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Modeling and manufacturability assessment of bistable quantum-dot cells
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We have investigated the behavior of bistable cells made up of four quantum dots and occupied by
two electrons, in the presence of realistic confinement potentials produced by depletion gates on top
of a GaAs/AlGaAs heterostructure. Such a cell represents the basic building block for logic
architectures based on the concept of quantum cellular automata~QCA! and of ground state
computation, which have been proposed as an alternative to traditional transistor-based logic
circuits. We have focused on the robustness of the operation of such cells with respect to
asymmetries derived from fabrication tolerances. We have developed a two-dimensional model for
the calculation of the electron density in a driven cell in response to the polarization state of a driver
cell. Our method is based on the one-shot configuration-interaction technique, adapted from
molecular chemistry. From the results of our simulations, we conclude that an implementation of
QCA logic based on simple ‘‘hole arrays’’ is not feasible, because of the extreme sensitivity to
fabrication tolerances. As an alternative, we propose cells defined by multiple gates, where
geometrical asymmetries can be compensated for by adjusting the bias voltages. Even though not
immediately applicable to the implementation of logic gates and not suitable for large scale
integration, the proposed cell layout should allow an experimental demonstration of a chain of QCA
cells. © 1999 American Institute of Physics.@S0021-8979~99!04004-9#
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I. INTRODUCTION

Several proposals for the implementation of logic fun
tions and data processing based on the concept of qua
cellular automata~QCA! and ground state computation ha
appeared1–4 in the literature recently. Tougawet al.1 devised
an architecture~commonly known as ‘‘Notre Dame architec
ture’’! based on bistable cells that couple electrostatically
their nearest neighbors. Each cell consists of four~or five!
quantum dots and contains two electrons. In the absenc
external electric fields, the electrons occupy each dot w
equal probability. In the presence of a nearby~driver! cell
with the two electrons constrained to occupy the dots al
one of the two diagonals, alignment along the parallel di
onal will occur in the driven cell, in the hypothesis of pote
tial barriers large enough to localize the electrons. Based
this principle, it is possible to conceive of bistable cell a
rays, in which the polarization state enforced at the inputs
the edges of the arrays, propagates in a ‘‘domino’’ fashi5

until the ground state is reached throughout the system,
the results of the computation are available in the form of
polarization state of the output cells, also located at the ed
of the arrays.

Many issues must be resolved before this computatio
paradigm can be implemented in practice: noninvasive de
tors are needed to probe the polarization state of the out

a!Electronic mail: massimo@mercurio.iet.unipi.it
b!Present address: Max-Planck-Institut fu¨r Gravitationsphysik, Schlaatzwe

1, D-14473 Potsdam, Germany.
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without perturbing the ground state of the system; provis
must be made for a time evolution of the system that is b
fast and reliable; design solutions for the basic cell must
developed, yielding a reasonable robustness to fabrica
tolerances and compatible with large-scale integration o
single chip.

The focus of the work we are presenting is specifica
on the robustness of a single cell, coupled to a driver cell
fabrication tolerances and to asymmetries caused by fluc
tions in the bias voltages applied to the electrodes defin
the cell. In particular, we have studied the effect of geome
cal and electrical asymmetries on the behavior of QCA c
defined by means of lateral electrostatic confinement i
GaAs/AlGaAs heterostructure.

Although often neglected, robustness to fabrication t
erances and manufacturability are central problems affec
all proposed nanoelectronic devices,6 and their solution is a
prerequisite for any successful new technology.

We have considered a basic QCA cell with four quantu
dots defined by realistic two-dimensional~2D! confinement
potentials, which are computed from the shape of the m
gates at the surface of the heterostructure and the volt
applied to them. Calculation of the electron density in suc
2D artificial molecule is a challenging task. Iterative se
consistent methods fail to converge, due to the relativ
large electrostatic interaction and to the particular symm
tries associated with the problem. For this reason, we h
developed a noniterative technique based on
configuration-interaction~CI! method used in molecula
2 © 1999 American Institute of Physics
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chemistry.7 The main drawback of this technique is that
requires rather large computational resources and, thus
are presenting numerical results only for the case of oc
pancy of two electrons per cell.~Work is currently in
progress for the inclusion of up to six electrons per cell.!

With respect to the approaches in the literature,8 our
method allows a direct quantitative estimate of the effects
fabrication and bias tolerances on cell operation and does
require the introduction of phenomenological paramet
such as the tunneling energy, which may be hard to eval
with a realistic potential.

