Simple method for the simulation of multiple elastic scattering of electrons
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A screened Rutherford cross section is modified by means of a correction factor to obtain the
proper transport cross section computed by partial-wave analysis. The correction factor is
tabulated for electron energies in the range 0~100 keV and for elements in the range from

Z = 4 10 82. The modified screened Rutherford cross section is shown to be useful as an
approximation for the simulation of plural and multiple scattering. Its performance and
limitations are exemplified for electrons scattered in Al and Au.

INTRODUCTION

To compute the plural or multiple elastic scattering in
solids of efectrons in the keV energy region one may use the
accurate elastic differential cross section in a Monte Carlo
code, which simulates multiple scattering as a succession of
single events. This gives, in principle, a precise sclation, pro-
vided that coherent (multiatom) scattering effects can be
neglected. However, an accurate elastic differential cross
section is obtained by means of a rather involved procedure,
It has tc be calculated, e.g., by means of partial-wave analy-
sis (PWA) based on the Dirac equation, with an accurate
scattering potential obtained from computed atomic wave-
functions. Moreover, the probability distribution for the
scattering angle cannot be expressed in the closed form suit-
able for direct simulation by an inversion formula. An easily
applied approximation of the PW A differential cross section
may therefore be desirable.

To obtain an approximate cross section suitable for the
plural and multiple scattering region, one may consider the
antocorrefation length for the direction of motion of the elec-
tron, i.e., the transport mean free path A,,. Therole of A, asa
quantity of primary importance for the electron transport
has been discussed in a number of papers.'™ If the accurate
differeniial elastic scattering cross section is to be approxi-
mated by another, simplified cross section, it is primarily
required that they have the same A,, value.”™ Then, the two
differential cross sections and their plural and multiple scat-
tering angular distributions agree to first order when ex-
panded in spherical harmonics.*" The simplified cross sec-
tion is then expected to be a good approximation provided
that the scattering process considered is at least plural, L.e,,
the number of elastic collisions for the average trajectory
shouid exceed 2 number of order of magnitude 10"

We consider here elastic scattering only. The transport
mean free path is

ﬂ'tr—“:(Ng'tr)_ls 8y
where & is the number of scatterers per unit volume and o,

the transport cross section,
41
of{cos €3 (1 — cos Nd(cos F), (2)
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where o{cos @) is the elastic differential cross section in

gtr =
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terms of scattering angle 6. The total cross section o and
elastic mean free path 4, are

+1
o= oi{cos Byd{cos ), {3)
-1
.= {(Noy !, (4)
from which one has the relation
Ay =A, /(1 —{cos 8)}, (5)

where {cos 8 } is the average value of cos 6 in a collision,

Where plural or multiple scattering is concerned, o,
rather than o is the relevant quantity to consider. It is, there-
fore, of interest to study the dependence of o, on the as-
sumed Atomic elastic scattering potential ¥{#} and on the
method of calculating the scatiering cross section from this
potential.

The atomic scaftering potential adopted in the present
work for the accurate (PWA) computation of o, (cf. be-
low) is obtained by means of atomic electron densities com-
puted by the Dirac—Hartree-Fock~Slater (DHFS) self-con-
sistent method under Wigner-Seitz (WS) boundary
conditions.®’ This scattering potential is more accurate than
other potentials (e.g., the DHFS potential for a free atom,
the Thomas~Fermi-Dirac (TFD) potential, and analytic
approximations®® o these) that have been used as the basis
for elastic muitiple scattering calculations.

The scattering potential may be roughly approximated
by the simple and well-known expression

V(ry = — (Zeé*/ryexp{ — ¢¥/R), (6)

sometimes referred to as the Wentzel potential. The atomic
screening radius R may be estimated by

R=gqg,Z '3 )

where g, is the Bohr radius (0.529 Ay.{ Equation (7) differs
slightly from the value estimated, e.g., by Ichimura ez 2/,,'%"!
but this difference is not important in the present context. ]

The Wentzel potential (6) is of practical interest, for the
reason that the differential scattering cross section, comput-
ed in the first Born approximation, is extremely simple and
convenient to apply in a simulation code. This fact has moti-
vated its use in the method presented here.
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MODIFIED SCREENED RUTHERFORD CROSS SECTION

