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We present a simple method of constructing synthetic discriminant function filters optimized to take into

account the modulation of liquid-crystal devices.

This relaxation algorithm, a generalization of the

Jared and Ennis method, is an iterative method that includes arbitrary modulations for both scene and

filter, extending the problem to the complex plane.

Simulated and experimental results obtained in a

VanderLugt correlator are presented for a two-class recognition problem. The optimal number of images
needed to describe an object in a filter generated in this way is discussed, and the influence of the spatial
light modulation resolution on the correlation is studied. © 2004 Optical Society of America

OCIS codes:

1. Introduction

Filter design is a highly dynamic field in optical pat-
tern recognition research. If general distortion in-
variance is desired, one of the most common filters
used is the synthetic discriminant function (SDF) fil-
ter.l This type of filter is constructed as a function of
a number of representative views of an object with a
correlation response fixed for all of them. Depend-
ing on the images chosen, we would be able to con-
struct a filter that is invariant to the type of distortion
required. Other filters are invariant to a particular
distortion, such as circular harmonic filters,2 which
achieve the same correlation response for any in-
plane rotation of the object with a single term of the
harmonic decomposition of an image for the correla-
tion, or radial harmonic filters,® which do the same
for scale variations. The main drawback of these
filters is that a single harmonic contains only partial
information about the object. Another example for
rotation invariance in optical pattern recognition is
based on a different approach: time multiplexing,*
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which consists in the mechanical rotation of the ref-
erence while the correlation is captured.

An algorithm for the generation of correlation fil-
ters has to take into account the characteristics of the
spatial light modulator (SLM) where the images will
be displayed. Most SLMs can only accommodate a
small fraction of the complex plane, so the filter has
to be adapted to the possible values during its con-
struction. A single-image filter that includes these
considerations is the minimum Euclidean distance
optimal filter (MEDOF).5 This type of filter opti-
mizes different metrics in its design, such as the
signal-to-noise ratio in the correlation plane or the
peak sharpness. Previous attempts have been made
to include adaptation to display devices in the SDF by
use of the phase of a composite filter generated in the
conventional way.® The results were not appropri-
ate because the SDF constraints were no longer met
after the adaptation process, as Casasent and Rozzi
have shown.” Since then, however, other algo-
rithms have optimized the SDF to phase-only modu-
lation. These include Kallman’s method,® which is
computationally intensive, or the Jared and Ennis
method,? which is an iterative procedure and which
comprises the starting point from the method pre-
sented in the present paper. Montes-Usategui et
al.19 have presented an algorithm that achieves the
generation of the SDF, taking into account an arbi-
trary modulation for the filter. Nevertheless, none
of these authors mentions the inclusion of scene mod-
ulation due to the displaying device. dJuday!! ob-

20 October 2004 / Vol. 43, No. 30 / APPLIED OPTICS 5647



tained a solution that optimizes metrics of several
kinds, such as the Fisher ratio or the Bayes error,
including the constraints imposed by the limited
modulation, with the same philosophy as in the
MEDOF filters5 but extending it to account for a set
of images, although he does not give a practical algo-
rithm for computing the filters. Our aim is to in-
clude the modulation of both SLMs in the filter’s
design to implement it experimentally, generalizing
the Jared and Ennis method to the complex plane, to
allow arbitrary modulations.

This paper is organized as follows. In Section 2
we review the Jared and Ennis method. In Section
3 we explain the algorithm used to generalize this
method to complex-valued scenes and arbitrary mod-
ulations. In Section 4 some simulated results are
presented, and we discuss the optimal conditions to
this type of filter construction, analyzing the optimal
number of images that a filter should contain and the
influence of the number of gray levels available due to
the modulation. In Section 5, some experimental
results are shown, and the paper is closed by the
conclusions in Section 6.

