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A screened Rutherford cross section is modified by means of a correction factor to obtain the 
proper transport cross section computed by partial~wave analysis. The correction factor is 
tabulated for electron energies in the range 0-100 keY and for elements in the range from 
Z = 4 to 82. The modified screened Rutherford cross section is shown to be useful as an 
approximation for the simulation of plural and multiple scattering. Its performance and 
limitations are exemplified for electrons scattered in Al and Au. 

INTRODUCTION 

To compute the plural or multiple elastic scattering in 
solids of electrons in the ke V energy region one may use the 
accurate elastic differential cross section i.n a Monte Carlo 
code, which simulates mUltiple scattering as a succession of 
single events. This gives, in principle, a precise solution, pro­
vided that coherent (multiatom) scattering effects can be 
neglected. However, an accurate elastic differential cross 
section is obtained by means of a rather involved procedure. 
It has to be calculated, e.g., by means of partial-wave analy­
sis (PWA) based on the Dirac equation, with an accurate 
scattering potential obtained from computed atomic wave­
functions. Moreover, the probability distribution for the 
scattering angle cannot be expressed in the closed form suit~ 
able for direct simulation by an inversion formula. An easily 
applied approximation of the PW A differential cross section 
mav therefore be desirable. 

" To obtain an approximate cross section suitable for the 
plural and multiple scattering region, one may consider the 
autocorrelation length for the direction of motion of the elec­
tron, i.e., the transport mean free path A. tr • The role of A. tr as a 
quantity of primary importance for the electron transport 
has been discussed in a number of papers. 1-3 If the accurate 
differential elastic scattering cross section is to be approxi­
mated by another, simplified cross section, it is primarily 
required that they have the same Atr value. 1-3 Then, the two 
differential cross sections and their plural and multiple scat­
tering angular distributions agree to first order when ex­
panded in spherical harmonics.4

•
5 The simplified cross sec­

tion is then expected to be a good approximation provided 
that the scattering process considered is at least plural, i.e., 
the number of elastic collisions for the average trajectory 
should exceed a number of order of magnitude 101

•
1 

We consider here elasti.c scattering only. The transport 
mean free path is 

A,r = (N(J't,·}-I, (1) 

where N is the number of scatterers per unit volume and (7tr 

the transport cross section, 

(J"r = [-tIl (J'(cos8}(1-cos8)d(cos8), (2) 

where u( cos 8) is the elastic di.fferential cross section in 

terms of scattering angle e. The total cross section u and 
elastic mean free path Ae are 

(J'= r: 1 

u(cos 8)d(cos 8), (3) 

A. = (Na)-', (4) 

from which one has the relation 

(5) 

where (cos 8 ) is the average value of cos e in a collision. 
Where plural or multiple scattering is concerned, atr 

rather than a is the relevant quantity to consider. It is, there­
fore, of interest to study the dependence of (J'tr on the as­
sumed latomic elastic scattering potential V( r) and on the 
method of calculating the scattering cross section from this 
potential. 

The atomic scattering potential adopted in the present 
work for the accurate (PW A) computation of Utr (cr. be­
low) is obtained by means of atomic electron densities com­
puted by the Dirac-Hartree-Fock-Slater (DHFS) self-con­
sistent method under Wigner-Seitz (WS) boundary 
conditions. 6. 

7 This scattering potential is more accurate than 
other potentials (e.g., the DHFS potential for a free atom, 
the Thomas-Fermi-Dirac (TFD) potential, and analytic 
approximations8

.
9 to these) that have been used as the basis 

for elastic multiple scattering calculations. 
The scattering potential may be roughly approximated 

by the simple and well~known expression 

VCr) = - (Ze2/r)exp( - r/R), (6) 

sometimes referred to as the Wentzel potential. The atomic 
screening radius R may be estimated by 

(7) 

whereao is the Bohr radius (0.529 A). [Equation (7) differs 
slightly from the value estimated, e.g., by Ichimura et ai., 10.11 

but this difference is not important in the present context. J 
The Wentzel potential (6) is of practical interest, for the 

reason that the differential scattering cross section, comput­
ed in the first Born approximation, is extremely simple and 
convenient to apply in a simulation code. This fact has moti­
vated its use i.n the method presented here. 
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MODIFIED SCREENED RUTHERFORD CROSS SECTION 

