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We have investigated the behavior of bistable cells made up of four quantum dots and occupied by
two electrons, in the presence of realistic confinement potentials produced by depletion gates on top
of a GaAs/AlGaAs heterostructure. Such a cell represents the basic building block for logic
architectures based on the concept of quantum cellular autof@@#) and of ground state
computation, which have been proposed as an alternative to traditional transistor-based logic
circuits. We have focused on the robustness of the operation of such cells with respect to
asymmetries derived from fabrication tolerances. We have developed a two-dimensional model for
the calculation of the electron density in a driven cell in response to the polarization state of a driver
cell. Our method is based on the one-shot configuration-interaction technique, adapted from
molecular chemistry. From the results of our simulations, we conclude that an implementation of
QCA logic based on simple “hole arrays” is not feasible, because of the extreme sensitivity to
fabrication tolerances. As an alternative, we propose cells defined by multiple gates, where
geometrical asymmetries can be compensated for by adjusting the bias voltages. Even though not
immediately applicable to the implementation of logic gates and not suitable for large scale
integration, the proposed cell layout should allow an experimental demonstration of a chain of QCA
cells. © 1999 American Institute of Physid$50021-897@9)04004-9

I. INTRODUCTION without perturbing the ground state of the system; provision
must be made for a time evolution of the system that is both

Several proposals for the implementation of logic func- . i . : .
tions and data processing based on the concept of quantu‘?ﬁst and rella_ble,_de5|gn solutions for the basic cell ml.JSt pe
eveloped, yielding a reasonable robustness to fabrication

cellular automatdQCA) and ground state computation have . . ) )
appearetin the literature recently. Tougaet al® devised to'lerance.s and compatible with large-scale integration on a
an architecturécommonly known as “Notre Dame architec- single chip. N o
ture”) based on bistable cells that couple electrostatically to The focus of the Wo_rk we are presenting Is s_pecmcally
their nearest neighbors. Each cell consists of faurfive) on the r.obustness of a single cell, coup]ed to a driver cell, to
quantum dots and contains two electrons. In the absence {fPrication tolerances and to asymmetries caused by fluctua-
external electric fields, the electrons occupy each dot wittions in the bias voltages applied to the electrodes defining
equal probability. In the presence of a neafbyiver) cell the cell. In par-t|cular, we haye studied the effgct of geometri-
with the two electrons constrained to occupy the dots alon§@! @nd electrical asymmetries on the behavior of QCA cells
one of the two diagonals, alignment along the parallel C”ag_deflned by means of lateral electrostatic confinement in a
onal will occur in the driven cell, in the hypothesis of poten- GaAS/AlGaAs heterostructure. o
tial barriers large enough to localize the electrons. Based on Although often neglected, robustness to fabrication tol-
this principle, it is possible to conceive of bistable cell ar-€rances and manufacturability are central problems affecting
rays, in which the polarization state enforced at the inputs, &/l Proposed nanoelectronic deviceand their solution is a
the edges of the arrays, propagates in a “domino” fashion Prerequisite for any successful new technology.
until the ground state is reached throughout the system, and We have considered a basic QCA cell with four quantum
the results of the computation are available in the form of thedots defined by realistic two-dimension@D) confinement
polarization state of the output cells, also located at the edgd¥tentials, which are computed from the shape of the metal
of the arrays. gates at the surface of the heterostructure and the voltages
Many issues must be resolved before this computationadpplied to them. Calculation of the electron density in such a
paradigm can be implemented in practice: noninvasive dete@D artificial molecule is a challenging task. Iterative self-

tors are needed to probe the polarization state of the outpugonsistent methods fail to converge, due to the relatively
large electrostatic interaction and to the particular symme-

a o . o tries associated with the problem. For this reason, we have
Electronic mail: massimo@mercurio.iet.unipi.it

YPpresent address: Max-Planck-Institiit fBravitationsphysik, Schlaatzweg devglopeq a nonij[erative technique bfised on the
1, D-14473 Potsdam, Germany. configuration-interaction(Cl) method used in molecular

0021-8979/99/85(5)/2962/10/$15.00 2962 © 1999 American Institute of Physics

Downloaded 09 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 85, No. 5, 1 March 1999 Governale et al. 2963

2 1

FIG. 1. Schematic representation of two coupled QCA cells: tunneling of @ Q

electrons is possible along the dashed lines. 3 4

L7 . ) ) . . FIG. 2. Subdivision of a cell into four quadrants.
chemistry. The main drawback of this technique is that it

requires rather large computational resources and, thus, we

are presenting numerical results only for the case of occu- _ . )
pancy of two electrons per celiWork is currently in ~denominator of Eq(l) is the total number of electrons in the

progress for the inclusion of up to six electrons per gell. ~ cell and therefore a constant. The procedure for calculating
With respect to the approaches in the literatieyr ~ the electron density from the many-electron wave functions

method allows a direct quantitative estimate of the effects ovill be discussed in Sec. IIl. .

fabrication and bias tolerances on cell operation and does not If the two electrons are aligned along the diagonal cor-

require the introduction of phenomenological parameterg§esponding to the first and third quadrait: 1, while if they

such as the tunneling energy, which may be hard to evalua@'® aligned along the other diagond=—1. For finite
with a realistic potential. height barriers, values d? intermediate betweer 1 and 1

In Sec. Il, we provide a detailed statement of the prob-are also possible. We define the cell-to-cell response function

lem we intend to solve and describe the cell model togethe®S the function relating the polarization of the driven cell to
with the technique we have used for the computation of thdéhat of the driver cell. In order to compute the polarization of
2D confinement potential. In Sec. I, the solution of the the driven cell in response to each value of the polarization
many-body problem is discussed and the one-shot Cl methd®f the driver cell, we need to solve for the electronic struc-
is introduced. Numerical results for a cell occupancy of twoture in the driven cell in the presence of the electrostatic
electrons and various types of asymmetries are presented Rotential due to the driver cell.