In Sec. II, we provide a detailed statement of the pro
lem we intend to solve and describe the cell model toge
with the technique we have used for the computation of
2D confinement potential. In Sec. III, the solution of th
many-body problem is discussed and the one-shot CI me
is introduced. Numerical results for a cell occupancy of t
electrons and various types of asymmetries are presente
Sec. IV, where cell design criteria are also established.

II. STATEMENT OF THE PROBLEM AND CELL MODEL

Our aim is to investigate the behavior of two coupl
QCA cells, each of which is formed by four quantum do
and contains two electrons, as illustrated in Fig. 1. Tunne
between the dots of the same cell is allowed, but not betw
dots belonging to different cells. If the barriers separating
dots within a cell are opaque enough, the electron wave fu
tions will be localized, and we shall observe a quasiclass
behavior: the two electrons will repel each other and loca
in two dots along a diagonal, so as to minimize the elec
static energy. In the case of an isolated, symmetric c
alignment along either diagonal will occur with equal pro
ability. If another~driver! cell is placed in proximity to the
cell we are investigating~driven cell!, as in the case repre
sented in Fig. 1, and the electrons in the driver cell are ta
to be aligned along a given diagonal, their electric field w
destroy the symmetry of the driven cell, lifting the dege
eracy between the two configurations. This will result in t
electrons in the driven cell lining up parallel to the electro
in the driver cell.

Following Lentet al.2 we define a cell polarizationP as

P[
~Q11Q3!2~Q21Q4!

Q11Q21Q31Q4
, ~1!

whereQi is the integral of the electron densityr~r ! over the
i th quadrant of a cell. We divide each cell into four qua
rants ~see Fig. 2! and number them counterclockwise. Th

FIG. 1. Schematic representation of two coupled QCA cells: tunneling
electrons is possible along the dashed lines.
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denominator of Eq.~1! is the total number of electrons in th
cell and therefore a constant. The procedure for calcula
the electron density from the many-electron wave functio
will be discussed in Sec. III.

If the two electrons are aligned along the diagonal c
responding to the first and third quadrant,P51, while if they
are aligned along the other diagonal,P521. For finite
height barriers, values ofP intermediate between21 and 1
are also possible. We define the cell-to-cell response func
as the function relating the polarization of the driven cell
that of the driver cell. In order to compute the polarization
the driven cell in response to each value of the polarizat
of the driver cell, we need to solve for the electronic stru
ture in the driven cell in the presence of the electrosta
potential due to the driver cell.

For the driven cell we consider a 2D model in the effe
tive mass approximation. Such a model is valid as long
the thickness of the dots in the vertical direction, correspo
ing to the thickness of the 2D electron gas~2DEG! from
which they are obtained by lateral confinement, is sm
compared to their other dimensions. The 2DEG is obtain
by modulation doping next to a GaAs/AlGaAs heterointe
face.

The 2D confinement potential in the plane of the 2DE
is obtained as a result of the action of the metal gates,
lowing the method proposed by Davieset al.,9,10 without in-
cluding ~to keep the problem manageable from a compu
tional point of view! the self-consistent rearrangement
mobile charge within the heterostructure, except for that
the two electrons confined in the cell. In other words, t
potential due to the gates is evaluated with the analyt
expressions described below and is used as the bare con
ment potential for the definition of a many-body Ham
tonian, whose ground state is then evaluated with
configuration-interaction method. The occupancy of the c
is fixed and corresponds to two electrons for all the num
cal results we will present. We assume Fermi level pinning
the surface of the semiconductor, so that the electro
electron interaction can be treated by the method
images,11 without requiring the solution of the Poisson equ
tion.

We have considered two basic gate configurations
the definition of the four quantum dots that make up a c
The first configuration, represented in Fig. 3, is rather sim
and straightforward: the four dots are a consequence of

f

FIG. 2. Subdivision of a cell into four quadrants.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp



th
ed
ar
fo

m

u
o

ro
th
o
F
s

. I

i
t
o

The

ch a
be-
the
e
lps
ue
ns

ns
ell
c-

itive

on
ll is
the
a-

tive
r-
on-
ro-
ult

elec-
ent
ive
so-
be
are

ten-
ck
e it-
cal-
or-
lly

b
tum

an

the
and
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circular holes in a depleting gate covering the surface of
heterostructure.12 The second configuration we have studi
is described in Fig. 4 and is more complex: the four dots
defined by a set of seven metal gates which create
minima in the 2D potential at the 2DEG level.

