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We present an analytical procedure to perform the local noise analysis of a semiconductor junction
when both the drift and diffusive parts of the current are important. The method takes into account
space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and
it can be effectively applied to the local noise analysis of different devicesn™ diodes, Schottky
barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of
the electric field and charge concentration. 1®98 American Institute of Physics.
[S0021-89708)01605-3

I. INTRODUCTION noise sources are usually assumed to be uncorrelated due to
much shorter time scale of the corresponding microscopic

The noise analysis of submlcrpn semlconduc_tor devpe Markovian process in respect to the macroscopic propaga-
has recently.attracted much attent|on_. The modeling of nois on of the fluctuation along the device. The expressions for
n th_ese deV|c_:(.as, where bOt.h space—lphomogenequs and h%'e noise sources are basically the same as those used in the
carriers conditions may be involved, is based mainly on nu'l_angevin response formulation and they are assumed to be
merical procedures, like the Monte Carlo methodthe hy-

drodynamic approach. In addition to the numerical given a priori and in most of the cases can be found in

. ) . . -~ literature® When the noise is mainly due to velocity fluctua-
techniques a simple analytical analysis of local contributiong

to the net noise of different space regions may provide Eyons of carrierqddiffusion nois¢ and the heating of carriers

better insight into the noise properties of the device, as it wa sn;all, the noise source can be expressed thr?’“@‘)
recently demonstratey. =4q n(x)I?(x), wher_eq is the elect_ron chargen,(x)_ is t_he
The spatial analysis of the local noise distribution is usu_local_d_ensslty of carriers, an®(x) is the local diffusion
ally carried out by using the impedance field method origi-Co€fficient” Hence, the noise problem can be solved, when-
nally proposed by Shockley, Copeland, and J4mes later  €Ver the impedance fielZ(x) is known. _
developed by van Viieet al® This method is based on the 1€ expressions fdvZ are determined by the particular
procedure of summing up the contributions from differentform of the carrier transport operator involved. When the
slices of a device to the total terminal noise by taking intodiffusive part of the current is neglected and only the drift
account two essential aspect:the strength of the fluctua- Part is considered, the analytical formulas for the impedance
tion at each slice, which is described as a Iqcaitroscopi¢  field have long been knowh.
noise source and associated with a particular microscopic The purpose of this article is to present the method to
processyii) the spatio-temporal evolution of the fluctuation calculate in a closed analytical form the impedance field and
while transferring to the device terminals where the noise ighe local noise distribution for a more general case, when
measured. This propagation of the fluctuation is representegoth the drift and diffusion contributions to the current are
by the impedance field, which, in a one-dimensio(D) important, thus completing and extending the preliminary re-
geometry, is a scalar functidhZ(x). Using this concept the port of the subject. The advantage of our analytical proce-
spectral density of fluctuations of the voltage dkopetween  dure is that if the spatial profile for the steady-state electric
two probing terminals under constant-current operation cafield is known, the local noise, as well as the total terminal

be expressed &g’ noise, can be calculated immediately by means of a simple
integration. Moreover, the mobility and the diffusion coeffi-
S\,:AJL |VZ(x)|2K (x)dx (1) cient are allowed to be electric-field dependent, so that the
-L ’ hot-carrier regime is also includédro illustrate the imple-

mentation of the method we consider thén homojunction
whereA is the cross-sectional area of the sample, the kernglnder nonequilibrium electron transport conditions, for
K(x) is the noise source at slicg and the integration is \yhjich the spatial distributions of the electric field and the
taken between the terminals separated by a distabcdBe  carrier concentration are strongly nonuniform. We note,
however, that our method can also be effectively applied to
dElectronic mail: oleg@ffn.ub.es other nonhomogeneous systems. In particular, application of
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FIG. 1. Geometry of the junction.

this formalism to a Schottky contact will be published
elsewheréd?

