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Extension of the impedance field method to the noise analysis
of a semiconductor junction: Analytical approach
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We present an analytical procedure to perform the local noise analysis of a semiconductor junction
when both the drift and diffusive parts of the current are important. The method takes into account
space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and
it can be effectively applied to the local noise analysis of different devices:n1nn1 diodes, Schottky
barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of
the electric field and charge concentration. ©1998 American Institute of Physics.
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I. INTRODUCTION

The noise analysis of submicron semiconductor devi
has recently attracted much attention. The modeling of no
in these devices, where both space-inhomogeneous and
carriers conditions may be involved, is based mainly on
merical procedures, like the Monte Carlo method1 or the hy-
drodynamic approach.2 In addition to the numerica
techniques a simple analytical analysis of local contributio
to the net noise of different space regions may provid
better insight into the noise properties of the device, as it w
recently demonstrated.3

The spatial analysis of the local noise distribution is u
ally carried out by using the impedance field method ori
nally proposed by Shockley, Copeland, and James4 and later
developed by van Vlietet al.5 This method is based on th
procedure of summing up the contributions from differe
slices of a device to the total terminal noise by taking in
account two essential aspects:~i! the strength of the fluctua
tion at each slice, which is described as a local~microscopic!
noise source and associated with a particular microsc
process;~ii ! the spatio-temporal evolution of the fluctuatio
while transferring to the device terminals where the noise
measured. This propagation of the fluctuation is represe
by the impedance field, which, in a one-dimensional~1D!
geometry, is a scalar function¹Z(x). Using this concept the
spectral density of fluctuations of the voltage dropV between
two probing terminals under constant-current operation
be expressed as4–7

SV5AE
2L

L

u¹Z~x!u2K~x!dx, ~1!

whereA is the cross-sectional area of the sample, the ke
K(x) is the noise source at slicex, and the integration is
taken between the terminals separated by a distance 2L. The

a!Electronic mail: oleg@ffn.ub.es
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noise sources are usually assumed to be uncorrelated d
much shorter time scale of the corresponding microsco
~Markovian! process in respect to the macroscopic propa
tion of the fluctuation along the device. The expressions
the noise sources are basically the same as those used
Langevin response formulation and they are assumed to
given a priori and in most of the cases can be found
literature.8 When the noise is mainly due to velocity fluctu
tions of carriers~diffusion noise! and the heating of carrier
is small, the noise source can be expressed throughK(x)
54q2n(x)D(x), whereq is the electron charge,n(x) is the
local density of carriers, andD(x) is the local diffusion
coefficient.5 Hence, the noise problem can be solved, wh
ever the impedance field¹Z(x) is known.

The expressions for¹Z are determined by the particula
form of the carrier transport operator involved. When t
diffusive part of the current is neglected and only the d
part is considered, the analytical formulas for the impeda
field have long been known.6

The purpose of this article is to present the method
calculate in a closed analytical form the impedance field a
the local noise distribution for a more general case, wh
both the drift and diffusion contributions to the current a
important, thus completing and extending the preliminary
port of the subject.3 The advantage of our analytical proc
dure is that if the spatial profile for the steady-state elec
field is known, the local noise, as well as the total termin
noise, can be calculated immediately by means of a sim
integration. Moreover, the mobility and the diffusion coef
cient are allowed to be electric-field dependent, so that
hot-carrier regime is also included.9 To illustrate the imple-
mentation of the method we consider then1n homojunction
under nonequilibrium electron transport conditions, f
which the spatial distributions of the electric field and t
carrier concentration are strongly nonuniform. We no
however, that our method can also be effectively applied
other nonhomogeneous systems. In particular, applicatio
0 © 1998 American Institute of Physics
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this formalism to a Schottky contact will be publishe
elsewhere.10

The content is organized as follows. In Sec. II the dr
diffusion framework of ann1n junction is described, which
will be used as a basis for both steady states and noise
culations. In Sec. III we outline the mathematical formalis
of the impedance field method as applied to the noise an
sis of the junction of the same semiconductor with differe
doping levels. As a result an analytical formula for the im
pedance field of the junction will be obtained which co
tains, in addition to the standard bulk contributions t
sample-contact cross-correlation term. The physical origin
that term is the long-range Coulomb interaction induced b
space charge near the contact, and its physical meaning
be discussed in Sec. IV. The simple analytical formulas
the impedance and the noise of the junction under equ
rium conditions are presented in Sec. V. It is demonstra
that the sample-contact correlation terms are necessar
fulfill the Nyquist theorem. Section VI describes the fluctu
tions at the junction under nonequilibrium transport con
tions ~positive and negative biases!. Finally, Sec. VII sum-
marizes the main contributions of the article.

