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The electron transmission and bound state properties of a quantum wire with a sharp bend at 
arbitrary angle are studied, extending results on the right angle sharp bend (the L-shaped wire): 
These new results are compared to those of a similar structure, the circular bend wire. The 
possibility of using a bent wire to perform transistor action is also discussed. 

I. INTRODUCTION 

The manifestation of quanta1 effects in mesoscopic sys- 
tems is currently a subject of intense interest. lv2 Among the 
many electron wave guide structures which have been 
studied, bent quantum wires have figured prominently. 
Sols and Macucci,3 Lent,4 and ourselves5>6 studied the cir- 
cular bend wire. Exner et al.,’ Schult et aL,s and our- 
selves’*’ have studied wires with right angle sharp bends. 
An important aim of these studies is to understand electron 
propagation in these basic structures which could be seg- 
ments of actual quantum electronic devices. They also 
serve the purpose of finding efficient methods for numerical 
modeling of quantum devices. In this paper, we will extend 
the previous studies by allowing the bending angle to be 
arbitrary. A special mode matching method is developed to 
calculate the transmission coefficient and bound state en- 
ergies. Section II discusses the method, Sec. III gives re- 
sults on wave propagation, and Sec. IV results for bound 
states. The conclusions are given in Sec. V. 

a,= JG- (2) 

is the longitudinal wave number associated with the trans- 
verse mode n. We express energies in units of +i2/(2m*). 
The half-cavity of interest here is a right-angle triangle. It 
is not easy to find a coordinate system conforming to all of 
its boundaries. This makes a mode expansion of the wave 
function in the cavity difficult. However, notice that the 
division of the lead from the cavity is somewhat arbitrary, 
and the wave function matching boundary is not necessar- 
ily a straight line perpendicular to the lead. By relaxing this 
requirement, we can use a polar coordinate system for the 
cavity and match the wave function of the lead and the 
cavity along an arc. For points on this circular arc, 

x= -R(cos B-cos a/2), (3) 

y=R Sh 8, (4) 

where R =d/sin( a/2). The wave function mode expansion 
in the cavity is 

II. A SPECIAL MODE MATCHING TECHNIQUE FOR A 
QUANTUM WIRE BENT AT ARBITRARY ANGLE 

Y= cf, sinh$)JmnbW, 
n 

There are many ways to solve the electron waveguide 
problem: for example, Sols et al. solved the Dyson equation 
on a tight-binding lattice for the real-space Green’s func- 
tion,” An algorithm based on the boundary element 
method by Datta et al. ,I1 and the quantum transmitting 
boundary method by Lent et all2 have also been used. In 
this paper, however, we will perform a direct mode match- 
ing by exploiting the geometry in a novel way. This leads to 
an algorithm which is simple and fast, as most of the work 
is done analytically. This is the method of choice when the 
given geometry is simple enough.315*618*p~‘3-‘5 

where k = $E and 

(2n-s)7i- 0 for odd symmetry, 
mn= 

a ' 
s= 

I 1 for even symmetry. (6) 

The matching of wave functions is done by requiring 
both the wave function and its normal derivative along the 
arc to be the same when calculated from Eqs. ( 1) and (5) : 

~f,siu(m,O)J,~(kR)= 2 (C,,eiafi+~~e-ia~)sin~. 
n 

(7) 
Figure 1 illustrates a quantum wire of width d bent at 

angle r--a. As usual, we divide the structure into two 
leads and a cavity. Due to symmetry, the problem can be 
solved in half the space with an even and odd solution. We 
use a mode expansion in the leads 

and 

VI= C (C,~inrr’+Fne-ia~x>~n(y>, 
n 

(1) 
= - ~0s fJ 2 ia, ( C,eia*- Zne-i”Ls) sin y 

n 

where Cp,(y) is the transverse eigenfunction with energy E,,, 
and 

+sin 0 2 y( C,e'"lti+ C,e-'"+coS 7 . 
n d 

(8) 

(5) 
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FIG. 1. Quantum wire bent at a sharp angle. ?% is the symmetry axis, its 
length is R=d/sin(a/Z). The lead extends rightward from the linez. In 
region OAPCBO, polar coordinates are used, and wave function matching 
is done along the arc APC. P is an arbitrary point on the arc. 