The content is organized as follows. In Sec. Il the drift-
diffusion framework of am™n junction is described, which

will be used as a basis for both steady states and noise cal-

culations. In Sec. lll we outline the mathematical formalism
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longer than the dielectric relaxation time. Due to the fre-
quency range chosen, the displacement current can be ne-
glected. Eliminatingn, the system(2), (3) for the steady-
state regime yields a nonlinear second-order differential
equation for the steady electric-field profi€x). Since we
shall look for the linear perturbation of that equation sepa-
rately for two different parts of the junction, we write down
the steady-state equations for both regions:

( )dX2 ( ) dX € D EA' X ’ (
( )dXZ ( ) dx € D eA’ X<0. ( )

of the impedance field method as applied to the noise analyJ€re the profiles for the drift velocity (E) and diffusion
sis of the junction of the same semiconductor with differentcoeff'c'e”ED(E)_ are assumed to be different for two regions.
doping levels. As a result an analytical formula for the im-For then™ region we marked them Dy tilde to distinguish

pedance field of the junction will be obtained which con-
tains, in addition to the standard bulk contributions the

from those for then region. At the interfac&=0 the density
and electric field are continuousE(—0)=E(+0),

sample-contact cross-correlation term. The physical origin off(~0)=n(+0), while atx==L a local charge neutrality,
that term is the long-range Coulomb interaction induced by dhat is,n(+L)=Np and @n/dx),-., =0, is assumed to be

space charge near the contact, and its physical meaning w

fgached’

be discussed in Sec. IV. The simple analytical formulas for

the impedance and the noise of the junction under equilib

rium conditions are presented in Sec. V. It is demonstrated

that the sample-contact correlation terms are necessary
fulfill the Nyquist theorem. Section VI describes the fluctua-
tions at the junction under nonequilibrium transport condi-
tions (positive and negative biageg-inally, Sec. VII sum-
marizes the main contributions of the article.

Il. DRIFT-DIFFUSION MODEL

Consider ann*n semiconductor junctior(Fig. 1) in
which the high-doped region™ extends from-L to 0, and
the low-doped regiom extends from O toL, so that the
doping profile isNp(x)=6(—x)NS+ 8(x)Ny , with 6 be-
ing the Heaviside function. The andn* parts are consid-
ered to extend over distances much larger than the large
screening length. in the system to guarantee that the ef-
fects of the junction have died out. This means a local charg
neutrality on the ends of the junction.

The electron transport in the drift-diffusion approxima-
tion is governed by the current and Poisson equations

I(t)_ an JE
T—an(E)JFqD(E)&JFEH, 2
JE

KI%ND‘”% @3

where n(x,t) and E(x,t) are the electron density and the
local electric field. The drift velocity (E) and the diffusion
coefficient D(E) depend, in general case, on the electric
field. The current across any section of the junctjiéx,t) A

is the sum of the conductivity-, diffusion-, and displacement-

til. IMPEDANCE FIELD OF THE JUNCTION

to Now we apply the transfer impedance metheal find

the impedance field of the junction. The impedance field
VZ(x) is the basic transport concept, through which both the
impedanceZ= - VZ(x)dx, and the nois¢see Eq(1)] are
easily expressed. It should be noted, however, that in our
problem we cannot obtain the impedance field from the stan-
dard formul&’

L

VZ(X)=f

Lz(x’,x)dx’, 5)
since it is impossible to determine the transfer impedance
matrix (Green functiopz(x’,x) for the whole junction. Nev-
ertheless, we shall demonstrate, that by introducing two dif-
?‘e{rent Green functions for each part of the junction with the
appropriate boundary conditions at the interface it is possible
fo find an analytical expression f&Z, but it will be differ-

ent from Eq.(5). Therefore, we use a more general approach
and our scheme will be as follows.