Sec. IV, where cell design criteria are also established. For the driven cell we consider a 2D model in the effec-
tive mass approximation. Such a model is valid as long as

Il. STATEMENT OF THE PROBLEM AND CELL MODEL .the thickness.of the dots in the vertical direction, correspond-
ing to the thickness of the 2D electron g&DEG) from
Our aim is to investigate the behavior of two coupledwhich they are obtained by lateral confinement, is small
QCA cells, each of which is formed by four quantum dotscompared to their other dimensions. The 2DEG is obtained
and contains two electrons, as illustrated in Fig. 1. Tunnelingyy modulation doping next to a GaAs/AlGaAs heterointer-
between the dots of the same cell is allowed, but not betweeface.
dots belonging to different cells. If the barriers separatingthe  The 2D confinement potential in the plane of the 2DEG
dots within a cell are opaque enough, the electron wave fungs obtained as a result of the action of the metal gates, fol-
tions will be localized, and we shall observe a quasiclassicabwing the method proposed by Daviesal,>° without in-
behavior: the two electrons will repel each other and localize:luding (to keep the problem manageable from a computa-
in two dots along a diagonal, so as to minimize the electrotional point of view the self-consistent rearrangement of
static energy. In the case of an isolated, symmetric cellmobile charge within the heterostructure, except for that of
alignment along either diagonal will occur with equal prob-the two electrons confined in the cell. In other words, the
ability. If another(driver) cell is placed in proximity to the potential due to the gates is evaluated with the analytical
cell we are investigatingdriven cel), as in the case repre- expressions described below and is used as the bare confine-
sented in Fig. 1, and the electrons in the driver cell are takement potential for the definition of a many-body Hamil-
to be aligned along a given diagonal, their electric field will tonian, whose ground state is then evaluated with the
destroy the symmetry of the driven cell, lifting the degen-configuration-interaction method. The occupancy of the cell
eracy between the two configurations. This will result in thejs fixed and corresponds to two electrons for all the numeri-
electrons in the driven cell lining up parallel to the electronscal results we will present. We assume Fermi level pinning at

in the driver cell. , _ o the surface of the semiconductor, so that the electron—
Following Lentet al” we define a cell polarizatioR as  electron interaction can be treated by the method of
. 1 . . . . . _
o (Qq+Q3)— (Qy+Qy) " ![irgﬁgesl, without requiring the solution of the Poisson equa
Q1+ Q2+ Q3+Q4 \

We have considered two basic gate configurations for
whereQ; is the integral of the electron densiiyr) over the the definition of the four quantum dots that make up a cell.

ith quadrant of a cell. We divide each cell into four quad-The first configuration, represented in Fig. 3, is rather simple
rants (see Fig. 2 and number them counterclockwise. The and straightforward: the four dots are a consequence of four

Downloaded 09 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



2964 J. Appl. Phys., Vol. 85, No. 5, 1 March 1999 Governale et al.

Metal gate ap O
o OO

i,

'l

TR '0 mmm

“&3\}%?“\ ‘ %Z'IIIIIII%,"I',"

\ II .

\ \\ \\‘\Q“‘““““‘ \:‘::o ”%Z”'I"’/?" /"‘IIIII;I%%
%‘

e \\\\\\\ 'IIIIII
‘\ \‘\\\\\\\\\\
\‘

“

2DEG —=

FIG. 3. QCA cell obtained by depleting a two-dimensional electron gas by
means of a metallic gate with four holes, which define the four quantum 3
dots.
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FIG. 5. Confinement potential at a depth of 50 nm from the surface of the
circular holes in a depleting gate covering the surface of théeterostructure, produced by a gate with four holes of 90 nm diameter and
heterostructuré? The second configuration we have studiedP!aced at the comers of a 110 nm square.
is described in Fig. 4 and is more complex: the four dots are

defined by a set of seven metal gates which create f0u<_50 nm, with a distance between the centers of 110 nm. The

minima in the 2D potential at the 2DEG level. ate voltage has been set-a0.5V, in order to obtain inter-
The contribution to the bare confinement potential from? ‘ag N
dot barriers of reasonable height.

each gate is computed following the method developed in Following Tougawet al.® a uniformly distributed posi-

Refs. 9 and 10. The starting point is the well known resultrflve background charge has been added to each cell. Such a
that gives the potential inside the semiconductor in terms o