II. DRIFT-DIFFUSION MODEL

Consider ann1n semiconductor junction~Fig. 1! in
which the high-doped regionn1 extends from2L to 0, and
the low-doped regionn extends from 0 toL, so that the
doping profile isND(x)5u(2x)ND

11u(x)ND
2 , with u be-

ing the Heaviside function. Then andn1 parts are consid-
ered to extend over distances much larger than the lar
screening lengthLD in the system to guarantee that the e
fects of the junction have died out. This means a local cha
neutrality on the ends of the junction.

The electron transport in the drift-diffusion approxim
tion is governed by the current and Poisson equations

I ~ t !

A
5qnv~E!1qD~E!

]n

]x
1e

]E

]t
, ~2!

]E

]x
5

q

e
~ND2n!, ~3!

where n(x,t) and E(x,t) are the electron density and th
local electric field. The drift velocityv(E) and the diffusion
coefficient D(E) depend, in general case, on the elect
field. The current across any section of the junctionj (x,t)A
is the sum of the conductivity-, diffusion-, and displaceme
current contributions, and it is conserved and equal to
current in the external circuitI (t).

We are interested in modeling the low-frequency plate
of the noise spectrum, corresponding to the time scale m

FIG. 1. Geometry of the junction.
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longer than the dielectric relaxation time. Due to the fr
quency range chosen, the displacement current can be
glected. Eliminatingn, the system~2!, ~3! for the steady-
state regime yields a nonlinear second-order differen
equation for the steady electric-field profileE(x). Since we
shall look for the linear perturbation of that equation sep
rately for two different parts of the junction, we write dow
the steady-state equations for both regions:

D~E!
d2E

dx2
1v~E!S dE

dx
2

q

e
ND

2D52
I

eA
, x.0, ~4a!

D̃~E!
d2E

dx2
1 ṽ ~E!S dE

dx
2

q

e
ND

1D52
I

eA
, x,0. ~4b!

Here the profiles for the drift velocityv(E) and diffusion
coefficientD(E) are assumed to be different for two region
For then1 region we marked them by tilde to distinguis
from those for then region. At the interfacex50 the density
and electric field are continuous:E(20)5E(10),
n(20)5n(10), while atx56L a local charge neutrality
that is,n(6L)5ND

7 and (dn/dx)x56L50, is assumed to be
reached.11

III. IMPEDANCE FIELD OF THE JUNCTION

Now we apply the transfer impedance method5 to find
the impedance field of the junction. The impedance fi
¹Z(x) is the basic transport concept, through which both
impedance:Z5*2L

L ¹Z(x)dx, and the noise@see Eq.~1!# are
easily expressed. It should be noted, however, that in
problem we cannot obtain the impedance field from the st
dard formula5,7

¹Z~x!5E
2L

L

z~x8,x!dx8, ~5!

since it is impossible to determine the transfer impeda
matrix ~Green function! z(x8,x) for the whole junction. Nev-
ertheless, we shall demonstrate, that by introducing two
ferent Green functions for each part of the junction with t
appropriate boundary conditions at the interface it is poss
to find an analytical expression for¹Z, but it will be differ-
ent from Eq.~5!. Therefore, we use a more general approa
and our scheme will be as follows.

First, we find the linear response of the fielddEx to a
small perturbation of the currentdI x at slice x around its
stationary value. Then, after the integration ofdEx through-
out the junction between the probing terminals, we comp
the fluctuation of the voltagedV. Finally, the impedance
field ¹Z(x) can be extracted from the integral

dV5E
2L

L

¹Z~x!dI xdx. ~6!