First, we find the linear response of the fiel&, to a
small perturbation of the currendl, at slicex around its
stationary value. Then, after the integration&, through-
out the junction between the probing terminals, we compute
the fluctuation of the voltageéV. Finally, the impedance
field VZ(x) can be extracted from the integral

L

5V=f LVZ(x)é)‘I <adX. (6)

Consider first then region, 0<x<L. By linearizing Eq.
(4a) one gets a linear nonhomogeneous equation for the

current contributions, and it is conserved and equal to thé&lectric-field perturbatiodE, in the form

current in the external circult(t).

LSE,=— 51, /(€A), ™

We are interested in modeling the low-frequency plateau )
of the noise spectrum, corresponding to the time scale muchith the operatoL given by
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. d? d 2E B xu(¢) p(§)
L=D(E)§+U(E)&+D’(E)E 5Ex_P(X)fOW5|§d§+U(X)J (o) 37z 0ldé
dE q SE .o SE,
+v’(E)(&—END>. (8) + (+0)p( )+U(L)U(X) (13

) i . ] where we have denoteW (&) =eAD(&)W(&), and SE,
Note that, since we include diffusioh, is a linearsecond- 54 SE, are the fluctuating electric fields a=0 and x

order differential operator withspace-dependentoeffi-  _ | respectively.
cients, in contrast to the previous simpler stutlfeshere it For then™ region, — L <x<0, one can define the opera-
was of the first order.

The general solution of Eq7) can be written in the tor L similar to Eq.(8) (marking the quantities by tildeand

form find the solution in the form
B X ucé) Oiw dé— Lg)(ﬂ d
5Ex—p(X) Clm&gdf (X)f 3 & ( )f 3 €
p(€) SE_q ~ SE_| ~
—u(x )f AD(EW(E 5I§d§, 9 +,E( )p( )+ = L)u(x), (14)

whereW(x) = p(x)u’ (x) —u(x)p’(x) is the Wronskian, and  with (&)= eAD(£&W(&). Since we shall calculate fluctua-
p(x) andu(x) are auxiliary functions, satisfying the equa- tions near the interface and the contribution to the noise in
tionsLp(x)=0, Lu(x)=0, i.e., they are the solutions of the that region from distances much larger, than the Debye

homogeneous equation corresponding to & length is screened out, we can impase_, = E, =0. The
For the first auxiliary function we find continuity of the electric field atx=0 implies
o(x)=dE/dx, 10 OE_o=6E, = 06E,. Thus, Eqs(13) and(14) become

L p(X)

since it coincides with the translation@boldstoné mode in OE= fo 9(x,6) 6l dé+ 5Eom’ 0<x<L,

the case of an unbounded sample. Physically, from the Pois- (15

son equation,p(x) is the spatial distribution of the net _ 0 _ (X)

charge. 6EX=J g(x,&) 81 dé+0Eg=——, —L<x<0,
The second function can be found from the first one as -t p(0)

where

u(x)= p(X)f (11

p(X)u(§), 0<é<x

2
(§) u(X)p(é), x<é&<L,

g(X,§)=‘1’l(§)><(

16
The WronskianW(x), in fact, does not depend on the func- (16)

tions p(x) and u(x) and can be determined from Abel's
relation for the operatot: D(E)dW/dx+v(E)W=0, giv-
ing

pO)U(§), x<£<0

GxH=—T o) [
’ T00p(e), —L<g=x

are the Green functions of the operatﬁrand‘t with zero
W(x) =W(0)exp{—[gu[E(x")]/D[E(X)]dx"}. (12 poundary conditions at the interface. The valygs) and