. ) charge does not alter the electrostatic energy splitting be-
its boundary values at the plane of the surface:
tween the two cell configurations and plays a role, from the

|z|Vg(x ,y',0) o point of view of the cell-to-cell response function, only if the
Vo(Xy.2)= 5 f X=X+ (y—y )2+ 23X dY" two cells are very close to each other. In this case, it helps
) prevent alterations of the ground state of the driven cell due
to the combined electrostatic repulsion of the two electrons
wherez is the vertical coordinate, orthogonal to the hetero-in the driver cell, which would tend to push both electrons
structure layers, and the integration is performed over thénto the two dots on the side further from the driver cell
gated surfac&. Given the applied voltages and the shapes oftself. In our model, this positive background would not ac-
the gates, the confining potential can be easily computed. Fagally be needed to achieve charge neutrdlityhich is al-

simple shapes one can derive more compact expressions Byady ensured by the presence of the gates and of positive
performing some of the integrals in E@®) analytically. For  charges in the donor layer.

the cases considered here, we have usedE#tj7) of Ref. 9
for gates with circular holes, and the equations in Secs.
and IV of Ref. 10 for polygonal gates.

An example of the results obtained by this procedure is  As already mentioned, the solution of a many-electron
reported in Fig. 5: we show the confinement potential at groblem in a potential such as that present in a QCA cell is
depth of 50 nm, produced by four holes with a diameter ofrather challenging. Approaches that are typically used for the

simulation of quantum dots, based on mean-field approxima-
tions of the potential seen by each electron and on iterative
G1 procedures®~1 fail to converge when applied to the four-
G2 G3 dot cell. We can understand the reason for this failure con-
50 wk_w] sidering that convergence of the self-consistent iterative pro-
50 cedures in this class of problems is more and more difficult
105 to achieve as the elegtrostatic interaction incred$asd in
55 the presence of quasidegenerate states. As long as the elec-

140 145 trostatic interaction is small compared to the confinement

RED ) energy, it is just a perturbation of the latter, and iterative
self-consistent procedures converge monotonically to the so-

G4 lution. Otherwise, underrelaxation techniques need to be
used, but they also often fail when closely spaced states are
present, due to symmetries or quasisymmetries in the poten-

tial landscape: in this situation the charge will bounce back
G35 G7 and forth between quasidegenerate states in consecutive it-
Gé6 erations, and convergence is never achieved. Since our cal-

FIG. 4. Gate layout for the definition of four independently adjustable quan-culations are curre_ntly perf(_)rmed at zero temperature, _in or-
tum dots; all distances are in nanometers. der to compare with experimental results that are typically

I
‘II. CONFIGURATION-INTERACTION METHOD

40
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obtained in the tens of millikelvin range, techniques such asvhere the infinite-dimensional “Hamiltonian matrix” is
the Newton methodwhich are rather successful in the solu-
tion of coupled Schidinger—Poisson problems at finite tem- A A
peraturé cannot be successfully used due to the sharpness of kK’ =(®A|P)= j C(Hat HZ)q)k’iHl dai, (9
the Fermi function at low temperatures.

The technique we have implemented is based upon ah; is theith eigenvalue of, the vectorg; is made up of the
approach often used in molecular chemisttile Cl method. — coefficientsc;, and [ dg; stands for integration over tti¢h
It consists of approximating thé electron wave function by spatial coordinatend summation over spin orientations.
a finite linear combination of Slater determinants. Most im-  In practice, this approach cannot be implemented “ex-
portantly, the ClI method is a one-shot method, i.e., it doesictly” (i.e., choosing a complete, infinite set of orthonormal
not involve an iterative calculation of the wave functions, spin orbital3. In our numerical work, we consider a finite set
and, hence, does not suffer from the previously describedf M spin orbitals{¢;(q)}, with j=1---M.
convergence/oscillation problems. Given N electrons andV spin orbitals(with M=N), it

In order to illustrate the CI method, let us considean is possible to buildVsp different Slater determinants, where
electron nonrelativistic Hamiltonian with a generic two-body
interactiong(r; ,r;): Nep=

N

M
NIE (10)

H=H,+H,, @ .
With this choice, the secular equatiéd) becomes anVgp
. N 2 ) N X Ngp Hermitian eigenvalue problem.
le_zl (‘mvi +V(ri)):21 h(ri), 4 The number of nonzero matrix elements is less than
" " (Nsp)?, because all the matrix elements between determi-
nants differing by more than two spin orbitals do vanish, as a

HZ:E,‘ g(ri.ry), consequence of the selection ru(&ater’s ruled presented
in Appendix A, where the general expressions for the ele-
with ments of { are also provided.
The total numberMy; of nonzero matrix elements is
g(ri,rp)=g(rj,r), (5 Nz

given by the following expression:
whereft: is the reduced Planck constant ands the effective

mass of the electrofwe consider the case of gallium ars- Moy = M) « 1+<M_N)(N)+(M_N)(N”
enide, with m=0.067n,, where m, is the free electron NETIN 1 /i1 2 J\2

mass. M

As we are concerned with confined systems, we can con- =( ) X|1+(M—N)N

. : N
sider a numerable complete bas$is;(q)}, whereq=(r,s)
includes both spatial and spin coordinates, over which the (M=N)(M—=N-1)N(N-1)
single-particle wave function can be expanded. In the follow- + Z ) : (1)

ing, we shall refer to thep;s as spin orbitals. Using this

basis, we build all the possible independent Slater determi-  Once the eigenvectors of E@) have been obtained, the
nants: N electron wave functioW; can be computed from E¢7),
and the corresponding electron density is simply given by:

(Pnlk(ch) (PnZk(Ch) . GDnNk(ql)
q)k:i @n, (d2)  @n,(d2) ... en (02) Pi(rl):st f |W,(ry,S1,02, - ,qn) | 2dgy: - day
Nl : 2
QDnlk(qN) ‘PnZk(qN) . (PnNk(qN)

6) wheres; represents the spin orientation coordinate.

