

f
a
t
f
c
h
A
s
m

b
c
a
n
i
a
�
r

h
H
o

e
l
c
c
n

C

l
�
o
p

s
e
n

t
p
b
i

p

a
J
o

033127-4 À. Haro and J. Puig Chaos 16, 033127 �2006�

Dow
When the splitting �12� is defined for all �, that is �
T, the linear skew product is said to be uniformly hyper-
olic and the subbundles are continuous.28,29 In such a case,
he projectivizations 
s ,
u are continuous invariant curves
f the Harper map.

Remark 2: Johnson and Sell30,31 prove that in the uni-
ormly hyperbolic case the stable and unstable subbundles
re as smooth as the original system, and so are their projec-
ivizations. See also Refs. 32 and 33. This follows from the
act that the dynamics on the base torus is a rotation. In the
ase of a Harper linear skew product, when it is uniformly
yperbolic, the stable and unstable subbundles are analytic.
s a result, the projectivizations of the stable and the un-

table subbundles are analytic invariant curves of the Harper
ap.

In contrast, if the skew product is nonuniformly hyper-
olic, then the invariant subbundles are measurable but not
ontinuous and their projectivizations 
u and 
s are measur-
ble but not continuous functions of �. Moreover, disconti-
uities are propagated by the quasiperiodic dynamics and the
nvariance property of the attractor: if 	u is discontinuous at

single �0 then the same happens for �N=�0+N� for all N
Z, so that the function 	u is nowhere continuous. The same

esult holds for 	s.
In summary, when the skew product �4� is nonuniformly

yperbolic, 
u is a strange nonchaotic attractor �SNA� of the
arper map �6�, see Definition 1. Moreover, almost every
rbit in phase space is attracted to 
u at an exponential rate.

Remark 3: In principle one could look for SNA without
xponential rate of attraction �for instance given by a power
aw�. A candidate for such objects would be a Harper map at
ritical coupling b=2 and energies in the spectrum, as dis-
ussed in Ref. 34. For definiteness, we focus on the expo-
ential case.

. SNA and spectrum

In the Harper map, we can determine whether hyperbo-
icity is uniform or not by looking at the spectral problem of
3�. Indeed, an energy a is in the spectrum of the Harper
perator �3� if, and only if, the corresponding linear skew
roduct �4� is not uniformly hyperbolic.35,36

We will use an implication of this result if a is in the
pectrum of the Harper operator and the averaged Lyapunov
xponent is nonzero at a, then the linear skew product is
onuniformly hyperbolic.

This is the key point in our approach and it is based in
he following dichotomy for the linear quasiperiodic skew
roduct:28,29 either the skew product has a nontrivial
ounded solution for some � or the invariant subbundles ex-
st for all � and are as regular as the system.

The existence of nonuniformly hyperbolic linear skew
roducts was already shown by Herman,37 who proved that

�̄a,b,� � max
0,log

b

2
� �16�

s long as � is irrational. Moreover, Bourgain and
itomirskaya38 proved that the equality in �16� holds if, and

nly if, a is in the spectrum of the almost Mathieu operator.

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
Therefore, we have shown that for 
b 
 �2 and � irratio-
nal, a Harper map has a SNA for every value a in the spec-
trum �b,� of the Harper operator �3�, which is not empty �see
next section�.

In fact, we have even seen the following alternative: in
the Harper map with 
b 
 �2 and irrational frequency, either
there is a SNA or an attracting analytic invariant curve.
These SNA provide a rich class of examples where many
properties conjectured for SNA can be rigorously proved.

D. The last step: Spectrum of Harper operator

Using the characterization in the previous section, it is
easy to derive properties on the persistence of the SNA with
respect to perturbations in the parameters a and b.

It is known that the measure of the spectrum �b,� is
given by the formula 
4−2 
b 
 
,39 which shows that, when

b 
 �2, SNA occupy a set of parameters a of positive mea-
sure. However, �b,� has also been shown to be a Cantor set
�this is the “Ten Martini problem”16–18� for irrational � and
b�0, and thus it contains no open intervals. Thus, although
the set �b,� of parameters a for which SNA exists is large in
the measure-theoretic sense, it is small in the topological
sense. In summary, SNA are typical but not robust in the
family of Harper maps.

With these arguments we are done with the proof of the
Main Theorem.