The value of the integration constarf(0) is not actually p(0) are determined from the Poisson equation

important, since it will be canceled after substituting Egs. q

(12) and(12) into Eq. (9), so we can assum&/(0)=1. The p(0)= 4 (+0)=—_[Np—n(0)],

integration constant§; andC, in Eq. (9) are determined by (17)
the appropriate boundary conditionsxat 0 andx=L. We - N

take p(L)=0, which is imposed by the quasineutrality con- p(0)= &(_0)2 ;[ND —n(0)],

dition at the ends of the junctiorl.Because of a freedom for

the second boundary conditigit does not influence on the Wheren(0) is the steady-state electron density at the inter-
final resulty, we take it asu(0)=0, which corresponds to face. Thus, the functiop(x) is discontinuous at=0 with a
the homogeneous boundary conditions for the Green fundixed jump proportional to the difference in the doping
tions of the operatot and provides the most compact inter- p(0)— p(0)=(a/€)[Np —Nj 1.

mediate expressions. Since we want to match the sol(@jon Differentiating Eq.(15) and using the continuity of the
with that for the other part of the junction, we rewrite £8)  electric charge at the interfacelSE/dx(—0)= dSE/

in another equivalent form containing explicitly the bound-dx(+0), we find the stochastic value for the fluctuation of
ary values foréE the electric fieldSE, in the form
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L 0 p(&) L p(€) Comparing now Eq(20) with Eqg. (6) one can easily
=~(8)j =06l dé+ —— p(O) \P(g) 5 0l dé, identify the impedance field of the™ n junction
p(0))-LW(¢) = 5
(18) VZiun(X)=[VZ(Xx) +VZ(x)]6(—X)
with +IVZ(X)+VZ(x)]6(x), (22)
~ - which contains the bulk impedance fields for the “decou-
p(0)p(0) [n(0)=Np I[Ny —n(0)] \ ¥ roq
= - = i pled” n andn™ regions
p'(0)[p(0)=p(0)] —n’(0)(N5—Np) o
(19 VZ(X)=J g(x’,x)dx’
-L
The parametet , has a dimension of length, and it is in-
versely proportional to the gradient of the carrier density at p(x) [0 ’ W(x") ’
the interface @n/dx),_,. At equilibrium, e.g. L, is of the = mJ’X [E(x )—E(—L)]~2(X,)dx , (233
order of the screening lengtty, of then™ region, as it will P
be shown in Sec. V. L
Equations(15) and (18) clearly demonstrate, that unlike VZ(x)= fo g(x’,x)dx’

previous approach&$'3the fluctuationsE, at pointx has
contributions from noise sources located both to the left and p(X) W(x')
to the right from the poink. Those contributions are repre- “ Y fo [E(L)—E(X") ] —-dX, (23b)

sented by the Green functior{46). The additional terms

with 8E, give the contribution coming from the fluctuation and the additional terms appeared due torthe-n coupling
of the field at the interface= 0. The latter is the result of the

self-consistent matching of two regions and it contains con- = _ Lole p(x) L 0 24
tributions from all the points of both parts of the junction o(X)= T(x) 50 <Xx<0, (243
[see Eq(18)]. Hence, the fluctuating field in our approach is

globally coupled throughout the junction and includes the LoLe p(x)

correlation effects across the interface. In addition, @&) VZ:.)= W(x) (o) O<x<L. (24b)

apart from allowing us to derive explicit expressions for the _
impedance field and voltage fluctuatiaisee below, it could ~ The physical origin of the term8Z.(x) andVZ.(x) is the
also be used to evaluate the spatial correlations of théong-range Coulomb interaction across the junction interface.
electric-field fluctuationg SE,6E,.) between two different Having VZ;,,(x) one can find the spectral density of the
points (regions under nonhomogeneous conditions. Thesevoltage fluctuations across the junction as
correlations are active over the characteristic screening 0
length of the system. In particular, the spatial distribution of szAf [VZ(X)+VZ(x)]PK(x)dx
the correlator SEqSE,) for then™n junction at equilibrium -t
can be found in Ref. 3. L

