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eneralization of the Jared and Ennis method of
omplex transmittance objects for the generation
f synthetic discriminant function filters

ncarnación Pleguezuelos, Ignasi Labastida, Mario Montes-Usategui,
antiago Vallmitjana, and Artur Carnicer

We present a simple method of constructing synthetic discriminant function filters optimized to take into
account the modulation of liquid-crystal devices. This relaxation algorithm, a generalization of the
Jared and Ennis method, is an iterative method that includes arbitrary modulations for both scene and
filter, extending the problem to the complex plane. Simulated and experimental results obtained in a
VanderLugt correlator are presented for a two-class recognition problem. The optimal number of images
needed to describe an object in a filter generated in this way is discussed, and the influence of the spatial
light modulation resolution on the correlation is studied. © 2004 Optical Society of America
OCIS codes: 070.4550, 070.6110, 100.6740, 230.3720.
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. Introduction

ilter design is a highly dynamic field in optical pat-
ern recognition research. If general distortion in-
ariance is desired, one of the most common filters
sed is the synthetic discriminant function �SDF� fil-
er.1 This type of filter is constructed as a function of
number of representative views of an object with a

orrelation response fixed for all of them. Depend-
ng on the images chosen, we would be able to con-
truct a filter that is invariant to the type of distortion
equired. Other filters are invariant to a particular
istortion, such as circular harmonic filters,2 which
chieve the same correlation response for any in-
lane rotation of the object with a single term of the
armonic decomposition of an image for the correla-
ion, or radial harmonic filters,3 which do the same
or scale variations. The main drawback of these
lters is that a single harmonic contains only partial

nformation about the object. Another example for
otation invariance in optical pattern recognition is
ased on a different approach: time multiplexing,4
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hich consists in the mechanical rotation of the ref-
rence while the correlation is captured.
An algorithm for the generation of correlation fil-

ers has to take into account the characteristics of the
patial light modulator �SLM� where the images will
e displayed. Most SLMs can only accommodate a
mall fraction of the complex plane, so the filter has
o be adapted to the possible values during its con-
truction. A single-image filter that includes these
onsiderations is the minimum Euclidean distance
ptimal filter �MEDOF�.5 This type of filter opti-
izes different metrics in its design, such as the

ignal-to-noise ratio in the correlation plane or the
eak sharpness. Previous attempts have been made
o include adaptation to display devices in the SDF by
se of the phase of a composite filter generated in the
onventional way.6 The results were not appropri-
te because the SDF constraints were no longer met
fter the adaptation process, as Casasent and Rozzi
ave shown.7 Since then, however, other algo-
ithms have optimized the SDF to phase-only modu-
ation. These include Kallman’s method,8 which is
omputationally intensive, or the Jared and Ennis
ethod,9 which is an iterative procedure and which

omprises the starting point from the method pre-
ented in the present paper. Montes-Usategui et
l.10 have presented an algorithm that achieves the
eneration of the SDF, taking into account an arbi-
rary modulation for the filter. Nevertheless, none
f these authors mentions the inclusion of scene mod-

lation due to the displaying device. Juday11 ob-
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ained a solution that optimizes metrics of several
inds, such as the Fisher ratio or the Bayes error,

ncluding the constraints imposed by the limited
odulation, with the same philosophy as in the
EDOF filters5 but extending it to account for a set

f images, although he does not give a practical algo-
ithm for computing the filters. Our aim is to in-
lude the modulation of both SLMs in the filter’s
esign to implement it experimentally, generalizing
he Jared and Ennis method to the complex plane, to
llow arbitrary modulations.
This paper is organized as follows. In Section 2
e review the Jared and Ennis method. In Section
we explain the algorithm used to generalize this
ethod to complex-valued scenes and arbitrary mod-

lations. In Section 4 some simulated results are
resented, and we discuss the optimal conditions to
his type of filter construction, analyzing the optimal
umber of images that a filter should contain and the

nfluence of the number of gray levels available due to
he modulation. In Section 5, some experimental
esults are shown, and the paper is closed by the
onclusions in Section 6.