Remark 4: Note that, although the spectrum is a Cantor
set for each b, one can find analytic curves in the �a ,b� plane
where SNA exist for all values in these curves. A trivial
example is a=0 and 
b 
 �2, � irrational, due to the symme-
try of the spectrum. Indeed, as it was proved in Ref. 40, there
exist analytic curves when � is Diophantine which lie en-
tirely in the spectrum for 
b
 large enough.

Remark 5: One may wonder about the existence of fami-
lies of linear skew products with persistent nonuniformly
hyperbolic behavior. This would imply that the correspond-
ing projectivizations have robust SNA. This question was
answered positively by Herman,37 considering homotopically
nontrivial linear skew products and using simple topological
arguments. Other robust SNA have been proved to
exist in homotopically nontrivial systems using similar
arguments.3,41

V. FURTHER PROPERTIES AND EXTENSIONS

A. Some numerical examples

As an illustration of the above rigorous results, we per-
formed several numerical computations. In the following, we
choose the irrational frequency �=e /4, b=3, and we consid-
ered a as a moving parameter. The averaged Lyapunov ex-
ponent as a function of a is displayed in Fig. 1. Notice that

�16� implies that �̄a� log 3/2, so that the Harper cocycle is
hyperbolic for all the values a. Moreover, the equality holds
only if the cocycle is nonuniformly hyperbolic. As a result,
the values of a for which 
u is a SNA of the Harper map
correspond to the “flat pieces” of the graph in Fig. 1, which
lie in a Cantor set of measure 2. The “bumps” appear in gaps

of the spectrum, that is energies a in the resolvent set, for

P license or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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which 
u is a continuous attracting invariant curve. We also
selected several values of a and computed the attractor 
u

and the repellor 
s of the Harper map for several values of a.
The results are displayed in Figs. 2 and 3.

Remark 6: Most of the authors in the literature choose
the golden mean 1

2 ��5−1� as the frequency, which has very
specific arithmetical properties. In particular it has a periodic
�in fact, constant� continuous fraction expansion which
makes it convenient for renormalization procedures. The
relative distance of �=e /4 to the golden mean is less than
10%, but their arithmetical properties are very different. Our
choice aims to emphasize that the results presented here
are independent of the arithmetical properties of the
frequency.19,20

B. A topological argument for the existence of SNA

When 
u is a continuous attracting invariant curve, and
thus a is in a gap of the spectrum, there is a topological index
which counts its winding around P, which must coincide
with that of 
s. This winding number changes from gap to

0.3,0.5 �SNA� and a=0.4,0.6 �continuous invariant curves�. Notice that a
IG. 1. The averaged Lyapunov exponent �̄ of the Harper linear skew
roduct for b=3. The Lyapunov exponent of the corresponding attractor of

he Harper map is 
=−2�̄, hence negative. In the spectrum the Lyapunov
xponent takes the constant value log 3/2. When a approaches the endpoint
f a gap, the Lyapunov exponent behaves as a square root, see Ref. 46. This
caling of the Lyapunov exponent seems to be universal �Ref. 20� and has
lso been observed in the linearization around an attracting invariant curve
IG. 2. �Color� The attractor 
u and the repellor 
s of the Harper map for a=

nuous curves 8 and 5, respectively.
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ap, as it can be seen in Figs. 2 and 3 and can be related to
he rotation number of �4�.42 This implies that a continuous
ttracting invariant curve cannot be continuously deformed
rom one gap to another, and this shows that in between there
ust be values of a for which there is no continuous attract-

ng invariant curve. In combination with the positivity of the
yapunov exponent, this provides another argument for the
xistence of SNA, although the spectral argument in the pre-
ious section yields to quantitative arguments on their abun-
ance.

Inside the gap, the invariant curves 
u and 
s cannot
ouch due to the uniform hyperbolicity. However, as the
pectral parameter a approaches the endpoint of the gap, they
eem to touch, see Fig. 4 which displays the distance be-
ween the curves inside the gaps. However, 	u��� for a.e. �,
onverges to the strange nonchaotic attractor formed at the
ndpoint of a gap.43 To see why this happens, it is worth-
hile to recall that inside the gap the elements 	u��� and

IG. 3. The attractor 
u and the repellor 
s of the Harper map for a=3.47
ramatic change in the dynamics with a very small perturbation of a. The va
reaches the endpoint of the gap, a localized solution exists and it is supp

efore the collapse �see the picture on the right�, we observe that the distance

IG. 4. The minimal distance � between the stable and unstable curves in
he Harper map with b=3. In the spectrum, the distance is zero. Inside the
aps, the two curves are separated one from each other and the distance is
trictly positive. When a approaches the endpoint of a gap, the distance

eems to tend to zero in a linear way �Ref. 20�.