2. Jared and Ennis Method

The Jared and Ennis method is an iterative algo-
rithm for the construction of phase-only SDF filters
that, since its publication, has been widely used,12:13
possibly because of its mathematical simplicity.
This fact, joined to its fast convergence on the solu-
tion, is the main advantage that made us consider
this method as the starting point in the development
of our algorithm. As we have already commented,
SDF filters are one of the possible choices to achieve
distortion invariance. The reason is that different
views of an object are considered in the construction
of a single filter, thus assuming that intermediate
cases should not be rejected because of the criteria
that we impose on the output correlation.

In SDF filters, the correlations between each train-
ing image and the reference image are imposed, and
we calculated the filter considering these constraints
as follows:

[tn(x’ y) ® h(x’ y)](0,0) = Cp, (1)

where ¢,(x, y) is the n image of the training set and
h(x,y) is the filter in the real space. c¢,, is the central
correlation amplitude, which is fixed to the desired
value; for example, it can be 1 for the detected class
and O for the rejected one. In the particular case of
a filter being a linear combination of images, the
result is a system of linear equations (INV equations,
one for each image of the training set) that can be
analytically solved. If an arbitrary modulation is
considered, then the system has no analytical solu-
tion in general.

The Jared and Ennis method first considers the
filter generated as a conventional SDF:

N
h(x,y) = > ant,(x, ), (2)
n=0
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where a,, is the coefficient of the ¢, (x, ) image. The
images of the training set are not adapted to any
modulation, and for this reason they are considered
real-valued images. Whereas in the original method
the a,, coefficients are considered real, in our imple-
mentation these parameters do not have this con-
straint. The filter, once constructed, is adapted to
phase-only or binary phase-only modulation. The N
constraints in Eq. (1) are imposed, and the system of
equations for the coefficients is solved by the follow-
ing iteration:

. . mni
a, " =a,+ B<c” — i> 7 ?
my
m =[x, ) @ B(x, Moo @

where i is the iteration number and B is a parameter
that the convergence depends on. Jared and Ennis?
fixed this parameter to 0.3. m,, is the central corre-
lation amplitude between each image of the training
set and the filter generated with the coefficients
found in the iteration i once it has been adapted to the
modulation. The initial conditions for the iteration
are a,’ = c,. When the m,’ central correlation am-
plitudes are equal to the fixed ones (c,,), the method
has converged into the solution. Although the
method presents advantages, there is a need for its
generalization to any experimental filter modulation.
Previous studies have appeared that are related to
the generalization of the Jared and Ennis method,
which have attempted to introduce more than one
image in the generation of MEDOFs4 adapted to the
filter modulation, without considering any scene
modulation. The approach we present deals with
these problems, as we show in Section 3.

3. Generalization to the Complex Plane

The method presented here takes into account mod-
ulations other than the ones applied in the original
method, both for the filter and for the images consid-
ered in the filter’s construction. These consider-
ations are indispensable for the experimental
verification of the method. The method developed
can be used with any configuration, although we do
not consider here the associated problem of which
curves are more suitable for a given problem.’> In
our case, the images will be displayed on two video
graphics array liquid-crystal devices (LCDs) ex-
tracted from an Epson EMP-3000 video projector.
From the different available curves, we chose to use
a high-contrast configuration for the scenes and a
phase-mostly configuration for the filter in this study.
As already mentioned, they could be different config-
urations. The operative curves that represent these
modulations are shown in Figs. 1(a) and 1(b), respec-
tively. The adaptation of the filter to the phase-
mostly modulation is the result of our applying the
minimum Euclidean distance of each complex value
to the points represented in the curve, the only ones
available in the operating configuration. We ob-
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Fig. 1. Operative curves considered in the filter generation: (a)

modulation of the scene (high-contrast configuration), (b) modula-
tion of the filter (phase-mostly configuration).