Using the potential Eq. (6) and the first Born approxi-
mation, one obtains a screened Rutherford differential cross
section

o(cos §) =£(1 —cos & + e )72, (8)
where
(RA\T?
&= (mat/2){4ZE + mc*/E + chzi\_ﬁ':—) . {9)

Here, R ; is the Rydberg energy (13.606¢V), £ the electron
kinetic energy, and m the electron rest mass. The screening
factor € is given by

€=2k*R?, (10)
where k is the electron wave number. The total cross section
is

o= £[26%/(2¢ + 1}], (1)
and the transport cross section is
o, =En(2e+ 1) — 2e/(2¢ + 131, (12)

We shall by the notation SR refer to the screened Ruth-
erford cross section, Eq. {8), with the screening radius R
given by Eq. (7). Values of 4., obtained by means of Eq.
(12) are exemplified in Table I The values at the lowest
energies are, for the heavy elements, clearly not reasonable;
they are less than the size of the atom. This is due to the
fatlure of the Born approximation.

In the context of piural and multiple scattering, the er-
ror of the SR cross section is primarily that it gives an incor-
rect transport mean free path. We therefore modify the SR
cross section by introducing a correction factor

t, =R, /A, (SR} =0, (SR)/c,, (13)

where A,, is the accurate transport mean-fres-path value,
while A, (SR) is computed from the SR cross section | Eq.
{12)]. The modified screened Rutherford (MSR) cross sec-
tion is simply

Osk (€08 8) =t [ logg (cos 8). {14)
In practice, this correctior means that the elastic mean free
path A, is multiplied by ¢, i.e.,

A (MSR) =1¢4,(8R). {15)
The MSR cross section has the accurate values for ¢,, and
A+ It retains the screened Rutherford angular () depen-

TABLE 1. Screened Rutherford (SR) transport mean free path (&) for
beryllium, aluminum, iron and gold.

Energy

{eV) Be Al Fe An
100 9.60(0) 3.01(0) Q77(0) 0.25(0)
300 53.5 (&) 144 (0) 3.23(0) 0.81(;)
1000 41.0 (1) 1086 (1) 20.8 () 4.40(0)
3000 28.6 (2} 66.0 (1) 13.2 (1) 25.6 (0)

10 600 25.1 (3) 559 () 10,9 (2) 206 (1)

30000 18.4 (4) 40.1 (3) 76.8 (2 13.6 (2)

100 000 15,5 (5) 33.2 (4) 62.7 (3) 10.9 (3)
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dence, i.€.,

g{eos B o (1 —cos @ +e 72 (16)

which, depending on electron energy and atomic number,
more or less well approximates the @ dependence of the accu-
rate differential cross section.

One may note that the ¢, factor accounts for two differ-
ent corrections. The first one, which is the major one at lower
energies, s the correction for the use of the first Born ap-
proximation instead of partial-wave analysis. The second
one is the correction for the use of the potential in Bgs. (6)
and {7) instead of an accurate scattering potential ¥{r).

The correction of the SR cross section may be improved
somewhat by modifying not only A4, but also the screening
factor ¢. The requirement is then that not only the transport
mean free path A,,, but also the elastic mean free path A, and
the average scattering {cos 8 ) [cf. Eq. (5)] in a single colli-
ston should have the proper values. Under plural or multiple
scatiering conditions, the effect of this second correction is,
however, small. Moreover, it turns out (cf. below) that the
MSE cross section already has approximately the correct
magnitude of A, except at very low energies.

NUMERICAL (PWA) COMPUTATION OF CROSS
SECTIONS

Differential cross sections have been computed by solv-
ing the partial-wave expanded Dirac equation for the scat-
tered electron wave function.'” The scattering potential
V(r) has been obtained according to the usual static approx-
imation, i.e., as the solution of Poisson’s equation for ithe
atomic charge distribution. The adopted atomic electron
density has been determined following the relativistic DHFS
self-consistent method.® In order to take some account of
solid-state effects, the self-consistent calculations have been
carried out under WS boundary conditions, that is, the
atomic electrons are restricted to move within the WS sphere
of radius Ry = (3/47N3'? and the radial derivative of the
resuiting atomic electron density vanishes at r = Ry5.” Asa
consequence, the Coulomb field of the nucleus is compietely
screened outside the WS sphere, instead of being only expon-
entially screened as it is for free atoms. For atoms bound in
solid phases, the use of the WS boundary conditions in the
self-consistent computation directly leads to the (spherical-
1y averaged) static field ¥{r)}, thus avoiding the use of addi-
tional approximations'>'* to construct it from the free atom
screened potential. Self-consistent atomic densities have
been computed by using our own computer code.