Since we are going to present numerical results for a cell
where the indexk labels the Slater determinants and theoccupancy of two electrons, we now focus our attention on
integer n; specifies which spin orbital appears in théh  the two-electron case. The Hamiltonian for the structure un-

column of thekth Slater determinant. der study can be written:
The infinite se{®,} is a complete orthonormal basis for 5 )
the N electron eigenfunctions of the Hamiltonian in Eq. h h

AP v v 2 .
(3);¥° theiith eigenfunctions¥; can therefore be written as H==om Vi 2m V2t Veorl )+ Veor F2) + Van(ra)

+Vdriv(r2)+g(rlar2)v (13)

where V., is the confinement potential computed as de-
scribed in Sec. IVy,, is the Coulomb potential due to the

charge distribution in the neighboring driver cell, and
g(rq,r,) is the two-body interaction. The two-body interac-
Hc=E;q, (8)  tion includes the effects of image charges and is given by:

‘Pi:gl Cik Py (7)

To find the eigenfunctions dfl, we must solve the secular
equation
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1 2 1 e? als, and would thus need to be expanded on a basis of Slater
g(rq,ro)= — determinants built from a larger set of single-electron wave
T Ame|riorg 4me VIri—ra*+(22)* functions.
1 e2 Let us briefly comment on the relationship of the solu-
-, (14)  tion obtained with this method to those obtained with other
4qe 22 . .
commonly used approaches for the self-consistent solution of
the electronic structure of quantum dots. In the Hartree

of gallium arsenide and the vacuum permittivity, respec_method and in the local density functional approximation

16 o :

tively) ande is the electron charge. This expression has beef-DA),~ the exchange term is ignored or treated in an ap-

obtained by taking one half of the electrostatic energy of thProximate fashion, while the wave functions are obtained at

system made up of the electrons and their image countefach iteration as eigenfunctions of a modified Hamiltonian.

parts, since the energy stored in the image space is pureWhe” convergence is reached, the obtgined wave f_unctions
fictitious. The last term of Eq.14), due to the interaction of are the §et of one-electron wave funcuon; minimizing the

each electron with its own image, yields a constant shift offXPectation value of the approximate Hamiltonian.

the energy spectrum, In the case of the Hartree—Fock metfbthe many-

To apply the CI method to the system described by the&lectron wave function is represented by a single Slater de-
Hamiltonian in Eq.(13), we start by choosing a set of terminant, and when self-consistency is attained, the result-
wave functions{;(r)}. ’We shall refer to they;(r)}s as ing Slater determinant minimizes the expectation value of

orbitals, to distinguish them from the spin orbitdls;(q)}. the Ham|lt0n|an_, as in the case _of the H_artree and LDA

By combining each of thel;s with one of the two possible methods, but with a properly antisymmetrized wave func-

spin eigenstates corresponding to the two spin orientation®®"- o

along thez axis, we obtain the sdip;(q)} of M=2n spin Wlth the CI method,_the wave funcuon is expanded over

orbitals. a basis of Slater determinants, which guarantees proper anti-
With M=2n spin orbitals and two electrons, we can symmetrization. The basis functions are fixed and the un-

construcin(2n— 1) independent Slater determinafgse Eq. knowns are the coefficients of the expansion. If the basis

were completdcomprising an infinite number of spin orbit-

(10)]. In the expansion of Eq7), instead, we take into ac- ) X
count onlyn? Slater determinants, i.e., those composed oft!s), the solution would be exact and corresponding to that

spin orbitals with opposite spins that correspond to state§Ptainable by diagonalizing the many-body Hamiltonian. In
with zero total spin componer8, along thez axis. These order to make the problem computationally feasible, we must

states are, in general, linear combinations of the singlet stafénit the number of basis functions introducing, as a result,
|S=0,S,=0) and of the triplet statéS=1,S,=0). Since we some approximation. The difference between the solutions

are dealing with a spin-independent Hamiltonian, the triplePt@ined with the application of the Hartree—Fock method
states|S=1,S,=0), |S=1,5,=+1) are degenerate in en- and of the CI method can thus be summarized as follows:

ergy:; in addition, the corresponding wave functions have thdVith the former we get a single, optimized Slater determi-
same spatial part. Therefore, no information about the energ§@nt: While with the latter we obtain an expansion of the
eigenstates of the system is lost, if only one of the tripIetSOIunon over aflr_ute_ basis of Slater determinants which have
states is used to expand the wave function of @y. been chosera priori. In the presence of strong electron—
With the above mentioned restriction on the number ofl€ctron correlation, the wave function obtained by the ClI
Slater determinants, the matri is an n?xn? Hermitian method with the inclusion of a reasonable number of basis

matrix. We can choose the orbitajs to be real, thus making functions is e.xp.ected to be much cI_oser to the _exact solution
the matrixH real and symmetric. Finally we note tH&tis a than the optimized Slater determinant resulting from the
full matrix since thed,s, being 2<2 determinants, cannot Hartree—Fock method.
differ by more than two spin orbitals.

