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Monte Carlo simulations have been performed to study the magnetic relaxation of a small particle
system with dipolar interaction. The simulated system is a simplified version of the real situation in
a small particle system with a random distribution of anisotropy axes and long range dipolar
interaction among the particles. This model consists on a one-dimensional Ising model with dipolar
interaction and a distribution of uniaxial anisotropy strengths. The anisotropy axes were considered
perpendicular to the line connecting the spins. These choices allow us to focus on the influence of
the demagnetizing part of the dipolar interaction on the magnetic relaxation by taking into account
the main features of the system. TheTln~t/t0! scaling variable is used to determine the effective
distribution of energy barriers for the different interaction strengths showing an enhancement in the
number of the lowest energy barriers as the interaction strength is increased. Moreover, the
histograms of the energy barrier distribution as a function of the time are analyzed and this study
leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation.
© 1996 American Institute of Physics.@S0021-8979~96!05919-1#
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I. INTRODUCTION

In the past years, an increasing interest has been devo
to the study of the dynamics of different magnetic system
such as small particle systems,1,2 superconductors,3,4

multilayers,5 etc. The dynamics of a magnetic system a
observed by perturbing it, for instance, by a sudden chan
of the applied magnetic field, followed by the measureme
of the time evolution of one magnitude such as the magn
tization. As the time passes, the system visits different me
stable states that are separated by energy barriers. The t
mal activation allows the system to overcome these ene
barriers, and finally reach the steady state.

In real systems, magnetic interactions arise among
constituents, which can affect the observed dynamics. In p
ticular, there are magnetic systems such as ferrofluids6 and
small particle systems7 where the effect of the interactions
may be accurately investigated by changing the concen
tion of magnetic particles. In these systems, the influence
the interactions on the relaxation process has been reve
to be important, and leads to changes in the relaxation p
cess, such as the increase of relaxation times with the
crease of the strength of interactions.7 To explain this fact,
Dormannet al.7 proposed a model that took into account th
influence of the interaction. As a result of their model, Do
mannet al. confirmed the increase of the relaxation time a
the interaction strength increases. Later on, Lottiset al.8 pro-
posed a theoretical model that included the effect of the
teraction as a demagnetizing field. Using this model, Lot
et al.explained the quasilogarithmic decay observed in Co
films.5 Recently, Garcı´a and Levanuyk9 studied the thermal
dependence of the relaxation time of a system of coup
small particles by mean-field techniques, and compared th
results with the noninteracting case. The main conclusion
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this work is that in the case of antiferromagnetic couplin
the relaxation time is smaller than the relaxation time o
tained in the case of noninteracting particles. On the oth
hand, Mo”rup and Tronc10 studied by Mo¨ssbauer spectros-
copy the magnetic relaxation of a set of weakly interactin
particles of maghemiteg-Fe2O3, and found that the relax-
ation was faster in the concentrated samples~where the in-
teraction effects are more important! than in the diluted ones,
in contradiction with the previous model of Dormannet al.7

This leads Mo”rup and Tronc to propose a new model, wher
the effect of the dipolar interaction was taken into accoun10

and they predicted a decrease of the relaxation time due
the dipolar interaction.

To achieve a better understanding of the magnetic d
namics of these systems, other techniques were used, suc
numerical simulations.11–13 First, Lyberatoset al.11 used
Monte Carlo methods to study the time dependence of t
magnetization, taking into account the effect of the dipol
interaction between the magnetic moments. Their syste
consisted on a two-dimensional ensemble of identical p
ticles, where the effect of the dipolar interaction was in
cluded as a demagnetizing field. This field was calculat
exactly up to 535 spins and the rest of the system was a
proximated by a mean field. As a result, they obtained
quasilogarithmic decay of the magnetization and a spread
the energy barriers due to the effect of the interaction. La
on, Lyberatoset al.12 studied experimentally an aluminate
media and compared their experimental results with a the
retical model that included the effect of the particle size di
tribution. In this model, the magnetostatic coupling betwee
particles was represented by a mean field, which neglec
the spatial and temporal fluctuations of the interaction fiel
Their experimental results showed that the magnetization
cay was logarithmic within the measurement time window
while their numerical results lead to a strong dependence
the magnetic relaxation on the interaction parameter. Fina
Matsonet al.13 used a Monte Carlo method to study the tim
96/80(9)/5192/8/$10.00 © 1996 American Institute of Physics
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decay of the remanent magnetization of an interacting s
tem. The interactions were included as a mean demagne
ing field and gave rise to a faster relaxation, because
demagnetizing field drives the spins to an antiferromagne
state.