A detailed description of numerical methods to com-
pute the differential cross section has been given by Walk-
er'?; we shall mention here only the essential details of the
present computation. The phase shifts have been evaluated
numerically by solving the radial Dirac equaticns following
Buring’s power series method!*® after approximating the
function #¥(#) by a cubic spline.'® The grid of points in 7 is
the same as that used in the self-consistent DHFS calcula-
tion {450 points logarithmically spaced in the interval from
0 to RWS) so that no additional interpolation errors are
introduced by the spline approximation. The values of the
phase shifts obtained in this way, being only affected by
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FIG. 1. Ratio of differential cross section computed by Dirac partial-wave
analysis (DHFS scatiering potential, WS boundary conditions) to the
moedified screened Rutherford (MSR) cross section for (a) aluminum at
0.5, 5, and 20 keV and (b} gold at electron energies 0.5, 20, and 100 keV.

round-off errors,’” are expected to be highly accurate. The
summation of the partial-wave series has been performed
directly for scattering angles less than 2° and using the re-
duced series method of Yennie, Ravenhall, and Wilson'? for
scattering angles larger than this value. The number of com-
puted phase shifts is large enough to ensure the convergence
of the partial-wave series up to five decimal places.
Differential cross sections for electrons scattered by alu-
minum and goild are shown in Fig. 1. Actually, the plotied
quantity is the ratio between the computed cross section and
the modified screened Rutherford cross section {Eq. (14)].
It is worth mentioning here that this figure differs in detail
from the resulis reported previocusly by Ichimura and co-
workers!'®!!; the differences are due to the fact that neither
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the scattering potential® nor the screened Rutherford cross
sections'™'® used by those authors coincide with those
adopted in the present work. To check this, we have per-
formed a series of calculations for the TFD analytical scat-
tering potential® used by Ichimura and co-workers and ob-
tained results in excellent agreement with theirs.

ft is interesting to analyze the effect of different scatter-
ing potentials on the computed cross sections. Total cross
sections and transport cross sections computed from the
DHFS static field for atoms in solids (WS atoms) and for
free atoms are shown in Table If. The static field for free
atoms has been obtained from the DHFS density computed
under the usual (asymptotic) boundary conditions. For alu-
minum, it is seen that the cross sections for a free atorn are
larger than for a WS atom; this means that the atomic elec-
tron cloud is somewhat compressed in the solid {as com-
pared with the free atom), thus having a more effective
screening effect. For gold the situation is reversed; the cross
sections for a WS atom are larger than for a free atom. The
reason for this behavior lies in the high nuclear charge. The
atomic electrons are tightly bound in a free gold atom, and
the electronic cloud is slightly expanded when we require
WS boundary conditions.

For comparison purposes, Table I also shows the cross
sections obtained from the TFD analytical field® used in
Refs. 10 and 11, 1t is seen that this potential leads to cross
sections differing systematically from the DHFES ones. We
have also included in this table the cross sections obtained
from the WS scattering field by using the nonrelativistic par-
tial-wave method (i.e., using the Schrédinger instead of the
Pirac equation); the nonrelativistic resulis practically coin-
cide with the corresponding relativistic dats for small elec-
tron energies.

Table I also shows the total elastic cross section as com-
puted from the MSR differential cross section. The values
are, as mentioned previously, in rather good agreement with
those obtained by partial-wave analysis for the WS atoms,
except at the lowest energies. In fact, they are in many cases
somewhat better than those obtained, e.g., by the TFD scat-
tering potential.

