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Monte Carlo simulations have been performed to study the magnetic relaxation of a small particle
system with dipolar interaction. The simulated system is a simplified version of the real situation in
a small particle system with a random distribution of anisotropy axes and long range dipolar
interaction among the particles. This model consists on a one-dimensional Ising model with dipolar
interaction and a distribution of uniaxial anisotropy strengths. The anisotropy axes were considered
perpendicular to the line connecting the spins. These choices allow us to focus on the influence of
the demagnetizing part of the dipolar interaction on the magnetic relaxation by taking into account
the main features of the system. Thin(t/7,) scaling variable is used to determine the effective
distribution of energy barriers for the different interaction strengths showing an enhancement in the
number of the lowest energy barriers as the interaction strength is increased. Moreover, the
histograms of the energy barrier distribution as a function of the time are analyzed and this study
leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation.
© 1996 American Institute of Physids$0021-897@6)05919-1

I. INTRODUCTION this work is that in the case of antiferromagnetic coupling,
the relaxation time is smaller than the relaxation time ob-

In the past years, an increasing interest has been devotggined in the case of noninteracting particles. On the other
to the study of the dynamics of different magnetic systemshand, Moup and Tront® studied by Mssbauer spectros-
such as small particle systeh$, superconductors!  copy the magnetic relaxation of a set of weakly interacting
multilayers? etc. The dynamics of a magnetic system areparticles of maghemite-Fe,05, and found that the relax-
observed by perturbing it, for instance, by a sudden changgtion was faster in the concentrated samlelere the in-
of the applied magnetic field, followed by the measurementeraction effects are more importattian in the diluted ones,
of the time evolution of one magnitude such as the magnein contradiction with the previous model of Dormaanal.’
tization. As the time passes, the system visits different metathis leads Moup and Tronc to propose a new model, where
stable states that are separated by energy barriers. The thetie effect of the dipolar interaction was taken into accunt
mal activation allows the system to overcome these energynd they predicted a decrease of the relaxation time due to
barriers, and finally reach the steady state. the dipolar interaction.