The choice of the set of orbita{®;} is of crucial impor-
tance, since the numberof orbitals required to get a satis- |v. RESULTS AND DISCUSSION
factory approximation of the ground state energy and the
corresponding wave function depends on it. We have useé
the single-electron eigenstates for an isolated cell as orbitals We start the presentation of the numerical results with
and we have found that with this basis 12 orbit@le., 24  the cell-to-cell response function obtained for a cell defined
spin orbitalg are sufficient to get good accuracy in the re-by a gate with four circular holes, for a choice of 4, 12, and
sults for cell sizes around 200 nm. In order to check the24 basis orbital§Fig. 6). Each cell is defined by holes with
validity of the approximation, we have also performed cal-a diameter of 90 nm, placed at the corners of a square, with
culations using 24 orbitals, finding that the results are praca distance of 110 nm between the hole centers. The applied
tically identical to those obtained with the smaller basis. Forgate bias is- 0.5V and the separation between the centers of
larger cell sizes, a larger number of orbitals would be necesthe two cells is 400 nm. We found that there is no significant
sary, because the electrostatic interaction would grow in imdifference between the results obtained with the three
portance compared to the confinement energy. Therefore, thahoices of basis elements. In some other cases we have no-
ground state wave function would deviate further from aticed a small difference between the response function cal-
single Slater determinant built with the single-electron orbit-culated with four basis orbitals and those for 12 and 24 or-

wheree= ¢, ¢y (Wheree, ande; are the relative permittivity

. Single gate configuration with four circular holes
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FIG. 6. Cell-to-cell response function obtained for a cell defined by a gate, 'ﬁ | with image charge - )
kept at—0.5V, with four 90 nm holes placed at the corners of a 110 nm = |
square. The depth of the 2DEG is 50 nm and the separation between the %‘ |
centers of the driven and the driver cells is 400 nm. The different symbols Pk §
indicate different numbers of basis functions. i 3
g -
> L
‘g
A I :
bitals, which were instead found to be practically identical. '1_1 0 1
All the results presented in the following have therefore been Driver cell polarization

obtained with a basis of 12 orbitals. G 8 Cel ! et btained 1 | defined b
; FIG. 8. Cell-to-cell response functions obtained for a cell defined by a gate,
An example of the electron densny, computed for full kept at—0.5V, with four 90 nm holes placed at the corners of a 110 nm

polarization, is reportEd in Fig. 7. The distance of the 2DEquuare. The separation between the centers of the two cells is 40@nm.
from the surface of the heterostructure plays an importantomparison between the response functions for different values of the

role and significantly affects the cell-to-cell response funC.ZDEG_depth(b) Comparispn betwegn the response functions obtained with
tion: the closer it lies to the surface, the higfar a given ~ 2"d Without the contribution of the image charges.

value of the bias voltagahe potential barriers separating the

dots in a cell are and as a result, the steeper and more abrupt

the response function is. This is the prevailing effect, evermhe image effects decrease the sharpness of the response
though it is partially compensated for by the screening actiofunction because the dipole moment of the driver cell is
of the surface, which reduces the cell-to-cell interaction andgcreened by its images.

increases with decreasing distance. As stated in Sec. |, we have applied our CI technique to

In Fig. 8@ we show a polarization curve which has assess the sensitivity of a two-cell structure to fabrication
been obtained for the same dot configuration as that in Fig. Golerances. First we considered giving one of the holes in the
but for different values of the 2DEG depth, from 45 to 55 gate a diameter slightly different from the others: this leads
nm. As expected, the polarization curve becomes smoothep a variation in the potential landscape defining the cell and,
for increasing depth of the 2DEG. The screening effect fromin particular, to a modification of the confinement energy
the gates can be appreciated by comparison with the resulggsociated with that dot. If we reduce the diameter of one of
obtained neglecting the contribution due to the images. Thighe holes, the confinement energy for the dot underneath will
is seen in Fig. &), where we report the cell-to-cell response rise by a certain amourdE. If SE is larger than the electro-
function for the previously considered gate geometry and fostatic splittingAE between the two cell configurations, the
a 2DEG depth of 50 nm, computed with and without imagescell will be stuck in a state with the smaller dot empty. For
SE<AE(, the cell will still be operational, but the cell-to-
cell response function will be shifted by an amount which
depends on the ratio &fE to AE. The strong nonlinearity
of the response function helps to restore the correct polariza-
tion value along a chain of cells, as long as the shift still
allows full polarization of the driven cell for full polarization
of the driver cell.

The tolerance on the hole diameter, admissible before
unrecoverable disruption of the operation of two coupled
cells occurs, is unfortunately very small: from our calcula-
tions it is about one part in 10000 for the dot sizes consid-
ered so far. Since the tolerance is determined by the interplay
between the electrostatic splitting energyhich has an in-
FIG. 7. Electron densityin arbitrary unit$ for a completely polarized cell verse linear dependence on the siaad the perturbation of

defined by a gate, kept at 0.5V, with four 90 nm holes placed at the the confinement ene_r%V_VhiCh has an inverse quadratic de-
corners of a 110 nm square. The depth of the 2DEG is 50 nm. pendence on the sizé will be even tighter for smaller cells.