The fluctuation of the terminal voltage is the sum of the +Af [VZ(x)+VZ(x)?K(x)dx. (29
voltage fluctuations on the connected in series regisee 0
Fig. 1) 8V=06V,+6V_=[° 6E, dx + [§6E, dx'. Sub- Thus, the spectral density of the voltage fluctuations is com-
stituting Egs.(15) and (18) and changing the order of inte- pletely expressed through the steady-state quantities, pro-

gration of the Green functions we get vided the noise sourcd§(x) are known.
The final expressiof25) clearly distinguishes the origin
LoLle p(X) | ~ of fluctuations, represented by the local soukgex), from
oV= J { J g’ dx’ + = Tx) 7(0) ) 1 dx their transmission towards the termin&ghere the fluctua-

tions are measurg@ddescribed by the impedance field
y LLe p(x) VZ;,n(X). It should be noted, that the latter is determined by
j g(x",x)dx T 2(0) olydx, (200 the particular form of the differential operators, which are the

operatorsL and L in our case of the drift-diffusion model.

J;

where the constant Such consideration is very useful in order to characterize the

o ) local contribution of different space regions to the net noise,

LE:f 'E(X)dX/'E(O)_Ff p(x)dx/p(0) by_ throducmg the quantity s,(x), such that
-L 0 Sy=AJZ sv(x)dx.
- In our case, for future analysis, it can be split up into
=[E(0)—E(=L)]/p(0)+[E(L)—E(0)]/p(0), three partss,(x)=33_,5¢(x), with
@1 5100 =[VZ()1%K(x),

having a Qimension qf length, is determi_ned by the electric- $,(X)=2[VZ(X) [ VZ(x)]K(X), (26)
field gradient at the interface. In fadtg is related to the
space charge of the dipole created across the junction. S3(X) =[VZs(x) 2K (x),
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representing the relative contribution to the net noise of the

different terms in Eq(25).

Bulashenko et al.

O —~
(8V, 8V_)= LEZJ (5B SEo)dx
—-L

Finally, by using the Poisson equation, the fluctuation of

the carrier densitydn, at the pointx can be expressed as
ony,=—(e/q)[d(JE,)/dx], and can be easily obtained dif-
ferentiating Eq.(15). Then the spatial correlatdisn,sn,:)

can also be computed. Note that the fluctuations of the total

number of carriers in then and n* regions:
ON_=[tondx=(elq)6E, and  6N,=[% sn.dx
—(€e/q)SEq. In accordance with a conservation of the
number of particles their sum vanishésl_+ SN, =0, rep-

resenting simply the fact, that random exchange of electrons

across the interfacgesulting in the fluctuation of concentra-
tions and fieldsis properly taken into account, and the total
charge is conserved.

IV. SAMPLE-CONTACT CROSS-CORRELATIONS

In addition to the standard tern¥Z(x) and VZ(x) in
Eq. (25), we note the presence &FZ.(x) and VZ(x),

which is a consequence of the cross-correlation between th

contactn™ and the bulkn. This fact can be seen by noting

that these additional contributions can be all expressed i

terms of the correlations involving the fluctuating electric
field at the interfaceSE, as follows.

The noise spectral densi§; measured in the bandwidth
Af consists of three parts: S AT=(5VSEV*)
=(6V2)+(8V2)+2(8V, 6V ), where (6V2)
=/ J° (6E,6E,/)dxdX is the noise spectral density of
the voltage drop on the n* region, <5V2_>
=[5/ 5(SE,SE,)dxdX is the one for then region, and

(V. 8V_)y=[° dx[4dx'(SESE,) is the cross-

L
+ LElJO (SE(SEoydx— LggLga( SE),

(30

with Lg;=[E(0)—E(—L)]/p(0) andLg,=[E(L)—E(0)]/
p(0). Adding all the contributions and usilg==Lg;+Lg,
[see Eq(21)] for the total voltage noise we obtain

0 . - L
s,:Af [VZ(x)]ZK(x)dx+Af [VZ(x)]?K(x)dx
—L 0

+2|_EfL (SELSE)dX/(AT)— LE(SES) (AF).
-L

(31)