For high-electron energies, the differential cross section
takes its maximum value for forward scatiering and de-
creases monotonously with increasing scattering angles. As
small scattering angles correspond to large classical impact
parameters, the differential cross section in this angular re-
gion is mainly determined by the details of the potential at
large distances » from the nucleus. In fact, the scattering
potentials for WS and free atoms practically coincide for
small » values; they differ only at moderaiely large r. Hence,
the WS and free atom differential cross sections are expected
to differ essentially for small scattering angles. The main
contribution to the total cross section is found at smali scat-
tering angles, so that the total cross section is guite sensitive
ta the details of the potential at large r. On the other hand,
due to the weighting factor {1 — cos{@) ], the main contri-
butions to the transport cross section come from intermedi-
ate and large scattering angles (irrespective of the electron
energy) and, therefore, the transport cross section is rather
independent of the particular scattering potential used.
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TABLE IL Total elastic cross section ¢ and transport cross section ¢, (in units of &} j for aluminum and gold. Values in different columns have been
computed from different scattering potentials, using difiersnt methods of caleulation. WS atom: DHFS-WS scattering potential using Dirac partial-wave
analysis (PWA); free atom: DHFS potential for free atoms using Dirac PWA; non-rel: the DHFS-WS potential using Schrodinger PWA; TFD atom: TFD
analytical potential (Ref. 9) using Drac PWA; MSR: modified screened Rutherford, Egs. (11) and (14).

Energy
Element (keV) WS atom Free atom Non-rel. TFD atom MSR
Al (13) 0.10 9.98(0) 1.66{1) 1.00(1} 7.09{0) 1.40(1)
(o) .50 4.51(0) 6.61(D) 4.51(0) 5.62(0) 5.89(0)
1.00 2.90(0) 4.10(0) 2.90(0) 3.61(0) 3.53¢(0)
5.00 8.64( — 1) 1.16{0) 8.53(~1) 1.07(3) 8.9%( — 1)
10.00 4.73( ~ 1) 6.28( — 1) 4.61( — 1) 5.84( — 1) 474( — 1)
50.00 L1311} 1.49¢ — 1} 2.87( — 23 1.40( -1 LO%( -1}
100.00 6.48( —2) 8.52( - 2) 4.97( —2) 7.98( —-2) 6.15¢( —2)
Au (79) 0.10 221N 2.15(1) 2.03(L 3.56(0 6.78()
(o} .50 LT 1.09(1) 1.10(1) 1.55(1) 8.75(0)
1. 8.28(0) 2.13() B.25(%) 1.111) 9.32(0)
5.00 3.96(0) 3.89(0) 3.92(0) 5.12(0}) 4.79(03)
10.00 2.76(0) 271D 2.71(G) 3.51(0) 3.13(0)
50.00 1.99(0) 1.07(0) 984( —1) 1.34¢0) 1.08(%)
106,30 7.19¢ ~ 1) 709~ 1} 5.84( ~ 1) 8.82( — 1) 692( 1)
Al (13) G.10 6.27(0) 6.70(0} 6.28(0) 1.24(¢1)
(0.} 0.50 1.08(0) 1.0%(9) 1.08(0) £13(0)
100 4.07(— 1} 410( - 1) 405( - 1) 4.19( — 1}
5.00 L1 -2 312 -2} 3.06( —2) 3.16( —2)
10.00 9.37( - 3) 941( -~ 3) 9.14( —~ 3) 9.50( ~3)
50.00 5.42( —~4) 5.44( — 4) 4.95( —4) 5.47( — 4}
100.06 1.62( —-4) 1.62( —4) 1.38( — 4) 1.63( — 4
Au (79 0.10 4.69(0) 4.36(0) 477(X) 8.13(0)
(7, 0.50 3.22(0) 3.16(0} 3.46(0) 38UO)
£.00 2.34(0) 1.33(0) 2.43(0) 2.58(03
5.00 4.12(—1) 4.12( - 1) 402( — 1} 4.26( — 1)
10.00 160 — 1) 1.60( — 1} 1.50( — 1) 1.64( — 1)
50.00 1.47{ - 2) 1.47( —2) 1.20( - 2) 1.51( - 1)
100.00 S —3) 511 — 3} 371 —3) 5.22( —3)

TABLE 1L Correction factor 1, compuied by Dirac PWA from DHFS-WS scattering potentials. For carbon, copper, and lead, see Table IV,

