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ABSTRACT sulin pool size, h al f-life, and rate of degr adation were calculated. 
Zucker lean and obese rats were injected under pentob arbit al an­ Obese r ats had hi gher insulin levels (2.43 nM) and showed less effect 

esthesia with 125I-labeled insulin ; at t imed interval s from 30 to 120 of noradrenaline than th eir lean coun terparts , in wh ich insul in dis­
sec, blood samples were extracte d and us ed for the estimation of tr ibut ion volume shrank with noradr enaline trea tment . Th e half-life 
insulin levels by RIA. A group of r ats from each ser ies was maintained of pla sma ins ulin was sim ila r in all groups (range, 226 - 314 sec). Pool 
under a constant infu sion of noradren aline. For each insu lin deter­ size and overall degradation rates were higher in obese (198 fem­
minatio n, a duplica te blood samp le con t aining the same amount of tok atals) th an in lean ra ts (28 ferntok atals ).It is pos tula ted th a t obese 
insulin as th at used in th e RIA, bu t without the ra dioactive label, was r a ts syn thesize and cleave much more insu lin th a n lean controls 
used as a bla nk for insulin measu rem ent. The radioactivi ty in these despite th eir highe r circulating levels of ins ulio . (Endocrinology 136: 
tubes was then used for th e mea s uremen tofinsulin label per ml blood. 3871- 3876 , 1995 ) 
From plasma la bel deca y curves and insulin concentrations , the in-

CIRCULATING insulin has, necessarily, a shor t ha lf-life 
(1), becau se of its fast response to hyp erglycem ic cha l­

lenges (2), a conseque nce of its funda me n tal ro le in the ma in­
tenance of gly cemia (3). The insulin response to increases in 
circulating glucago n (4), ca techo lamines (5), or amino acids 
(6- 8) is pr actically immediate. The ra te of removal of insulin 
by the liver is high (9 - 11), as is the ability of peripheral 
tissues to inac tiva te most of the remaining circula ting ins ulin 
(l f), 12, 13). In target tissues, insulin is inactiva ted by int er­
naliza tion afte r in terac tion w ith sp ecific receptors (14). The 
main insulin-cleaving agen t is insu lin:glu ta thione tran shy­
drogenase (EC 1.8.4.2) (12, 15), probably in add ition to other 
enzymes (16, 17). The overa ll capacity of the ma mmal for 
insulin remo va l and inac tiva tion is cons iderable, as is the 
ability of the endocrine pancreas to release lar ge amounts of 
insulin on demand. All of these factors combine to es tablish 
afast insulin turnover, subject to wide osci lla tions depending 
on physiological cond ition and environm en t. 

Adequa te knowledge of insulin turnover may be im po r­
tant for the study of insu lin responses to di fferent s tim uli as 
well as in the understan ding of the mechanism s involved in 
the development of late-onset diabe tes, insulin resis tance, 
and obesity, si tuations in w hich insulin release and the 
physiological response to insu lin ar e altered (18 - 20) . 

The di rect esti ma tion of ins ulin turnover is com plex, and 
only approximat e est imates are availab le (10, 21-23) . The low 
circulating leve ls of insulin complicate its di rect est imation. 
This is further compounded by the w ide d ifferences in blood 
insulin concen tra tion wi thin different ves sels (2), a hindrance 
requiring that blood sa mple so urces be as un iform as pos-
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sible (i.e . arterial blood ). The scarce data availab le on insulin 
turnover i ll v ivo we re ob tained us ing kinetic method s and 
arterio-ve no us diff erences to es tima te insulin synthesis 
(22-26), a approach not suitab le for many experime ntal 
si tua tions . 

The rates of removal of insulin, labeled with radioactive 
iod ine, from blood may be used to obtain an approximate 
estima tion of insulin turnover. However, this approach 
poses the problem of di stinguishing between intact insulin 
and other label ed prod uct s of insulin cleavage presu mabl y 
pr esen t in plasma . Th e mos t common meth od of measure­
ment of insulin concen tra tion in blood plasma is radioim­
munoanalysis (27), a pr ocedure that makes use of radioactive 
iod ine as a label ing ag ent bound to insul in tyr osinyl residues. 
The use of this approac h thwarts an y further att em pt to 
measure insu lin levels; th rou gh RIA, in animals previou sly 
injected wi th lab eled insulin . 