tained both curves using an experimental character-
ization method.16
The filter in the Fourier plane, H(u, v), is generated
as follows:
*
) , (5)

where ¥ indicates the Fourier transform. J(; is the
complex number that results when each gray level of
the input image is displayed in the input SLM, and
JMis the available value that has a minimum Euclid-
ean distance to the value that the filter should have.
To take into account the scale of the filter, we nor-
malized its magnitude to 1.0 (the operative curve is
normalized to the same value) and then collapsed its
values to realizable ones by application of the mini-
mum Euclidean distance. At this point, some kind
of optimization could have been introduced instead of
the simpler method we are using. Following the
standard MEDOF practice,> a multiplicative complex
factor can be found that makes the scale of the filter
and its absolute phase optimal with respect to the
curve being used in terms of maximizing some kind of
metric. The filter was generated as the linear com-
bination of the training set once modulated, trans-
formed into the Fourier plane, conjugated, and
adapted at this point to the second modulation func-
tion, by means of the minimum Euclidean distance,
as already stated above. Note that the images be-
longing to the training set are adapted to the curves
in the object plane whereas the filter is adapted in the
Fourier plane.

If the SDF conditions are imposed on the filter [Eq.
(1)], the solution to the coefficients cannot be found
analytically, and an iterative method has to be con-
sidered to solve the system of equations. In our
method, the coefficients of the linear combination are
not restricted to being real because phase is a desir-
able and necessary degree of freedom in the optimi-
zation, and so we allow them to have complex values
so we can add parameters to the problem. Therefore
the fixed correlations c, are also complex valued.
We apply the formula of Eq. (3) of the Jared and
Ennis method to iterate the real and imaginary parts

N-1
H(u,v) = J%f(@ > a [t (x, ¥)]

(b)
(a) class A, (b) class B.

Fig. 2.

Images of the training set:

of the coefficients separately, as shown in Egs. (6) and

(7):

. . R(m,’
R(a,"") = R(a,) + B[QR(C") = R(co) %EZ";} , (6

. 4 $(m,
*g)(an”-l) = 9(an1) + B|:'-g)(cn) - '-q)(CO) QEZHL;] . (7)
0

Parameter B was fixed to 0.3 as in the original
method in both Eq. (6) and (7) to achieve the simul-
taneous convergence of the real and imaginary parts
of the coefficient. m,' has the same definition as in
Eq. (4) but the filter and the training set image were
adapted to its correspondent modulation, as in Eq.
(5). The initial coefficients were chosen to be equal
to the N central correlations c,,, which were consid-
ered equal to [(1, 1)/V/2], thus fixing the central cor-
relation amplitude to 1 for images of the training set
that belong to a detected class. These values are
c,, = (0, 0) for a rejected class. As the variable that
we want to set is the central correlation amplitude
and not its phase, we have a degree of freedom that
could be used to optimize other metrics in addition to
the correlation amplitude, as others have done,!! but
we do not exploit this freedom in the present study as
the conditions mentioned above are enough to
achieve convergence of the algorithm, which is our
basic goal. As the algorithm fixes only the central
correlation value, the maximum for a correlation
with a rejected image could be placed in another point
of the correlation plane. This fact can lead to false
detections, which is the SDF filters’ main drawback.

4. Simulated Results

The training set used in this study is compounded by
in-plane rotations of the images shown in Fig. 2,
where a shark and its rotations form class A and a
dolphin and its rotations form class B. Any other
distortion could be considered, not just a simple ro-
tation. To check the stability of the method, we gen-
erated a filter from four images, two belonging to each
class, detecting class A with the modulations shown
in Figs. 1(a) and 1(b). We generated the rest of the
filters discussed in this paper considering the same
modulations for the filter and the scenes. Figure 3
shows the evolution of the central correlation ampli-
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Fig. 3. Evolution of the central correlation amplitude along the
iteration in the generation with the generalized method of a filter
that includes four images, two of each class, with the detection of
class A.

tude along the iteration. The method converges af-
ter a few iterations to the fixed values. The time per
iteration is approximately 1 min in a 1.2-GHz Pen-
tium IV processor during the generation of a filter
from 36 images with the size of 512 X 512 pixels, and
is thus not a critical issue. The method is stable and
maintains the mathematical simplicity of the original
one.