The contribution to the bare confinement potential fro
each gate is computed following the method developed
Refs. 9 and 10. The starting point is the well known res
that gives the potential inside the semiconductor in terms
its boundary values at the plane of the surface:

Vg~x,y,z!5
1

2p E
S

uzuVg~x8,y8,0!

~x2x8!21~y2y8!21z2 dx8dy8,

~2!

wherez is the vertical coordinate, orthogonal to the hete
structure layers, and the integration is performed over
gated surfaceS. Given the applied voltages and the shapes
the gates, the confining potential can be easily computed.
simple shapes one can derive more compact expression
performing some of the integrals in Eq.~2! analytically. For
the cases considered here, we have used Eq.~3.17! of Ref. 9
for gates with circular holes, and the equations in Secs
and IV of Ref. 10 for polygonal gates.

An example of the results obtained by this procedure
reported in Fig. 5: we show the confinement potential a
depth of 50 nm, produced by four holes with a diameter

FIG. 3. QCA cell obtained by depleting a two-dimensional electron gas
means of a metallic gate with four holes, which define the four quan
dots.

FIG. 4. Gate layout for the definition of four independently adjustable qu
tum dots; all distances are in nanometers.
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90 nm, with a distance between the centers of 110 nm.
gate voltage has been set at20.5 V, in order to obtain inter-
dot barriers of reasonable height.

Following Tougawet al.,8 a uniformly distributed posi-
tive background charge has been added to each cell. Su
charge does not alter the electrostatic energy splitting
tween the two cell configurations and plays a role, from
point of view of the cell-to-cell response function, only if th
two cells are very close to each other. In this case, it he
prevent alterations of the ground state of the driven cell d
to the combined electrostatic repulsion of the two electro
in the driver cell, which would tend to push both electro
into the two dots on the side further from the driver c
itself. In our model, this positive background would not a
tually be needed to achieve charge neutrality,8 which is al-
ready ensured by the presence of the gates and of pos
charges in the donor layer.

III. CONFIGURATION-INTERACTION METHOD

As already mentioned, the solution of a many-electr
problem in a potential such as that present in a QCA ce
rather challenging. Approaches that are typically used for
simulation of quantum dots, based on mean-field approxim
tions of the potential seen by each electron and on itera
procedures,13–17 fail to converge when applied to the fou
dot cell. We can understand the reason for this failure c
sidering that convergence of the self-consistent iterative p
cedures in this class of problems is more and more diffic
to achieve as the electrostatic interaction increases,18 and in
the presence of quasidegenerate states. As long as the
trostatic interaction is small compared to the confinem
energy, it is just a perturbation of the latter, and iterat
self-consistent procedures converge monotonically to the
lution. Otherwise, underrelaxation techniques need to
used, but they also often fail when closely spaced states
present, due to symmetries or quasisymmetries in the po
tial landscape: in this situation the charge will bounce ba
and forth between quasidegenerate states in consecutiv
erations, and convergence is never achieved. Since our
culations are currently performed at zero temperature, in
der to compare with experimental results that are typica

y

-

FIG. 5. Confinement potential at a depth of 50 nm from the surface of
heterostructure, produced by a gate with four holes of 90 nm diameter
placed at the corners of a 110 nm square.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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obtained in the tens of millikelvin range, techniques such
the Newton method~which are rather successful in the sol
tion of coupled Schro¨dinger–Poisson problems at finite tem
perature! cannot be successfully used due to the sharpnes
the Fermi function at low temperatures.

The technique we have implemented is based upon
approach often used in molecular chemistry,7 the CI method.
It consists of approximating theN electron wave function by
a finite linear combination of Slater determinants. Most i
portantly, the CI method is a one-shot method, i.e., it d
not involve an iterative calculation of the wave function
and, hence, does not suffer from the previously descri
convergence/oscillation problems.

In order to illustrate the CI method, let us consider anN
electron nonrelativistic Hamiltonian with a generic two-bo
interactiong(r i ,r j ):

Ĥ5Ĥ11Ĥ2 , ~3!

Ĥ15(
i 51

N S 2
\2

2m
¹ i

21V~r i ! D5(
i 51

N

h~r i !, ~4!

Ĥ25(
i , j

g~r i ,r j !,

with

g~r i ,r j !5g~r j ,r i !, ~5!

where\ is the reduced Planck constant andm is the effective
mass of the electron~we consider the case of gallium ar
enide, with m50.067m0 , where m0 is the free electron
mass!.