. Jared and Ennis Method

he Jared and Ennis method is an iterative algo-
ithm for the construction of phase-only SDF filters
hat, since its publication, has been widely used,12,13

ossibly because of its mathematical simplicity.
his fact, joined to its fast convergence on the solu-

ion, is the main advantage that made us consider
his method as the starting point in the development
f our algorithm. As we have already commented,
DF filters are one of the possible choices to achieve
istortion invariance. The reason is that different
iews of an object are considered in the construction
f a single filter, thus assuming that intermediate
ases should not be rejected because of the criteria
hat we impose on the output correlation.

In SDF filters, the correlations between each train-
ng image and the reference image are imposed, and
e calculated the filter considering these constraints
s follows:

�tn� x, y� � h� x, y���0,0� � cn, (1)

here tn�x, y� is the n image of the training set and
�x, y� is the filter in the real space. cn is the central
orrelation amplitude, which is fixed to the desired
alue; for example, it can be 1 for the detected class
nd 0 for the rejected one. In the particular case of
filter being a linear combination of images, the

esult is a system of linear equations �N equations,
ne for each image of the training set� that can be
nalytically solved. If an arbitrary modulation is
onsidered, then the system has no analytical solu-
ion in general.

The Jared and Ennis method first considers the
lter generated as a conventional SDF:

h� x, y� �
N

a t � x, y�, (2)
�
n�0

n n
a

648 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
here an is the coefficient of the tn�x, y� image. The
mages of the training set are not adapted to any

odulation, and for this reason they are considered
eal-valued images. Whereas in the original method
he an coefficients are considered real, in our imple-
entation these parameters do not have this con-

traint. The filter, once constructed, is adapted to
hase-only or binary phase-only modulation. The N
onstraints in Eq. �1� are imposed, and the system of
quations for the coefficients is solved by the follow-
ng iteration:

an
i�1 � an

i � ��cn � c0

mn
i

m0
i� , (3)

mn
i � �tn� x, y� � hi� x, y���0,0�, (4)

here i is the iteration number and � is a parameter
hat the convergence depends on. Jared and Ennis9

xed this parameter to 0.3. mn is the central corre-
ation amplitude between each image of the training
et and the filter generated with the coefficients
ound in the iteration i once it has been adapted to the

odulation. The initial conditions for the iteration
re an

0 � cn. When the mn
i central correlation am-

litudes are equal to the fixed ones �cn�, the method
as converged into the solution. Although the
ethod presents advantages, there is a need for its

eneralization to any experimental filter modulation.
revious studies have appeared that are related to
he generalization of the Jared and Ennis method,
hich have attempted to introduce more than one

mage in the generation of MEDOFs14 adapted to the
lter modulation, without considering any scene
odulation. The approach we present deals with

hese problems, as we show in Section 3.

. Generalization to the Complex Plane

he method presented here takes into account mod-
lations other than the ones applied in the original
ethod, both for the filter and for the images consid-

red in the filter’s construction. These consider-
tions are indispensable for the experimental
erification of the method. The method developed
an be used with any configuration, although we do
ot consider here the associated problem of which
urves are more suitable for a given problem.15 In
ur case, the images will be displayed on two video
raphics array liquid-crystal devices �LCDs� ex-
racted from an Epson EMP-3000 video projector.
rom the different available curves, we chose to use
high-contrast configuration for the scenes and a

hase-mostly configuration for the filter in this study.
s already mentioned, they could be different config-
rations. The operative curves that represent these
odulations are shown in Figs. 1�a� and 1�b�, respec-

ively. The adaptation of the filter to the phase-
ostly modulation is the result of our applying the
inimum Euclidean distance of each complex value

o the points represented in the curve, the only ones

vailable in the operating configuration. We ob-
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ained both curves using an experimental character-
zation method.16

The filter in the Fourier plane, H�u, v�, is generated
s follows:

H�u, v� � �f(�{�n�0

N	1

an�i�tn� x, y��}*) , (5)

here � indicates the Fourier transform. �i is the
omplex number that results when each gray level of
he input image is displayed in the input SLM, and

f is the available value that has a minimum Euclid-
an distance to the value that the filter should have.
o take into account the scale of the filter, we nor-
alized its magnitude to 1.0 �the operative curve is

ormalized to the same value� and then collapsed its
alues to realizable ones by application of the mini-
um Euclidean distance. At this point, some kind

f optimization could have been introduced instead of
he simpler method we are using. Following the
tandard MEDOF practice,5 a multiplicative complex
actor can be found that makes the scale of the filter
nd its absolute phase optimal with respect to the
urve being used in terms of maximizing some kind of
etric. The filter was generated as the linear com-

ination of the training set once modulated, trans-
ormed into the Fourier plane, conjugated, and
dapted at this point to the second modulation func-
ion, by means of the minimum Euclidean distance,
s already stated above. Note that the images be-
onging to the training set are adapted to the curves
n the object plane whereas the filter is adapted in the
ourier plane.
If the SDF conditions are imposed on the filter �Eq.

1��, the solution to the coefficients cannot be found
nalytically, and an iterative method has to be con-
idered to solve the system of equations. In our
ethod, the coefficients of the linear combination are
ot restricted to being real because phase is a desir-
ble and necessary degree of freedom in the optimi-
ation, and so we allow them to have complex values
o we can add parameters to the problem. Therefore
he fixed correlations cn are also complex valued.

e apply the formula of Eq. �3� of the Jared and

ig. 1. Operative curves considered in the filter generation: �a�
odulation of the scene �high-contrast configuration�, �b� modula-

ion of the filter �phase-mostly configuration�.
nnis method to iterate the real and imaginary parts s
f the coefficients separately, as shown in Eqs. �6� and
7�:

��an
i�1� � ��an

i� � ����cn� � ��c0�
��mn

i�

��m0
i�� , (6)

��an
i�1� � ��an

i� � ����cn� � ��c0�
��mn

i�

��m0
i�� . (7)

arameter � was fixed to 0.3 as in the original
ethod in both Eq. �6� and �7� to achieve the simul-

aneous convergence of the real and imaginary parts
f the coefficient. mn

i has the same definition as in
q. �4� but the filter and the training set image were
dapted to its correspondent modulation, as in Eq.
5�. The initial coefficients were chosen to be equal
o the N central correlations cn, which were consid-
red equal to ��1, 1��
2�, thus fixing the central cor-
elation amplitude to 1 for images of the training set
hat belong to a detected class. These values are
n � �0, 0� for a rejected class. As the variable that
e want to set is the central correlation amplitude
nd not its phase, we have a degree of freedom that
ould be used to optimize other metrics in addition to
he correlation amplitude, as others have done,11 but
e do not exploit this freedom in the present study as

he conditions mentioned above are enough to
chieve convergence of the algorithm, which is our
asic goal. As the algorithm fixes only the central
orrelation value, the maximum for a correlation
ith a rejected image could be placed in another point
f the correlation plane. This fact can lead to false
etections, which is the SDF filters’ main drawback.

. Simulated Results

he training set used in this study is compounded by
n-plane rotations of the images shown in Fig. 2,
here a shark and its rotations form class A and a
olphin and its rotations form class B. Any other
istortion could be considered, not just a simple ro-
ation. To check the stability of the method, we gen-
rated a filter from four images, two belonging to each
lass, detecting class A with the modulations shown
n Figs. 1�a� and 1�b�. We generated the rest of the
lters discussed in this paper considering the same
odulations for the filter and the scenes. Figure 3