We carried out some simulations to test the perfor-
mance of the filters generated with the method pre-
sented in this paper using the operative curves shown
in Fig. 1. First, we wanted to see if the filter detects
all the images in the training set with the same cor-
relation peak intensity. To verify this, we con-
structed a filter containing 36 images belonging to
class A (sharks with an in-plane rotation of 20° each).
Figure 4 shows the central correlation amplitude be-
tween each image of the training set and this filter.
As can be seen, the values are equal for all the scenes.

To use the filters properly, the conditions in
which the filter performs optimally must be estab-
lished. In this paper we focus on three conditions:
the number of images per filter, the separation in
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Fig. 4. Central correlation amplitude with each of the 36 images
belonging to class A and a filter generated from all of them.
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Fig. 5. Influence of the number of images per filter in the corre-
lation. The filled squares show the mean value of the maxima of
correlation between filters, which were generated from a number of
images each rotated 5°, and images of the detected class, those
belonging to the training set, and intermediate images. The open
circles indicate the mean value of the maximum with images of the
rejected class and thus should have a low value. The detected
class is sharks, and the number of images in the filter is equal for
each class. The correlation values are normalized to the
autocorrelation, as in Figs. 4-9 and 11.

degrees between the rotations of the training set
images, and the number of levels in which we codify
the filter, in our case from 256 levels to binary
filters.

First, there is a need to determine the number of
images that a single filter should contain. The
number has to be as large as possible, but there are
other issues that we have to assume. The larger
the number of images the filter contains, the noisier
the correlation we would obtain. This parameter
also influences the cross correlation. Considering
a separation of 5° between rotations and 256 gray
levels in the LCD, we generated five filters contain-
ing a different number of images. Figure 5 shows
the average of the maximum amplitudes of correla-
tion for different filters, from a 9-image per class
filter to a 72-image per class filter. The average of
the correlation values for each filter was calculated
with those images included in the filter and those
that were not but corresponded to intermediate im-
ages and with an equal number of images of the
rejected class for the mean value of class B. The
error bars are the standard deviation of the corre-
lations with the same images considered in the
mean value. The values were normalized to the
autocorrelation value. From the plot in Fig. 5 we
can see that no more than approximately 20 images
per filter should be included because the distance
between the correlation with an object of the de-
sired class and another object decreases. The
threshold we have to impose on the correlation to
determine whether detection has occurred is more
difficult to set if the correlations between the target
class and another class are similar. To quantify



Table 1. Influence of the Number of Images per Filter in the Fisher
Ratio

Number of Images per Class Fisher Ratio

9 8.93
18 9.56
36 6.96
54 5.67
72 3.60

the separability of each filter, we constructed the
Fisher ratio, which is defined as

(D~ D)

2 2
O +()'B

J , (8)

where (I), and (I); are the intensities averaged over
images belonging to class A and B, respectively, and
o4 and op are the standard deviation values in the
class. The mean and the standard deviation are cal-
culated from the correlations with images that the
filter has to detect, that is, images of the filter’s train-
ing set and images with intermediate rotation de-
grees. One should expect a high Fisher ratio for a
filter that is able to separate the two classes. In
Table 1 we show the Fisher ratios corresponding to
the filters in Fig. 5. The filter with a better Fisher
ratio is the one constructed from 18 images.