In real systems, magnetic interactions arise among the To achieve a better understanding of the magnetic dy-
constituents, which can affect the observed dynamics. In paihamics of these systems, other techniques were used, such as
ticular, there are magnetic systems such as ferrofiiadsl  numerical simulation$23 First, Lyberatoset al!! used
small particle systemswhere the effect of the interactions Monte Carlo methods to study the time dependence of the
may be accurately investigated by changing the concentranagnetization, taking into account the effect of the dipolar
tion of magnetic particles. In these systems, the influence dhteraction between the magnetic moments. Their system
the interactions on the relaxation process has been reveale@nsisted on a two-dimensional ensemble of identical par-
to be important, and leads to changes in the relaxation praicles, where the effect of the dipolar interaction was in-
cess, such as the increase of relaxation times with the ircluded as a demagnetizing field. This field was calculated
crease of the strength of interactioh$o explain this fact, exactly up to 55 spins and the rest of the system was ap-
Dormannet al.” proposed a model that took into account theproximated by a mean field. As a result, they obtained a
influence of the interaction. As a result of their model, Dor-quasilogarithmic decay of the magnetization and a spread in
mannet al. confirmed the increase of the relaxation time asthe energy barriers due to the effect of the interaction. Later
the interaction strength increases. Later on, Latial® pro-  on, Lyberatoset al}? studied experimentally an aluminate
posed a theoretical model that included the effect of the inmedia and compared their experimental results with a theo-
teraction as a demagnetizing field. Using this model, Lottisretical model that included the effect of the particle size dis-
et al. explained the quasilogarithmic decay observed in CoCtribution. In this model, the magnetostatic coupling between
films.> Recently, Gar@ and Levanuykstudied the thermal particles was represented by a mean field, which neglected
dependence of the relaxation time of a system of coupleghe spatial and temporal fluctuations of the interaction field.
small particles by mean-field techniques, and compared theirheir experimental results showed that the magnetization de-
results with the noninteracting case. The main conclusion o¢ay was logarithmic within the measurement time window,
while their numerical results lead to a strong dependence of
person to whom correspondence may be sent; F&8) 402 11 49; the magnetic relaxation on the interaction parameter. Finally,
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decay of the remanent magnetization of an interacting syshe changes of the local dipolar field as the magnetic con-
tem. The interactions were included as a mean demagnetifiguration of the system changes. Then, only those methods
ing field and gave rise to a faster relaxation, because thbased on the direct observation of the magnetization decay
demagnetizing field drives the spins to an antiferromagnetican be applied. In particular, if th€ In(t/7,) scaling were
state. valid in the case of a relaxing system with magnetic interac-
Recent experiments performed on ferrofldfdsand  tions present, the effective distribution of energy barriers that
Co-Ti doped barium ferrité3 suggest that, the number of are relaxing at each time would be obtained. These assump-
low energy barriers is larger than what it would be expectedions are reinforced by the previous fact that this method has
from the logarithmic linear distribution. Besides this, otherbeen successfully applied to the study of the dynamics of
experiment®?” where the thermal dependence of the mag-spin glass systenfs:?®
netic viscosity(which samples the energy barrier distribution ~ The aim of this article is to study the influence of the
if only thermal processes are considerésiobtained show demagnetizing part of the dipolar interaction on the energy
that magnetic viscosity reaches a finite constant value at lowarrier distribution of small particle systems, and to test the
temperatures. This behavior has been attributed to quantum@lidity of the T In(t/7,) scaling applied to this situation. As
relaxation processes but, as it has already been pointed oiitwas mentioned before, this part of the dipolar interaction
by other authord®it could be also attributed to the existence Seems to have enough importance in the interpretation of the
of an extra contribution of the lowest energy barriers, due€xperimental results in those systems for which there is an
for instance, to the effect of the demagnetizing interactioranomalous enhancement of the low energy barrier contribu-
among the particles. tion. On the other hand, the understanding of the magnetic
The energy barrier distribution depends on the microS€laxation of an assembly of small magnetic particles is very
scopic details of the system, such as the existence of loc&¢levant to the magnetic recording applications since it de-
anisotropies or interactions among the constituent entitietermines the average lifetime of magnetic recording media.
(magnetic moments in the case of magnetic systems or vor- Due to the fact that the energy barrier distribution de-