Fig. 2. Images of the training set: �a� class A, �b� class B.
hows the evolution of the central correlation ampli-
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ude along the iteration. The method converges af-
er a few iterations to the fixed values. The time per
teration is approximately 1 min in a 1.2-GHz Pen-
ium IV processor during the generation of a filter
rom 36 images with the size of 512 � 512 pixels, and
s thus not a critical issue. The method is stable and

aintains the mathematical simplicity of the original
ne.
We carried out some simulations to test the perfor-
ance of the filters generated with the method pre-

ented in this paper using the operative curves shown
n Fig. 1. First, we wanted to see if the filter detects
ll the images in the training set with the same cor-
elation peak intensity. To verify this, we con-
tructed a filter containing 36 images belonging to
lass A �sharks with an in-plane rotation of 20° each�.
igure 4 shows the central correlation amplitude be-

ween each image of the training set and this filter.
s can be seen, the values are equal for all the scenes.
To use the filters properly, the conditions in
hich the filter performs optimally must be estab-

ished. In this paper we focus on three conditions:
he number of images per filter, the separation in

ig. 3. Evolution of the central correlation amplitude along the
teration in the generation with the generalized method of a filter
hat includes four images, two of each class, with the detection of
lass A.

ig. 4. Central correlation amplitude with each of the 36 images

celonging to class A and a filter generated from all of them.

650 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
egrees between the rotations of the training set
mages, and the number of levels in which we codify
he filter, in our case from 256 levels to binary
lters.
First, there is a need to determine the number of

mages that a single filter should contain. The
umber has to be as large as possible, but there are
ther issues that we have to assume. The larger
he number of images the filter contains, the noisier
he correlation we would obtain. This parameter
lso influences the cross correlation. Considering
separation of 5° between rotations and 256 gray

evels in the LCD, we generated five filters contain-
ng a different number of images. Figure 5 shows
he average of the maximum amplitudes of correla-
ion for different filters, from a 9-image per class
lter to a 72-image per class filter. The average of
he correlation values for each filter was calculated
ith those images included in the filter and those

hat were not but corresponded to intermediate im-
ges and with an equal number of images of the
ejected class for the mean value of class B. The
rror bars are the standard deviation of the corre-
ations with the same images considered in the

ean value. The values were normalized to the
utocorrelation value. From the plot in Fig. 5 we
an see that no more than approximately 20 images
er filter should be included because the distance
etween the correlation with an object of the de-
ired class and another object decreases. The
hreshold we have to impose on the correlation to
etermine whether detection has occurred is more
ifficult to set if the correlations between the target

ig. 5. Influence of the number of images per filter in the corre-
ation. The filled squares show the mean value of the maxima of
orrelation between filters, which were generated from a number of
mages each rotated 5°, and images of the detected class, those
elonging to the training set, and intermediate images. The open
ircles indicate the mean value of the maximum with images of the
ejected class and thus should have a low value. The detected
lass is sharks, and the number of images in the filter is equal for
ach class. The correlation values are normalized to the
utocorrelation, as in Figs. 4–9 and 11.
lass and another class are similar. To quantify
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he separability of each filter, we constructed the
isher ratio, which is defined as

J �
��IA � �IB�2

�A
2 � �B

2 , (8)

here �IA and �IB are the intensities averaged over
mages belonging to class A and B, respectively, and
A and �B are the standard deviation values in the
lass. The mean and the standard deviation are cal-
ulated from the correlations with images that the
lter has to detect, that is, images of the filter’s train-

ng set and images with intermediate rotation de-
rees. One should expect a high Fisher ratio for a
lter that is able to separate the two classes. In
able 1 we show the Fisher ratios corresponding to

he filters in Fig. 5. The filter with a better Fisher
atio is the one constructed from 18 images.

Once this has been analyzed, the separability
mong training images is studied. This matter is
ighly dependent on the nature of the images them-
elves, as well as on the characteristics of the SLM.
he correlation with rotations of the object that are
ot included in the training set will be larger if the
ngular separation between images of the training
et is smaller. To find the optimal degree, we tested
he performance of a single matched filter against the
otation of the input object, and the results are shown
n Fig. 6. The maximum correlation amplitude with
n image that is separated by 2° from the image
onsidered in the matched filter is below 0.5 of the