Using the potential Eq. (6) and the first Born approxi­
mation, one obtains a screened Rutherford differential cross 
section 

a(cos e) = 5'(1 - cos fJ + £--1)-2, (8) 

where 

S = (1/"a~/2) [4ZE + me21E + 2mcz(~?) r (9) 

Here, RE is the Rydberg energy (13.606eV), E the electron 
kinetic energy, and m the electron rest mass. The screening 
factor £ is given by 

( 10) 

where k is the electron wave number. The total cross section 
is 

(i=S[2~/(2E+ 0], (11 ) 

and the transport cross section is 

O"tr = 4" (In(2E + 1) - 2£/(2,: + l}}. (12) 

We shall by the notation SR refer to the screened Ruth­
erford cross section, Eq. (8), with the screening radius R 
given by Eq. (7). Values of AtT obtained by means of Eq. 
(12) are exemplified i.n Table 1. The values at the lowest 
energies are, for the heavy elements, clearly not reasonable; 
they are less than the size of the atom. This is due to the 
failure of the Born approximation. 

In the context of plural and multiple scattering, the er­
ror ofthe SR cross section is primarily that it gives an incor­
rect transport mean free path. We therefore modify the SR 
cross section by introducing a correction factor 

te = AlrlAtr (SR) =£T"(SR)/O'tr> (13) 

where Atr is the accurate transport mean-free-path value, 
while Air (SR) is computed from the SR cross section [Eq. 
( 12) ]. The modified screened Rutherford (MSR) cross sec­
tion is simply 

(14) 

In practice, this correction means that the elastic mean free 
path Ae is multiplied by tc' i.e., 

(15) 

The MSR cross section has the accurate values for a tr and 
Atr • It retains the screened Rutherford angular (e) depen-

TABLE 1. Screened Rutherford (SR) transport mean free path (.4.) for 
beryllium, aluminum, iron and gold. 

Energy 
(eV) Be Al Fe Au 

100 9.60(0) 3.01(0) 0.77(0) 0.25(0) 
300 53.5 (0) 14A (0) 3.23(0) 0,81(0) 

1000 41.0 (I) 10.0 (l) 20.8 (0) 4.40(0) 
3000 28.6 (2) 66.0 (I) 13.2 (1) 25.6 (0) 

10000 25,1 (3) 55.9 (2) 10.9 (2) 20.0 (l) 

30000 18.4 (4) 4O.i (3) 76.8 (2) 13.6 (2) 
100000 15.5 (5) 33.2 (4) 62.7 (3) 10.9 (3) 
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dence, i.e., 

aecos fJ) cc 0- cos 8 + £.-1) -2, (16) 

wh:ich, depending on electron energy and atomic number, 
more or less well approximates the () dependence ofthe accu­
rate differential cross section. 

One may note that the tc factor accounts for two differ­
ent corrections. The first one, which is the major one at lower 
energies, is the correction for the use of the first Born ap­
proximation instead of partial-wave analysis. The second 
one is the correction for the use of the potential in Eqs. (6) 
and (7) instead of an accurate scattering potential V( r). 

The correction of the SR cross section may be improved 
somewhat by modifying not only Ae but also the screening 
factor E. The requirement is then that not only the transport 
mean free path...1.tr , but also the elastic mean free path...1.e and 
the average scattering <cos e > (cf. Eq. (5) J in a single colli­
sion should have the proper values. Under plural or multiple 
scattering conditions, the effect of this second correction is, 
however, smalL Moreover, it turns out (cf. below) that the 
MSR cross section already has approximately the correct 
magnitude of A." except at very low energies. 

NUMERICAL (PWA) COMPUTATION OF CROSS 
SECTIONS 

Differential cross sections have been computed by solv­
ing the partial-wave expanded Dirac equation for the scat­
tered electron wave function. '2 The scattering potential 
V(r) has been obtained according to the usual static approx­
imation, i.e., as the solution of Poisson's equation for the 
atomic charge distribution. The adopted atomic electron 
density has been determined folIowing the relativistic DHFS 
self-consistent method.6 In order to take some account of 
solid-state effects, the self-consistent calculations have been 
carried out under WS boundary conditions, that is, the 
atomic electrons are restricted to move within the WS sphere 
of radius Rws = (3/4'l1N) 1/3 and the radial derivative of the 
resulting atomic electron density vanishes at r = R ws .7 As a 
consequence, the Coulomb field of the nucleus is completely 
screened outside the WS sphere, instead of being only expon­
entially screened as it is for free atoms. For atoms bound in 
solid phases, the use of the WS boundary conditions in the 
self-consistent computation directly leads to the (spherical­
ly averaged) static field V(r), thus avoiding the use of add i­
tional approximations 13

•
14 to construct it from the free atom 

screened potential. Self-consistent atomic densities have 
been computed by using our own computer code. 