Multiplying Eqs. (7) and (8) by sin mPe and integrating 
over 8 from 0 to a/2, we have two sets of linear equations 
which express f n in terms of C, and C,. By elimin_ating f n, 
we obtain a set of linear equations which relate C, to C,: 

kJ&OW 
ia, cos e- Jam 

Xsiny e 1 
4J- a/2 

= 
n 0 

iafi sin(nQ)de ?!n 
I 

Xsin 8 cos y eia* sin(m,B)de C, 1 I 
Here x and y are functions of 8 as defined by Eqs. (3) and 
(4). In Eq. (9), p and n are integers: the mode expansion 
indices with range ( 1, M  > . The sums are truncated accord- 
ing to the accuracy desired. In Eq. (9), the C,, are given 
i*ut wave function mode amplitudes, and from them, the 
C, are obtained- by solving a set of linear equations. Let 
c n,even ana %odd be solutions for the even and odd 
symmetries respectively; then the transmission probability 
is given by 

B n-open I 
T= 48 

C,,,,, - C,,dd I 2an 

napen I Cn I 2an * 
(10) 

The homogeneous form of Eq. (9) (i.e., C,=O on the 
right-hand side) gives the bound states of the system. We 
compared this method against our previous work on the 
L-shape wire,’ by setting a=90”, and found excellent 
agreement. Another test is to calculate the transmission 
coefficient for a =P which is just a straight wire. We expect 
in this case perfect transmission and no mode m ixing. This 
is a nontrivial test for our method, and we obtain a very 
accurate result. 
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FIG. 2. Total transmission probabilities for a sharp angle quantum wire 
from the first three input modes, in (a), (b), and (c), respectively. Solid 
line: a=90”, dotted line: a=120”, dash line: a=150”. 

Ill. RESULTS FOR TRANSMISSION 

We first discuss results for transmission coefficients. 
Figure 2 shows the total transmission probabilities for 
some cases with a>W. We see a relatively simple struc- 
ture. As the energy rises, the transmission probability 
changes smoothly except in a region near the threshold of 
a new mode (kd/n an integer). This characteristic is sim- 
ilar to the circular bend wire.3 The solid lines are for the 
L-shape wire. As a approaches rr, the devices is more and 
more close to a straight wire. We expect the transmission 
probabilities will be close to unity most of the time, as is 
seen for a= 150”. In fact, the difference between a circular 
bend and a sharp angle bent wire of very small bending 
angle, is negligible. 

Figure 3 shows the total transmission probabilities for 
a ~90”. We see that when the bending angle increases, 
(smaller a), more and more structure appears in the trans- 
m ission curves. Roughly speaking, this is due to the in- 
crease in area of the cavity, and thus more modes are al- 
lowed in the transmitted or reflected waves. When a-+0, 
the device region approaches a long rectangle of width 2d, 
while the two leads are parallel and share one common 
side, a situation discussed by Bar-Touv and Avishai.16 
While the area of the cavity diverges, it remains closed at 
the end. 

As we have shown in Fig. 3, the total transmission 
probability is practically unity for very small bending an- 
gle. However, as in the case of a circular bend wire, the 
partial transmission probabilities do vary considerably. In 
other words, the bent wire converts a wave from one mode 
to another. Figure 4 is the case of a= 150” and concerns 
the first three input modes. Due to symmetry, Tii=Tii, 
where TV is the transmission probability from mode i to 
mode j. In Fig. 4, the long-dash lines are results for a 
circular bend of the same bending angle. We can see that 
they are very close to the sharp angle bend results. The 
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FIG. 3. Total transmission probabilities for a sharp angle quantum wire 
from the tirst three input modes, in (a), (b), and (c). Solid line: a=60”, 
dotted line: n=30’. 

circular bend results are calculated by a method indepen- 
dent of that in the previous section. Because methods in- 
volving Bessel functions have difficulty with the circular 
bend when the inner radius is zero, we used a method 
based on a mesh of grid points. Roughly speaking, we used 
a square mesh in the leads, and in the circular bend region, 
a grid was placed using polar coordinates. The character- 
istic mode conversion shown in Fig. 4 is very similar to the 
circular bend of nonzero inner radius; this can be seen if 
one compares with Fig. 2 (a) of Sols et al. 3 (note that their 
x axis is energy while ours is wave number). 
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FIG. 4. Partial transmission probabilities T, for the case a= 150’. Parts 
(a), (b), (c) for i=l, 2, 3; solid, dotted, and dash lines forj=l, 2, 3. 
Example: Ts2 corresponds to the dotted line of figure (b). Long dashed 
lines are the corresponding results for a circular bend with inner radius 
zero. 
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FIG. 5. Bound states of a bent wire as functions of bending angle. The 
four lines are the energies for the first, second, third, and the fourth 
eigenstates. 