Element (atomic number)

Energy
(keV) Be(4) Al(13y  Ca(20)  Fe(26)  Ge(32)  Sr(38)y  Ag(47) Sn(50) Ba(56) Gd(64) W(74)  Au(79)
0.10 1.2587 3.140 3.905 7.061 13.213 16.187 16.265 14.330 15.970 25.349 43.544 52.567
0.15 1211 2.58% 3.192 3.076 8.783 9.955 13.220 13.534 13.946 25.137 47.121 58.938
0.20 1.188 2.301 2.323 4.102 6.638 7.475 9.985 10.829 11.072 19.078 37.079 46.173
0.30 1.165 1.953 2.429 3.207 4.674 5.351 6.761 7.385 7.779 11.778 21.021 24.508
0.40 1.153 1.824 2.211 2.786 3.796 4.378 5.391 5.802 6.189 8.611 13.996 15.831
0.50 1.147 1.714 2.065 2.536 3.309 3.813 4.624 4.936 5.285 6.957 10.545 11.792
0.70 1.13% 1.576 1.878 2.240 2.781 3.176 3.785 4.005 4.293 5.298 7.322 8.101
1.00 1.134 1.458 1713 1.997 2.350 2.694 3156 3.319 3.554 4.180 5.369 5.87G
1.50 1.129 1.352 1.558 1.781 2.068 2.297 2.643 2.763 2.851 3.367 4.072 4.388
2.00 1.127 1.294 1.466 1.655 1.891 2.081 2.365 2.464 2.624 2.946 3.464 3.700
3.00 1.123 1.23G £.358 1.508 1.691 1.838 2.057 2.132 2.259 2.493 2.849 3018
4.00 1.121 1.196 1.295 1.421 1.575 1.698 1.882 1.944 2.052 2.242 2.524 2.655
5.00 1.119 1.175 1.254 1.363 1.497 1.605 1.765 1.820 1.913 2.077 2.315 2.426
7.00 1.116 1.150 1.202 1.288 1.397 1.484 1.615 1.659 1.735 1.866 2.053 2.140
10.00 1113 1.132 1.16} 1.225 1.310 1.379 1.483 1.518 1.579 1.682 1.828 1.836
15.00 1.111 1.118 1.128 1.170 1.232 1.282 1.360 1.387 1.433 1.512 1.622 1.674
20.00 1110 L1 1111 1.141 1.189 1.227 1.289 1.310 1.347 1.411 1.501 1.543
30.00 1.110 1.105 1.094 1.111 1.144 1.167 1.207 1.222 1.247 1.293 1.358 1,389
40.00 1.110 1.103 1.087 1.097 1.120 1.134 1.162 1.172 1.189 1.224 1.274 1.268
50.00 1.112 1.103 1.084 1.088 1.106 1.114 1.133 1.140 1.151 1.178 1.218 1.236
70.00 1.115 1.104 1.081 1.080 1.050 1.091 1.098 1.101 1.105 1.120 1.14% 1.157
100.00 1.119 1.107 1.081 1.076 1.080 1.075 1.071 1.071 1.068 1.073 1.085 1.090
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These features are clearly evidenced in Table [1.

As multipie elastic scattering is mainly determined by
the transport cross section, it follows that the results of
Monte Carlo simulations of such processes will not depend
strongly on the adopted scattering potential (provided that
the differential cross sections are evaluated according to the
relativistic partial-wave method).

COMPUTATION OF CORRECTION FACTOR ¢,

Differential cross sections and transport cross sections
for WS atoms have been computed for 15 elements and a grid
of energies sweeping the periodic system and the energy
range from 100 eV to 100 keV. The corresponding ¢, correc-
tion, i.e., the ratio between the relativistic SR transport cross
section and the transport cross section computed by partial-
wave analysis as described above [Eq. (13)1, is shown in
Table III for 12 of these elements. Accurate values of the 7.
correction for the elements considered at energies different
from those inciuded in Table IIf can be obtained by natural
cubic spline interpolation'® on the energy axis or, somewhat
less accurately, by simple linear interpolation. As the energy
grid points are nearly logarithmically spaced, it is conven-
ient to use log(£) rather than Z as an independent variable.