The m ethod p resented here has been dev ised for the 
sho rt term es tima tio n of insu lin turnover ill vivo by mea­
suring th e rate of disap p earan ce of ra d ioiodine-labeled 
insulin in jected into th e bloods tream co mbined w ith a 
sta ndard RIA procedure. 

Materials and Methods 

Materials and animals 

Pure recombinant hu man insuli n (Hu mu lin, Sigma Chemical Co., St. 
Louis, MO) was labeled with ' 251 [sodium iodi de; specific rad ioact ivity, 
80.5 gigabecquerels (GBq)/ JLmol; Amersham , Aylesbury , UK] at init ial 
propo rtion s of 37 megabecquerels (MBq) 12 51 an d 0.4 JLg chloram ine-T 
(Sigrnar/ JLg (222 MBq /nmol) insulin (28). Iodi na tion was stopped with 
sod ium metabisulfite (0.4 JLg/ JLg insu lin). Labeled insu lin was pu rified 
th rou gh a column of Bia-Gel P6DG (Bio-Rad Laborato ries, Rich­
mond, CAl (28). An insulin prepa ration with a specific radioact ivity of 
55 MBq/nmol was obtained . 

Zucker lean (Fa/?) and obese (fa / fa) male adult ra ts, weighing 324 :!: 
12 an d 455 :!: 24 g, respectively 0 3-1 4 weeks old), bred at the An imal 
Service of the University of Barcelona from het erozygou s stock obtained 
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from Ch arles River (Wilmington, MA), were used. The a nima ls were 
hou sed in individual po lypropyle ne-bo ttomed cages un d er stand ard 
cond itions (lights on from 0800-2000 h; 22-23 C; 70-75% relat ive 
humid ity) and we re fed s tandard chow pe llets (type A04 from Pa nlab, 
Barcelona, Spai n). A se ries of six rat s was cannu la ted , under 50 mg /kg 
BW ip pentoba rb ital anes thes ia) in th e left ca ro tid ar tery (bri ng ing the 
tip of the cannu la just to the heart) and in the righ t jugula r ve in w ith P50 
(Clay-Adams, Parsippan y, NJ) pol yethylen e tubes (id , 0.58; od , 0.97 
mm), A t the end of the experiment, the anes the tize d rats were killed by 
exsan guinati on . Thi s s tudy was co nd ucted in accordance w ith the eu ­
ropea n corrununity principles, gu idelines, and proced ur es for a nimal 
experimentati on . 

The lean and obese groups of rat s were fur ther subdivided in to two 
groups; the first was used as control. The an imals of the second group 
recei ved a cons tant iv in fusion of 280 ILM noradrenaline (Sigma) th rough 
a cannula inserted in the lower cava at a ra te of 4 m lzh-kg wh ile un d er 
pen tobarbital anes thesia . Th e infusion was performed w ith a syringe 
p um p and maintai ned for 10 min. The rats under the effects of nor a­
drenaline infusion w ere used for the es timation of insulin turnove r, as 
were their untreated controls. 

All work on anesthetized ani mals was carried ou t in a chamber kept 
at 32 C and more than 95% rel ati ve hum idity to avoid the hypothermi c 
effects of anesthesia. 

The resistance to a glucose load was invest igat ed in five lean and five 
obese rats of the same age and weight as those us ed in the main ex­
periment. The carotid arteries of the se rats were chronicall y cannulated 
under ether anesthesia using P50 p olyethylene cannulas (29). Tw o d ays 
after the surgical procedure, the rat s we re given an ora l load of 1 m l 
glucose (0.7 g) in water via a plastic stomach can nul a. Samples of caro tid 
blood (0.4 ml for lean and 0.2 ml for obese animals) w ere tak en jus t before 
and 10, 15, and 30 min after the loading of glucose (0.2 ml for lean and 
0.1 ml for obese rats). Thi s blood was used for the me asurement of 
glucose (30) and plasma insulin (31). Figure 1 shows the plasma level s 
of both. 