tices in the case of type Il superconducjofEhe knowledge Pends on the microscopic details, a microscopic probe is
of the energy barrier distribution and the influence of theneeded. Two reasons make the Monte Carlo simulétian
microscopic details on it, leads to the understanding of théuitable tool for this study. On the one hand, Monte Carlo
whole dynamics of the system. As a consequence, the energjmulation combined with th& In(t/z) scaling, allows ex-
barrier distribution is the relevant quantity to study, in orderténding the time scale up to values unreachable in common
to understand the relaxation process. Different methods havé&al experiments, helping to elucidate the discrepancies ob-
been used to obtain the energy barrier distribution from exserved experimentally. On the other hand, it can be used to
perimental data. The most common metfad based on the obtain microscopic information concerning magnetic dynam-
critical volume approximation and consists in performing theiCS, Such as histograms of the energy barriers.
derivative with respect to the temperature, of the thermore- ~ The outline of this article is as follows: In the next sec-
manence normalized to saturation, which yields to the distrifion, the model and the numerical method are explained. In
bution of blocking temperatures. Other methods are based onec. lll, the ef_fectlve distributions of energy b_arrlers are dis-
the observation of the relaxation of the system as a functiogussed for different values of the interaction parameter.
of the magnetic field strengthor in the calculation of the Moreover, the microscopic histograms and the order param-
derivative of the thermoremance with respect to the magnetigter are shown and analyzed.
field 2! Two approximations that map out directly the energy
barrier distribution from the relaxation curves have been pro“' MODEL AND NUMERICAL METHOD
posed. From the first one, based on the so-called barrier plot To carry out the numerical simulation, a simplified
and proposed by Barbara and Guntffethe volume and model of the real system must be built. This model has to
field dependence of the energy barrier distribution can bdulfill two requirements: it must be simple enough to keep
obtained. The second approximation has been first proposete computational time within reasonable margins, and it
by Omariet al?3to study spin glasses and more recently hasshould gather the main features of the real system in order to
been used by Iglesiat al?* to study small particle systems. be meaningful. Two main features have to be included in this
This approximation has been revealed to be a useful methashodel. First, in real systems there is a distribution of particle
to obtain the energy barrier distribution from the scaled magvolumesf(V), that gives rise to an energy barrier distribu-
netization curves as a function of tfien(t/z) scaling vari-  tion provided that the anisotropy energy K& cos(6— 6,),
able. This method may be applied to a wide variety of syswhereK is the anisotropy constar¥, is the particle volume,
tems because it avoids any assumption about the specifand 6— 6, is the angle between the anisotropy axis and the
relaxation behavior. spin orientation. Second, in order to focus only on the de-
The majority of these methods have been applied to thenagnetizing part of the dipolar interaction, the anisotropy
study of systems for which no magnetic interactions areaxes are taken to be perpendicular to the line connecting the
present or they are negligible. In this situation, the energyspins of the systerti.e., 6,= /2 with respect to the direction
barrier distribution does not depend on the particular ardefined by the line connecting the spink is worth noting
rangement of the magnetic moments and it is constant ahat only in one or two dimensions and for this arrangement
time passes. When the magnetic interaction is not negligiblepf anisotropy axes there is only a demagnetizing contribution
the energy barrier distribution evolves with the time due toto the dipolar interaction. While, in three dimensions, there is
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an extra magnetizing contribution along the lines parallel tanixing of magnetizing and demagnetizing interactions.
the anisotropy axes. The long range of the dipolar interactioThen, attention can be focused on the effect of the demagne-
involves a large number of spins that increases the computizing contribution of the dipolar interaction that seems to be
ing time needed to calculate the local field and the energyhe predominant contribution in many situatioine., a qua-
barriers. To minimize this effect, a one-dimensional systensibidimensional ensemble of spins oriented perpendicular to
is considered. In spite of neglecting the influence of the dithe plane, a three-dimensional array of small particles with
mensionality on the dynamics, this choice allows reducingeasy axis randomly oriented, etdD; is the array of anisot-
considerably the computing time and still keeps the essentiabpy constants, (one for each spin taken from the
property of the system, namely the existence of demagnetidegarithmic—linear distribution with the values of the dimen-
ing interactions among the spins. For instance, the only relsionless paramete3,=1 and variancer=0.5:"