As we are concerned with confined systems, we can c
sider a numerable complete basis$w i(q)%, whereq5(r ,s)
includes both spatial and spin coordinates, over which
single-particle wave function can be expanded. In the follo
ing, we shall refer to thew is as spin orbitals. Using thi
basis, we build all the possible independent Slater dete
nants:

Fk5
1

AN! U wn1k
~q1! wn2k

~q1! . . . wnNk
~q1!

wn1k
~q2! wn2k

~q2! . . . wnNk
~q2!

. . . . . . . . . . . .

wn1k
~qN! wn2k

~qN! . . . wnNk
~qN!

U ,

~6!

where the indexk labels the Slater determinants and t
integer njk specifies which spin orbital appears in thej th
column of thekth Slater determinant.

The infinite set$Fk% is a complete orthonormal basis fo
the N electron eigenfunctions of the Hamiltonian in E
~3!;19 the i th eigenfunctionsC i can therefore be written as

C i5 (
k51

`

cikFk . ~7!

To find the eigenfunctions ofĤ, we must solve the secula
equation

Hci5Eici , ~8!
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where the infinite-dimensional ‘‘Hamiltonian matrix’’ is

Hkk85^FkuĤuFk8&5E Fk* ~Ĥ11Ĥ2!Fk8)
i 51

N

dqi , ~9!

Ei is the i th eigenvalue ofH, the vectorci is made up of the
coefficientscik and* dqi stands for integration over thei th
spatial coordinateand summation over spin orientations.

In practice, this approach cannot be implemented ‘‘e
actly’’ ~i.e., choosing a complete, infinite set of orthonorm
spin orbitals!. In our numerical work, we consider a finite s
of M spin orbitals$w j (q)%, with j 51¯M .

Given N electrons andM spin orbitals~with M>N!, it
is possible to buildNSD different Slater determinants, wher

NSD5S M
N D . ~10!

With this choice, the secular equation~8! becomes anNSD

3NSD Hermitian eigenvalue problem.
The number of nonzero matrix elements is less th

(NSD)2, because all the matrix elements between deter
nants differing by more than two spin orbitals do vanish, a
consequence of the selection rules~Slater’s rules7! presented
in Appendix A, where the general expressions for the e
ments ofH are also provided.

The total numberMNZ of nonzero matrix elements i
given by the following expression:

MNZ5S M
N D3F11S M2N

1 D S N
1 D1S M2N

2 D S N
2 D G

5S M
N D3S 11~M2N!N

1
~M2N!~M2N21!N~N21!

4 D . ~11!

Once the eigenvectors of Eq.~8! have been obtained, th
N electron wave functionC i can be computed from Eq.~7!,
and the corresponding electron density is simply given b

r i~r1!5N(
s1

E uC i~r1 ,s1 ,q2 ,¯ ,qN!u2dq2¯dqN ,

~12!

wheres1 represents the spin orientation coordinate.
Since we are going to present numerical results for a

occupancy of two electrons, we now focus our attention
the two-electron case. The Hamiltonian for the structure
der study can be written:

Ĥ52
\2

2 m
¹1

22
\2

2m
¹2

21Vcon~r1!1Vcon~r2!1Vdriv~r1!

1Vdriv~r2!1g~r1 ,r2!, ~13!

where Vcon is the confinement potential computed as d
scribed in Sec. II,Vdriv is the Coulomb potential due to th
charge distribution in the neighboring driver cell, an
g(r1 ,r2) is the two-body interaction. The two-body intera
tion includes the effects of image charges and is given b
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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g~r1 ,r2!5
1

4pe

e2

ur12r2u
2

1

4pe

e2

Aur12r2u21~2z!2

2
1

4pe

e2

2z
, ~14!

wheree5e re0 ~wheree r ande0 are the relative permittivity
of gallium arsenide and the vacuum permittivity, respe
tively! ande is the electron charge. This expression has b
obtained by taking one half of the electrostatic energy of
system made up of the electrons and their image coun
parts, since the energy stored in the image space is pu
fictitious. The last term of Eq.~14!, due to the interaction o
each electron with its own image, yields a constant shift
the energy spectrum.

To apply the CI method to the system described by
Hamiltonian in Eq.~13!, we start by choosing a set ofn
wave functions$c i(r )%. We shall refer to the$c i(r )%s as
orbitals, to distinguish them from the spin orbitals$w i(q)%.
By combining each of thec is with one of the two possible
spin eigenstates corresponding to the two spin orientat
along thez axis, we obtain the set$w i(q)% of M52n spin
orbitals.