Insulin turnover measurement 

Each rat wa s in jected (in 5-8 sec) through the jugular venous can nula 
with 18.3 kBq (330 frnol) labeled insulin in 0.1 ml iso tonic saline so lu tio n. 
The rad ioactivity initially pr ese nt (an d tha t left after the inject ion) in the 
sy ringe w as mea sured w ith a v-cou nter. At timed in terva ls of 30, 60, 90, 
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FIG. 1. Effect of an oral glucose load on plasma insulin and glucose 
levels in lean and obese Zucker rats. The data are the mean z SEM of 
five different animals per group. The load (0.7 g glucose) was given a t 
time zero. 

a nd 120 sec, a liquo ts of 0.4 ml blood were extr acted throu gh the ca rotid 
cannula and s tored at 4 C in hep arinized pla sti c via ls. Th e blood samp les 
wer e immed iat ely centrifuged in the cold to se pa ra te the p lasma 
samp les, which were used d ire ctly for lab eled insulin es timati on. 

Plasma insulin levels were est imated by a s ta ndard RIA p rocedure 
(31) w ith so me minor modifications. Each blood p lasma sa mple was 
di stributed in two tubes; in the first , in addi tion to the p lasma sample 
(50-100 ILl) and 0-50 ILl buffer, 100 ILl 125I-Iab eled insu lin (74 MBq /nmol; 
Amersham) so lu tio n con taining 250 Bq ti .e. 3.4 frnol) and 100 ILl di lu ted 
specific insulin antibody (Amers ha m) were added. In the rem aining 
tu be, the p lasma samples (50-100 ILl) recei ved 0- 50 ILl buffer , 100 iLl 
un labeled insu lin (3.4 frnol). and 100 ILl of the specific insulin antibody. 
Th us, the secon d tube finall y contained the same amount of insu lin as 
the first (the amount ini tially presen t and that added were the same as 
tha t in the first tube), but the amount of labeled insulin present in either 
was d ifferent , as the second tube lacked the added labeled insulin used 
for the standa rd RIA procedure. Because the total amount of insulin was 
the same in both series of tubes, the labeled insulin initially present in 
p lasma bo und in the same proportion to the antibody preparation; thus, 
the second tube could be used as a blank for the first as in a standard 
RIA p roc ed ur e. This allowed estimation of the apparent insulin con­
centra tion (i.e. its binding equivalence to Humulin) regardless of the 
amoun t and distribution in molecular species of radioactivity initi ally 
pr esent in the plasma. This approach circumvented the problems po sed 
by the presence of radioactive sources (insulin and other) in the sam ples. 
Th e RIA was completed with a series of standards (of both Humulin and 
ra t in sulin), blanks, and several tubes for the estimation of nonsp ecific 
binding. 

As the concen tra tion of insulin in obese rat blood wa s high er than that 
in the lean rat blood, the volume of blood extracted allowed for duplicate 
d eterm ina tion s of a ll points, whereas lean rats provided jus t enough 
plasma for a sing le determination at each time po int. 

Cal culations 

The insulin label pr es ent in a given sa mple of p lasma was esti­
ma ted assum ing that la be led in sulin w as bound by th e a ntibody in 
the same proportio n as u nlabeled ins u lin fro m th e sa me so urce. Rat 
and human in sulin bound the a nti body differently. How ever, by 
using apparen t in sulin co ncen tr a tions re ferred to Humulin sta n­
dards, th e da ta on ins u lin ra d ioactivi ty cou ld be treat ed as if all 
ins u lin present in th e ra t blood were human insulin . From the RIA 
da ta , a plot of in sulin bound to th e antibod y vs. th e co ncentra tion of 
ins u lin in th e tube was d ra wn (Fig . 2) using Humulin s ta nda rds . The 
d atil were fitted to a n asymmetric s ig moid curve usin g the FiG-P 
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program (Bioso ft, Cambridge, UK) ; the ca lcu la ted parameters of the 
curve we re used to es tima te th e pe rcentage of in sulin bou nd to each 
of the blood samples ob tained in the exper imen t. This percentage also 
reflected the p ropo rtion of in sulin rad ioac tiv ity bound to the 
antibody; thus, the total a moun t of insulin ra d ioac tivity (r.) per ml 
blood a t a give n time (t) was es ta blis hed for each sa m ple. The r, values 
were plotted ag ainst time t a nd fitted to a standard deca y gr a ph using 
the FiG-P progr am: r, = ro X e- Kd 