A detailed description of numerical methods to com­
pute the differential cross section has been given by Walk­
erl2; we shaH mention here only the essential details of the 
present computation. The phase shifts have been evaluated 
numerically by solving the radial Dirac equations following 
Buring's power series method12

,!5 after approximating the 
function rVer) by a cubic spline. Hi The grid of points in r is 
the same as that used in the self-consistent DHFS calcula­
tion (450 points logarithmically spaced in the interval from 
o to R WS) so that no additional interpolation errors are 
introduced by the spline approximation. The values of the 
phase shifts obtained in this way, being only affected by 
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FIG. I. Ratio of differential cross section computed by Dirac partial-wave 
analysis (DHFS scattering potential, WS boundary conditions) to the 
modified screened Rutherford (MSR) cross section for (a) aluminum at 
0.5, 5, and 20 keY and (b) gold at electron energies 0.5, 20, and 100 keY. 

round-off errors,15 are expected to be highly accurate. The 
summation of the partial-wave series has been performed 
directly for scattering angles less than 2° and using the re­
duced series method of Yennie, Ravenhali, and Wilson 12 for 
scattering angles larger than this value. The number of com­
puted phase shifts is large enough to ensure the convergence 
of the partial-wave series up to five decimal places. 

Differential cross sections for electrons scattered by alu­
minum and gold are shown in Fig. L Actually, the plotted 
quantity is the ratio between the computed cross section and 
the modified screened Rutherford cross section [Eq. (14) J. 
It is worth mentioning here that this figure differs in detail 
from the results reported previously by Ichimura and co­
workers lO.!1; the differences are due to the fact that neither 
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the scattering potential9 nor the screened Rutherford cross 
sections l7

•
18 used by those authors coincide with those 

adopted in the present work. To check this, we have per­
formed a series of calculations for the TFD analytical scat­
tering potential9 used by Ichimura and co-workers and ob­
tained results in excellent agreement with theirs. 

It is interesting to analyze the effect of different scatter­
ing potentials on the computed cross sections. Total cross 
sections and transport cross sections computed from the 
DHFS static field for atoms in solids (WS atoms) and for 
free atoms are shown in Table II. The static field for free 
atoms has been obtained from the DHFS density computed 
under the usual (asymptotic) boundary conditions. For alu­
minum, it is seen that the cross sections for a free atom are 
larger than for a WS atom; this means that the atomic elec­
tron cloud is somewhat compressed in the solid (as com­
pared with the free atom), thus having a more effective 
screening effect. For gold the situation is reversed; the cross 
sections for a WS atom are larger than for a free atom. The 
reason for this behavior lies in the high nuclear charge. The 
atomic electrons are tightly bound in a free gold atom, and 
the electronic cloud is slighily expanded when we require 
WS boundary conditions. 

For comparison purposes, Table II also shows the cross 
sections obtained from the TFD analytical field9 used in 
Refs. 10 and 1 L It is seen that this potential leads to cross 
sections differing systematically from the DHFS ones. We 
have also included in this table the cross sections obtained 
from the WS scattering field by using the nonrelativistic par­
tial-wave method (Le., using the SchrOdinger instead of the 
Dirac equation); the nonrelativistic results practically coin­
cide with the corresponding relativistic data for small elec­
tron energies. 

Table II also shows the total elastic cross section as com­
puted from the MSR differential cross section. The values 
are, as mentioned previously, in rather good agreement with 
those obtained by partial-wave analysis for the WS atoms, 
except at the lowest energies" In fact, they are in many cases 
somewhat better than those obtained, e.g., by the TFD scat­
tering potential. 