Recent experiments performed on ferrofluids14 and
Co–Ti doped barium ferrites15 suggest that, the number o
low energy barriers is larger than what it would be expect
from the logarithmic linear distribution. Besides this, othe
experiments16,17 where the thermal dependence of the ma
netic viscosity~which samples the energy barrier distributio
if only thermal processes are considered! is obtained show
that magnetic viscosity reaches a finite constant value at l
temperatures. This behavior has been attributed to quan
relaxation processes but, as it has already been pointed
by other authors,18 it could be also attributed to the existenc
of an extra contribution of the lowest energy barriers, du
for instance, to the effect of the demagnetizing interactio
among the particles.

The energy barrier distribution depends on the micr
scopic details of the system, such as the existence of lo
anisotropies or interactions among the constituent entit
~magnetic moments in the case of magnetic systems or v
tices in the case of type II superconductors!. The knowledge
of the energy barrier distribution and the influence of th
microscopic details on it, leads to the understanding of t
whole dynamics of the system. As a consequence, the ene
barrier distribution is the relevant quantity to study, in orde
to understand the relaxation process. Different methods h
been used to obtain the energy barrier distribution from e
perimental data. The most common method19 is based on the
critical volume approximation and consists in performing th
derivative with respect to the temperature, of the thermo
manence normalized to saturation, which yields to the dist
bution of blocking temperatures. Other methods are based
the observation of the relaxation of the system as a funct
of the magnetic field strength20 or in the calculation of the
derivative of the thermoremance with respect to the magne
field.21 Two approximations that map out directly the energ
barrier distribution from the relaxation curves have been pr
posed. From the first one, based on the so-called barrier p
and proposed by Barbara and Gunther,22 the volume and
field dependence of the energy barrier distribution can
obtained. The second approximation has been first propo
by Omariet al.23 to study spin glasses and more recently h
been used by Iglesiaset al.24 to study small particle systems
This approximation has been revealed to be a useful meth
to obtain the energy barrier distribution from the scaled ma
netization curves as a function of theT ln~t/t0! scaling vari-
able. This method may be applied to a wide variety of sy
tems because it avoids any assumption about the spec
relaxation behavior.

The majority of these methods have been applied to t
study of systems for which no magnetic interactions a
present or they are negligible. In this situation, the ener
barrier distribution does not depend on the particular a
rangement of the magnetic moments and it is constant
time passes. When the magnetic interaction is not negligib
the energy barrier distribution evolves with the time due
J. Appl. Phys., Vol. 80, No. 9, 1 November 1996
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the changes of the local dipolar field as the magnetic co
figuration of the system changes. Then, only those metho
based on the direct observation of the magnetization dec
can be applied. In particular, if theT ln~t/t0! scaling were
valid in the case of a relaxing system with magnetic intera
tions present, the effective distribution of energy barriers th
are relaxing at each time would be obtained. These assum
tions are reinforced by the previous fact that this method h
been successfully applied to the study of the dynamics
spin glass systems.23,25

The aim of this article is to study the influence of th
demagnetizing part of the dipolar interaction on the ener
barrier distribution of small particle systems, and to test th
validity of theT ln~t/t0! scaling applied to this situation. As
it was mentioned before, this part of the dipolar interactio
seems to have enough importance in the interpretation of
experimental results in those systems for which there is
anomalous enhancement of the low energy barrier contrib
tion. On the other hand, the understanding of the magne
relaxation of an assembly of small magnetic particles is ve
relevant to the magnetic recording applications since it d
termines the average lifetime of magnetic recording medi

Due to the fact that the energy barrier distribution de
pends on the microscopic details, a microscopic probe
needed. Two reasons make the Monte Carlo simulation26 a
suitable tool for this study. On the one hand, Monte Car
simulation combined with theT ln~t/t0! scaling, allows ex-
tending the time scale up to values unreachable in comm
real experiments, helping to elucidate the discrepancies
served experimentally. On the other hand, it can be used
obtain microscopic information concerning magnetic dynam
ics, such as histograms of the energy barriers.