Probability density (a.u.)
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FIG. 10. Cell-to-cell response functions obtained for a cell defined with the
seven-gate layout and a distance between cell centers of 280 nm. The gates
are kept at—1.8V, except for gates 2 and 6, which are kept-at.6 V.
Results for a depth of the 2DEG varying between 40 and 55 nm have been
reported.

the bottom left dot of the driven cell. For the rest, the cell
configuration is unchanged: a dot diameter of 90 nm, a dot—
dot separation within a cell of 110 nm and a distance be-
tween cell centers of 280 nm. Such a small displacement is
Driver cell polarization sufficient to significantly shift the response function; a 0.05

FIG. 9. Cell-to-cell response functions obtained for a cell defined by a gatel,qm shift leads already to the breakdown of cell operation.

kept at— 0.5 V, with four holes placed at the corners of a 110 nm square.

The bottom left hole has a diameter of 89.991 nm and the other three holeLg’
of 90 nm; the depth of the 2DEG is 50 nm. Results for three different values™ "
of the separation between the cell centers are reported, including the efiedP
of image chargessolid lineg or neglecting it(dashed lings (b) The four

holes have a diameter of 90 nm, but the bottom left hole has been movelcﬂiI
down and to the left by 0.0275 nm. ol

Driven cell polarization

Multiple independent gates with adjustable
ltages

From the results shown above, it is clear that a simple
e-array implementation of QCA cells leads to unrealiz-

able requirements on fabrication tolerances. This is the rea-

son why we have also investigated alternative gate layouts

In Fig. 9(a) we report the cell-to-cell response function sych as that sketched in Fig. 4. If dot confinement is obtained

for a gate configuration as previously described, with theyia multiple independent gates, it is indeed possible to com-

diameter of one of the dots reduced to 0.9999 times thgensate for geometrical tolerances by adjusting the gate volt-
nominal value. The depth of the 2DEG is assumed to be 5@ges.

nm and the three solid curves refer to different separations |n Fig. 10 we show the cell-to-cell response function for
between cell centers. It is clear that for a separation betwee cell defined with bias voltages of 1.8V applied to all

the centers greater than 280 nm, an error of one part igates, except for gates 2 and 6, which are fixed at6 V;
10000 will be sufficient to unrecoverably disrupt QCA op- these bias values have been chosen within a reasonable volt-
eration. For purposes of comparison, we have also reportegge range so as to get four clearly confined dots. The sepa-
the resultsdashed curvesobtained neglecting the contribu- ration between the centers of the driver and the driven cells
tion from the image charge§.e., the screening due to the js 280 nm. Also in this case, different depths for the 2DEG
gates and to the assumed Fermi level pinning at theave been considered: from 40 to 55 nm.

semiconductor—air interfage A cross section of the confinement potential, cut across

We have also investigated the sensitivity to errors in thehe two upper dots, is shown in Fig. 11 for a 2DEG at 35 nm
position of the gate holes. With a hard-wall modslich as

in Ref. 8 a small shift in the position of one hole would not

have a disrupting effect, since it would cause only a propor- 05—
tionately small variation of the electrostatic splitting and
would not affect the confinement energy in any way. With a
realistic model(as in Ref. 8 the situation is quite different:
the confinement potential for each dot is determined not only
by the corresponding hole, but also by the other holes be-
longing to the same cell. This means that by shifting a hole
away from its nominal position, the potential landscape de- ogal—
fining the dot underneath will be distorted, and the confine- 0 100 200

ment energy will change. As a consequence, cell operation Transverse coordinate (nm)

will be disrupted for unexpectedly small errors in hole pOSI_FIG. 11. Cross section of the confining potential obtained with the seven-

t?oning. m Fig. 9b) we report the qell-to-cell response func- gate layout, cut across the two upper dots, at a depth from the surface of 35
tion obtained for a 0.0275 nm shift down and to the left of nm (solid line), 45 nm(dotted ling, and 55 nm(dashed ling

046 .

042}

0.38

Confining potential (eV)
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1 ———— TABLE I. Values of the bias voltages to be applied to the gates defining the
é I +—38V=-005mV | geometrically asymmetric cell shown in Fig. 4, in order to symmetrize it.
E dv=oimv Gate Bias voltagéV)
ki —§V=02mV 9
=0 [ RN 1 Vv, —1.665577
8 : ] Vs —1.728 683
g @ ] A —1.845 800
E V, —1.800 000
1 — A S A —1.807 502
1 0 1 Ve —1.592 665
Driver cell polarization V7 —1.793715
1 '/-'* T T T
I ;:ig oy ] where the cell-to-cell response function is plotted for a volt-
«{‘jzﬂs nm ] age shift of—0.1 mV on gate 3 and various values of the
= z=60mm 1 2DEG depth ranging from 35 to 50 nm. The shift in the

response function decreases as the depth of the 2DEG in-
creases, and the effect of the image term becomes less im-

