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It is shown that propagation around a circular bend in a quantum wire is well approximated 
by a one-dimensional problem with a square-well potential replacing the bend. Simple 
analytic expressions are obtained for the transmission and bound states. 

Lent’ and also 301s and Macucci* have carried out 
numerical calculations for transmission and bound states 
of a quantum wire with a circular bend. We shall show 
here that their results can be understood in detail, and very 
simply,. in the approximation introduced by Jensen and 
Koppe3 that the width of the wire is small compared to its 
radius of curvature. As we shall see, the results are excel- 
lent even when this condition is seriously violated. 

Let the circular bend have inner radius R and width G?, 
and subtend an angle 20 from the center of curvature. The 
bend is connected to entrance/exit leads which are 
straight, and of the same width d, as sketched in the inset 
to Fig. 1. In the straight section we use Cartesian coordi- 
nates (x,r), and write the Schriidinger equation 

(V’-/- k2)Y(x,r)=O, (1) 

with k2 = 2m*E/#. The solutions are a linear combina- 
tion of channel wave functions 

Yn(x,r)=e*‘@*sin[(n?r/d)(r- R)], (2) 

where (n?r/d) ’ + pf, = #. 

In the bend we use plane polar coordinates r,f3, giving 

a** ia* i a*q 
-p;~f-g-@+klY=o. 

This has solutions 

Y(r,8) =ZV(kr>e*ive, 

where 

(3) 

(4) 

Z,,(kr) =J,,(kr)iV,,(kR) - J,,(kR)v,(kr) 

vanishes at r=R. Then v and k are related by the remain- 
ing radial boundary condition 

G[WR + 4 1 =O (5) 
and the mode matching at the ends of the circular section. 
Following Jensen and Koppe3 we make the transformation 

y(r,e) = (l/J;)x(r,e), (6) 

which gives 

a*,11 1 
2 

g+-p+;$z+k*x=O. (7) 

The crucial approximation is to replace I” by an average 
value 3 in the denominator. Because Jensen and Koppe 
were interested only in the limit of vanishing d, they simply 
used R2, but it is better to use 

1 1 R-f-d 1 1 
==- 
R* d s R 7 dr’~(R +,d) * 

With this replacement, Eq. (7) becomes 

azx I a2x 
yg+,,-,x+p+k’i=O, 

(8) 

(9) 

- 
(where x=RO), and has separable solutions 

Y,(x,r)=(l/$)(D,(x)sin[(n?r/d)(r-RR)]. (10) 

The longitudinal motion in the bend is then the solution of 

a*+,, 1 
.-Q--+ p:fs Q>,=O, -a<x<a, 

( ) 
(11) 

where a=%. This is simply motion in a one-dimensional 
square-well potential of depth 

Vo= (#/2m*) ( 1/2R)2 (12) 

and width 2a = 2&; with channel energy pi = k2 
- (w/d)*. Effectively, the approximation replaces the 

motion in the circular bend by motion in a straight section 
with this additional attractive potential. 

The second approximation one must make is to treat 
the square root of r in Eq. (10) as constant. Then the 
various channel wave functions decouple, and the problem 
becomes strictly one dimensional. This is reasonable pro- 
viding we remain below the threshold for the second chan- 
nel; we come back to this point later. In their paper, Jensen 
and Koppe considered only a complete circle closed on 
itself, so they could avoid this matching problem. The 
same is true if one considers a closed circular bend with 
vanishing boundary condition on the four walls. In either 
case, the exact solution using the asymptotic form of the 
Bessel function” verifies the choice of E expressed in 
Eq. (8). 

First we apply the approximation to the bound state: 
from Eq. ( 11) we write 

a(x) =cos(ve) =cos(vx/R), (13) 
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FIG. 1. Bound-state energy as a function of ratio R/d for right-angle 
(dotted line) and 180” (dashed line) bends. The lines that terminate 
before R = 0 are the result of Sols and Macucci, the others are our Eq. 
(19). The solid line corresponds to setting v=O in Eq. (19); it is the 
depth of the square-well potential replacing the bend. 

where v will be determined by matching at the boundaries 
to the leads, in which 

Y(x,y)=Csin(ny/d)e-Klxl. (14) 

Here, y=r - R, and x follows continuously from %3 in the 
bend. In the approximation that the l/ 6 factor belonging 
to x is a constant, ‘the matching condition is simply 

(V/E)ttan %‘@=K, (1% 

where K= - ipI. From E?q. (11) we have the binding en- 
ergy 

K2’(1/$)(&%+. (16) 

Combining these gives 

@=(l/v)tan-‘[ JjiX5-X]. (17) 

Given the bend angle, one can solve for v. In the case of a 
right-angle bend, 0 = ?r/4, we find v = 0.467, while for a 
180” bend, 0 = 7r/2, v = 0.403. Introducing the minimum 
energy for propagation in the straight channels, 

Eo= (+?/2m*) (s-/d)*, (18) 

our result for the energy of the bound state is 

E/E,= 1 - (d/2?rE)2( 1 - 42). (19) 

Recall that in JZq. ( 8) we chose $ = R (R + d) . This will 
predict a diverging binding energy for small R. However, 
on dimensional grounds, the energy can depend only on d2 
in this limit. This suggests the replacement of Eq. (8) by 

1 
“$= (R + d/2)” ’ (20) 

which uses the arithmetic rather than the geometric mean 
of the two radii of the bend. We have replaced the circular 

bend by an equivalent rectangle. The choice R=R + d/2 
ensures that in this replacement the area and the perimeter 
of the bend are preserved, and also the sum of the four 
angles at the comers of the figure. (This would not be so 
for the geometric mean.) It has been shown by Balian and 
Bloch’ that the spectral density can be expressed by an 
asymptotic expansion in terms of the area, perimeter, cur- 
vature, etc. of the figure, so the choice of the arithmetic 
mean should be very accurate, as indeed we find it to be. 