The outline of this article is as follows: In the next sec
tion, the model and the numerical method are explained.
Sec. III, the effective distributions of energy barriers are di
cussed for different values of the interaction paramete
Moreover, the microscopic histograms and the order para
eter are shown and analyzed.

II. MODEL AND NUMERICAL METHOD

To carry out the numerical simulation, a simplified
model of the real system must be built. This model has
fulfill two requirements: it must be simple enough to kee
the computational time within reasonable margins, and
should gather the main features of the real system in orde
be meaningful. Two main features have to be included in th
model. First, in real systems there is a distribution of partic
volumes f (V), that gives rise to an energy barrier distribu
tion provided that the anisotropy energy isKV cos2~u2u0!,
whereK is the anisotropy constant,V is the particle volume,
and u2u0 is the angle between the anisotropy axis and t
spin orientation. Second, in order to focus only on the d
magnetizing part of the dipolar interaction, the anisotrop
axes are taken to be perpendicular to the line connecting
spins of the system~i.e.,u05p/2 with respect to the direction
defined by the line connecting the spins!. It is worth noting
that only in one or two dimensions and for this arrangeme
of anisotropy axes there is only a demagnetizing contributi
to the dipolar interaction. While, in three dimensions, there
5193R. Ribas and A. Labarta
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an extra magnetizing contribution along the lines parallel
the anisotropy axes. The long range of the dipolar interacti
involves a large number of spins that increases the comp
ing time needed to calculate the local field and the ener
barriers. To minimize this effect, a one-dimensional syste
is considered. In spite of neglecting the influence of the d
mensionality on the dynamics, this choice allows reducin
considerably the computing time and still keeps the essen
property of the system, namely the existence of demagne
ing interactions among the spins. For instance, the only r
evant difference with the equivalent two-dimensional mod
is the number of neighbors of a given site. Moreover, in re
systems, the distances among the magnetic particles are
bitrary, but, for the sake of simplicity, we consider a one
dimensional array of equally spaced magnetic particles w
uniaxial anisotropy. Only two orientations are possible,~ei-
ther parallel or antiparallel to the anisotropy axis!. To find
the suitable size of the system, we have proceeded in
following way: We started with a system withL51000 spins
and then we looked for the number of repetitions of the sy
tem to average in order to obtain representative resu
These repetitions of the system are in fact different amo
them due to the different disorder realization. The optimu
number of averaged repetitions of the system was inbetwe
5 and 10 at each temperature. So we decided to perform o
one simulation with a system of 10 000 spins that is equiv
lent and computationally more efficient. Moreover, we hav
carried out some extra simulations with different disord
realizations of the system andL510 000 to verify whether
the system was large enough. Periodic boundary conditio
were imposed to minimize finite-size effects.

With these assumptions, the total energy of the system
given by

E5
m2

a3 (
^ i , j &

SSiSjr i j
3 2

~Sir i j !~Sj r i j !

r i j
5 D 2(

i
Di~nSi !

2, ~1!

wherem is the dipole strength,a is the lattice spacing,r i j is
the vector connecting the spinsi and j , andr i j is the modu-
lus of this vector. The interaction parameter ism2/a3, which
measures the strength of the dipolar interaction. The vecton
represents the easy axis of anisotropy and the unit vectoSi
represents the magnetic moment. The summation should
extended to the whole array, however, a cutoff of the inte
action range has to be imposed to decrease the compu
time. The calculation of this cutoff implies a compromis
between the computing time needed to carry out the nume
cal simulation and the accuracy required in the final resul
After several simulations with different values of the cuto
range, the optimum value was found to be 10 lattice spacin
at each side of the considered spin. For this choice, the
merical results did not show any significant difference whe
they were compared with those corresponding to simulatio
with larger cutoff values, and it allowed the computing tim
to be within reasonable margins. The anisotropy axes w
chosen to be perpendicular to the direction of the line co
necting the spins as it has been mentioned before. Doing
the 1/r 5 contribution to the dipolar energy vanishes becau
the spinSi is perpendicular to the vectorr i j . This choice of
the anisotropy axes has still another advantage, there is
5194 J. Appl. Phys., Vol. 80, No. 9, 1 November 1996
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mixing of magnetizing and demagnetizing interaction
Then, attention can be focused on the effect of the demag
tizing contribution of the dipolar interaction that seems to b
the predominant contribution in many situations~i.e., a qua-
sibidimensional ensemble of spins oriented perpendicular
the plane, a three-dimensional array of small particles w
easy axis randomly oriented, etc.!. Di is the array of anisot-
ropy constants, ~one for each spin! taken from the
logarithmic–linear distribution with the values of the dimen
sionless parametersD051 and variances50.5:7,11

f ~D !5
1

A2psD
exp@2 ln2~D/D0!/2s2#. ~2!