Once this has been analyzed, the separability
among training images is studied. This matter is
highly dependent on the nature of the images them-
selves, as well as on the characteristics of the SLM.
The correlation with rotations of the object that are
not included in the training set will be larger if the
angular separation between images of the training
set is smaller. To find the optimal degree, we tested
the performance of a single matched filter against the
rotation of the input object, and the results are shown
in Fig. 6. The maximum correlation amplitude with
an image that is separated by 2° from the image
considered in the matched filter is below 0.5 of the
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Fig. 6. Maximum correlation amplitude of a single matched filter
against the rotation of the input object. At a rotation of 2° the
amplitude has decreased to half of the autocorrelation value.
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Fig. 7. Maximum correlation amplitude with a filter generated
from 20 images, each rotated 3° and both belonging to the training
set and intermediate images.

autocorrelation maximum. If we consider a filter
generated from 20 images rotated 3° and test its per-
formance against intermediate images, we can see
that there is no image that results in a correlation
below 0.7 of the correlation amplitude with the im-
ages in the training set (Fig. 7). Once this was ver-
ified, we constructed four filters containing 20 images
of class A with a different sampling interval from 3 to
20°. In Fig. 8 we show the correlation mean values
between these filters and, as in Fig. 5, with images
belonging to class A (included or not in the filter) or
with images of class B. The separation should not
be more than 5° because the separation between
classes is too low to be accepted. It would be difficult
to set a threshold value for an interval of 10°. In
Table 2 we can see the Fisher ratios [Eq. (8)] for the
filters used in Fig. 8. There is a great difference
between the separability between classes in the case
of 3° and the other cases. Ifasampling interval of 3°
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Fig. 8. Influence in the correlation of the sampling interval of the
images in the training set. The filled squares show the mean
value of the correlation maxima between filters and images of the
detected class, both belonging to the training set and intermediate
images. The open circles indicate the mean value of the maxi-
mum with images of the rejected class. The detected class is
sharks.
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Table 2. Influence of the Angular Separation among Images in the
Filter in the Fisher Ratio

Table 3. Influence of the Number of Gray Levels in the Filter in the
Fisher Ratio

Angular Separation Fisher Ratio Number of Gray Levels Fisher Ratio
3 22.76 256 22.76
5 8.58 128 22.38
10 2.04 64 21.45
20 0.83 32 18.20
16 14.07
8 8.43
4 7.07
is considered, we need six filters of 20 images to de- 2 17.48

scribe a full in-plane rotation of our object, which is a
reasonable number.

Finally, we would like to study the influence of the
LCD resolution in our filter. Taking a filter gener-
ated under the above conditions, that is, 20 images
per filter and 3° of rotation, we adapted it to different
numbers of gray levels, from binary to 256 levels.
The scene was codified into the same number of gray
levels. Although we could leave scenes with the ini-
tial resolution, we consider that both SLMs are equal,
and because of this, they should have the same res-
olution. The discretization was made in the follow-
ing way: For the input we chose the levels that are
as widely spaced as possible in the amplitude of the
complex values available with the high-contrast con-
figuration, and we do the same for the filter, but with
the phase of the complex values in the phase-mostly
configuration so as to cover the widest range of com-
plex planes possible. Figure 9 shows the average of
the maximum correlation values with filters adapted
to modulations of 2" levels. The scenes considered
for the correlation in Fig. 9 are the same as in Figs. 5
and 8. The number of gray levels in the LCD turns
out to be the parameter that has less influence on the
correlation, at least for the scenes and the type of
filter used in this study. We calculated the Fisher
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101 o Class B (Rejected class)

0.9

0.8

0.7 4

0.6
0.5
0.4
03148, 1 2 ] g
0.2 4
0.1 4
0.0 gy 1 T T prer———y
0 50 100 150 200 250 300

Number of gray levels

Mean of the central correlation value (a. u.)

Fig.9. Influence in the correlation of the number of gray levels in
which the filter is adapted. The filled squares show the mean
value of the maxima of correlation between filters, which were
generated from 20 images of each class separated 3°, and images of
the detected class, both belonging to the training set and interme-
diate images. The open circles indicate the mean value of the

maximum with images of the rejected class. The detected class is
sharks.
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ratio for these filters and they are shown in Table 3.
We can see that the Fisher ratio decreases with the
number of gray levels, except for the binary case, but
this is due to the fact that the standard deviation is
lower in this case than in the others.