The i, correction for elements not included in Table T
can be evaluated approximately by spline interpolation on
the atomic number (Z) axis. In order to investigate the accu-
racy of this interpolation, we have also computed the differ-
ential cross sections for carbon, copper, and lead and the
corresponding ¢, correction. The computed ¢, values and the
results of the natural spline interpolation on the Z axis, using
the data in Table 111, are compared in Table IV. The case of

TABLE IV. Correction factor ¢, for carbon, copper, and lead computed
from the DHFS-WS scattering potential by Dirac PWA (cale.), and ob-
tained from the values in Table IIT by natural cubic spline interpolation
(int.).

C(6) Cu(29) Pb{82)
Energy
{keV) Calc. int. Calc. Int. Cale. Int.
0.10 1.506 1.773 10.154  10.181 43,737 57.92¢
.15 1.394 1.574 7.184 7.039 52.101 66.080
0.20 1.330 1.473 5.521 5433 45521  51.584
Q.30 1,257 £.370 3.987 3.958 25950  26.488
.40 1.217 1.316 3.310 3295 16794  16.835
0.50 1.192 1.282 2.933 2,923 12472 12491
0.70 1.163 1.240 2,517 2.510 8.537 8.547
1.00 1.140 £.207 2.19¢% 2.193 6.160 6.162
1.50 1123 1.177 1.929 1.925 4.576 4.574
2.00 1115 1161 1.777 1.773 3.843 3.83¢
3.00 1.107 1.144 1.603 1.600 3.115 3.113
4.00 1.103 1.135 1.501 1.459 2735 2.733
5.00 1.100 1.129 1.433 1.431 2.493 2.492
7.00 1.097 1.122 1.344 1.343 2.193 2.192
10.00 1.095 1.117 1.269 1.268 1.938 1.936
15.00 1.093 5.113 1.202 1.201 1.705 1.705
26.00 1.093 1111 1.166 1.165 1.568 1.568
30.00 1.093 1.110 i.12¢ i.128 1.407 1.407
40.00 1.094 £.110 1.110 1.109 1.312 1.312
50.00 1.0%6 1.111 1.098 1.097 1.247 1.247
70.00 1.099 i.114 1.087 1.085 1.164 1.164
100.00 1.104 £.118 1.079 1.078 1.093 1.083
2435 J. Appt. Phys., Vol. 65, No. 8, 15 March 1989

Pb shows in fact that even a moderate extrapolation may
work satisfactorily. Of course, the three elements in Table IV
can be used to complete Table IIL

PERFORMANCE

In order to demonstrate the performance and limita-
tions of the method, Monte Carlo simnulations using the
modified screened Huotherford (MSR) cross section are
compared with simulations wsing the accurate (PWA) dif-
ferential cross section, i.e., the one used to compute the 7,
values in Table [I1. We alsc compare with simulations using
the original screened Rutherford (SR) cross section.

In a}i three cases we have, for simplicity, used the con-
tinuous slowing-down approximation, employing the stop-
ping power formula due to Rao-Sahib and Wittry, ® asitisa
very simple, reasonably realistic extrapolation of the Bethe—
Bloch formula down to low energies. It should be noted that
the purpose here is to compare the results for the three differ-
ent elastic cross sections with each other. We donot compare
with the experiment as we have neglected a number of fac-
tors: (a) the error in the Rao-Sahib and Wittry stopping
power, (b) the effect of straggling, {c¢) inelastic scattering,
i.e., the contribution to ¢,, from the inelastic events, and (d)
secondary electron contributions.

The recipe for using the MSR cross section may be stat-
ed briefly: (1) Compute the SR mean free path 4, (SR} ac-
cording to Egs. (11) and (4). (2) Multiplyby ¢, {Eq. (15},
taking the 7, value by interpolation from Table IIE. This
gives the elastic mean free path 4, (MSR) to be used in the
simulation. (3) In the Monte Carlo program, simulate the
scattering angle 8 in an elastic event in accordance with the
angular distribution of Eq. (16), e.g., by the FORTRAN state-
ment,

CT=104+ (Y- 10)/(EPS*Y + 0.5},

where C7T = cos 6, EPS = ¢ as calculated by Egs. (10) and
(7), and Y is the standard pseudorandom number
{0 < ¥ < 1). For rapid simulation, A, (MSR) and ¢ are con-
veniently precaiculated for a2 number of electron energy
channels.