The choice of the value of the variances50.5 was made to
ensure that the ranges of temperatures and correspond
times in whichT ln~t/t0! scaling is fulfilled is wide enough
for the reference case with noninteracting particles.14

The classical Monte Carlo method26 is used with the
following transition probability:

P~Eb!5exp~2Eb /kBT!, ~3!

whereEb is the energy barrier between the parallel and th
antiparallel states, with respect to the anisotropy axis,kB is
the Boltzmann constant, andT is the temperature. It is con-
venient to use dimensionless variables defined as follow
the energy,E, is measured in units of the mean anisotrop
energy valueD0 of the distribution of Eq.~2!, which is arbi-
trarily fixed to the value 1, and the temperature is measur
in units ofD0/kB . For each spin the energy barrier is calcu
lated. To do so, the local field acting on the spin locatio
must be obtained. From Eq.~1! and with the previous as-
sumptions the local field is given by

HL5
m2

a3 (̂
j &

Sj
r i j
3 . ~4!

In the calculation of this local field, only 10 lattice spac
ings were considered at each side of the considered spin, a
was mentioned before. With the local field obtained from E
~4!, the energy given by Eq.~1! can be written as

E5HLSi2Di~Sin!25HL cos~u i !2Di cos
2~u i !, ~5!

whereui is the angle between the uniaxial anisotropy ax
and the spin direction. This function may be seen as a co
tinuous function of the angleui and can show one or two
minima depending on the ratior5HL/2Di . If this ratio is
smaller than one, there are two minima~at ui50 andui5p
with respect to the anisotropy axis! and a maximum between
them. The energy barrier in this case is given by

Eb5HL
2/4Di2HLSi1Di . ~6a!

On the other hand, if the ratior is bigger than one, only one
maximum and one minimum is present and the energy b
rier is given by

Eb522HLSi . ~6b!

Each spin of the system has only two possible orient
tions, either parallel or antiparallel to the anisotropy axi
separated by the energy barrier given by Eq.~6a! or ~6b!.
R. Ribas and A. Labarta
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The transition probability of flipping the spin between th
initial state and the final state is evaluated from Eq.~3!.
Then, the reversal of a spin is determined by comparing t
transition probability with a random number. Following thi
method, the successive configurations of the system
visited26 and the magnetization at different times is recorde
Matsonet al.13 used a similar transition probability in their
Monte Carlo simulations, which was normalized with th
probability of spin flipping without energy barrier. As far a
we are concerned, our choice for the transition probability
also valid and the difference from the Matsonet al. results
may be only a different time unit.

The time unit used in the simulation is the commonl
used Monte Carlo step~MCS!, which corresponds to one
attempt per site. Before analyzing the results, it is wor
mentioning that there are two characteristic times in t
simulations. The first one is the microscopic characteris
attempt time, which is fixed in Monte Carlo simulations. Th
second one is a macroscopic time, characteristic of the m
netization decay, which is the relevant time for theT ln~t/t0!
scaling. The conversion from Monte Carlo characterist
time to the magnetization decay time can be achieved
following the reasoning of Glauber.27 Doing so, it can be
shown that the Monte Carlo time must be multiplied by
factor 2 to obtain the magnetization decay time. Sot0 must
be taken to be equal to 0.5.