With M52n spin orbitals and two electrons, we ca
constructn(2n21) independent Slater determinants@see Eq.
~10!#. In the expansion of Eq.~7!, instead, we take into ac
count only n2 Slater determinants, i.e., those composed
spin orbitals with opposite spins that correspond to sta
with zero total spin componentSz along thez axis. These
states are, in general, linear combinations of the singlet s
uS50,Sz50& and of the triplet stateuS51,Sz50&. Since we
are dealing with a spin-independent Hamiltonian, the trip
statesuS51,Sz50&, uS51,Sz561& are degenerate in en
ergy; in addition, the corresponding wave functions have
same spatial part. Therefore, no information about the ene
eigenstates of the system is lost, if only one of the trip
states is used to expand the wave function of Eq.~7!.

With the above mentioned restriction on the number
Slater determinants, the matrixH is an n23n2 Hermitian
matrix. We can choose the orbitalsc i to be real, thus making
the matrixH real and symmetric. Finally we note thatH is a
full matrix since theFks, being 232 determinants, canno
differ by more than two spin orbitals.

The choice of the set of orbitals$c i% is of crucial impor-
tance, since the numbern of orbitals required to get a satis
factory approximation of the ground state energy and
corresponding wave function depends on it. We have u
the single-electron eigenstates for an isolated cell as orb
and we have found that with this basis 12 orbitals~i.e., 24
spin orbitals! are sufficient to get good accuracy in the r
sults for cell sizes around 200 nm. In order to check
validity of the approximation, we have also performed c
culations using 24 orbitals, finding that the results are pr
tically identical to those obtained with the smaller basis. F
larger cell sizes, a larger number of orbitals would be nec
sary, because the electrostatic interaction would grow in
portance compared to the confinement energy. Therefore
ground state wave function would deviate further from
single Slater determinant built with the single-electron orb
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als, and would thus need to be expanded on a basis of S
determinants built from a larger set of single-electron wa
functions.

Let us briefly comment on the relationship of the so
tion obtained with this method to those obtained with oth
commonly used approaches for the self-consistent solutio
the electronic structure of quantum dots. In the Hart
method17 and in the local density functional approximatio
~LDA !,16 the exchange term is ignored or treated in an
proximate fashion, while the wave functions are obtained
each iteration as eigenfunctions of a modified Hamiltoni
When convergence is reached, the obtained wave funct
are the set of one-electron wave functions minimizing
expectation value of the approximate Hamiltonian.

In the case of the Hartree–Fock method20 the many-
electron wave function is represented by a single Slater
terminant, and when self-consistency is attained, the res
ing Slater determinant minimizes the expectation value
the Hamiltonian, as in the case of the Hartree and LD
methods, but with a properly antisymmetrized wave fun
tion.

With the CI method, the wave function is expanded ov
a basis of Slater determinants, which guarantees proper
symmetrization. The basis functions are fixed and the
knowns are the coefficients of the expansion. If the ba
were complete~comprising an infinite number of spin orbit
als!, the solution would be exact and corresponding to t
obtainable by diagonalizing the many-body Hamiltonian.
order to make the problem computationally feasible, we m
limit the number of basis functions introducing, as a res
some approximation. The difference between the soluti
obtained with the application of the Hartree–Fock meth
and of the CI method can thus be summarized as follo
with the former we get a single, optimized Slater determ
nant, while with the latter we obtain an expansion of t
solution over a finite basis of Slater determinants which h
been chosena priori. In the presence of strong electron
electron correlation, the wave function obtained by the
method with the inclusion of a reasonable number of ba
functions is expected to be much closer to the exact solu
than the optimized Slater determinant resulting from
Hartree–Fock method.

IV. RESULTS AND DISCUSSION

A. Single gate configuration with four circular holes

We start the presentation of the numerical results w
the cell-to-cell response function obtained for a cell defin
by a gate with four circular holes, for a choice of 4, 12, a
24 basis orbitals~Fig. 6!. Each cell is defined by holes with
a diameter of 90 nm, placed at the corners of a square,
a distance of 110 nm between the hole centers. The app
gate bias is20.5 V and the separation between the centers
the two cells is 400 nm. We found that there is no significa
difference between the results obtained with the th
choices of basis elements. In some other cases we have
ticed a small difference between the response function
culated with four basis orbitals and those for 12 and 24
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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bitals, which were instead found to be practically identic
All the results presented in the following have therefore be
obtained with a basis of 12 orbitals.