For high-electron energies, the differential cross section 
takes its maximum value for forward scattering and de­
creases monotonously with increasing scattering angles. As 
small scattering angles correspond to large classical impact 
parameters, the differential cross section in this angular re­
gion is mainly determined by the details of the potential at 
large distances r from the nucleus. In fact, the scattering 
potentials for WS and free atoms practically coincide for 
small r values; they differ only at moderately large r. Hence, 
the WS and free atom differential cross sections are expected 
to differ essentially for small scattering angles. The main 
contribution to the total cross section is found at sman scat­
tering angles, so that the total cross secti.on is quite sensitive 
to the details of the potential at large r. On the other hand, 
due to the weighting factor [1 - cos(8)], the main contri­
butions to the transport cross section come from intermedi­
ate and large scattering angles (irrespective of the electron 
energy) and, therefore, the transport cross section is rather 
independent of the particular scattering potential used. 
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TABLE II. Total elastic cross section 0' and transport cross section 0'" (in units of Q5) for aluminum and gold. Values in different columns have been 
computed from different scattering potentials, using dilferent methods of calculation. WS atom: DHFS·WS scattering potential using Dirac partial-wave 
analysis (PW A); free atom: DHFS potential for free atoms using Dirac PW A; non-reI: the DHFS-WS potential using SchrOdinger PWA; TFD atom: TFD 
analytical potential (Ref. 9) using Dirac PWA; MSR: modified screened Rutherford, Eqs. (1l) and (14). 

Energy 
Element (keV) WSatom Free atom Non-reI. TFDatom MSR 

Al (13) 0.10 9.98(0) 1.66(1) l.OOO) 7.09(0) 1.40 ( 1) 
(0') 0.50 4.51(0) 6.61 (0) 4.51 (0) 5.62(0) 5.89(0) 

1.00 2.90(O} 4.10(0) 2.90(0) 3.61 (0) 3.53(0) 
5.00 S.M( -- 1) 1.16(0) 8.53( ~ I) 1.07(0) S.99( -1) 

10.00 4.73(- 1) 6.28( ~ l} 4.6l( -I) 5.84( - 1) 4.74(-1) 
50.00 1.13( -- 1) 1.49( - 1) 9.B7( - 2) l.40( .- 1) 1.09(-1) 

100.00 6.48( - 2) 8.52( -- 2) 4.97( - 2) 7.98( -- 2) 6.15( ~ 2) 

Au (79) 0.10 2.21 (l) 2.15(1) 2.03( 1) 3.56{!) 6.78(0) 
Ca) 0.50 1.11(1) 1.09(1 ) 1.100) 1.55(1) 8.75(0) 

LOO 8.28(0) 8.13(0) 8.25(0) 1.11(1) 9.32(0) 
5.00 3.96(0) 3.89(0) 3.92(0) 5.12(0) 4.79(0) 

10.00 2_76(0) 2.71(0) 2.71(0) 3.51(0) 3.13(0) 
50.00 1.09(0 ) 1.07(0) 9.84( -- 1) 1.34(0) 1.08(0) 

100.00 7.19( - 1) 7.09(- 1) 5.84(- 1) 8.82( - 1) 6.92( - 1) 

AI(l3) 0.\0 6.27(0) 6.70(0) 6.28(0) 1.240) 
(0'" ) 0.50 1.08(0) L09(O) 1.08(0) l.l3(O) 

1.00 4.07( - 1) 4.1O( - 1) 4.05( _. 1) 4.19(-1) 
5.00 3.11(-2) 3.12( -- 2) 3,06( - 2) 3.16( - 2) 

10.00 9.37( .- 3) 9.41{- 3) 9.14( - 3) 9.50( - 3) 
50.00 S.42{ -- 4) 5.44( - 4) 4.95( -4) 5.47(--4) 

100.00 1.62( -- 4) 1.62( - 4) 1.38(-4) 1.63( - 4) 

Au (79) 0.10 4.69(0) 4.36(0) 4.77(0) 8.13(0) 
(0'" ) 0.50 3.22(0) 3.16(0) 3.46(0) 3.87(0) 

1.00 2.34(0) 2.33(0) 2.43(0) 2.58(0) 
5.00 4.12( -- l) 4.12(~1) 4.02( - i) 4.26( - 1) 

10.00 1.60( -- 1) l.60{ - 1} l.50( - 1) 1.64(-1) 
50.00 1.47( - 2) !.47( -- 2) DO( - 2) 1.51(--1) 

100.00 5.11 (- 3) 5.11 ( ~ 3) 3.71(--3) 5.22( - 3) 

TABLE HI. Correction factor Ie computed by Dirac I'WA from DHFS-WS scattt'ring potentials. For carbon, copper, and lead, see Table IV. 