It is interesting to note that transistor action similar to 
that proposed by Solst” and Datta2 may possibly be 
achieved with this simple bent wire. As we know, a quan- 
tum waveguide structure can be formed by acting with the 
electrostatic potential of a split gate on a high mobility 
two-dimensional (2D) electron gas. By changing the ap- 
plied gate voltage, the effective wire width can be varied. 
This change is equivalent to a change in the unit of energy 
Et, of the electron propagation in the channel. If the bent 
wire is operated at a critical value such that a small change 
in kd/n will result in a large change in transmission, then 
transistor action will be achieved. For example, for a 90” 
bend, kd/n-= 1.8 is critical (see Fig. 2) and for a= 30”, 
kd/?r= 1.2 is a candidate (see Fig. 3). This type of tran- 
sistor action is based on quantum interference effects since 
the region of the bend is acting as a cavity and produces 
maxima and m inima in T similar to those obtained with 
the cavities proposed by S01s’~ and Datta.’ On the con- 
trary, as is well known, a single pinch on a straight wire 
works differently, by cutting the number of allowed prop- 
agating channels and thus produces a step-function like 
conductance-gate voltage curve. 

IV. RESULTS FOR THE BOUND STATES 

We shall now discuss bound states in a quantum wire 
bent at an arbitrary angle. In the right angle case, there is 
only one weakly bound state, symmetric with respect to the 
two leads at energy E=0.929E1, where E, is the threshold 
energy for a propagating wave.“’ It is natural to ask the 
following questions: If the bending angle is reduced, do we 
still have a bound state and, when the bending angle is 
larger than ?r/2, could the device have a second bound 
state? We see in Fig. 5 that when cz is not too small, there 
is a unique bound state. When the bending angle ap- 
proaches zero ( cz -, 7r), the energy goes to El, the threshold 
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for a propagating state, and the wave function extends in- 
finitely far into the leads. 

The limit of a+0 is also quite interesting. In our 
model with straight edges, the device then becomes a wire 
of width 2d closed at left infinity, with a wall running from 
x-0 to + 00 down the middle of the wire. The wave funo 
tion decays very quickly when x > 0. As an approximation, 
suppose it vanishes altogether to the right of the origin: 
Y (x=0$) =O. The device then has a continuum of bound 
states starting at E= (r/2d)2=E1/4. Of course, for a real 
wire the part to the left will be of finite area and then only 
a finite number of states will occur. When a is not zero but 
small, we can approximate the left segment as a circular 
sector of radius 2d/a and angle a. In other words, we 
neglect the difference between the arc APC and line AB in 
Fig. 1. In this approximation, 

8n77 
Y=sin 7 J,,/,( &) (O<&a). 

( ) 
The quantization condition requires 

Jlm,J &Wa) =O, 
and the eigenenergies are then 

(11) 

(12) 

x2 a2 
E/E, =+ , 

where X,i is the ith root of Jrn,a(%) =O. When a is very 
small, the order of the Bessel function is very large, and we 
consider only n = 1. Equation ( 13) can be used for small a 
and provides a simple solution. It is found that the second, 
third, and fourth bound states appear at a=28.8”, 16X?, 
and 11.7”. All these states become degenerate as a - 0, with 
energy 0.25E,. The bound states shown in Fig. 5 all have 
even symmetry; no odd symmetry state was found. 

V. CONCLUSION 

The transmission and bound state properties of a 
sharply bent wire have been studied by a special mode 

matching method. This is another model for a bent wire, 
beside the circular bend. For very small bending angle, the 
results are very similar to a circular bend. It is found that 
when the bending angle is not so large, there is a unique 
bound state, but as the bending angle approaches V, excited 
bound states do exist. We also discussed the possibility of 
using a bent wire to perform transistor action. 
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