' , from w hich, K, the decay co ns ta n t, 
and ro, the init ial radioactivity pe r ml blo od , were obtain ed . The 
half-life (t'h) of insulin w as ca lcu la ted as t'/2 = 11K . The rat io of total 
radioa ctivity inje cted (Ro) to ro wa s u sed to establish th e volume (V) 
of distribution o f the inje cted label (i .e . th e v ir tua l or p ract ical ins u lin 
space): V = Rol rooThe actual content of huma n insulin wa s ca lcu la ted 
from tot al insulin radioactivit y and the specific acti vit y of the lab eled 
insulin injected. Human insulin wa s a maximum of 4- 6% of the total 
blood insulin. Because thi s proportion w as ve ry sma ll, the use of rat 
insulin standards all owed direct estimation of th e rat insulin con­
centra tion in th e sa mp les. The ra t in sulin co ncen tra tion in pl asma di d 
not va ry during the experim en t. Th e concentration vs . tim e gra phs 
were used to obtain an est im at e of the initial ( t = 0) insulin conc en­
tration (io), which was pr actic ally identical to th e mean of a ll o ther 
time po in ts . As w e knew both th e virtua l dis tribu tion volume a nd 
concen tra tio ns, we could derive the whol e ma ss of circu la ting insulin 
(Iv) at tim e zero: 10 = io X V. Th e rate of loss of in sulin (rate of 
degrad ation, 0) from this circulating po ol co uld be deri ved from the 
decay curve and the ma ss of insulin : 0 = K X 10 , Indeed , because the 
virtual distribution volume (V) did not change, th e insulin mas s a t a 
given time (I ,) can be es tima ted from the pla sm a co ncen tra tio ns (i.). 
and degradation rates for diffe rent times (0,) may be calculated . The 
values obt ained in all cases we re sim ilar, because th e changes in 
insulin conc entration during the 2-min analys is w ere insig nific ant. 

The loss of rad ioact ivit y from the label ed insulin poo l was stud ied by 
establishing the total insulin label values (R) at a given time from the 
radioactivity per ml p lasma and th e virtual volume of distribution : 
R, = r , X V. 

Statistica l compari son bet ween gro ups was established w ith standard 
analysis of variance p rograms and Student's t test. 

Results 

Figure 3 shows the lack of change in plasma insulin levels 
of the four groups studied during the 2-min analysis of 
insulin turnover. Zucker obese (fa/fa) rats showed higher 
insulin levels than lean controls. The infusion of noradren­
aline slightly decreased obese rat insulin levels, but in lean 
animals it did not affect insulin levels. 

Figure 4 presents the decay curves for plasma insulin 
radioactiv ity vs . time. Lean and obese rats showed a similar 
pattern over time. Noradrenaline treatment, however, re­
sulted in higher radioactivity settings, mainly for lean rats 
and less for obese, compared with controls. These dec ay 
curves were used for the calculation of insulin space, turn­
overrates and cleavage, shown in Table 1. Insulin levels were 
higher in obese than in the lean rats. Noradrenaline infusion 
resulted in no significant change in the insulin pool size and 
a decrease in virtual insulin space. Obese rats had a higher 
insulin mass than lean controls. The half-life of insulin was 
in the same range for all groups and was unaffected by 
noradrenaline treatment. Insulin degradation rates were 
higher in obese than in lean rats and were practically un­
changed by noradrenaline treatment. These results were 
maintained even when the data were expressed per unit of 
animal wei ght. 

Figure 5 depicts the fall in total insulin radioactivity in the 
plasma pool calculated from the data in Fig. 4 and Table 1. 
The decay curves thus calcu la ted were fully in line with the 
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FIG. 3. Pl asma insulin concentrations in Zucker lean and obese rats 
after the injection of labeled insulin . 0 a nd ., Lean rats; 0 and _ , 
obese rats ; • and _, noradrenaline (NA)-treated rats; 0 and 0 , un­
treated controls . The data are the me an z; SE of five or six different 
rats per group. Statistical differences between groups were deter­
mined by two -wa y analysis of variance. There were sign ifica n t dif­
feren ces between lean and obese groups (P = 0.000). The effects of 
noradrenaline treatment were s ign ifica nt (P = 0.039) for obese, but 
not for lean, rats. Th e effects of time were not si gnificant CP > 0.05) 
in any case. 

zero tim e values, corresponding to the initial (injected) la­
beled insulin mass. Lean rats showed a higher loss of abso­
lute insulin radioactivity than the obese; under noradrena­
line infusion, the differences between lean and obese rats 
were minimal in absolu te terms. 