The PWA simulations presented here have been per-
formed by means of numerical differential cross sections,
which are introduced in the simulation program as data fora
grid of points (£, 6;) ( = energies, angles) dense enough
and conveniently distributed to allow accurate interpola-
tion. The total cross section is evaluated by cubic spline in-
terpolation on the energy axis. The scattering angle for a
given energy is directly given by the inverse cumulative dis-
tribution function with a standard pseudorandom number as
argument; however, this function is only known for the ener-
gies E, in the grid. To sample the scattering angle for a given
energy, a single value of the pseudorandom number is gener-
ated and used to obtain the scattering angle for the two near-
est energies in the grid. The resultant scattering angle is ob-
tained by linear interpolation.

We compare SR, MSE, and PWA results for collimated
electron beams normaily incident on aluminum and gold
foils, representing low- and high-Z materials, respectively.
The angular distribution of transmitted low-energy clec-
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FIG. 2. Transmission and backscattering of 10 keV electrons normally inci-
dent on gold foils of thickness 4. Error bars joined by curves show the results
using the PWA differential cross section. Filled and open circles show the
result for transmission and backscattering, respectively, using the modified
screened Rutherford (MSR) cross section, while filled and open squares
show the result using the original screened Rutherford (SR) cross section.

trons incident on high-Z thin foils represents a**worst” case
as regards to the applicability of the MSR cross section, and
i3, therefore, considered in some detail.

Comparison of simulated total transmission and back-
scattering for electrons incident on Au and Al foils are
shown in Figs. 2 and 3. The effect of the correction factor ¢, is
considerable in the case of 10 keV electrons incident on Au
(Fig. 2}. The agreement between data simulated by the ac-
curate (PWA) cross section and the MSR cross section is
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FIG. 3. Transmission and backscattering of 20 keV electrons normaity inci-
dent on aluminum foils of thickness d. Notations are the same as in Fig. 2.
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FIG. 4. Energy dependence of the bulk backscattering fraction R, of gold,
simulated using the PWA differential cross section (error bars joined by
curve), the modified screened Rutherford (MSR) cross section {filled cir-
cles), and the original screened Rutherford (SR) cross section (filled
squares).

good. The MSR simulation gives a slightly too low back-
scattering at the smallest thicknesses, due to near single scat-
tering conditions and the large difference between the FWA
and MSR differential cross sections at low energies in gold
[cf. Fig. 1(b)]. For =20 keV electrons scattered in alumi-
num, the correction factor is rather near unity {Table If1),
so the effect of the correction, though adequate, is small
(Fig. 3).

Figure 4 shows the effect of the correction factor 7, in
the simulation of the bulk backscattering fraction of gold
{(normal incidence) at different electron energies. The char-
acteristic decrease of the bulk backscattering fraction R at
fow energies is weil known from previous experimental and
theoretical work.”® The results using the MSR and PWA
cross sections are in good agreement.

Transtission and backscattering are less sensitive to the
shape of the differential cross section than angular distribu-
tions (cf. below)}, and one gets good results using the MSR
down to guite small foil thicknesses. In fact, enforcing the

2
i5 r\ 1 = u,““ 50(x5) 1
i .- " 1
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FIG. 5. Angular distributions of 10keV clectrons transmitted through gold
foils of thickness 10 and 50 gg/cm’. Error bars (curves) show results using
the PWA differential cross section, while circles and squares show the re-
sults using the MSR differential cross section. Vertical axis shows the num-
ber of clectrons recorded in respective angular channels. For the thinner foil
thickness, the most probable scattering angle using the PWA cross section is
not resolved at the angular resolution vsed in the figure.
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FIG. 6. Angular distributions of 10 keV electrons backscattered from gold
fails of thickness 10 and 50 yg/cm® simulated by means of PWA and MSR
differential cross sections. Notations are the same as in Fig. 5.

correct transport mean free path, one gets good agreement
with the PWA and MSR transmission and backscattering
(Figs. 2-4) even when using extremely simplified scattering
models, such as, e.g., a fixed scattering angle in each colli-
sion.'” It has also been shown that the variation of bulk
backscattering with varying angles of incidence is well repro-
duced with such scattering models.” Figures 2-4 confirm
that analysis in terms of the transport mean free path should
be useful for the understanding of total transmission and
backscattering, as suggested previously.”