Element (atomic number) 
Energy 
(keV) Be(4) Ai(13) Ca(20) Fe(26) Ge(32) 8r(38) Ag(47) Sn(50) Ba(56) Gd(64) W(74) Au(79) 

0.10 1.257 3.140 3.905 7.061 13.213 16.187 16.265 14.330 15.970 25.349 43.544 52.567 
0.15 1.211 2.589 3.192 5.076 lU&3 9.955 13.220 13.534- 13.946 25.137 47.121 58.958 
0.20 US8 2.301 2.823 4_102 6.638 7.475 9.985 10.829 1l.072 19.078 37.079 46.173 
0.30 1.165 1.993 2.429 3.207 4.674 5.351 6.781 7.385 7.779 11.778 21.021 24.508 
0.40 1.153 1.824 2.2l! 2.786 3.796 4.378 5.391 5.802 6.189 8.6! 1 13.996 15.83l 
0.50 1.147 1.714 2.065 2.536 3.309 3.813 4.624 4.936 5.285 6.957 10.545 11.792 
0.70 1.139 1.576 1.878 2.240 2.781 3.176 3.785 4.005 4.293 5.298 7.322 8.101 
1.00 1.134 1.458 1.713 1.997 2.390 2.694 3.156 3.319 3.554 4.190 5.369 5.870 
1.50 1.129 1.352 1.558 1.781 2.068 2.297 2.643 2.763 2.951 3.367 4.072 4.388 
2.00 1.127 1.294 1.466 1.655 1.891 2.081 2.365 2.464 2.624 2.946 3.464 3.700 
3.00 1.123 1.230 1.358 1.508 1.691 1.1\38 2.057 2.132 2.259 2.493 2.849 3.015 
4.00 1.121 1.196 1.295 1.421 1.575 1.698 1.882 1.944 2.052 2.242 2.524- 2.655 
5.00 1.119 1.175 1.254 1.363 1.497 1.605 l.765 U\20 1.913 2.077 2.315 2.426 
7.00 1.116 1.150 L202 1.288 l.397 1.484 1.615 1.659 1.735 1.866 2.053 2.140 

moo 1.113 1.132 1.161 1.225 1.310 1.379 1.483 1.5l8 1.579 1.682 1.828 1.896 
15.00 1.111 1.118 1.128 LJ70 1.232 1.282 1.360 1.387 1.433 1.512 1.622 1.674 
20.00 1.110 1.111 1.111 1.141 U89 1.227 1.289 1.310 1.347 1.411 1.501 1.543 
30.00 1.110 1.105 1.094 Ull L!44 1.167 1.207 1.222 1.247 l.293 1.358 1.389 
40.00 1.110 1.103 1.087 1.097 1.120 1.134 1.162 1.172 1.189 1.224 1.274 1.298 
50,00 1.112 1.103 1.084 1.088 l.lO6 l.l 14 1.133 1.140 1.151 1.178 1.218 1.236 
70.00 !.lIS 1.104 1.081 1.080 1.090 1.091 1.098 LlOl l.lO5 1.120 1.145 U57 

100.00 1.119 1.107 1.081 1.076 l.080 1.075 1.071 L071 1.068 1.073 l.OS5 l.090 
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These features are clearly evidenced in Table II. 
As multiple elastic scattering is mainly determined by 

the transport cross section, it follows that the results of 
Monte Carlo simulations of such processes will not depend 
strongly on the adopted scattering potential (provided that 
the differential cross sections are evaluated according to the 
relativistic partial-wave method). 

COMPUTATION OF CORRECTION FACTOR t c 

Differential cross sections and transport cross sections 
for WS atoms have been computed for 15 elements and a grid 
of energies sweeping the periodic system and the energy 
r~ng~ from 100 e V to 100 ke V. The corresponding tc correc­
han, l.e., the ratio between the relativistic SR transport cross 
section and the transport cross section computed by partial­
wave analysis as described above [Eq. (13)], is shown in 
Table III for 12 of these elements. Accurate values of the t 
correction for the elements considered at energies differen~ 
from those included in Table HI can be obtained by natural 
cubic spline interpolation 16 on the energy axis or, somewhat 
less accurately, by simple linear interpolation. As the energy 
grid points are nearly logarithmically spaced, it is conven­
ient to use log(E) rather than E as an independent variable. 