III. RESULTS AND DISCUSSION

In this section, magnetic relaxations are shown for d
ferent values of the interaction parameterm2/a3 ranging from
0 to 0.3 and theT ln~t/t0! scaling is tentatively used to obtain
the energy barrier distribution for these values of the inte
action parameter. Moreover, the histograms of energy ba
ers present in the system at different times are shown a
analyzed. These histograms contain information regard
the microscopic level, and are useful for understanding t
macroscopic relaxation. Finally, an order parameter is p
posed and analyzed to get a better picture of the final sta

A. Time dependence of the magnetization from
simulations

The relaxation process starts from an initial configur
tion where all the spins are parallel. Then, as the time pass
the spins flip between the local energy minima due to t
effect of the local field acting on the spin location and th
thermal activation. To study this process, the magnetizat
curves are obtained at each temperature and for each valu
the interaction parameter. In particular, in the insets of Fig
1 and 2, the magnetic relaxation form2/a350.05 and for
m2/a350.3, are shown in logarithmic time scale at reduce
temperatures (Tr5kBT/D0) ranging from 0.01 to 0.25 and
from 0.01 to 0.3~from top to bottom!, respectively. These
choices of the interaction parameter correspond to two d
ferent regimes of magnetic relaxation, namely: the weak
teraction regime, which corresponds to a situation sligh
perturbed from the noninteracting case and the strong int
action regime in which interaction dramatically affects th
magnetic dynamics of the system. A remarkable feature
these curves is that the magnetization decay is faster w
J. Appl. Phys., Vol. 80, No. 9, 1 November 1996
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FIG. 1. Master curves obtained from simulation for interaction parame
m2/a350.05, which corresponds to the weak interaction regime. In the ins
the magnetic relaxation for reduced temperatures ranging from 0.01 to 0
~top to bottom! is shown.
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the interaction parameter is larger. This fact agrees with t
experimental results of Mo”rup and Tronc10 as well as the
numerical simulations done by Lyberatoset al.11,12and Mat-
son et al.13 and the mean-field predictions of Garcı´a and
Levanuyk.9 This behavior can be explained taking into ac
count the effect of the dipolar interaction among the particl
that tends to invert the spin orientation leading to a quasia
tiferromagnetic order in the system. As the interactio
strength increases, the relaxation is faster and as a con
quence, the relaxation time decreases. However, the qu
logarithmic regime, observed by Matsonet al.13 is only
found in our simulation in the strong interaction regime, fo
short times and within a narrow time window that depend
on the temperature~see inset of Fig. 2!. This can be ex-
plained because our simulations are extended up to tim
inbetween 50 000 and 100 000 MCS, for which almost a
the energy barriers are sampled, while in the work of Mats
-
es,
e
e
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FIG. 2. Master curves obtained from simulation for interaction paramet
m2/a350.3, which corresponds to the strong interaction regime. In the ins
the magnetic relaxation for reduced temperatures ranging from 0.01 to
~top to bottom! is shown.
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mic time derivative of the master curves for different interaction paramete
The open squares correspond to the noninteracting case and the solid
represents the distribution of anisotropy energies. The full triangles cor
spond to interaction parameterm2/a350.05. The crosses correspond to
m2/a350.1. The open circles correspond tom2/a350.2 and, finally, the full
circles correspond tom2/a350.3.
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et al., only the first 100 MCS were recorded. Then, our re
sults confirm that the quasilogarithmic decay can be und
stood as an approximation only valid in a narrow time win
dow. If the study is extended up to longer times, th
magnetic relaxation shows a more complex behavior.

B. T ln( t /t0) scaling and effective distribution of
energy barriers

Figures 1 and 2 contain theT ln~t/t0! scaling of the mag-
netization data shown in the corresponding insets for the t
extreme values of the interaction parameter. In both cas
and at each temperature, there is a time range, for wh
overlapping of the magnetization curves into a unique mas
curve is observed.14,23,24,28Below the inflection point of the
relaxation curves, this overlapping involves the upper curv
while above the inflection point, the overlap occurs for th
lower curves, as is the case in noninteracting systems~see
Figs. 2, 3, and 4 of Ref. 14!. It is worth noticing that in the
weak interaction regime~m2/a350.05!, the ranges of time
and temperature for which the scaling is fulfilled is narrow
than in the noninteracting case~see Fig. 3 of Ref. 14!, while
the contrary occurs in the strong interaction regim
~m2/a350.3!, for which the scaling regime is extended over
wider range. These facts probably come from the differe
time evolution of the energy barrier distribution as it is com
pared with the Arrhenius factor, depending on the value
the interaction parameter. This time evolution will be dis
cussed later.