An example of the electron density, computed for f
polarization, is reported in Fig. 7. The distance of the 2DE
from the surface of the heterostructure plays an impor
role and significantly affects the cell-to-cell response fu
tion: the closer it lies to the surface, the higher~for a given
value of the bias voltage! the potential barriers separating th
dots in a cell are and as a result, the steeper and more a
the response function is. This is the prevailing effect, ev
though it is partially compensated for by the screening ac
of the surface, which reduces the cell-to-cell interaction a
increases with decreasing distance.

In Fig. 8~a! we show a polarization curve which ha
been obtained for the same dot configuration as that in Fig
but for different values of the 2DEG depth, from 45 to 5
nm. As expected, the polarization curve becomes smoo
for increasing depth of the 2DEG. The screening effect fr
the gates can be appreciated by comparison with the re
obtained neglecting the contribution due to the images. T
is seen in Fig. 8~b!, where we report the cell-to-cell respon
function for the previously considered gate geometry and
a 2DEG depth of 50 nm, computed with and without imag

FIG. 6. Cell-to-cell response function obtained for a cell defined by a g
kept at20.5 V, with four 90 nm holes placed at the corners of a 110
square. The depth of the 2DEG is 50 nm and the separation betwee
centers of the driven and the driver cells is 400 nm. The different sym
indicate different numbers of basis functions.

FIG. 7. Electron density~in arbitrary units! for a completely polarized cell
defined by a gate, kept at20.5 V, with four 90 nm holes placed at th
corners of a 110 nm square. The depth of the 2DEG is 50 nm.
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The image effects decrease the sharpness of the resp
function because the dipole moment of the driver cell
screened by its images.

As stated in Sec. I, we have applied our CI technique
assess the sensitivity of a two-cell structure to fabricat
tolerances. First we considered giving one of the holes in
gate a diameter slightly different from the others: this lea
to a variation in the potential landscape defining the cell a
in particular, to a modification of the confinement ener
associated with that dot. If we reduce the diameter of one
the holes, the confinement energy for the dot underneath
rise by a certain amountdE. If dE is larger than the electro
static splittingDEC between the two cell configurations, th
cell will be stuck in a state with the smaller dot empty. F
dE,DEC , the cell will still be operational, but the cell-to
cell response function will be shifted by an amount whi
depends on the ratio ofdE to DEC . The strong nonlinearity
of the response function helps to restore the correct polar
tion value along a chain of cells, as long as the shift s
allows full polarization of the driven cell for full polarization
of the driver cell.

The tolerance on the hole diameter, admissible bef
unrecoverable disruption of the operation of two coup
cells occurs, is unfortunately very small: from our calcu
tions it is about one part in 10 000 for the dot sizes cons
ered so far. Since the tolerance is determined by the inter
between the electrostatic splitting energy~which has an in-
verse linear dependence on the size! and the perturbation o
the confinement energy~which has an inverse quadratic d
pendence on the size! it will be even tighter for smaller cells

e,

the
ls

FIG. 8. Cell-to-cell response functions obtained for a cell defined by a g
kept at20.5 V, with four 90 nm holes placed at the corners of a 110 n
square. The separation between the centers of the two cells is 400 nm~a!
Comparison between the response functions for different values of
2DEG depth.~b! Comparison between the response functions obtained w
and without the contribution of the image charges.
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In Fig. 9~a! we report the cell-to-cell response functio
for a gate configuration as previously described, with
diameter of one of the dots reduced to 0.9999 times
nominal value. The depth of the 2DEG is assumed to be
nm and the three solid curves refer to different separati
between cell centers. It is clear that for a separation betw
the centers greater than 280 nm, an error of one par
10 000 will be sufficient to unrecoverably disrupt QCA o
eration. For purposes of comparison, we have also repo
the results~dashed curves! obtained neglecting the contribu
tion from the image charges~i.e., the screening due to th
gates and to the assumed Fermi level pinning at
semiconductor–air interface!.

We have also investigated the sensitivity to errors in
position of the gate holes. With a hard-wall model~such as
in Ref. 8! a small shift in the position of one hole would n
have a disrupting effect, since it would cause only a prop
tionately small variation of the electrostatic splitting a
would not affect the confinement energy in any way. With
realistic model~as in Ref. 8! the situation is quite different
the confinement potential for each dot is determined not o
by the corresponding hole, but also by the other holes
longing to the same cell. This means that by shifting a h
away from its nominal position, the potential landscape
fining the dot underneath will be distorted, and the confi
ment energy will change. As a consequence, cell opera
will be disrupted for unexpectedly small errors in hole po
tioning. In Fig. 9~b! we report the cell-to-cell response fun
tion obtained for a 0.0275 nm shift down and to the left