Driven cell polarization
=}
i

portant.
1 L L Fabrication tolerances would also disrupt the operation
1 0 1 of this type of cell, but they can be compensated for by fine
Driver cell polarization adjustments to the bias voltages applied at the gates. As an

example, we consider a cell with gate 3 shifted by 5 nm to

FIG. 12. Cell-to-cell response functions obtained for a cell defined with thethe right An iterative procedure was developed for comput-
seven-gate layout and for a distance between cell centers of 280 nm. The )

gates are kept at-1.8V, except for gates 2 and 6, which are kept at ing the new bias voltages that will resi[ore the Symmetry_ of
—1.6V, and gate 3, which is kept at1.8 V+ &V. (a) The depth of the the structure. For a perfectly symmetric structure there is a

2DEG is 50 nm and the results for three different values$éthave been  fourfold quasidegeneracy of the one-electron states, corre-
reported(b) The value oféV is —0.1 mV and results for different depths of sponding to the fourfold symmetry of the cell. When sym-
the 2DEG are shown. metry is disrupted, this quasidegeneracy is lifted, and the first
four eigenvalues differ from each other by an amount which
is no longer negligible. Our strategy is to evaluate the differ-
(solid line), 45 nm(dotted ling and 55 nm(dashed ling the  ence between the first and the fourth eigenvalue, and then
height of the barriers is relatively low, but their width guar- adjust each gate voltage in such a way as to minimize this
antees a low enough transparency for strong localization aflifference. We vary one gate voltage at a time, from gate 1 to
the electrons and thereby correct operation of the cell. gate 7(with the exception of gate 4, which does not affect
We have also investigated the dependence of the cell-tazell symmetry, and then repeat the cycle, starting again from
cell response function on electrical asymmetries, for the casgate 1, until the splitting between the first and the fourth
of a 2DEG 50 nm depth and a distance of 280 nm betweerigenvalue is smaller than an assigned threshold. In order to
the centers of the driver and the driven cell. For this purposeavoid getting stuck in local minima, it is convenient to per-
the voltage applied to gate 3 has been made slightly morform the whole minimization procedure several times, for
negative by an amoundV. The results for6V=—0.05, values of the displacement of gate 3 increasing with a geo-
—0.1-0.2mV are shown in Fig. X8). The most visible metric progression from 0.01 to 5 nm. Finally, small adjust-
effect is a shift in the cell-to-cell response function, which isments are made manually, until a symmetric cell-to-cell re-
somewhat proportional to the variation in the applied volt-sponse function is obtained. The gate voltages needed to
age. This does not disrupt the operation of a QCA chain, asymmetrize the cell are listed in Table I, while the cell re-
long as full polarization of one cell can produce full polar- sponse function for the symmetrized cell is shown in Fig. 13.
ization of the neighboring cell. Therefore, for this particular This demonstrates that a 10% error in the position of one of
cell, we expect a maximum tolerance on the gate voltages dhe gates can be fully compensated. State of the art fabrica-
about 0.4 mV. This may seem difficult to achieve at firsttion techniques allow geometrical tolerances of this order of
sight, but it is important to keep in mind that it is a shift magnitude or smaller, thus such a cell is actually manufac-
between gate biases: larger variations in the overall averagerable, although not useful for large scale applications
value of the gate voltages are allowed, as long as they do naethere it would be impossible to tune each cell separately. By
alter cell occupancy. acting on the gate voltages it is also possible to compensate
As previously mentioned, the screening effect due to thdor the presence of randomly distributed stray charges, which
gates and to the charge at the semiconductor—air interfacgould also disrupt QCA operation. We notice that the cell-
decreases the strength of the electrostatic interaction anth-cell response function of Fig. 13 is steeper than that for a
therefore, the energy splitting between the two possible celjeometrically symmetric cell with analogous parame(seg
polarizations. Hence, the effects of asymmetry decrease withig. 10. This is a consequence of a slight variation in the
increasing depth of the 2DEG, as the image effects are rebarrier heights and width&lue to the different applied volt-
duced. This phenomenon is clearly visible in Fig.(d2 ageg and of the exponential dependence of the tunneling
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l———— — single-electron states are strongly degenerate and the electro-
I ] static interaction is comparable to the confinement energy. A
Hubbard-like approach to QCA cells is also feasible and has
been shown to provide a qualitative understanding of the
underlying physic$,but requires a set of phenomenological
parameters such as of the on-site electrostatic interaction, the
I ] dot confinement energy and the tunneling energy, which can-
-1 EE— —— not be easily obtained from the geometrical structure and
’ from experiments. With the Cl method it is sufficient to de-
termine the confinement potential from the layer structure
FIG. 13. Cell-to-cell response functions obtained for a cell defined with theANd the gate layout. This is an important advantage that

seven-gate layout, a distance between cell centers of 280 nm, and a 2DE@akes simulations based on the Cl method a reliable and
depth of 50 nm. Gate 3 has been shifted to the right by 5 nm, and the biaéffective design tool
voltages are those listed in Table I, chosen to restore cell symmetry. )