evant difference with the equivalent two-dimensional model

is the number qf neighbors of a given site. Moreoyer, in real f(D)= 1 extf —In2(D/Dy)/202]. 7
systems, the distances among the magnetic particles are ar- J2mwaD

bitrary, but, for the sake of simplicity, we consider a one- ) _

dimensional array of equally spaced magnetic particles witt N€ choice of the value of the varianoe-0.5 was made to
uniaxial anisotropy. Only two orientations are possilfés; ensure that the ranges of temperatures and corresponding

ther parallel or antiparallel to the anisotropy axigo find times in whichT In(t/7,) scaling is fulfilled is wide enough

the suitable size of the system, we have proceeded in tH@" the reference case with noninteracting parti&fe_s.
The classical Monte Carlo meth@dis used with the

following way: We started with a system with=1000 spins X o .
and then we looked for the number of repetitions of the sysfollowing transition probability:
tem to average in order to obtain representative results. P(E,)=exp(—Ey/kgT), ®)

These repetitions of the system are in fact different among ) ]
them due to the different disorder realization. The optimumWhereEy is the energy barrier between the parallel and the

number of averaged repetitions of the system was inbetweedtiparallel states, with respect to the anisotropy aisis

5 and 10 at each temperature. So we decided to perform onfj€ Boltzmann constant, aridis the temperature. It is con-
one simulation with a system of 10 000 spins that is equivaYenient to use dimensionless variables defined as follows:
lent and computationally more efficient. Moreover, we haveln® €nergyE, is measured in units of the mean anisotropy
carried out some extra simulations with different disorder€nergy valued, of the distribution of Eq(2), which is arbi-
realizations of the system arld=10 000 to verify whether trarily fixed to the value 1, and the temperature is measured
the system was large enough. Periodic boundary condition Units of Do/kg . For each spin the energy barrier is calcu-

were imposed to minimize finite-size effects. lated. To do so, the local field acting on the spin location
With these assumptions, the total energy of the system {g1ust be obtained. From Eql) and with the previous as-
given by sumptions the local field is given by
2 S; ri)(Siri u? S
e- 3 [32- B s 5 sz, @ M= 2 3 @
as {@j \ i ri i o T

In the calculation of this local field, only 10 lattice spac-
ings were considered at each side of the considered spin, as it

lus of this vector. The interaction parametér,ui@as, which  Was mentioned b_efore. With the local fielpl obtained from Eq.

measures the strength of the dipolar interaction. The vector (4, the energy given by Ed1) can be written as

represents the easy ax.is of anisotropy and the ynit v&tor E=H,S—D;(Sn)2=H, cog 6,)—D; co(4,), (5)

represents the magnetic moment. The summation should be

extended to the whole array, however, a cutoff of the interWhere 6 is the angle between the uniaxial anisotropy axis

action range has to be imposed to decrease the computir‘?@d the spin direction. This function may be seen as a con-

time. The calculation of this cutoff implies a compromise finuous function of the anglé and can show one or two

between the computing time needed to carry out the numerfMinima depending on the ratip=H /2D; . If this ratio is

cal simulation and the accuracy required in the final resultsSmaller than one, there are two minirfe 6=0 and 6 =

After several simulations with different values of the cutoff With respect to the anisotropy axisnd a maximum between

range, the optimum value was found to be 10 lattice spacingd§'€M. The energy barrier in this case is given by

at egch side of the considered spi_n. F_or this.choice, the nu- Eb:HE/4Di_HLSi+Di _ (63)

merical results did not show any significant difference when

they were compared with those corresponding to simulation©n the other hand, if the ratjpis bigger than one, only one

with larger cutoff values, and it allowed the computing time maximum and one minimum is present and the energy bar-

to be within reasonable margins. The anisotropy axes werder is given by

chosen to be perpendicular to the direction of the line con- E,= —2H,S 6b)

necting the spins as it has been mentioned before. Doing so, ° L=

the 14> contribution to the dipolar energy vanishes because Each spin of the system has only two possible orienta-

the spinS is perpendicular to the vectoy; . This choice of tions, either parallel or antiparallel to the anisotropy axis,

the anisotropy axes has still another advantage, there is reeparated by the energy barrier given by E&p) or (6b).

where is the dipole strengtha is the lattice spacing;;; is
the vector connecting the spinsandj, andr;; is the modu-
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The transition probability of flipping the spin between the
initial state and the final state is evaluated from EBg).
Then, the reversal of a spin is determined by comparing this
transition probability with a random number. Following this
method, the successive configurations of the system are
visited?® and the magnetization at different times is recorded.
Matsonet al!® used a similar transition probability in their
Monte Carlo simulations, which was normalized with the =
probability of spin flipping without energy barrier. As far as

we are concerned, our choice for the transition probability is
also valid and the difference from the Matsenal. results

may be only a different time unit.

The time unit used in the simulation is the commonly
used Monte Carlo stepMCS), which corresponds to one
attempt per site. Before analyzing the results, it is worth T In(t/T,)
mentioning that there are two characteristic times in the
simulations. The first one is the microscopic characteristid:'zG- 1. Master curves obtained from simulation for interaction parameter
attempt time, which is fixed in Monte Carlo simulations. The*

/a®=0.05, which corresponds to the weak interaction regime. In the inset,

; .. L. the magnetic relaxation for reduced temperatures ranging from 0.01 to 0.25
second one is a macroscopic time, characteristic of the magep to bottom is shown.