The tc correction for elements not induded in Table III 
can be evaluated approximately by spline interpolation on 
the atomic number (Z) axis. In order to investigate the accu­
racy of this interpolation, we have also computed the differ­
ential cross sections for carbon, copper, and lead and the 
corresponding tc correction. The computed tc values and the 
results of the natural spline interpolation on the Z axis, using 
the data in Table HI, are compared in Table IV. The case of 

TABLE IV. Correction factor tc for caroon, copper, and lead computed 
from the DHFS-WS scattering potential by Dirac PW A (calc.), and ob­
tained from the values in Table III by natural cuhic spline interpolation 
(int.). 

C(6) Cu(29) Pb(S2) 
Energy 
(keV) Calc. lut. Calc. Int. Calc. Int. 

0.10 1.506 1.773 10.154 10.181 43.737 57.926 
0.15 1.394 1.574 7.184 7.039 52.101 66.080 
0.20 1.330 1.473 5.521 5.433 45.521 51.584 
0.30 1,257 U70 3.987 3.958 25.950 26.488 
0.40 1.217 1.316 3.310 3.295 16.794 16.855 
0.50 1.192 L282 2.933 2.923 12.472 12.491 
0.70 LI63 1.240 2.Si7 2.5W 8.537 8.547 
1.00 1.140 1..207 2.199 2.193 6.160 6.162 
1.50 1.123 U77 1.929 1.925 4.576 4.574 
2.00 U15 1.161 1.777 1.773 3.843 3.839 
3.00 1.107 1.144 1.603 1.600 3.115 3.113 
4.00 1.103 1.135 l.501 1.499 2.735 2.733 
5.00 l.l00 1.129 1.433 1.431 2.493 2.492 
7.00 1.097 U22 1.344 1.343 2.193 2.192 

10.00 1.095 1.l17 1.269 1.268 1.938 1.936 
IS.OO 1.093 Ul3 1.202 1.201 1.705 1.705 
20.00 l.093 LIlI 1.166 1.165 1.568 1.568 
30.00 1.093 LlIO 1.129 1.128 1.407 10407 
40.00 1.094 l.110 1.110 1.109 1.312 1.312 
50.00 1.096 1.111 1.098 1.097 1.247 1.247 
70.00 1.099 1.114 1.087 1.085 1.164 U64 

100.00 1.104 U18 1.079 L078 1.093 1.093 
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Pb shows in fact that even a moderate extrapolation may 
work satisfactorily. Of course, the three elements in Table IV 
can be used to complete Table III. 

PERFORMANCE 

In order to demonstrate the performance and limita­
tions of the method, Monte Carlo simulations using the 
modified screened Rutherford (MSR) cross section are 
compared with simulations using the accurate (PWA) dif­
ferential cross section, i.e., the one used to compute the Ie 

values in Table HI. We also compare with simulations using 
the original screened Rutherford (SR) cross section. 

In aU three cases we have, for simplicity, used the con­
tinuous slowing-down approximation, employing the stop­
ping power formula due to Rao-Sahib and Wittry, 19 as it is a 
very simple, reasonably realistic extrapolation of the Bethe­
Bloch formula down to low energies" It should be noted that 
the purpose here is to compare the results for the three differ­
ent elastic cross sections with each other. We do not compare 
with the experiment as we have neglected a number of fac­
tors: (a) the error in the Rao-Sahib and Wittry stopping 
power, (b) the effect of straggling, (c) inelastic scattering, 
i.e., the contribution to U" from the inelastic events, and (d) 
secondary electron contributions" 

The recipe for using the MSR cross section may be stat­
ed briefly: (1) Compute the SR mean free path Ae (SR) ac­
cording to Eqs. (11) and (4). (2) Multiply by tc [Eq. (15) L 
taking the tc value by interpolation from Table III. This 
gives the elastic mean free path Ae (MSR) to be used in the 
simulation. (3) In the Monte Carlo program, simulate the 
scattering angle (J in an elastic event in accordance with the 
angular distribution ofEq. (16), e.g., by the FORTRAN state­
ment, 

CT= 1.0 + (Y - 1.0)!(EPS*Y + 0<5), 

where CT = cos e, EPS = E as calculated by Eqs. (10) and 
(7), and Y is the standard pseudorandom number 
(0 < Y < 1). For rapid simulation, Ae (MSR) and € are con­
veniently precalculated for a number of electron energy 
channels. 