Equation(31) is equivalent to Eq(25), that can be easily
checked after substitutingg,, 6E,, and using the current-
noise source$27).
e The first two terms in rhs of Eq31) are standard and
represent the noise spectral densities of two “separate” re-
gions as calculated by the so-called “salami” metfiod,
which treats the different slices of the sample to be uncorre-
lated. The correlations, represented by the third and forth
terms, are expressed through the correlator of the electric-
field fluctuations( SE,SE;) between the poink and the in-
terface. SincedE, is not assumed to be zero, but naturally
appears from the matching conditidsee Eq(18)], the con-
tribution of the cross-correlation terms is finite and it is ap-
preciable in the vicinity of the interface, as it will be shown
below.

Notice that the additional terms representing the cross-

correlation term representing the voltage correlation betweeggrrelations depend ohg. When the space charge of the

two regions(see notations in Fig.)1Using Eq.(15) and the
expressions for the current-noise sources

(81,8l )y=AATK(X)S(x—x"),

(8T8 )=AAFK(X)8(x—x"), (27)
<5IX5TX’>:O|
one gets
o
<5vi>=AAfJ [VZ(x)]?K(x)dx
-L
o _
+2Lg f _ (FESEQ)dx— LE(SE), (29
L
<5v%>=AAff [VZ(x)]2K(x)dx
0
L
+2Lg, f (BE SEo)dx— L2,(SED), (29)
0

dipole created at the interface vanish@gasineutrality
Le—0 and the contribution of the cross-correlation terms
disappears.

V. EQUILIBRIUM NOISE OF THE JUNCTION AND THE
NYQUIST THEOREM

To illustrate the importance of the cross-correlation ef-
fects let us first consider the equilibrium cdse0, for which
all the expressions are considerably simplified, but the typi-
cal behavior of the quantities of interest is kept.

We takev(E)=uE, D=ukgT/q, K(x)=49?Dn(x),
with u=v'(E)|g=o being the low-field Ohmic mobility, and
the same expressions for the tilde functions. For simplicity
we consider the corresponding parameters for both regions
(except dopingto be equal. For this case the equation for the
balance of the curremiE+ (kgT/gq)dn/dx=0 can be inte-
grated, givingn(x)=Np exdq¢(X)/kgT] [we use as the
boundary condition for the electric potentia(L)=0].1?

Introducing the normalized potentigd(x) =q¢(x)/kgT
and the doping ratiae=Ng /N , it is easy to see, that all the
distributions depend on the parameteonly, once the elec-
tron density is considered in units bf and the coordinate
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is scaled by the Debye screening length ' '
L, =(ekgT/g?Np)Y2 Thus, integrating the Poisson equa-
tion (3) one gets

dy\2 2 [exp(y)—(4+1+Ina)la, x<O
(&) C(Lp)?lexpy)-y—1, x>0
(32)

Equating the electric field at=0 yields the exact value for
#(0)=Ina/(a—1)—1, which is used as a boundary condition
for both regions to compute numerically E2). Then,
E(x) andn(x) can be restored by differentiating(x). The
results for the typical doping ratia=0.01 are presented in
Fig. 2 (thick solid lines. The charge is redistributed near the
interface to equilibrate the Fermi levels of the regions with
different doping, forming a dipole layer with a positive
charge at tha@™ side and a negative charge at theide[see
Fig. 2(a)]. The dipole produces a spike of the electric field at
the contact{Fig. 2(b)], which extends over several Debye
lengthsLj, into the n™ region and severdl, into then
region, where L}, =(ekgT/q?Ny)Y2 The ratio L}/Ly 4

a=0.1.