When the scaling method is applied to the relaxatio
data obtained for intermediate values of the interaction p
rameter, similar results to those of Figs. 1 and 2 are found.
the inset of Fig. 3, the master curves for values of the inte
action parameters ranging from 0 to 0.3~from top to bottom!
are plotted, excluding the magnetization data that are not
the scaling region. As in the case of noninteracting system
5196 J. Appl. Phys., Vol. 80, No. 9, 1 November 1996
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these master curves can be understood as the magnetic re
ation at very low temperature from short times to extrem
long times.14,23,24Also remarkable is the similarity between
the curves obtained for relatively high values of the intera
tion parameter~approximately abovem2/a350.1! and some
experimental results shown in the literature~see for instance
Fig. 5 of Ref. 14 and Fig. 5 of Ref. 28!.

Following the method used in Refs. 23, 24, an effectiv
distribution of energy barriers can be obtained from th
analysis of the master curves. This method consists in p
forming a logarithmic time derivative of the master curve
After performing it with the master curves of the inset in Fig
3, the resulting effective distributions of energy barriers a
shown in Fig. 3. It is worth noticing that this is not the rea
time evolving energy barrier distribution of the system. In
stead, it represents a time independent distribution that giv
rise to the same relaxation curves obtained in the simulat
within the scaling range. This can be simply achieved b
integration of the Arrhenius law for the relaxation, takin
into account this effective distribution of energy barriers.24

Clearly, in the noninteracting case, the effective distributio
of energy barriers matches the anisotropy energy distribut
of the system.

As it can be seen in Fig. 3, the influence of the intera
tion on the effective distribution of energy barriers is mor
relevant as the interaction parameter increases. Two m
features can be pointed out. First, as the interaction para
eter increases, the mean of the effective distribution of e
ergy barriers shifts towards lower energies, increasing t
number of low energy barriers. Second, the effective dist
bution becomes narrower as the interaction parameter
creases up to ca.m2/a350.3, the value at which the peak of
the distribution disappears and an exponential behavior
depicted~see inset of Fig. 4!. All these features are related to
the existence of dipolar interaction among the particles, a
the particular choice of the geometry of the system that f
vors the antiferromagnetic ordering.
R. Ribas and A. Labarta
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The existence of a large amount of low energy barrie
as observed in the effective distribution of energy barriers f
high values of the interaction parameter, has been also
served experimentally by using theT ln~t/t0! scaling in dif-
ferent magnetic systems such as ferrofluids,14 and small
nanocrystalline ensembles of Co–Ti doped barium ferrites15

Although other explanations of this fact may be possibl
such as the preparation method, or the existence of magn
domains in the larger particles, the comparison of the expe
mental results and the Monte Carlo results, reinforces t
suggestion that the most reasonable explanation is simply
existence of dipolar interaction in these systems.

The low energy barriers correspond to particles that c
flip even at very low temperatures. Barbaraet al.18 has
pointed out that if the energy barrier distribution has a lar
amount of low energy barriers@such as theN(E);1/E for
instance#, then the magnetic viscosity can be constant at lo
temperatures giving rise to the so-called plateau of the m
netic viscosity. This plateau has been attributed by some
thors to quantum effects,16,29 however, taking into account
the Monte Carlo results, other explanations of this fact, su
as the existence of interactions among the particles of
system should be considered.

Another striking fact regarding the effective distributio
of energy barriers occurs in the extreme case ofm2/a350.3.
In this case, the logarithm of the effective distribution o
energy barriers shows a linear dependence when it is plot
as a function of the energy~see inset of Fig. 4!, indicating an
exponential behavior of the effective distribution of energ
barriers and, consequently, an exponential decay of the c
responding master curve since the former is obtained by p
forming the logarithmic time derivative of the latter. This
means that the magnetization decays as a power law with
time since the energy scale can be converted to the time s
through the scaling variableT ln~t/t0!. In Fig. 4, the loga-
rithm of the magnetization is plotted as a function of th
logarithm of time and a power law regime is observed in
wide range of times at each temperature. This power la
decay of the magnetization has been previously experim
tally observed in spin glasses by Ferreet al.30 and by Monte
Carlo simulations by Binder and Schroeder.31 The common
trend of these systems is the existence of a competition
tween disorder and interactions that can lead to frustrat
and irreversibility. In our model, the competition betwee
the disorder, due to the distribution of anisotropy streng
and the dipolar interaction among the particles, can produ
frustration in the magnetic interactions that is responsible
the irreversible effects.