The PW A simulations presented here have been per­
formed by means of numerical differential cross sections, 
which are introduced in the simulation program as data for a 
grid of points (Ei , OJ) ( = energies, angles) dense enough 
and conveniently distributed to allow accurate interpola­
tion. The total cross section is evaluated by cubic spline in­
terpolation on the energy axis. The scattering angle for a 
given energy is directly given by the inverse cumulative dis­
tribution function with a standard pseudorandom number as 
argument; however, this function is only known for the ener­
gies Ei in the grid. To sample the scattering angle for a given 
energy, a single value of the pseudorandom number is gener­
ated and used to obtain the scattering angle for the two near­
est energies in the grid. The resultant scattering angle is ob­
tained by linear interpolation. 

We compare SR, MSR, and PW A results for collimated 
electron beams normally incident on aluminum and gold 
foils, representing low- and high-Z materials, respectively. 
The angular distribution of transmitted low-energy eIee-
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0 

FIG. 2. Transmission and backscattering of to keY electrons normally inci­
dent on gold foils ofthicklless d. Error bars joined by curves show the results 
using the PW A differential cross section. Filled and open circles show the 
result for transmission and backscattering, respectively, using the modified 
screened Rutherford (MSR) cross section, while filled and open squares 
show the result using the original screened Rutherford (SR) cross section. 

trons incident on high-Z thin foils represents a"worst" case 
as regards to the applicability ortne MSR cross section, and 
is, therefore, considered in some detail. 

Comparison of simulated total transmission and back­
scattering for electrons incident on Au and Al foils are 
shown in Figs. 2 and 3. The effect ofthe correction factor tc is 
considerable in the case of 10 keY electrons incident on Au 
(Fig. 2). The agreement between data simulated by the ac­
curate (PWA) cross section and the MSR cross section is 

0.5 

I 

r 
i 
r 

0 
0 2 4 6 

d (x10 2,ugfcm2 ) 

8 

I 
I 

10 

FrG. 3. Transmission and backscattering of20 keY electrons normally inci­
dent on aluminum foils of thickness d. Notations are the same as in Fig. 2. 
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FIG. 4. Energy dependence of the bulk backscattering fraction R, of gold, 
simulated using the PW A difl:'erentia! cross section (error bars joined by 
curve), the modified screened Rutherford (MSR) cross section (filled cir­
cles), and the original screened Rutherford (SR) cross section (filled 
squares). 

good. The MSR simulation gives a slightly too low back­
scattering at the smallest thicknesses, due to near single scat­
tering conditions and the large difference between the PW A 
and MSR differential cross sections at low energies in gold 
[cf. Fig. l(b) J. For::::; 20 ke V electrons scattered in alumi­
num, the correction factor is rather near unity (Table III), 
so the effect of the correction, though adequate, is sman 
(Fig. 3). 

Figure 4 shows the effect of the correction factor tc in 
the simulation of the bulk backscattering fraction of gold 
(normal incidence) at different electron energies. The char­
acteristic decrease of the bulk backscattering fraction Rs at 
low energies is well known from previous experimental and 
theoretical work.20 The results using the MSR and PWA 
cross sections are in good agreement. 

Transmission and backscattering are less sensitive to the 
shape of the differential cross section than angular distribu­
tions (cf. below). and one gets good results using the MSR 
down to quite small foil thicknesses. In fact, enforcing the 

15 i 
i 

~Q 
10 i 

~ ~ z 
J 5 
I 
1 

30 60 90 

8(deg} 

FIG. 5. Angular distributions of 10 keY electrons transmitted through gold 
foils of thickness 10 and 50 j.q,/cm'. Error bars (curves) show results using 
the PW A differentia! cross section, while circles and squares show the re­
sults using the MSR differential cross section. Vertical axis shows the num­
ber of electrons recorded in respective angular channels. For the thinner foil 
thickness, the most probable scattering angle using the PW A cross section is 
not resolved at the angular resolution used in the figure. 
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FIG. 6. A:ngu!ar distribu.tions of 10 keY electrons backscattered from gold 
fOIls of thickness 10 and 50 "glcm' simulated by means of PW A and MSR 
differential cross sections. Notatimls are the SlimE as in Fig. 5. 

correct transport mean free path, one gets good agreement 
with the PW A and MSR transmission and backscattering 
(Figs. 2-4) even when using extremely simplified scattering 
models, such as, e.g., a fixed scattering angle in each colli· 
sion. I

-
3 It has also been shown that the variation of bulk 

backscattering with varying angles of incidence is wen repro­
duced with such scattering models. 2 Figures 2-4 confirm 
that analysis in terms of the transport mean free path should 
be useful for the understanding of total transmission and 
backscattering, as suggested previously? 