Consider first then region, 0,x,L. By linearizing Eq.
~4a! one gets a linear nonhomogeneous equation for
electric-field perturbationdEx in the form

L̂dEx52dI x /~eA!, ~7!

with the operatorL̂ given by
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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L̂5D~E!
d2

dx2
1v~E!

d

dx
1D8~E!

d2E

dx2

1v8~E!S dE

dx
2

q

e
ND

2D . ~8!

Note that, since we include diffusion,L̂ is a linearsecond-
order differential operator withspace-dependentcoeffi-
cients, in contrast to the previous simpler studies6,7 where it
was of the first order.

The general solution of Eq.~7! can be written in the
form

dEx5r~x!E
C1

x u~j!

eAD~j!W~j!
dI jdj

2u~x!E
C2

x r~j!

eAD~j!W~j!
dI jdj, ~9!

whereW(x)5r(x)u8(x)2u(x)r8(x) is the Wronskian, and
r(x) and u(x) are auxiliary functions, satisfying the equ
tions L̂r(x)50, L̂u(x)50, i.e., they are the solutions of th
homogeneous equation corresponding to Eq.~7!.12

For the first auxiliary function we find

r~x!5dE/dx, ~10!

since it coincides with the translational~Goldstone! mode in
the case of an unbounded sample. Physically, from the P
son equation,r(x) is the spatial distribution of the ne
charge.

The second function can be found from the first one

u~x!5r~x!E
0

xW~j!

r2~j!
dj. ~11!

The WronskianW(x), in fact, does not depend on the fun
tions r(x) and u(x) and can be determined from Abel
relation for the operatorL̂: D(E)dW/dx1v(E)W50, giv-
ing

W~x!5W~0!exp$2*0
xv[E~x8!]/D[E~x8!]dx8%. ~12!

The value of the integration constantW(0) is not actually
important, since it will be canceled after substituting E
~11! and~12! into Eq. ~9!, so we can assumeW(0)51. The
integration constantsC1 andC2 in Eq. ~9! are determined by
the appropriate boundary conditions atx50 andx5L. We
taker(L)50, which is imposed by the quasineutrality co
dition at the ends of the junction.11 Because of a freedom fo
the second boundary condition~it does not influence on the
final results!, we take it asu(0)50, which corresponds to
the homogeneous boundary conditions for the Green fu
tions of the operatorL̂ and provides the most compact inte
mediate expressions. Since we want to match the solution~9!
with that for the other part of the junction, we rewrite Eq.~9!
in another equivalent form containing explicitly the boun
ary values fordE
Downloaded 08 Jun 2010 to 161.116.168.169. Redistribution subject to A
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dEx5r~x!E
0

x u~j!

C~j!
dI jdj1u~x!E

x

L r~j!

C~j!
dI jdj

1
dE10

r~10!
r~x!1

dEL

u~L !
u~x!, ~13!

where we have denotedC(j)5eAD(j)W(j), and dE10

and dEL are the fluctuating electric fields atx50 and x
5L, respectively.

For then1 region,2L,x,0, one can define the opera

tor L̂̃ similar to Eq.~8! ~marking the quantities by tilde! and

find the solution in the form

dẼx52 r̃ ~x!E
x

0 ũ~j!

C̃~j!
d Ĩ jdj2 ũ~x!E

2L

x r̃ ~j!

C̃~j!
d Ĩ jdj

1
dẼ20

r̃ ~20!
r̃ ~x!1

dẼ2L

ũ~2L !
ũ~x!, ~14!

with C̃(j)5eAD̃(j)W̃(j). Since we shall calculate fluctua
tions near the interface and the contribution to the noise
that region from distances much larger, than the Deb
length is screened out, we can imposedẼ2L5dEL50. The
continuity of the electric field at x50 implies
dẼ205dE10[dE0 . Thus, Eqs.~13! and ~14! become

dEx5E
0

L

g~x,j!dI jdj1dE0

r~x!

r~0!
, 0,x,L,

~15!

dẼx5E
2L

0

g̃~x,j!d Ĩ jdj1dE0

r̃ ~x!

r̃ ~0!
, 2L,x,0,

where

g~x,j!5C21~j!3H r~x!u~j!, 0,j,x

u~x!r~j!, x,j,L,
~16!

g̃~x,j!52C̃21~j!3H r̃ ~x! ũ~j!, x,j,0

ũ~x! r̃ ~j!, 2L,j,x,

are the Green functions of the operatorsL̂ and L̂̃ with zero

boundary conditions at the interface. The valuesr(0) and
r̃ (0) are determined from the Poisson equation

r~0!5
dE

dx
~10!5

q

e
@ND

22n~0!#,
~17!

r̃ ~0!5
dE

dx
~20!5

q

e
@ND

12n~0!#,

wheren(0) is the steady-state electron density at the int
face. Thus, the functionr(x) is discontinuous atx50 with a
fixed jump proportional to the difference in the dopin
r(0)2 r̃ (0)5(q/e)@ND

22ND
1#.