Discussion 

The method presented is conceptually very simple, but 
requires careful development, especially at the critical point 
of evaluation of insulin radioactivity in the samples. This is 
dependent on precise measurements of radioactivity and the 
construction of a well defined RIA standard curve, from 
which an equation could be derived. Another critical point 
is the need for high insulin specific activity; this is essential 
for the precise RIA estimation of circulating insulin, but it is 
equally preferable for injection into the rat bloodstream, be­
cause the higher the specific activity, the lower the distur­
bance. In our case, the insulin injected was about 7% of the 
whole circulating insulin pool in lean controls and 0.6-1 % of 
that in obese rats. 

A critical point in the investigation of insulin cleavage is 
the ass ignment of radioactivity measurements to intact ( i .e. 
fully functional) insulin, without interference by free iodine 
or labeled fragments freed by the cleavage of insulin. The 
method presented prevents this interference, as onl y the label 
bound to insulin is measured; free iodine and labeled pep­
tides are removed during the RIA procedure. Only labeled, 
complete, insulin is bound to the antibody, and thus onl y this 
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FIG. 4. Insulin radioactivity decay 
with time in the plasma of Zucker lean 
a nd obese rats injected with labeled in­
sulin, Data represent th e mean (:!:SE) 
r adioactivity in 1 ml plas ma as a per­
cen tage of the total r adioactivi ty in­
j ect ed , found at given t im es a fter injec­
tion . Th e cu rves were fit to exponen tia l 
decay curves with r values of 0.989 a nd 
0.978 for lean a nd obese cont rols, re­
spect ively, and 0.994 a nd 0.979 for lea n 
and obese rats during noradrenaline 
infusion. 
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radioactive molecular species is taken into account; this is 
true for both the insulin injected into the rat and that used 
in the RIA. 

The main difficulty that may arise from a study based on 
calculated constants taken from calculated values and used 
to derive the final results is a cumulative effect of residuals 
in calculations that may lead to widening errors. This study 
has been designed to minimize this effect. The adequacy of 
decay curve fitting is apparent in Fig. 3, which shows the loss 
of radioactive insulin per ml plasma. The data for total in­
sulin radioactivity remaining in the rat we re calcula ted by 
applying the data derived from these equations and insulin 
levels. Figure 4 shows the tight fit of these calculated data to 
de cay curve equations. The lack of dispersion of data sug­
gests an acceptable degree of precision in the derivation of 
the virtual volume of d iffusion and decay rat es shown in 
Table 1. 

The compartments occupied by the circulating insulin 
pool are probably not uniform with respect to insulin con­
centration (22,24), as th is is affected by the varying ability of 
tissues to extract and inactivate insulin (12, 13). It is difficult 
to establish the me an representative values of circulating 
insulin in a given subject, because insulin levels may differ 
substantially in different blood vessels and under distinct 
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cond itions and times . For this reason, only blood from the 
same sou rce was an alyzed. The carotid cannula allows the 
extr action of arterial blood just as it leaves the heart. The 
virtual volume of d istr ibution of insulin derived from data 
of arterial blood may not be real, because we do not know 
whether its insulin levels are representative. The insulin pool 
size (I t) is more reliable, because it may be de rived directly 
from decay curves and insulin levels. 