netization decay, which is the relevant time for thén(t/ =)

scaling. The conversion from Monte Carlo characteristic

time to the magnetization decay time can be achieved byhe interaction parameter is larger. This fact agrees with the
following the reasoning of Glaubéf.Doing so, it can be experimental results of ¥Map and Tron® as well as the
shown that the Monte Carlo time must be multiplied by anumerical simulations done by Lyberatesal }*'?and Mat-
factor 2 to obtain the magnetization decay time."gonust  son et al!® and the mean-field predictions of Garcand

be taken to be equal to 0.5. Levanuyk? This behavior can be explained taking into ac-
count the effect of the dipolar interaction among the particles
Ill. RESULTS AND DISCUSSION that tends to invert the spin orientation leading to a quasian-

tiferromagnetic order in the system. As the interaction
strength increases, the relaxation is faster and as a conse-
guence, the relaxation time decreases. However, the quasi-

In this section, magnetic relaxations are shown for dif-
ferent values of the interaction parametéta® ranging from

0to 0.3 and thd In(t/7) scaling is tentatively used to obtain logarithmic regime, observed by Matsaet ali® is only

the energy barrier distribution for these values of the inter ) _ L . . )
found in our simulation in the strong interaction regime, for

action parameter. Moreover, the histograms of energy barri- i d withi i indow that d q
ers present in the system at different times are shown an%POf Imes and within a narrow time window that depends
n the temperaturésee inset of Fig. 2 This can be ex-

analyzed. These histograms contain information regarding, . . . .
lained because our simulations are extended up to times

the microscopic level, and are useful for understanding th )
macroscopic relaxation. Finally, an order parameter is prol_nbetween 50000 and 100 000 MCS, for which almost all

posed and analyzed to get a better picture of the final statet.he energy barriers are sampled, while in the work of Matson

A. Time dependence of the magnetization from
simulations

The relaxation process starts from an initial configura-
tion where all the spins are parallel. Then, as the time passes,
the spins flip between the local energy minima due to the
effect of the local field acting on the spin location and the
thermal activation. To study this process, the magnetization
curves are obtained at each temperature and for each value of 3
the interaction parameter. In particular, in the insets of Figs.
1 and 2, the magnetic relaxation fa/a®=0.05 and for
u?a®=0.3, are shown in logarithmic time scale at reduced
temperatures T, =kgT/D,) ranging from 0.01 to 0.25 and
from 0.01 to 0.3(from top to botton), respectively. These
choices of the interaction parameter correspond to two dif- : : * ;

i ; ; . ; 0 0.6 1.2 1.8 2.4 3

ferent regimes of magnetic relaxation, namely: the weak in-
teraction regime, which corresponds to a situation slightly TIn ¥/ To)
perturbed from the noninteracting case and the strong inter-

action regime in which interaction dramatically affects theF'ZG'SE' Master curves obtained from simulation for interaction parameter
/a°=0.3, which corresponds to the strong interaction regime. In the inset,

magnetic dyn?mics of the SYStem- A remarkaple feature Oﬁﬁe magnetic relaxation for reduced temperatures ranging from 0.01 to 0.3
these curves is that the magnetization decay is faster wherop to bottom is shown.
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FIG. 3. Effective distributions of energy barriers obtained from the logarith- ) L . .
mic time derivative of the master curves for different interaction parameters G- 4- Logarithm of the magnetization as a function of the logarithm of the
q*/a®=0.3. The linear behavior is

The open squares correspond to the noninteracting case and the solid ifg'e in the case of strong interacti !
represents the distribution of anisotropy energies. The full triangles corre@PServed in a wide range of times and for all the temperatures that fulfill the

spond to interaction paramet@i2/a®=0.05. The crosses correspond to scaling requirements. In the inset, the logarithm of the energy barrier distri-
42a®=0.1. The open circles correspond 44a=0.2 and, finally, the full ~ Pution as a function of the energy is shown.
circles correspond tp?/a®=0.3.

these master curves can be understood as the magnetic relax-

et al, only the first 100 MCS were recorded. Then, our re-ation at very low temperature from short times to extreme
sults confirm that the quasilogarithmic decay can be undedong times:*#***Also remarkable is the similarity between
stood as an approximation 0n|y valid in a narrow time Win_the curves obtained for relatlvely h|gh values of the interac-
dow. If the study is extended up to longer times, thetion parameterapproximately abovg?/a®=0.1) and some

magnetic relaxation shows a more complex behavior. experimental results shown in the literatsee for instance
Fig. 5 of Ref. 14 and Fig. 5 of Ref. 28