Differentiating Eq.~15! and using the continuity of the
electric charge at the interfaceddẼ/dx (20)5 ddE/
dx (10), we find the stochastic value for the fluctuation
the electric fielddE0 in the form
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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dE05
Ln

r̃ ~0!
E

2L

0 r̃ ~j!

C̃~j!
d Ĩ jdj1

Ln

r~0!
E

0

L r~j!

C~j!
dI jdj,

~18!

with

Ln5
r~0! r̃ ~0!

r8~0!@r~0!2 r̃ ~0!#
5

@n~0!2ND
2#@ND

12n~0!#

2n8~0!~ND
12ND

2!
.

~19!

The parameterLn has a dimension of length, and it is in
versely proportional to the gradient of the carrier density
the interface (dn/dx)x50 . At equilibrium, e.g.,Ln is of the
order of the screening lengthLD

1 of the n1 region, as it will
be shown in Sec. V.

Equations~15! and~18! clearly demonstrate, that unlik
previous approaches6,7,13 the fluctuationdEx at point x has
contributions from noise sources located both to the left
to the right from the pointx. Those contributions are repre
sented by the Green functions~16!. The additional terms
with dE0 give the contribution coming from the fluctuatio
of the field at the interfacex50. The latter is the result of the
self-consistent matching of two regions and it contains c
tributions from all the points of both parts of the junctio
@see Eq.~18!#. Hence, the fluctuating field in our approach
globally coupled throughout the junction and includes
correlation effects across the interface. In addition, Eq.~15!
apart from allowing us to derive explicit expressions for t
impedance field and voltage fluctuations~see below!, it could
also be used to evaluate the spatial correlations of
electric-field fluctuationŝ dExdEx8& between two different
points ~regions! under nonhomogeneous conditions. The
correlations are active over the characteristic screen
length of the system. In particular, the spatial distribution
the correlator̂ dE0dEx& for the n1n junction at equilibrium
can be found in Ref. 3.

The fluctuation of the terminal voltage is the sum of t
voltage fluctuations on the connected in series regions~see
Fig. 1! dV5dV11dV25*2L

0 dẼx8dx81*0
LdEx8dx8. Sub-

stituting Eqs.~15! and ~18! and changing the order of inte
gration of the Green functions we get

dV5E
2L

0 H E
2L

0

g̃~x8,x!dx81
LnLE

C̃~x!

r̃ ~x!

r̃ ~0!
J d Ĩ xdx

1E
0

L H E
0

L

g~x8,x!dx81
LnLE

C~x!

r~x!

r~0! J dI xdx, ~20!

where the constant

LE5E
2L

0

r̃ ~x!dx/ r̃ ~0!1E
0

L

r~x!dx/r~0!

5@E~0!2E~2L !#/ r̃ ~0!1@E~L !2E~0!#/r~0!,

~21!

having a dimension of length, is determined by the elect
field gradient at the interface. In fact,LE is related to the
space charge of the dipole created across the junction.
Downloaded 08 Jun 2010 to 161.116.168.169. Redistribution subject to A
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Comparing now Eq.~20! with Eq. ~6! one can easily
identify the impedance field of then1n junction

¹Zjun~x!5@¹ Z̃~x!1¹ Z̃c~x!#u~2x!

1@¹Z~x!1¹Zc~x!#u~x!, ~22!

which contains the bulk impedance fields for the ‘‘deco
pled’’ n andn1 regions

¹ Z̃~x!5E
2L

0

g̃~x8,x!dx8

5
r̃ ~x!

C̃~x!
E

x

0

@E~x8!2E~2L !#
W̃~x8!

r̃ 2~x8!
dx8, ~23a!