It is interesting to note, that for large doping ratio
(@<<1) the limiting values at the interface(0)~N_/e,

E(x)/E,,

E(0)~Ey\/2/e are constant and do not depend on the n
sample  doping Nj (here  Eyn=kgT/qLy, e ,:\
=2.71828 ... ). In this limit the length parameteks =
and Lg, characterizing the spatial extension of the ¥
cross-correlation effects, simply become
Lo~(1—1/e)\Jel2L~0.731}, Leg~(1—1/e) *\J2el]
~3.69] .
At equilibrium all the expressions are simplified:
E(—-L)=E(L)=0; W(x) exg ¢(x)]; E(x)W(x) x/Lp~

2 1/2
=Lpo(dp/dx); LnLe= LDO’ whereLpo=[ekgT/q?n(0)] FIG. 2. Stationary profiles of the electron densitya), the electric fieldE

is the screening length corresponding to the electron density) and the electric potentiab (c) overn*n junction for different currents
at the interface. Substituting these relations into E@8) J in units of Ig=uksTAN5/Ly . The doping ratidNg /N7 =0.01.

and(24) we obtain

p(X) p(X)
Vze%x)zR(x){l——} VZ{x)=R(X) —~ p(x)]2
(0)] p(0)’ s§Yx)=4kgT| 1— —| R(x

whereR(x) =[quAn(x)] ! is the local(per unit length re- sS4 x)=8kgT| 1— LX) LX)R(X), (35)
sistance and similar expressions hold for the tilde function |~ p(0)]p(0)
(n* region. The impedance field of the junction then coin- [p(x)]?
cides with the local resistance sg“(x):4kBT 20) R(x).

Vzﬁﬂ(x)zﬁ(x) O(—x)+R(X) 6(X). (34  Hence, for the net local nois{(x) = =, sg4x) = 4kg TR(X),

which is the Nyquist theorem, sind®(x) is the local resis-

Figure 3 shows spatial profiles f(VrZ J(x) and its compo- tance. It should be pointed out that in recovering the Nyquist
nentsVZ®4(x) and VZ{x) calculated from(33) by using theorem all contributions, including the cross-correlations,
the equilibrium distributiom(x). The cross impedance field have been necessary.

VZziis seen to give the main contribution near the interface.  The spatial profiles;{x) calculated from Eq(35) by
Whereas fox>L the impedance is determined mainly by using the equilibrium steady-state distributions are shown in
the bulk termVZ®% Note, that it is impossible to obtain those Fig. 4. As a consequence of the Nyquist theorem the thick
profiles to be continuous across the junction in the simplifiedsolid lines in Figs. 3 and 4 coincide. Note that near the in-

framework®’ which does not take into account the diffusion terface the main contribution &%x) comes from the cross
current. terms s3{(x) and s§{x), which are related to the cross-
For the local noise contribution®6) one gets correlations involvingdE,. It is clear, that for devices with
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FIG. 3. Equilibrium impedance field of the junctidhz;ii(x) (thick solid FIG. 5. Spatial profiles for the impedance fieftZ(x) [normalized by

line) and its componentsVZ®{x) and VZ®{x), all normalized by  (quANy) 1] for different currents] in units of I.
(quANZ) L. Inset: blowup of the region near the interface.

gime may also be used without additional difficulties.
the active length of the region~ L operating in the spill-  Equation(4) is solved numerically giving the spatial profiles
over regimé* [whenn(x)>Np due to large injection from E(x) for the doping ratioe=0.01 and different currents.
the contack the cross-correlation term will be comparable The results are presented in FigbR The stationary distri-
with the contribution from the bulk. This means, that thebutionsn(x) and ¢(x) obtained from the electric-field pro-
fluctuations inside the device depend crucially on the flucfiles are shown in Figs.(8) and Zc). At equilibrium (J=0)
tuations in the contact, and all of them can be properly estiwe remark a finite biagbuilt-in voltage between the con-
mated by our technique. tacts[Fig. 2c)] due to a redistribution of charge across the
junction. When an additional external voltage bias is applied,
the physical behavior is quite different depending on the sign
of the bias. By applying a positive potential to thepart of
VI. NONEQUILIBRIUM FLUCTUATIONS the junction, the potential minimum is formed near the inter-