C. Barrier histograms from simulated spin
configurations

Regarding the microscopic information that can be o
tained from Monte Carlo simulations, the histograms of th
energy barriers separating the occupied state of each s
from the other allowed state, have been recorded at differ
Monte Carlo steps. In Figs. 5~a!, and 5~b!, the time evolution
of the histograms is shown for values of the interaction p
rameterm2/a350.05 @Fig. 5~a!# andm2/a350.3 @Fig. 5~b!# at
a reduced temperatureTr50.1. Figures 5~a! and 5~b! show
J. Appl. Phys., Vol. 80, No. 9, 1 November 1996
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FIG. 5. ~a! Histograms of the energy barriers for different Monte Carlo
steps, form2/a350.05 andT50.1 ~full line!. The broken line corresponds to
the noninteracting case.~b! The same as~a! for m2/a350.3 andT50.1.
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how the energy barrier distribution that each spin shou
overcome to change its state, varies as time elapses. Star
from the perfectly parallel configuration, as the time passe
the spins flip due to the thermal activation and the effect
the local field acting on each spin location. Then, the syste
relaxes to an antiferromagnetic ordering, decreasing t
strength of the local fields, and driving the system to a fin
state with a small number of low energy barriers, and a lar
number of high energy barriers. In the limit of weak interac
tion @Fig. 5~a!#, the histogram at any time is quite similar to
the noninteracting case@broken line in Fig. 5~a!#, for which
the histogram is a time independent logarithmic linear dist
bution. However, at short times, when the spin configuratio
is almost parallel, there is a small shift of the mean ener
towards lower energies due to the dipolar field acting o
each spin. For this spin configuration, the local field is a
most constant and tends to reduce the anisotropy energy
riers. As the time passes, the lowest energy barriers are
laxed leading to the corresponding spins to final states w
higher energy barriers, giving rise to a superimposed pe
that is shown in Fig. 5~a!, for MCS550 and MCS5600. In
5197R. Ribas and A. Labarta
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the weak interaction limit, the anisotropy energy distributio
dominates the dynamics of the system and the dipolar int
action, which tends to produce an antiferromagnetic ord
ing, plays a secondary role. As a consequence, the final s
of the system is practically disordered, the local fields a
small, and the energy barrier distribution matches almo
completely the anisotropy energy distribution. See Fig. 5~a!
for MCS5100 000.

On the contrary, in the case of the strong interactio
@Fig. 5~b!# the situation is more complex. Initially, two peak
are present, one located at negative energies and the o
located at very low energies. The negative energy peak c
responds to the smallest anisotropy energy barriers that h
been destroyed by the dipolar contribution and which corr
sponds to spins that relax immediately~the negative peak is
not present at MCS550!. The second peak is strongly dis
torted with respect to the anisotropy energy distribution d
to the contribution arising from the local field, which for the
spin parallel configuration~initial state!, reduces dramati-
cally the height of the total energy barriers coming from th
anisotropy and dipolar contributions. At short times, th
large amount of spins corresponding to low energy barrie
relaxes by thermal activation giving rise to a sharp peak ce
tered at a high energy value@see Fig. 5~b! for MCS550#.
The origin of this sharp peak can be understood taking in
account that the local field acting on the relaxed spins is ve
strong in comparison with the anisotropy contribution, s
the final local configuration of these spins is almost antife
romagnetic and the energy barriers needed to invert th
spins are very high. The energy barrier corresponding to t
sharp peak does practically not relax as time elapses@see Fig.
5~b! for MCS5750 and MCS5100 000#. The rest of the en-
ergy barriers relax slower as time elapses, leading the sys
towards a quasiantiferromagnetic state. The degree of a
ferromagnetic ordering of the final state depends on the
terplay between the strengths of the anisotropy energy a
the dipolar interaction. Moreover, in the final state, the loc
field acting on each spin is almost constant through the s
tem, so the energy barrier distribution is essentially the a
isotropy energy barrier shifted to higher energy values@see
Fig. 5~b! for MCS5100 000#.