¹Z~x!5E
0

L

g~x8,x!dx8

5
r~x!

C~x!
E

0

x

@E~L !2E~x8!#
W~x8!

r2~x8!
dx8, ~23b!

and the additional terms appeared due to then1 –n coupling

¹ Z̃c~x!5
LnLE

C̃~x!

r̃ ~x!

r̃ ~0!
, 2L,x,0, ~24a!

¹Zc~x!5
LnLE

C~x!

r~x!

r~0!
, 0,x,L. ~24b!

The physical origin of the terms¹Zc(x) and¹ Z̃c(x) is the
long-range Coulomb interaction across the junction interfa

Having¹Zjun(x) one can find the spectral density of th
voltage fluctuations across the junction as

SV5AE
2L

0

@¹ Z̃~x!1¹ Z̃c~x!#2K̃~x!dx

1AE
0

L

@¹Z~x!1¹Zc~x!#2K~x!dx. ~25!

Thus, the spectral density of the voltage fluctuations is co
pletely expressed through the steady-state quantities,
vided the noise sourcesK(x) are known.

The final expression~25! clearly distinguishes the origin
of fluctuations, represented by the local sourceK(x), from
their transmission towards the terminals~where the fluctua-
tions are measured! described by the impedance fie
¹Zjun(x). It should be noted, that the latter is determined
the particular form of the differential operators, which are t

operatorsL̂ and L̃̂ in our case of the drift-diffusion model
Such consideration is very useful in order to characterize
local contribution of different space regions to the net noi
by introducing the quantity sV(x), such that
SV5A*2L

L sV(x)dx.
In our case, for future analysis, it can be split up in

three partssV(x)5(k51
3 sk(x), with

s1~x!5@¹Z~x!#2K~x!,

s2~x!52@¹Z~x!#@¹Zc~x!#K~x!, ~26!

s3~x!5@¹Zc~x!#2K~x!,
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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representing the relative contribution to the net noise of
different terms in Eq.~25!.

Finally, by using the Poisson equation, the fluctuation
the carrier densitydnx at the pointx can be expressed a
dnx52(e/q)@d(dEx)/dx#, and can be easily obtained di
ferentiating Eq.~15!. Then the spatial correlator^dnxdnx8&
can also be computed. Note that the fluctuations of the t
number of carriers in the n and n1 regions:
dN25*0

Ldnxdx5(e/q)dE0 and dN15*2L
0 d ñxdx

52(e/q)dE0 . In accordance with a conservation of th
number of particles their sum vanishesdN21dN150, rep-
resenting simply the fact, that random exchange of electr
across the interface~resulting in the fluctuation of concentra
tions and fields! is properly taken into account, and the tot
charge is conserved.

IV. SAMPLE-CONTACT CROSS-CORRELATIONS

In addition to the standard terms¹Z(x) and ¹ Z̃(x) in
Eq. ~25!, we note the presence of¹Zc(x) and ¹ Z̃c(x),
which is a consequence of the cross-correlation between
contactn1 and the bulkn. This fact can be seen by notin
that these additional contributions can be all expressed
terms of the correlations involving the fluctuating elect
field at the interfacedE0 as follows.

The noise spectral densitySV measured in the bandwidt
D f consists of three parts: SVD f 5^dVdV* &
5^dV1

2 &1^dV2
2 &12^dV1dV2&, where ^dV1

2 &
5*2L

0 *2L
0 ^dẼxdẼx8&dxdx8 is the noise spectral density o

the voltage drop on the n1 region, ^dV2
2 &

5*0
L*0

L^dExdEx8&dxdx8 is the one for then region, and

^dV1dV2&5*2L
0 dx*0

Ldx8^dẼxdEx8& is the cross-
correlation term representing the voltage correlation betw
two regions~see notations in Fig. 1!. Using Eq.~15! and the
expressions for the current-noise sources

^dI xdI x8&5AD f K~x!d~x2x8!,

^d Ĩ xd Ĩ x8&5AD f K̃~x!d~x2x8!, ~27!

^dI xd Ĩ x8&50,

one gets

^dV1
2 &5AD f E

2L

0

@¹ Z̃~x!#2K~x!dx

12LE1E
2L

0

^dẼxdE0&dx2LE1
2 ^dE0

2&, ~28!