Figures 5 and 6 compare angular distributions obtained
with the PWA and MSR cross sections for 10 keV electrons
transmitted and backscattered in rather thin foils of goid.
The MSR approximation is rough in particular for the angu-
lar distribution transmitted through the thinnest layer (10
pg/cm?). In order for the approximation method to be gen-
erally good, the scattering process should involve a sufficient
number of collisions; as an estimate, 4 /4, should exceed a
number of order of magritude 10".! Using the MSR vaiue for
A,, the gold foil thicknesses 10 and 50 zg/cm’ correspond to
d/A,=3 and d/A,=14, respectively. The difference
between the PWA and MSR angular distributions in this
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FIG. 7. Angular distributions of 30 keV electrons transmitted through gold
foils of thickness 100, 200, and 300 g/ cm? simulated by means of PWA and
MSR differential cross sections. Notations are similar to those in Fig. 3;
filled triangles show the MSR result for 4 = 300 ug/cm?.
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FIG. 8. Angular distributions (PWA and MSR) of 30 keV electrons back-
scattered from gold foils of thickness 100, 200, and 300 ug/cm’. Notations
are the same as in Fig. 7.

case again reflects the considerable difference between the
corresponding single scattering angular distributions [cf,
Fig. 1{b)]. Backscattering angular distributions are, how-
ever, rather well simulated with the MSR cross section ex-
cept for very thin layers (Fig. 6).

Further examples for the case of gold are shown in Figs.
7 and 8, for 30 keV electrons normally incident on foils of
thicknesses of 100, 200, and 300 ug/cm?. The total transmis-
sion as simulated by MSR is 0.94, 0.84, and 0.75, respective-
ly. The d /A, values are = 13, 26, and 40, respectively. The
simulated PWA and MSR angular distributions of transmit-
ted electrons show a slow convergence towards better agree-
ment {Fig. 7). For the backscattered angular distributions
the agreement is good except that the total backscattering
with the MSR cross section is somewhat too low for the
thinnest layers (Fig. 8).

The case of 20 keV electrons incident on aluminum foils
of thicknesses of 100, 200, and 300 sg/cm’ is, likewise, in the
transition region to multiple scattering (4 /4, ~ 16 for 100
pg/cm?). The PWA and MSR cross sections are fairly simi-
lar [Fig. 1(a)], sc 2 rapid convergence between PWA and
MSR angular distributions with an increasing number of
collisions is expected. This is confirmed by Figs. 9 and 10.

N(x10%)

O ({deg)

F1G. 9. Angular distributions (PWA and MSR) of 20 keV elecirons trans-
mitted through aluminam foils of thickness 100, 200, and 300 ug/om’. No-
tations are similar to those in Figs. 7 and 8.
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FIG. 10. Angular distributions {PW A and MSR ) of 20 keV electrons back-
scattered from aluminum foils of thickness 100, 200, and 300 ug/cat®. Nota-
tions are sitmilar to those in Figs. 7 and 8.

We refrain from comparing energy loss distributions,
since we have not included a realistic straggling model. Pre-
vious results with simplified elastic scattering cross sec-
tions'*?* indicate, however, that the MSR should be useful
for this purpose.

SUMMARY

A method has been presented, where the elastic scatter-
ing as computed by the procedure of partial-wave analysis
for an accurate atomic scattering potential is taken approxi-
mately into account by correcting a simple screened Ruther-
ford cross section. The correction factor 7, has been tabulat-
ed for the low and intermediate electron energy region
(~107 1 — 10P keV).

At higher energies (towards 100 keV and above) the
methed has to be modified since the direct simulation of
elastic events is not practical with the large number of colli-

2438 J. Appl. Phys., Vol. 65, No. §, 15 March 1989

sions involved. The modification can be made by enforcing
the proper transport cross section on a suitably simplified
cross section using an artificially eniarged mean free path.’
We are presently considering the computation of the corre-
sponding ¢, factor for high electron energies.
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