Virtual insulin space was higher in lean than in obese rats 
under standard conditions; in an y case , this value was higher 
than the total rat plasma volume, but mu ch sm aller than the 
sum of insulin compartments (24). Obese rats have a lower 
extracellular space than lean because of large fat deposits, 
Insulin pool size was much higher in obese than in lean rats, 
both in absolute terms and in relation to body weight; in the 
latter case, the differences were somewhat diminished bl'" 
cause of the dilution effect of the large fat mass in obese rats 

Hyperinsulinemia is associated with obesity (32), as iti: 
related to higher fat deposition and insulin resistance (33). 
The apparent chan ges obs erved in lean rats as a consequence 
of catecholamine infusion may be due in part to the shrinkage 
of insulin virtual space, largely the space occupied by the 
blood , i.e. blood vessels, because of vasoconstriction (34,351 

The significan t changes in pl asma insulin radioactivity decal 

TABLE 1. Compa rison of inj ected labeled in sulin turnover in a nesthe ti zed lean a nd obese Zu cker rats : effect of noradrenaline infusion 
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Pa ram eter Lea n control Lean noradren aline Obese control Obese noradr enaline 

Rat wt (g) 339:!: 9 311 :!: 21 450 :!: 44a 461 :!: 13" 
Mean plasma in sulin concentration, i (pM) 231 :!: 23 297 :!: 65 2228 :!: 416 a 1787 :!: 460" 
Insulin pool siz e 

10 (pmol) 5.56:!: 0.49 4.21 :!: 0.98 49.7:!: 14.2 a 31.3 :!: 10.3" 
10 (pmol/k g BW) 15.7:!: 1.6 12.7 :!: 2.3 107:!: 28a 71 :!: 25° 

Vir tual vol of insulin distri bution 
V (m]) 21.5 :!: 2.4 11.4 :!: 1.8b 19.7 :!: 0.9 16,5 :!: 1.4 
V (% ofBW) 6.3:!: 0.6 3.6 :!: O.4b 4.5 :!: O.4a 3.6 :t 0.3 

In sul in half-life , t 1/2 (sec) 226 :!: 15 269 :!: 23 314 :!: 40 254 :::: 28 
Insulin degr ad ation ra te 

15 (fkat ) 27.6 :!: 2.9 16.2 :!: 3,9 198 :!: 54a 110 :!: 22" 
15 (fkat/kg BW) 77.6 :!: 8.3 45.1 :!: 8.2 425:!: 105a 245 :!: 57" 

The data are the m ean z SE of five or six an ima ls in each group. See Materials and Methods for the calculations a nd derived magnit 
St atistical significance of the differences between groups was determined by Student's t test. 

a p < 0,05 us. corresponding lean group. 
b P < 0.05 us. corresponding control gr oup . 
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may be the consequence of a lower d istrib u tion space; the 
size of the insulin pool changed less tha n the insulin levels. 
However, in obese rats the da ta pr esented show a lack of 
response of insulin pool d yna mics to noradrenaline in fu ­
sion; the effects of noradrenaline were less apparen t than 
those in lea n ra ts, cha n ging the insu lin space and degra­
dation rate only fractionally. This lack of effect may be 
related to higher basal ad renergic stimulation in obese rats 
related to hyp er tension (36) and coun te ractive adaptation 
to hyperinsulinemia (37, 38). 

The obese rats used in this experiment showed a marked 
resistance to glucose, with hyperinsulinemia and basal nor­
moglycemia, as described for Zucker fa /fa rats (37). 

Insulin ha lf-life was similar in lean and obese rats; all 
values we re in the 4-min ran ge . The similarities be tween 
groups in this respec t were, however, on ly apparen t, as the 
estimated ra tes of ins ulin inactiva tion were much higher in 
obese than in lean rat s (~ 7-fold under the conditions tested). 
Noradrena line injection had no significan t effect on these 
rates in eit her gro up of ra ts. 

There is a direct relat ionsh ip in hu mans between fat ac ­
cumulation and built-in capability to inactivat e insulin (39), 
which is pa rtly confi rmed by the finding that obese rats 
cleave insulin much faster than lean controls. The main te­
nance of higher insulin leve ls with similar ha lf-lives for in ­
sulin molecules implies a higher ins ulin turnover in the obe se 
animals. The increased d egradation of insulin with ma inte­
nance of hig h circula ting lev els and pool size implies in­
creased secretion (synthesis) by the pancreas . It ma y be pos­
tulated that the cons tan t release of lar ge amounts of ins ulin 
(in the ran ge of 210 /Lg /day'k g in obese rats compared with 
- 38 /Lg / day-kg in lean animals) may be instrumental in the 
development of lat e-onset diabetes of ten associated with 
obesity. 
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