^dV2
2 &5AD f E

0

L

@¹Z~x!#2K~x!dx

12LE2E
0

L

^dExdE0&dx2LE2
2 ^dE0

2&, ~29!
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^dV1dV2&5LE2E
2L

0

^dẼxdE0&dx

1LE1E
0

L

^dExdE0&dx2LE1LE2^dE0
2&,

~30!

with LE15@E(0)2E(2L)#/ r̃ (0) andLE25@E(L)2E(0)#/
r(0). Adding all the contributions and usingLE5LE11LE2

@see Eq.~21!# for the total voltage noise we obtain

SV5AE
2L

0

@¹ Z̃~x!#2K̃~x!dx1AE
0

L

@¹Z~x!#2K~x!dx

12LEE
2L

L

^dExdE0&dx/~D f !2LE
2^dE0

2&/~D f !.

~31!

Equation~31! is equivalent to Eq.~25!, that can be easily
checked after substitutingdEx , dE0 , and using the current
noise sources~27!.

The first two terms in rhs of Eq.~31! are standard and
represent the noise spectral densities of two ‘‘separate’’
gions as calculated by the so-called ‘‘salami’’ method5

which treats the different slices of the sample to be unco
lated. The correlations, represented by the third and fo
terms, are expressed through the correlator of the elec
field fluctuationŝ dExdE0& between the pointx and the in-
terface. SincedE0 is not assumed to be zero, but natura
appears from the matching conditions@see Eq.~18!#, the con-
tribution of the cross-correlation terms is finite and it is a
preciable in the vicinity of the interface, as it will be show
below.

Notice that the additional terms representing the cro
correlations depend onLE . When the space charge of th
dipole created at the interface vanishes~quasineutrality!
LE→0 and the contribution of the cross-correlation term
disappears.

V. EQUILIBRIUM NOISE OF THE JUNCTION AND THE
NYQUIST THEOREM

To illustrate the importance of the cross-correlation
fects let us first consider the equilibrium caseI 50, for which
all the expressions are considerably simplified, but the ty
cal behavior of the quantities of interest is kept.

We take v(E)5mE, D5mkBT/q, K(x)54q2Dn(x),
with m5v8(E)uE50 being the low-field Ohmic mobility, and
the same expressions for the tilde functions. For simplic
we consider the corresponding parameters for both reg
~except doping! to be equal. For this case the equation for t
balance of the currentnE1(kBT/q)dn/dx50 can be inte-
grated, giving n(x)5ND

2 exp@qf(x)/kBT# @we use as the
boundary condition for the electric potentialf(L)50].12

Introducing the normalized potentialc(x)5qf(x)/kBT
and the doping ratioa5ND

2/ND
1 , it is easy to see, that all th

distributions depend on the parametera only, once the elec-
tron density is considered in units ofND

1 and the coordinate
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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is scaled by the Debye screening leng
LD

25(ekBT/q2ND
2)1/2. Thus, integrating the Poisson equ

tion ~3! one gets

S dc

dxD 2

5
2

~LD
2!2 H exp~c!2~c111 ln a!/a, x,0

exp~c!2c21, x.0.
~32!

Equating the electric field atx50 yields the exact value fo
c(0)5 lna/(a21)21, which is used as a boundary conditio
for both regions to compute numerically Eq.~32!. Then,
E(x) andn(x) can be restored by differentiatingc(x). The
results for the typical doping ratioa50.01 are presented in
Fig. 2 ~thick solid lines!. The charge is redistributed near th
interface to equilibrate the Fermi levels of the regions w
different doping, forming a dipole layer with a positiv
charge at then1 side and a negative charge at then side@see
Fig. 2~a!#. The dipole produces a spike of the electric field
the contact@Fig. 2~b!#, which extends over several Deby
lengthsLD

1 into the n1 region and severalLD
2 into the n

region, where LD
15(ekBT/q2ND

1)1/2. The ratio LD
1/LD

2

5Aa50.1.
It is interesting to note, that for large doping rat

(a!1) the limiting values at the interfacen(0)'ND
1/e,

E(0)'EthA2/e are constant and do not depend on t
sample doping ND

2 ~here Eth5kBT/qLD
1 , e

52.71 828 . . . ). In this limit the length parametersLn

and LE , characterizing the spatial extension of t
cross-correlation effects, simply becom
Ln'(121/e)Ae/2LD

1'0.737LD
1 , LE'(121/e)21A2eLD

1

'3.69LD
1 .