Table 1. Influence of the Number of Images per Filter in the Fisher
Ratio

Number of Images per Class Fisher Ratio

9 8.93
18 9.56
36 6.96
54 5.67
72 3.60

ig. 6. Maximum correlation amplitude of a single matched filter
gainst the rotation of the input object. At a rotation of 2° the

mplitude has decreased to half of the autocorrelation value. s
utocorrelation maximum. If we consider a filter
enerated from 20 images rotated 3° and test its per-
ormance against intermediate images, we can see
hat there is no image that results in a correlation
elow 0.7 of the correlation amplitude with the im-
ges in the training set �Fig. 7�. Once this was ver-
fied, we constructed four filters containing 20 images
f class A with a different sampling interval from 3 to
0°. In Fig. 8 we show the correlation mean values
etween these filters and, as in Fig. 5, with images
elonging to class A �included or not in the filter� or
ith images of class B. The separation should not
e more than 5° because the separation between
lasses is too low to be accepted. It would be difficult
o set a threshold value for an interval of 10°. In
able 2 we can see the Fisher ratios �Eq. �8�� for the
lters used in Fig. 8. There is a great difference
etween the separability between classes in the case
f 3° and the other cases. If a sampling interval of 3°

ig. 7. Maximum correlation amplitude with a filter generated
rom 20 images, each rotated 3° and both belonging to the training
et and intermediate images.

ig. 8. Influence in the correlation of the sampling interval of the
mages in the training set. The filled squares show the mean
alue of the correlation maxima between filters and images of the
etected class, both belonging to the training set and intermediate
mages. The open circles indicate the mean value of the maxi-

um with images of the rejected class. The detected class is

harks.

20 October 2004 � Vol. 43, No. 30 � APPLIED OPTICS 5651
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s considered, we need six filters of 20 images to de-
cribe a full in-plane rotation of our object, which is a
easonable number.

Finally, we would like to study the influence of the
CD resolution in our filter. Taking a filter gener-
ted under the above conditions, that is, 20 images
er filter and 3° of rotation, we adapted it to different
umbers of gray levels, from binary to 256 levels.
he scene was codified into the same number of gray

evels. Although we could leave scenes with the ini-
ial resolution, we consider that both SLMs are equal,
nd because of this, they should have the same res-
lution. The discretization was made in the follow-
ng way: For the input we chose the levels that are
s widely spaced as possible in the amplitude of the
omplex values available with the high-contrast con-
guration, and we do the same for the filter, but with
he phase of the complex values in the phase-mostly
onfiguration so as to cover the widest range of com-
lex planes possible. Figure 9 shows the average of
he maximum correlation values with filters adapted
o modulations of 2n levels. The scenes considered
or the correlation in Fig. 9 are the same as in Figs. 5
nd 8. The number of gray levels in the LCD turns
ut to be the parameter that has less influence on the
orrelation, at least for the scenes and the type of
lter used in this study. We calculated the Fisher

Table 2. Influence of the Angular Separation among Images in the
Filter in the Fisher Ratio

Angular Separation Fisher Ratio

3 22.76
5 8.58

10 2.04
20 0.83

ig. 9. Influence in the correlation of the number of gray levels in
hich the filter is adapted. The filled squares show the mean
alue of the maxima of correlation between filters, which were
enerated from 20 images of each class separated 3°, and images of
he detected class, both belonging to the training set and interme-
iate images. The open circles indicate the mean value of the
aximum with images of the rejected class. The detected class is
harks. d

652 APPLIED OPTICS � Vol. 43, No. 30 � 20 October 2004
atio for these filters and they are shown in Table 3.
e can see that the Fisher ratio decreases with the

umber of gray levels, except for the binary case, but
his is due to the fact that the standard deviation is
ower in this case than in the others.

The results led us to conclude that in the studied
ases the optimal conditions for the filter generation
re 3° of angular separation between images of the
raining set, each filter containing 20 images, and
ith a codification of a minimum of 32 levels, al-

hough we have shown that the number of levels is
ot an important parameter in our problem. We
ould set a threshold for the normalized maximum
orrelation amplitude of approximately 0.65 for the
bject to be detected, considering that, in the simu-
ations we carried out with a filter in these conditions,
e obtained a minimum of approximately 0.70. In
ection 5 we present some experimental results to
heck the performance of the filters.