Following the method used in Refs. 23, 24, an effective
distribution of energy barriers can be obtained from the
analysis of the master curves. This method consists in per-

Figures 1 and 2 contain theln(t/7) scaling of the mag- forming a logarithmic time derivative of the master curves.
netization data shown in the corresponding insets for the twé\fter performing it with the master curves of the inset in Fig.
extreme values of the interaction parameter. In both case8, the resulting effective distributions of energy barriers are
and at each temperature, there is a time range, for whickhown in Fig. 3. It is worth noticing that this is not the real
overlapping of the magnetization curves into a unique masteiime evolving energy barrier distribution of the system. In-
curve is observed+?32428Below the inflection point of the stead, it represents a time independent distribution that gives
relaxation curves, this overlapping involves the upper curvesijse to the same relaxation curves obtained in the simulation
while above the inflection point, the overlap occurs for thewithin the scaling range. This can be simply achieved by
lower curves, as is the case in noninteracting systésee integration of the Arrhenius law for the relaxation, taking
Figs. 2, 3, and 4 of Ref. 24lt is worth noticing that in the into account this effective distribution of energy barriéts.
weak interaction regiméu?a®=0.05, the ranges of time Clearly, in the noninteracting case, the effective distribution
and temperature for which the scaling is fulfilled is narrowerof energy barriers matches the anisotropy energy distribution
than in the noninteracting caseee Fig. 3 of Ref. 14 while  of the system.
the contrary occurs in the strong interaction regime As it can be seen in Fig. 3, the influence of the interac-
(u?la®=0.3), for which the scaling regime is extended over ation on the effective distribution of energy barriers is more
wider range. These facts probably come from the differentelevant as the interaction parameter increases. Two main
time evolution of the energy barrier distribution as it is com-features can be pointed out. First, as the interaction param-
pared with the Arrhenius factor, depending on the value okter increases, the mean of the effective distribution of en-
the interaction parameter. This time evolution will be dis-ergy barriers shifts towards lower energies, increasing the
cussed later. number of low energy barriers. Second, the effective distri-

When the scaling method is applied to the relaxationbution becomes narrower as the interaction parameter in-
data obtained for intermediate values of the interaction pacreases up to cax?/a®=0.3, the value at which the peak of
rameter, similar results to those of Figs. 1 and 2 are found. Ithe distribution disappears and an exponential behavior is
the inset of Fig. 3, the master curves for values of the interdepicted(see inset of Fig. ¥ All these features are related to
action parameters ranging from 0 to @fm top to bottomy  the existence of dipolar interaction among the particles, and
are plotted, excluding the magnetization data that are not ithe particular choice of the geometry of the system that fa-
the scaling region. As in the case of noninteracting systemsjors the antiferromagnetic ordering.

B. T In(t/7) scaling and effective distribution of
energy barriers
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The existence of a large amount of low energy barriers, 1.
as observed in the effective distribution of energy barriers for MCS 0
high values of the interaction parameter, has been also ob-_ N
served experimentally by using tfeln(t/r,) scaling in dif- Hos
ferent magnetic systems such as ferrofldfissnd small
nanocrystalline ensembles of Co—Ti doped barium ferfites. ;
Although other explanations of this fact may be possible, 0.~