At equilibrium all the expressions are simplifie
E(2L)5E(L)50; W(x)5exp@c(x)#; E(x)W(x)
5LD0

2 (dr/dx); LnLE5LD0
2 , whereLD05@ekBT/q2n(0)#1/2

is the screening length corresponding to the electron den
at the interface. Substituting these relations into Eqs.~23!
and ~24! we obtain

¹Zeq~x!5R~x!F12
r~x!

r~0!G , ¹Zc
eq~x!5R~x!

r~x!

r~0!
,

~33!

whereR(x)5@qmAn(x)#21 is the local~per unit length! re-
sistance and similar expressions hold for the tilde funct
(n1 region!. The impedance field of the junction then coi
cides with the local resistance

¹Zjun
eq ~x!5R̃~x!u~2x!1R~x!u~x!. ~34!

Figure 3 shows spatial profiles for¹Zjun
eq (x) and its compo-

nents¹Zeq(x) and ¹Zc
eq(x) calculated from~33! by using

the equilibrium distributionn(x). The cross impedance fiel
¹Zc

eq is seen to give the main contribution near the interfa
Whereas forx@LD

2 the impedance is determined mainly b
the bulk term¹Zeq. Note, that it is impossible to obtain thos
profiles to be continuous across the junction in the simplifi
framework,6,7 which does not take into account the diffusio
current.

For the local noise contributions~26! one gets
Downloaded 08 Jun 2010 to 161.116.168.169. Redistribution subject to A
t

ity

n

.

d

s1
eq~x!54kBTF12

r~x!

r~0!G
2

R~x!,

s2
eq~x!58kBTF12

r~x!

r~0!Gr~x!

r~0!
R~x!, ~35!

s3
eq~x!54kBTF r~x!

r~0!G
2

R~x!.

Hence, for the net local noisesV
eq(x)5(ksk

eq(x)54kBTR(x),
which is the Nyquist theorem, sinceR(x) is the local resis-
tance. It should be pointed out that in recovering the Nyqu
theorem all contributions, including the cross-correlatio
have been necessary.

The spatial profilessk
eq(x) calculated from Eq.~35! by

using the equilibrium steady-state distributions are shown
Fig. 4. As a consequence of the Nyquist theorem the th
solid lines in Figs. 3 and 4 coincide. Note that near the
terface the main contribution tosV

eq(x) comes from the cross
terms s2

eq(x) and s3
eq(x), which are related to the cross

correlations involvingdE0 . It is clear, that for devices with

FIG. 2. Stationary profiles of the electron densityn ~a!, the electric fieldE
~b!, and the electric potentialf ~c! over n1n junction for different currents
J in units of I R5mkBTAND

2/LD
2 . The doping ratioND

2/ND
150.01.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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the active length of then region;LD
2 operating in the spill-

over regime14 @when n(x)@ND
2 due to large injection from

the contact# the cross-correlation term will be comparab
with the contribution from the bulk. This means, that t
fluctuations inside the device depend crucially on the fl
tuations in the contact, and all of them can be properly e
mated by our technique.

VI. NONEQUILIBRIUM FLUCTUATIONS

For finite currents the stationary solutions can be fou
from Eq. ~4!, which depend only on two dimensionless p
rameters@for the given shapesv(E) andD(E)]: the doping
ratio a and the normalized currentJ5I /I R , with
I R5AmkBTND

2/LD
2 . For the sake of simplicity and in orde

to demonstrate the general features of the noise beha
independently of the parameters of the material we pre
here the results only for Ohmic case:v(E)5mE,
D5mkBT/q for which the mobilitym and the diffusion co-
efficient D are constant. Although the explicit field
dependent shapes appeared in the hot-carrier transpor

FIG. 3. Equilibrium impedance field of the junction¹Zjun
eq (x) ~thick solid

line! and its components¹Zeq(x) and ¹Zc
eq(x), all normalized by

(qmAND
1)21. Inset: blowup of the region near the interface.