Driven cell polarization
S
i

Driver cell polarization

A disadvantage of the Cl approach lies in the large com-
putational resources which are required, since the number of

coefficients between the dots on such barrier characteristic§.later determinants to be considered exhibits a combinatorial
A chain of such cells can be fabricated by repeating thig’ncrease with the number of electrons in the system. In this
same gate layout in the horizontal direction. However lateraP@Pe’, We have_presented r_esults for two _elec_tr(mQ_CA
branching, needed for the implementation of logic gatiss, cell Wlth_up to six electrons is currently being |nvest|galeq.
not allowed due to the lateral extension of the leads require§@iculations for a larger number of electrons would require
for feeding the bias voltages. From this point of view, a morePrehibitive memory sizegwell above 1 Gbytgor extremely

promising implementation would be that suggested by Cher"Png computation times.

and Porod? with central enhancement gates in each dot: b We have focused our investigation on the sensitivity to

adjusting the voltage of such a central gate it would be posf_abrlcatlon tolerances for two coupled QCA cells. Our results

sible to correct asymmetries, while keeping the possibility off€monstrate that the implementation of a simple hole-array

lateral branching. This implementation, however, poses serf2PProach is not feasible because it would require a precision

ous fabrication problems because of the difficulties involved” 1€ (]Jcllahmeter_of elach holbe thatl_lshwell bﬁyond the present
in separately contacting all of the central gates. state of the art In electron-beam lithograpny.

We emphasize that the compensation procedure de- We have proposeq an alternative cell I_ayout, based on
scribed above is not proposed as a practical method, bGEVEN 9ates, whose bias voltages can be independently ad-

rather our aim has been to demonstrate that compensation/i&Sted: this approach is within the capabilities of current fab-
possible in principle. In an actual experiment a different pro-”caf“_On technologies, since geometrical errors n the gate
cedure must be followed. One can, for example, look at th@0Sitions can be corrected by means of appropriate voltage
currents through the two uppgiowen dots by applying a varlat|ons. Adm|s§|ble vqltgge tolerancgg are rather small,
very small voltage between the upper lgéwer left) and the but achlevgble using resistive voltage dividers cooled down
upper right(lower right) outer portions of the 2DEG, current together with the sample. The apProaCh W€ propose s_hould
maxima will be detected when the chemical potential in bothlOW an experimental demonstration of the QCA principle,
dots lines up with that in the 2DEG. Gate voltages should bd"©™ @ single cell up to a chain of cells, but it is not suitable
iteratively adjusted in such a way as to obtain a maximum iligr the realization of logic gates due to the impossibility of
the currents through both pairs of dots. Once this is achieved?teral branching, which is prevented by the leads reaching

the system will be symmetrized, and the bias voltages be(_each gate. It is also impractical for large-scale integration

tween the different portions of the outer 2DEG can be re_due to the need for individual adjustment of each single cell.

moved. As a result of the symmetrization method we pro_Viable logic circuits will require drastically different solu-
pose, the total occupancy of the cell is not guaranteed to piions and new architectural concepts.

of just two electrons, but cell functionality will be preserved.

A detailed simulation of such a procedure is rather complex

and is beyond the scope of the present article; it will he\CKNOWLEDGMENTS
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We have shown that the Cl method allows us to solvefOr advanced nanoelectronic technolagy

the many-electron Schdinger equation for a QCA cell

made up of four coupled dots. This represents a definite ad-

vance over the state of the art ip the simulation of' multipleAPPENDlX A

guantum dot systems, it is possible to include realistic con-

finement potentials without resorting to some type of mean- The problem of computing the matrix elements of the
field approximation(local density approximation, Hartree— Hamiltonian in Eq.(3) between two Slater determinants is
Fock, Hartree—Fock—Roothaamhich fail to converge when  well known!® For the diagonal elements one finds:
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(@UAIPY=Z (o, INlen,)

1
+ z%: (<(Pnik€0njk|g| QDnik‘Pnjk>

_<<Pnik‘Pnjk|g|(Pnjk(Pnik>)u (A1)

where in general

(eiojlaleiem = f dgy dd, ¢ (1) @] (d2)g(ry,rp)

X @1(q1) @m(d2)- (A2)

As far as the computation of the off-diagonal matrix el-
ements of the Hamiltonian of E¢3) between two different
Slater determinantsd, ,®,/) is concerned, there are some
“selection rules” (Slater’s rule which state that there are
only two possible cases in whidib,|H|®,,) is not vanish-
ing, i.e., whend, ,®,. either differ by one single spin orbital
or by two:

(1) one spin-orbital differencegonikaﬁ gonik,)
<q)k|H|(Dk’>:<ﬁonik|h|@nik,>+j; (<Qonik9°njk|g|§0niky@njk>

_<‘Pnik¢’njk|g| QDnjk(Pnik,))i (A3)

(1) two spin-orbital differenceé<pnik¢ P and <pnjk¢ @n. )

ik’
(DYHIPy)=(en, @n, [dlen, @n, )~ (@n, @n, ldlen, on,.)-
(Ad)
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The expressions in Eq$A3) and (A4) refer to the case in
which the spin orbitals that are common to both Slater deter-
minants occur in the same columns. If this is not the case, it
is possible to perform a permutation of the columns of one
determinant so that the above condition is satisfied; the per-
mutation has the effect of changing the sign of the matrix
element if it is an odd order permutation.

Finally, it is worth noting that Eq9A1), (A3), and(A4)
are valid only if the orthonormality condition on the spin
orbitals is satisfied.
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