FIG. 9. Cell-to-cell response functions obtained for a cell defined by a g
kept at20.5 V, with four holes placed at the corners of a 110 nm square~a!
The bottom left hole has a diameter of 89.991 nm and the other three h
of 90 nm; the depth of the 2DEG is 50 nm. Results for three different va
of the separation between the cell centers are reported, including the e
of image charges~solid lines! or neglecting it~dashed lines!. ~b! The four
holes have a diameter of 90 nm, but the bottom left hole has been m
down and to the left by 0.0275 nm.
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the bottom left dot of the driven cell. For the rest, the c
configuration is unchanged: a dot diameter of 90 nm, a d
dot separation within a cell of 110 nm and a distance
tween cell centers of 280 nm. Such a small displacemen
sufficient to significantly shift the response function; a 0.
nm shift leads already to the breakdown of cell operation

B. Multiple independent gates with adjustable
voltages

From the results shown above, it is clear that a sim
hole-array implementation of QCA cells leads to unreal
able requirements on fabrication tolerances. This is the
son why we have also investigated alternative gate layo
such as that sketched in Fig. 4. If dot confinement is obtai
via multiple independent gates, it is indeed possible to co
pensate for geometrical tolerances by adjusting the gate v
ages.

In Fig. 10 we show the cell-to-cell response function f
a cell defined with bias voltages of21.8 V applied to all
gates, except for gates 2 and 6, which are fixed at21.6 V;
these bias values have been chosen within a reasonable
age range so as to get four clearly confined dots. The s
ration between the centers of the driver and the driven c
is 280 nm. Also in this case, different depths for the 2DE
have been considered: from 40 to 55 nm.

A cross section of the confinement potential, cut acr
the two upper dots, is shown in Fig. 11 for a 2DEG at 35 n

e,

les
s

ect

ed

FIG. 10. Cell-to-cell response functions obtained for a cell defined with
seven-gate layout and a distance between cell centers of 280 nm. The
are kept at21.8 V, except for gates 2 and 6, which are kept at21.6 V.
Results for a depth of the 2DEG varying between 40 and 55 nm have b
reported.

FIG. 11. Cross section of the confining potential obtained with the sev
gate layout, cut across the two upper dots, at a depth from the surface
nm ~solid line!, 45 nm~dotted line!, and 55 nm~dashed line!.
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~solid line!, 45 nm~dotted line! and 55 nm~dashed line!: the
height of the barriers is relatively low, but their width gua
antees a low enough transparency for strong localization
the electrons and thereby correct operation of the cell.

We have also investigated the dependence of the cel
cell response function on electrical asymmetries, for the c
of a 2DEG 50 nm depth and a distance of 280 nm betw
the centers of the driver and the driven cell. For this purpo
the voltage applied to gate 3 has been made slightly m
negative by an amountdV. The results fordV520.05,
20.1,20.2 mV are shown in Fig. 12~a!. The most visible
effect is a shift in the cell-to-cell response function, which
somewhat proportional to the variation in the applied vo
age. This does not disrupt the operation of a QCA chain
long as full polarization of one cell can produce full pola
ization of the neighboring cell. Therefore, for this particu
cell, we expect a maximum tolerance on the gate voltage
about 0.4 mV. This may seem difficult to achieve at fi
sight, but it is important to keep in mind that it is a sh
between gate biases: larger variations in the overall ave
value of the gate voltages are allowed, as long as they do
alter cell occupancy.

As previously mentioned, the screening effect due to
gates and to the charge at the semiconductor–air inter
decreases the strength of the electrostatic interaction
therefore, the energy splitting between the two possible
polarizations. Hence, the effects of asymmetry decrease
increasing depth of the 2DEG, as the image effects are
duced. This phenomenon is clearly visible in Fig. 12~b!,

FIG. 12. Cell-to-cell response functions obtained for a cell defined with
seven-gate layout and for a distance between cell centers of 280 nm
gates are kept at21.8 V, except for gates 2 and 6, which are kept
21.6 V, and gate 3, which is kept at21.8 V1dV. ~a! The depth of the
2DEG is 50 nm and the results for three different values ofdV have been
reported.~b! The value ofdV is 20.1 mV and results for different depths o
the 2DEG are shown.
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where the cell-to-cell response function is plotted for a vo
age shift of20.1 mV on gate 3 and various values of th
2DEG depth ranging from 35 to 50 nm. The shift in th
response function decreases as the depth of the 2DEG
creases, and the effect of the image term becomes less
portant.