For finite currents the stationary solutions can be foundace[Flg 2(c)], and the current is negativelectron flux is
from Eq. (4), which depend only on two dimensionless pa-from n™ to n). While negative bias results in a positive
rametergfor the given shapes(E) andD(E)]: the doping ~ current(electron flux is fromn to n™). It is seen that the
ratio « and the normalized currenti=1/1g, with  distributions are changed mainly in tmeregion, since the
|k=AukgTN5/Ly . For the sake of simplicity and in order Values of the current of the order ¢k are too small to
to demonstrate the general features of the noise behavighodify the spatial distributions in the high-doped region
independently of the parameters of the material we present The corresponding spatial profiles for the impedance
here the results only for Ohmic cases(E)=uE, field VZ(x) and the local voltage noisg,(x) for different
D = ukgT/q for which the mobilityx and the diffusion co- currentsJ are shown in Figs. 5 and 6, respectively. Itis seen,
efficient D are constant. Although the explicit field- that for positive currents the noise is reduced near the inter-

dependent shapes appeared in the hot-carrier transport rf@ce in respect to its equilibrium value, whereas for negative
currents the noise is increased within severgl from the

100
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100 + / e
—_ / o et
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FIG. 4. Spatial profiles for the contributios§{x) (see the tejtto the net
local equilibrium noises$Yx), all normalized by &g TAf/(xANg). Inset: FIG. 6. Spatial profiles for the local noise,(x) [normalized by
blowup of the region near the interface. 4kgTAT/(wANR)] for different currents) in units of I 5.
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8 — T drift and diffusive current components are relevant. Our
method allows us to solve analytically the second-order dif-
ferential equation for the field fluctuations, whereas the pre-
6 - ] vious studies have been restricted to the case when the drift
—~ ~ ] current dominates, thus leading to the simpler first-order dif-
\i ferential equation.
i | ] We note, that including the diffusion current into consid-
= \ ] eration allows one to analyze the noise properties of highly
@' NN inhomogeneous systems, where accumulation and/or deple-
2 \ iy tion layers are present. Besides this, the spatial cross corre-
I\ ] lations between different parts of a device or between a de-
N e vice and a contact can be studied easily. Our results
emphasize the importance of the spatial correlations in semi-
conductor devices over the distances of the order of the char-
acteristic Debye screening lendth, . In particular, the spa-
FIG. 7. Sample-contact cross-correlations represented by the terrﬁlal correlations between the sample and the contact are
s,(X) +s3(x) for different currents) in units of I 5. demonstrated to be essential on that scale.
We argue that the present technique is quite universal
and can be incorporated into any device model based on the
interface. Similar behavior occurs for the sample-contact cordrift-diffusion approach and its modificatiohs.Our work,
relation termss,(x) +s3(x). ForJ>0 the region over which then, offers new perspectives on what concerns the analysis
the correlations are important becomes more extended, f@f the local noise and the spatial correlations in devices with
J<0 we observe an opposite behavior: reduction of the corinhomogeneous distributions of field and charge concentra-
relation extension with an enhancing of their amplitude neation, like n*nn* diodes, Schottky barrier diodé$ field-
the interface(Fig. 7). effect transistors, etc.
From the spatial profiles of Figs. 5 and 6 the total im-
pedance& and the voltage terminal noisk, are found. Then
the spectral density of the current fluctuatioBsand the
noise temperatur€, can also be estimated fro=S,,/Z2,
and &gT,=S,Z. Figure 8 illustrates that the noise tempera-’A‘CK'\‘OV\/LEDGMENTS
ture T, of the junction increases for the negative voltage  Two authors(O.M.B. and G. G). acknowledge support
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