The results led us to conclude that in the studied
cases the optimal conditions for the filter generation
are 3° of angular separation between images of the
training set, each filter containing 20 images, and
with a codification of a minimum of 32 levels, al-
though we have shown that the number of levels is
not an important parameter in our problem. We
could set a threshold for the normalized maximum
correlation amplitude of approximately 0.65 for the
object to be detected, considering that, in the simu-
lations we carried out with a filter in these conditions,
we obtained a minimum of approximately 0.70. In
Section 5 we present some experimental results to
check the performance of the filters.

5. Experimental Results

The experimental setup used in this paper is a
VanderLugt convergent correlator (Fig. 10) with two
video graphic array LCDs removed from an Epson
EMP-3000 video projector. We used a He—Ne laser
source of 632.8 nm and a CCD camera to capture the
correlation plane. The LCDs work under the config-
urations shown in Fig. 1. As the filters generated
with our method are optimized to the configurations
of both LCDs, we can check the performance of the
algorithm experimentally.

A filter containing 20 images belonging to class A
(sharks) each separated 3° adapted to 32 gray levels
was constructed. This filter has to detect sharks

Fig. 10. Picture of the VanderLugt convergent correlator. 1, la-
ser; 2, mirror; 3, 8, 10, and 13, polarizing elements; 4, attenuation
filter; 5, pinhole; 6 and 12, convergent lenses; 7 and 11, LCD; 9,
divergent lens; 14, CCD camera; 15, video projector.
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Fig. 11. Maximum correlation amplitude captured experimen-
tally with each of the 20 images included in the training set; the
sharks had a rotation of 3° each.

with a rotation of 0°-57°. We captured the correla-
tion planes obtained when this filter was displayed on
the second modulator, and the first modulation had
scenes containing each shark of the training set sep-
arately. Figure 11 shows the maximum correlation
amplitude, which was normalized to the maximum of
all values and presents a mean value of 0.93 with a
standard deviation of 0.03. The minimum value is
0.87, so we can conclude that the filter detects all the
sharks, as expected. The main error sources may be
misalignments of the correlator and the stability of
the operative curves.?

Figures 12 and 13 show correlation planes cap-
tured experimentally and the scenes displayed on the
first LCD. The rotation degrees are indicated in the
scenes, and the correlation intensity maxima are nor-
malized to the maximum of the image. In Fig. 12 we
can see that there is detection for an image belonging
to the training set and for an intermediate degree,
with almost the same intensity. The correlation in-
tensity is lower for a dolphin, which is not the target
and so has to be rejected. Figure 13 shows the cor-
relation with a scene that contains an object of the
training set and one dolphin. Clearly, there is no
detection for the dolphin in this case because the
correlation maximum 0.29 is lower than the fixed

(a)

Fig. 12. (a) Input scene with two images of class A and (b) exper-
imental correlation plane captured with a filter generated from 20
images belonging to class A.

b

(a) Input scene with an image of class A and another of
class B and (b) experimental correlation plane captured with a
filter generated from 20 images belonging to class A.

Fig. 13.

threshold 0.65. To summarize, the experimental re-
sults are in agreement with the simulated ones, and
the correct behavior of the algorithm has been
proved.

6. Conclusions

We propose an algorithm for the design of SDF filters
adapted to arbitrarily constrained devices to display
images in a VanderLugt correlator, taking into ac-
count the device modulation for scenes and filter.
The algorithm is a generalization of the Jared and
Ennis method for complex-valued images, which
maintains its simplicity and its fast convergence on
the solution. The simulated results allowed us to
find the optimal conditions of performance for these
filters, analyzing issues such as the number of images
per filter, the LCD resolution, and the angular sepa-
ration of the images in the training set for the con-
sidered distortion, the in-plane rotation. Any other
distortion could have been chosen by use of other
images in the training set. Experimental results ob-
tained in a convergent VanderLugt correlator are
shown and present good agreement with the simu-
lated results.
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