FIG. 4. Spatial profiles for the contributionssk
eq(x) ~see the text! to the net

local equilibrium noisesV
eq(x), all normalized by 4kBTD f /(mAND

1). Inset:
blowup of the region near the interface.
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gime may also be used without additional difficultie
Equation~4! is solved numerically giving the spatial profile
E(x) for the doping ratioa50.01 and different currentsJ.
The results are presented in Fig. 2~b!. The stationary distri-
butionsn(x) andf(x) obtained from the electric-field pro
files are shown in Figs. 2~a! and 2~c!. At equilibrium (J50)
we remark a finite bias~built-in voltage! between the con-
tacts@Fig. 2~c!# due to a redistribution of charge across t
junction. When an additional external voltage bias is appli
the physical behavior is quite different depending on the s
of the bias. By applying a positive potential to then part of
the junction, the potential minimum is formed near the int
face @Fig. 2~c!#, and the current is negative~electron flux is
from n1 to n). While negative bias results in a positiv
current ~electron flux is fromn to n1). It is seen that the
distributions are changed mainly in then region, since the
values of the current of the order ofI R are too small to
modify the spatial distributions in the high-doped regionn1.

The corresponding spatial profiles for the impedan
field ¹Z(x) and the local voltage noisesV(x) for different
currentsJ are shown in Figs. 5 and 6, respectively. It is se
that for positive currents the noise is reduced near the in
face in respect to its equilibrium value, whereas for negat
currents the noise is increased within severalLD

2 from the

FIG. 5. Spatial profiles for the impedance field¹Z(x) @normalized by
(qmAND

1)21] for different currentsJ in units of I R .

FIG. 6. Spatial profiles for the local noisesV(x) @normalized by
4kBTD f /(mAND

1)] for different currentsJ in units of I R .
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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interface. Similar behavior occurs for the sample-contact c
relation termss2(x)1s3(x). For J.0 the region over which
the correlations are important becomes more extended
J,0 we observe an opposite behavior: reduction of the c
relation extension with an enhancing of their amplitude n
the interface~Fig. 7!.

From the spatial profiles of Figs. 5 and 6 the total im
pedanceZ and the voltage terminal noiseSV are found. Then
the spectral density of the current fluctuationsSI and the
noise temperatureTn can also be estimated fromSI5SV /Z2,
and 4kBTn5SIZ. Figure 8 illustrates that the noise temper
ture Tn of the junction increases for the negative volta
biases, while for the positive biases it decreases in respe
the lattice temperatureT. For J50, Tn5T in accordance
with the Nyquist theorem.

VII. SUMMARY

In this work we have presented the analytical proced
to compute the local noise distribution in highly inhomog
neous semiconductor structures for the case when both

FIG. 7. Sample-contact cross-correlations represented by the
s2(x)1s3(x) for different currentsJ in units of I R .

FIG. 8. Noise temperatureTn of the junction vs applied volatgeV. Numbers
near the symbols indicate the value of the currentJ. Tn is in units of the
lattice temperatureT. The lengths of then1 and n region are taken to be
12LD

1 and 12LD
2 , respectively.
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drift and diffusive current components are relevant. O
method allows us to solve analytically the second-order
ferential equation for the field fluctuations, whereas the p
vious studies have been restricted to the case when the
current dominates, thus leading to the simpler first-order
ferential equation.

We note, that including the diffusion current into consi
eration allows one to analyze the noise properties of hig
inhomogeneous systems, where accumulation and/or de
tion layers are present. Besides this, the spatial cross co
lations between different parts of a device or between a
vice and a contact can be studied easily. Our res
emphasize the importance of the spatial correlations in se
conductor devices over the distances of the order of the c
acteristic Debye screening lengthLD . In particular, the spa-
tial correlations between the sample and the contact
demonstrated to be essential on that scale.

We argue that the present technique is quite unive
and can be incorporated into any device model based on
drift-diffusion approach and its modifications.15 Our work,
then, offers new perspectives on what concerns the ana
of the local noise and the spatial correlations in devices w
inhomogeneous distributions of field and charge concen
tion, like n1nn1 diodes, Schottky barrier diodes,10 field-
effect transistors, etc.
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