Figures 5 and 6 compare angular distributions obtained 
with the PW A and MSR cross sections for 10 ke V electrons 
transmitted and backscattered in rather thin foils of gold. 
The MSR approximation is rough in particular for the angu­
Jar distribution transmitted through the thinnest layer (10 

,ug/cm2
). In order for the approximation method to be gen­

erally good, the scattering process should involve a sufficient 
number of collisions; as an estimate, d / Ae should exceed a 
number of order of magnitude WI.! Using the MSR value for 
}Ve , the gold foil thicknesses 10 and 50,ug/em2 correspond to 
d IA,:::::;3 and d IA.:::::; 14, respectively. The difference 
between the PW A and MSR angular distributions in this 

FIG. 7. Angular distributions 000 keY electrons transmitted through gold 
foils of thickness 100, 200, and 300 jtgl cm2 simulated by means of PW A and 
MSR differential cross sections. Notations are similar to those in Fig. 5; 
filled triangles show the MSR result for d = 300 f..tg/cm2

• 
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fJ(deg) 

FIG. 8. Angular distributions (PWA and MSR) of 30 keY electrons baek­
scattered from gold foils of thickness 100, 200, and 300 ,ltg/em'. Notations 
are the same as in Fig. 7. 

case again reflects the considerable difference between the 
corresponding single scattering angular distributions [cf., 
Fig. 1 (b) ]. Backscattering angular distributions are, how­
ever, rather well simulated with the MSR cross section ex­
cept for very thin layers (Fig. 6). 

Further examples for the case of gold are shown in Figs. 
7 and 8, for 30 ke V electrons normally incident on foils of 
thicknesses of 100,200, and 300,ug/cm2

• The total transmis­
sion as simulated by MSR is 0.94, 0.84, and 0.75, respective~ 
ly. The d I)'e values are:::::: 13,26, and 40, respectively. The 
simulated PW A and MSR angular distributions oftransmit~ 
ted electrons show a slow convergence towards better agree­
ment (Fig. 7). For the backscattered angular distributions 
the agreement is good except that the total backscattering 
with the MSR cross section is somewhat too low for the 
thinnest layers (Fig. 8). 

The case of 20 ke V electrons incident on aluminum foils 
ofthicknesses of 100,200, and 300l-tg/cm2 is, likewise, in the 
transition region to multiple scattering (d IA.:::::; 16 for 100 
f-lgl cm2

). The PW A and MSR cross sections are fairly simi­
lar (Fig. 1 (a) ], so a rapid convergence between PW A and 
MSR angular distributions with an increasing number of 
collisions is expected. This is confirmed by Figs. 9 and 10. 

8 (deg) 

FIO. 9. Angular distributions (PWA and MSR) of 20 keY electrons trans­
mitted through aluminum foils of thickness 100.200, and 300,ltg/cm2

• No­
tations are similar to those in Figs. 7 and 8. 
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FIG. 10. Angular distributions (PW A and MSR) of20 keY electrons back­
scattered from aluminum foils of thickness 100, 200, and 300 .ug/ cm1

• Nota­
tions are similar to those in Figs. 7 and 8. 

We refrain from comparing energy loss distributions, 
since we have not included a realistic straggling modeL Pre­
vious results with simplified elastic scattering cross sec­
tions1

,2,21 indicate, however, that the MSR should be useful 
for this purpose. 

SUMMARY 
A method has been presented, where the elastic scatter­

ing as computed by the procedure of partial-wave analysis 
for an accurate atomic scattering potential is taken approxi­
mately into account by correcting a simple screened Ruther­
ford cross section. The correction factor tc has been tabulat­
ed for the low and intermediate electron energy region 
(-10- I _ 102 keY). 

At higher energies (towards 100 keY and above) the 
method has to be modified since the direct simulation of 
elastic events is not practical with the large number of colli-

2438 J. Appl. Phys., Vol. 65, No.6, i5 March ;989 

sions involved. The modification can be made by enforcing 
the proper transport cross section on a suitably simplified 
cross section using an artificially enlarged mean free path. 3 

We are presently considering the computation of the corre­
sponding tc factor for high electron energies. 
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