4 1 2 4
such as the preparation method, or the existence of magnetic E
domains in the larger particles, the comparison of the experi-
H 1.2 1.2
mental results and the Monte Carlo results, reinforces the MCS 600 MCS 100000

suggestion that the most reasonable explanation is simply the
existence of dipolar interaction in these systems. & 0
The low energy barriers correspond to particles that can z
flip even at very low temperatures. Barbagaall® has
pointed out that if the energy barrier distribution has a large 0
amount of low energy barriefsuch as theN(E)~ 1/E for
instancé, then the magnetic viscosity can be constant at low
temperatures giving rise to the so-called plateau of the mag- 12
netic viscosity. This plateau has been attributed by some au-
thors to quantum effect$;?® however, taking into account ~
the Monte Carlo results, other explanations of this fact, such z“"
as the existence of interactions among the particles of the
system should be considered.
Another striking fact regarding the effective distribution %
of energy barriers occurs in the extreme case#&°=0.3.
In this case, the logarithm of the effective distribution of ‘ 2
energy barriers shows a linear dependence when it is plotted MCS 750 MCS 100000
as a function of the energgee inset of Fig. ¥ indicating an

exponential behavior of the effective distribution of energy @0,6 @0,6

barriers and, consequently, an exponential decay of the cor-Z z ‘

responding master curve since the former is obtained by per- ;

forming the logarithmic time derivative of the latter. This 05 i 5 4 0L 2““ ----- 3
means that the magnetization decays as a power law with the E E

time since the energy scale can be converted to the time scale

through the scaling variabl& In(t/7). In Fig. 4, the loga- FiG. 5. (a) Histograms of the energy barriers for different Monte Carlo
rithm of the magnetization is plotted as a function of thesteps, fqrM2/a3fO.05 andT =0.1(full line). The broken line corresponds to
logarithm of time and a power law regime is observed in athe noninteracting caséb) The same ag) for 4%a*=0.3 andT=0.1.

wide range of times at each temperature. This power law

decay of the magnetization has been previously experimerh-ow the energy barrier distribution that each spin should

té‘llyl ob§er\/le? n SE'” gla;ses sz/ I;eﬁieal.aéa_mj by Monte overcome to change its state, varies as time elapses. Starting
arlo simuiations by binder and SCNroederne Common g, e perfectly parallel configuration, as the time passes,

trend of 'these systems IS th.e existence of a competition .befhe spins flip due to the thermal activation and the effect of
tween disorder and interactions that can lead to frustratloLEnne local field acting on each spin location. Then, the system
and i_rreversibility. In our r_nO(_jeI,_the competition betWeenrelaxes to an antiferromagnetic ordering, dec’reasing the
the disorder, due to the distribution of anisotropy strengthStrength of the local fields, and driving the system to a final
and the_ dipolar interactiqn _among_the parti_cles, can p_roducgtate with a small number ,of low energy barriers, and a large
frus;ratlon in the magnetic interactions that is responsible fohumber of high energy barriers. In the limit of weak interac-
the irreversible effects. tion [Fig. 5@)], the histogram at any time is quite similar to
the noninteracting cagdéroken line in Fig. )], for which
the histogram is a time independent logarithmic linear distri-
bution. However, at short times, when the spin configuration
Regarding the microscopic information that can be ob-s almost parallel, there is a small shift of the mean energy
tained from Monte Carlo simulations, the histograms of thetowards lower energies due to the dipolar field acting on
energy barriers separating the occupied state of each spaach spin. For this spin configuration, the local field is al-
from the other allowed state, have been recorded at differemhost constant and tends to reduce the anisotropy energy bar-
Monte Carlo steps. In Figs(&), and %b), the time evolution riers. As the time passes, the lowest energy barriers are re-
of the histograms is shown for values of the interaction palaxed leading to the corresponding spins to final states with
rameteru?/a®=0.05[Fig. 5a)] and u*/a®>=0.3[Fig. 5b)] at  higher energy barriers, giving rise to a superimposed peak
a reduced temperatufe =0.1. Figures E) and §b) show that is shown in Fig. &), for MCS=50 and MCS=600. In

C. Barrier histograms from simulated spin
configurations
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the weak interaction limit, the anisotropy energy distribution 1.8
dominates the dynamics of the system and the dipolar inter-
action, which tends to produce an antiferromagnetic order-
ing, plays a secondary role. As a consequence, the final state -
of the system is practically disordered, the local fields are
small, and the energy barrier distribution matches almost A
completely the anisotropy energy distribution. See Fig) 5 M 125}
for MCS=100 000. v