In Fig. 1 we compare the result of our analytic approx- 
imation with the calculation of Sols and Macucci. [The 
solid line corresponds to taking v = 0 in E!q. ( 19) .] We find 
excellent agreement with their curves for both the right- 
angle and the 180” bends except at the smallest values of 
R/d. Since the approximation is based on considering d/R 
to be small, this minor disagreement is hardly surprising. 

To compute the transmission coefficient, one takes 
plane waves for the longitudinal propagation both in the 
bend and in the leads. From Eqs. ( 1) and ( 11) one has 

p2=$ - (1/2F)‘= (2m*E/#) - (s-/d>‘, (21) 

where p and 4 are, respectively, the wave numbers in the 
leads and in the bend. As remarked before the problem is 
equivalent to that of transmission in a one-dimensional 
square-well potential. One can therefore write the trans- 
mission probability as6 

T- ‘= 1 + (8 -p’)* sin* (2qa)/4p2q2. (22) 

In order to compare with the calculations of Lent,’ we put 
the momenta into the dimensionless form P=pd/r. The 
variable a ainst which Lent plots T is actually kd/v 

d---f = If . We find 

T-l=1 +A4sin2 (2qa>/4~(~+d2), (23) 

where 

/I = d/2rE (24) 

and 

2q&= (O//z) JFx? (25) 

Our results are shown in Fig. 2 for the cases computed by 
Lent. It can be seen that the agreement is excellent, con- 
firming that this simple analytical approximation can be 
reliably used for a wide range of R/d ratios. Furthermore 
it has the advantage of being equally easy to use for any 
bend angle. 

Until now only transmission in the lowest mode has 
been discussed. For all energies above threshold other 
transverse modes contribute to transmission. In their Fig. 
2, Sols and Macucci show the partial transmission proba- 
bilities into various channels. If one sums these, the total 
transmission probability is almost unity at all energies 
above threshold, from each entrance channel. In the model 
as presented above, the bent wire has been reduced to a 
strictly one-dimensional problem. A plot of the conduc- 
tance will be of the familiar step form, with each step 
constructed by displacing the n = 1 conductance curve and 
adding it on top of the previous steps.7 
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FIG. 2. Transmission probability near threshold for a right-angIe bend as 
function of the dimensionless momentum P=pd/r, using Eqs. (23)- 
(25). For comparison with Lent, the lines correspond to values of x/d as 
follows: (a) 2.0, (b) 1.0, (c) 0.75, (d) 0.65, and (e) 0.5. The crosses 
mark points read from his graph. 

Due to the channel decoupling, in our approximation 
we predict a bound state for each transverse mode n. A 
trivial extension of the derivation leading to Eq. (19) 
shows that the energy shift AE, with respect to the thresh- 
old energy for propagation in the channel is independent of 
n and has the same form as in Eq. ( 19): 

AEJE,,= - (d/2=ii-)*( 1 - 44) (26) 
When coupling is restored these states become quasibound 
and appear as subthreshold resonances in the transmission 
probabilities computed in Refs. 1 and 2. For a 90” bend and 
a ratio R/d=Q.7, Sols and Macucci find the first of these at 
AEl/Eo~0.006 and state that the second appears at a sim- 
ilar distance below its threshold. With the above equation 
we predict AE,,/E, = 0.0066 for both cases, again in good 
agreement with their results and therefore confirming the 
physical interpretation of these resonances. 

Lent has also considered a case where the confining 
walls of the channels are not infinite, but still very high at 

48E,,. Above the second channel threshold he. found sur- 
prisingly large effects on the reflectivity from this modest 
change in confinement (see his Fig. 3). Since in a real 
device the confining walls are certainly not infinite, his 
result implies that the hard-wall models generally em- 
ployed are not sufficient to obtain a detailed picture of the 
transmission above the second channel threshold. In this 
situation, the one-dimensional model employed here is per- 
fectly adequate, as it duplicates the exact results in the 
region where they are physically meaningful. 

In conclusion, we have extended the approximation of 
Jensen and Koppe to include terms of order (d/R)‘. This 
replaces the propagation around a circular bend by prop- 
agation in a straight section with an attractive square po- 
tential. This approximation gives excellent agreement with 
the numerical calculations of Lent and Sols and Macucci. 
The remaining error in our results is due to the neglect of 
mode mixing. In a previous paper8 we showed that the 
bound states in a rectangular bend could be similarly ap- 
proximated by a one-dimensional problem with an attrac- 
tive potential. Thus the main features of bent quantum 
wires can be understood from the simple formulas given in 
Eqs. (19)-(20) and (22)-(25). The parametric depen- 
dence-of the characteristics of the device on its geometry is 
obvious from these formulas. 
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