The influence of the temperature on the relaxation pr
cesses described below is mainly a change in the time sc
as it is shown in Fig. 6, where the time dependence of t
mean of the energy barrier distribution is represented,
two values of the temperature~T50.1, 0.2! and the interac-
tion parameter~m2/a350.05, 0.3!. In both interaction re-
gimes, the qualitative behavior of the mean energy is simi
for the two studied temperatures, and the most remarka
feature is that at higher temperatures the thermal activat
process drives the system more efficiently towards the fin
state and, consequently, the energy barrier histogr
changes faster.

D. Time varying order-parameter

When the final state of the system is reached, the ma
netization is almost zero, however, some degree of lo
magnetic order still remains that depends on the interact
5198 J. Appl. Phys., Vol. 80, No. 9, 1 November 1996
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FIG. 6. Average value of the energy barrier histograms as a function of t
logarithm of time at two different temperatures. Full squares represent
strong interaction regime~m2/a350.3! and full circles, the low interaction
regime~m2/a350.05!.
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strength. To study the degree of order that remains in t
system, we have chosen the following parameter:

s5
1

N (
i51

N

SiSi11 , ~7!

which is similar to the interaction energy of a one
dimensional Ising model with nearest neighbor
interactions.26

When the system is in the ordered state, all the spins
parallel and the order parameter,s, is equal to11. In the
antiferromagnetic state, all the spins are antiparallel, so
order parameter takes the value21. For intermediate states,
between the ferromagnetic and the antiferromagnetic sta
the order parameter is within the range@21,1#. With this
order parameter, a better knowledge of the final state is o
tained and how the system arrives at it. In Fig. 7, the ord
parameter,s, is shown as a function of the ln~t/t0! for three
o-
ale
he
for

lar
ble
ion
al
am

g-
cal
ion

FIG. 7. Order parameter as a function of the logarithm of the time for thr
interaction parameters@m2/a350. curve ~a!, m2/a350.1 curve ~b!, and
m2/a350.3 curve~c!# at a temperatureT50.2.
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different interaction parameters~m2/a350.0,m2/a350.1, and
0.3! at a reduced temperatureT50.2. In the case of zero
interaction, the order parameter arrives at a zero value, sh
ing that in the final state the system is almost randomly o
ented. As the interaction parameter is raised, the number
antiparallel couples of spins grows, helping the system
reach a totally antiparallel state, and the order parameter g
closer to21. This fact supports our previous discussio
about the effect of the competition between the anisotro
energy and the dipolar interaction on the time evolution
the energy barrier distribution, through the relevant loc
configurations visited by the system as time elapses.

IV. CONCLUSIONS

From theT ln~t/t0! scaling, the effective distribution of
energy barriers has been obtained for a one-dimensio
model of small particles with random anisotropy streng
and dipolar interaction. While the actual energy barrier di
tribution changes with time, this effective distribution of en
ergy barriers is time independent and after proper integrat
with the Arrhenius factor will give rise to the same relax
ation curves obtained in simulation. As the interactio
strength increases, the number of low energy barriers of
effective distribution increases, which could be a possib
explanation for the so-called plateau in the magnetic visco
ity observed in many experimental results at low temper
tures. In the case of strong interaction, a power law tim
decay of the magnetization is shown by the numerical sim
lations. The same behavior has been previously observed
spin glasses and has been explained as a consequence o
intrinsic disorder of these systems. In our model, the pow
law decay of the magnetization may be due to the disord
induced by the local competition between the rando
strength of the anisotropy energy and the dipolar intera
tions. From the study of the histograms of the energy barrie
present in the system at each time, two different relaxati
regimes can be distinguished:~1! The weak interaction re-
gime, for which the energy barrier histogram is only slightl
shifted with respect to the noninteracting distribution an
almost unchanged in shape at any time.~2! The strong inter-
action regime, for which a high degree of distortion of th
energy barrier distribution with respect to the noninteractin
case is observed at intermediate times; while at long times
similar behavior to that shown in the weak interaction lim
is observed, with larger values of the energy shift. Finall
the time dependence of the order parameter reveals the ef
of the competition between anisotropy energy and dipo
interactions on the local configurations visited by the syste
J. Appl. Phys., Vol. 80, No. 9, 1 November 1996
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as time elapses. Moreover, the number of antiparal
couples at long times increases as the interaction param
increases.
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