On the contrary, in the case of the strong interaction
[Fig. 5(b)] the situation is more complex. Initially, two peaks
are present, one located at negative energies and the other
located at very low energies. The negative energy peak cor-
responds to the smallest anisotropy energy barriers that have 0.7 0 6 ‘ 12
been destroyed by the dipolar contribution and which corre- In (t/7,)
sponds to spins that relax immediatétile negative peak is
not pres_ent at MCSS50). The_ second peak is _Sm_)ngl_y dis- FIG. 6. Average value of the energy barrier histograms as a function of the
torted with respect to the anisotropy energy distribution dugogarithm of time at two different temperatures. Full squares represent the
to the contribution arising from the local field, which for the strong interaction regiméu%a®=0.3) and full circles, the low interaction

spin parallel configuratior(initial state, reduces dramati- 'egime(u*a*=0.05.
cally the height of the total energy barriers coming from the
anisotropy and dipolar contributions. At short times, this

large amount of spins corresponding to low energy barriergtrength. To study the degree of order that remains in the

relaxes by thermal activation giving rise to a sharp peak censystem, we have chosen the following parameter:
tered at a high energy valysee Fig. Bb) for MCS=50].

The origin of this sharp peak can be understood taking into
account that the local field acting on the relaxed spins is very
strong in comparison with the anisotropy contribution, so, | . L : .

the final local configuration of these spins is almost antifer-w.hICh 1S 5|m|lar to the |nteragt|on energy  of a one-
romagnetic and the energy barriers needed to invert thes%mens'_oni‘zl6 Ising model with nearest neighbors
spins are very high. The energy barrier corresponding to thigﬂeractmn ) . .
sharp peak does practically not relax as time elafses Fig. When the system is in the orde_red state, all the spins are
5(b) for MCS=750 and MCS=100 000.. The rest of the en- parallel and the order parameter, is equal to+1. In the

ergy barriers relax slower as time elapses, leading the Sys,[eﬁ,ptlferromagnetlc state, all the spins are antiparallel, so the

towards a quasiantiferromagnetic state. The degree of an _r(:\?vr par?rr]ne;er takes thf. valu(;(.thFor |ntt.?rmed|ate stt_ate_? i
ferromagnetic ordering of the final state depends on the inpetween the ferromagnetic an € antiterromagnetic state,

terplay between the strengths of the anisotropy energy an&lj]e order parameter is within the range1,1]. With this

the dipolar interaction. Moreover, in the final state, the Iocalor.der parameter, a better knowledge of the final state is ob-

field acting on each spin is almost constant through the Syg_auned and h(_)W the system arrives at it. In Fig. 7, the order
tem, so the energy barrier distribution is essentially the anparametera, is shown as a function of the i) for three
isotropy energy barrier shifted to higher energy vallsee
Fig. 5(b) for MCS=100 000.

The influence of the temperature on the relaxation pro- 1
cesses described below is mainly a change in the time scale
as it is shown in Fig. 6, where the time dependence of the
mean of the energy barrier distribution is represented, for O
two values of the temperatuf@=0.1, 0.2 and the interac-
tion parameter(u¥a®=0.05, 0.3. In both interaction re-
gimes, the qualitative behavior of the mean energy is similar 0
for the two studied temperatures, and the most remarkable
feature is that at higher temperatures the thermal activation
process drives the system more efficiently towards the final
state and, consequently, the energy barrier histogram
changes faster.

N

1
a=—i§1$s+l, @)

D. Time varying order-parameter In (t/"CO)

.Wh.en t.he final state of the system Is reached, the maq:-IG. 7. Order parameter as a function of the logarithm of the time for three
netlzat|qn IS alm(_)St Zero, however, some degre_e of |0(_:81l1teraction parameter§u?/a=0. curve (a), u%a%=0.1 curve (b), and
magnetic order still remains that depends on the interactiopa®=0.3 curve(c)] at a temperatur&=0.2.
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different interaction parametetg?a®=0.0, u*/a®=0.1, and as time elapses. Moreover, the number of antiparallel
0.3 at a reduced temperatue=0.2. In the case of zero couples at long times increases as the interaction parameter
interaction, the order parameter arrives at a zero value, shovincreases.
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