. Experimental Results

he experimental setup used in this paper is a
anderLugt convergent correlator �Fig. 10� with two
ideo graphic array LCDs removed from an Epson
MP-3000 video projector. We used a He–Ne laser
ource of 632.8 nm and a CCD camera to capture the
orrelation plane. The LCDs work under the config-
rations shown in Fig. 1. As the filters generated
ith our method are optimized to the configurations
f both LCDs, we can check the performance of the
lgorithm experimentally.
A filter containing 20 images belonging to class A

sharks� each separated 3° adapted to 32 gray levels
as constructed. This filter has to detect sharks

Table 3. Influence of the Number of Gray Levels in the Filter in the
Fisher Ratio

Number of Gray Levels Fisher Ratio

256 22.76
128 22.38
64 21.45
32 18.20
16 14.07
8 8.43
4 7.07
2 17.48

ig. 10. Picture of the VanderLugt convergent correlator. 1, la-
er; 2, mirror; 3, 8, 10, and 13, polarizing elements; 4, attenuation
lter; 5, pinhole; 6 and 12, convergent lenses; 7 and 11, LCD; 9,

ivergent lens; 14, CCD camera; 15, video projector.
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ith a rotation of 0°–57°. We captured the correla-
ion planes obtained when this filter was displayed on
he second modulator, and the first modulation had
cenes containing each shark of the training set sep-
rately. Figure 11 shows the maximum correlation
mplitude, which was normalized to the maximum of
ll values and presents a mean value of 0.93 with a
tandard deviation of 0.03. The minimum value is
.87, so we can conclude that the filter detects all the
harks, as expected. The main error sources may be
isalignments of the correlator and the stability of

he operative curves.17

Figures 12 and 13 show correlation planes cap-
ured experimentally and the scenes displayed on the
rst LCD. The rotation degrees are indicated in the
cenes, and the correlation intensity maxima are nor-
alized to the maximum of the image. In Fig. 12 we

an see that there is detection for an image belonging
o the training set and for an intermediate degree,
ith almost the same intensity. The correlation in-

ensity is lower for a dolphin, which is not the target
nd so has to be rejected. Figure 13 shows the cor-
elation with a scene that contains an object of the
raining set and one dolphin. Clearly, there is no
etection for the dolphin in this case because the
orrelation maximum 0.29 is lower than the fixed

ig. 11. Maximum correlation amplitude captured experimen-
ally with each of the 20 images included in the training set; the
harks had a rotation of 3° each.

ig. 12. �a� Input scene with two images of class A and �b� exper-
mental correlation plane captured with a filter generated from 20

mages belonging to class A.
hreshold 0.65. To summarize, the experimental re-
ults are in agreement with the simulated ones, and
he correct behavior of the algorithm has been
roved.

. Conclusions

e propose an algorithm for the design of SDF filters
dapted to arbitrarily constrained devices to display
mages in a VanderLugt correlator, taking into ac-
ount the device modulation for scenes and filter.
he algorithm is a generalization of the Jared and
nnis method for complex-valued images, which
aintains its simplicity and its fast convergence on

he solution. The simulated results allowed us to
nd the optimal conditions of performance for these
lters, analyzing issues such as the number of images
er filter, the LCD resolution, and the angular sepa-
ation of the images in the training set for the con-
idered distortion, the in-plane rotation. Any other
istortion could have been chosen by use of other
mages in the training set. Experimental results ob-
ained in a convergent VanderLugt correlator are
hown and present good agreement with the simu-
ated results.
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5. C. Zeile and E. Lüder, “Complex transmission of liquid crystal
light modulators in optical signal processing applications,” in
Liquid Crystal Materials, Devices, and Applications II, U.
Efron and M. D. Wand, eds., Proc. SPIE 1911, 195–206 �1993�.

6. E. Martı́n-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana,
“Complex modulation characterization of liquid crystal devices
by interferometric data correlation,” Meas. Sci. Technol. 8,
764–772 �1997�.

7. M. Montes-Usategui, S. E. Monroe, and R. D. Juday, “Auto-
mated self-alignment procedure for optical correlators,” Opt.

Eng. 36, 1782–1791 �1997�.