nloaded 07 Jun 2010 to 161.116.168.169. Redistribution subject to AI
	s���, for each fixed �, move monotonically in opposite di-
rections as the spectral parameter increases.44

C. SNA and localization

In this paper we have proved the existence of SNA in
Harper maps with � irrational, 
b 
 �2 and a in the spectrum
without resorting to the possible localization properties of
the spectral problem. Recall that a is a point eigenvalue of a
Harper operator Hb,�,�0

if the corresponding eigenvalue
�Harper� equation has a nontrivial localized solution �
= ��n�n�Z which is square integrable or even decays expo-
nentially with 
n
. If the set of localized eigenvectors of a
Harper operator forms a complete orthogonal basis of �2�Z�
then the spectrum is pure point.

In previous work on the existence of SNA in Harper
maps, localization was seen as a justification for the strange-
ness of SNA, in the regime of nonzero Lyapunov
exponents.10,11,14,21,22 As we have seen, we do not use local-
ization to prove the existence of SNA. Besides, localization
may not hold in all the Harper maps considered here, be-
cause an energy a in the spectrum with nonzero Lyapunov
exponent �for which the Harper map has a SNA� may not be
an eigenvalue of the operator. Indeed, if � is not Diophan-
tine, localization may only hold for 
b 
 �2 large enough �de-
pending on ��.18 Even in the Diophantine case, the spectrum
also contains a residual set of energies which are not point
eigenvalues.45,46

Nevertheless, exponentially localized solutions, when-
ever they exist, are useful for the description of many prop-
erties of SNA in Harper maps, since they can be seen as
heteroclinic solutions which connect 
s �when n→−�� and

u �when n→ +��. Moreover, whenever an exponentially
localized solution exists at the endpoint of a gap �this hap-
pens, for instance, when � is Diophantine and 
b
 is large�,
simple duality arguments46 show that the SNA must be dis-
continuous at the points �=k�, with k�Z. For an illustra-

�SNA, left� and a=3.47031 �continuous invariant curves, right�. Notice the
3.47031 belongs to the right-most gap, whose index is 0 �see Fig. 1�. When
on the points �=k�, indicated by vertical lines in the figure. Immediately
een the two invariant curves attains its minimal value at these vertical lines.
030
lue a=
orted
betw
tion, see Fig. 3.
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Dow
. Extension to other families of maps

We would like to emphasize that the arguments pre-
ented in this paper are based on the theory of nonuniformly
yperbolic dynamical systems �Pesin theory� and thus they
rovide a fertile ground for extensions to other interesting
odels. Here we present two systems where the generaliza-

ion is straightforward.
In combination results in the spectral theory of quasip-

riodic Schrödinger operators, we can also show the exis-
ence and abundance of SNA in several families of Harper-
ype maps

yn+1 =
1

a − bV�2��n� − yn
,

�17�
�n+1 = �n + � �mod 1� ,

here V :T→R is a nonconstant real analytic function and �
s an irrational number. All the arguments of nonuniform
yperbolicity also apply to this case and to show the exis-
ence of SNA one only needs positivity of the Lyapunov
xponent in the spectrum. This is granted by Ref. 47, where
t is shown that the Lyapunov exponent is positive for all a
R as long as b is greater than some constant depending

nly on V. Extensions to more frequencies also hold �see
ef. 48, and references therein� for different results on posi-

ivity of the Lyapunov exponent in other models, that are not
ecessarily quasiperiodic.

Another easy translation of our results is in the following
lass of differential equations, where virtually all the same
echniques apply �see Ref. 15 for a very similar equation�.
onsider the flow on T�T2 given by the equations

	� = �a + b�cos �1 + cos �2��sin2 	 + cos2 	 ,

�18�
�1� = 1, �2� = � ,

here � is an irrational number and �1, �2�T. Since this is
he projectivization of the equation

x� + �a + b�cos �1 + cos �2��x = 0, �1� = 1, �2� = � ,

xpressed in polar coordinates �the eigenvalue equation of a
ontinuous quasiperiodic Schrödinger operator�, all the argu-
ents can be used to derive the existence of SNA if we are

ble to prove positivity of the Lyapunov exponent in the
pectrum. This was done again, in Ref. 47, where it was
hown that the Lyapunov exponent is positive when 
b
 is
arge enough in an open set at the bottom of the spectrum.
or these values of a, there will be a SNA in Eq. �18�.
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