Fabrication tolerances would also disrupt the operat
of this type of cell, but they can be compensated for by fi
adjustments to the bias voltages applied at the gates. A
example, we consider a cell with gate 3 shifted by 5 nm
the right. An iterative procedure was developed for comp
ing the new bias voltages that will restore the symmetry
the structure. For a perfectly symmetric structure there i
fourfold quasidegeneracy of the one-electron states, co
sponding to the fourfold symmetry of the cell. When sym
metry is disrupted, this quasidegeneracy is lifted, and the
four eigenvalues differ from each other by an amount wh
is no longer negligible. Our strategy is to evaluate the diff
ence between the first and the fourth eigenvalue, and t
adjust each gate voltage in such a way as to minimize
difference. We vary one gate voltage at a time, from gate 1
gate 7~with the exception of gate 4, which does not affe
cell symmetry!, and then repeat the cycle, starting again fro
gate 1, until the splitting between the first and the fou
eigenvalue is smaller than an assigned threshold. In orde
avoid getting stuck in local minima, it is convenient to pe
form the whole minimization procedure several times,
values of the displacement of gate 3 increasing with a g
metric progression from 0.01 to 5 nm. Finally, small adju
ments are made manually, until a symmetric cell-to-cell
sponse function is obtained. The gate voltages neede
symmetrize the cell are listed in Table I, while the cell r
sponse function for the symmetrized cell is shown in Fig.
This demonstrates that a 10% error in the position of one
the gates can be fully compensated. State of the art fabr
tion techniques allow geometrical tolerances of this order
magnitude or smaller, thus such a cell is actually manuf
turable, although not useful for large scale applicatio
where it would be impossible to tune each cell separately.
acting on the gate voltages it is also possible to compen
for the presence of randomly distributed stray charges, wh
would also disrupt QCA operation. We notice that the ce
to-cell response function of Fig. 13 is steeper than that fo
geometrically symmetric cell with analogous parameters~see
Fig. 10!. This is a consequence of a slight variation in t
barrier heights and widths~due to the different applied volt
ages! and of the exponential dependence of the tunnel

e
he

TABLE I. Values of the bias voltages to be applied to the gates defining
geometrically asymmetric cell shown in Fig. 4, in order to symmetrize i

Gate Bias voltage~V!

V1 21.665 577
V2 21.728 683
V3 21.845 800
V4 21.800 000
V5 21.807 502
V6 21.592 665
V7 21.793 715
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coefficients between the dots on such barrier characteris
A chain of such cells can be fabricated by repeating t
same gate layout in the horizontal direction. However late
branching, needed for the implementation of logic gates,1 is
not allowed due to the lateral extension of the leads requ
for feeding the bias voltages. From this point of view, a mo
promising implementation would be that suggested by C
and Porod,12 with central enhancement gates in each dot:
adjusting the voltage of such a central gate it would be p
sible to correct asymmetries, while keeping the possibility
lateral branching. This implementation, however, poses s
ous fabrication problems because of the difficulties involv
in separately contacting all of the central gates.

We emphasize that the compensation procedure
scribed above is not proposed as a practical method,
rather our aim has been to demonstrate that compensati
possible in principle. In an actual experiment a different p
cedure must be followed. One can, for example, look at
currents through the two upper~lower! dots by applying a
very small voltage between the upper left~lower left! and the
upper right~lower right! outer portions of the 2DEG, curren
maxima will be detected when the chemical potential in b
dots lines up with that in the 2DEG. Gate voltages should
iteratively adjusted in such a way as to obtain a maximum
the currents through both pairs of dots. Once this is achie
the system will be symmetrized, and the bias voltages
tween the different portions of the outer 2DEG can be
moved. As a result of the symmetrization method we p
pose, the total occupancy of the cell is not guaranteed to
of just two electrons, but cell functionality will be preserve
A detailed simulation of such a procedure is rather comp
and is beyond the scope of the present article; it will
presented elsewhere.

V. CONCLUSIONS

We have shown that the CI method allows us to so
the many-electron Schro¨dinger equation for a QCA cel
made up of four coupled dots. This represents a definite
vance over the state of the art in the simulation of multi
quantum dot systems, it is possible to include realistic c
finement potentials without resorting to some type of me
field approximation~local density approximation, Hartree
Fock, Hartree–Fock–Roothaan! which fail to converge when

FIG. 13. Cell-to-cell response functions obtained for a cell defined with
seven-gate layout, a distance between cell centers of 280 nm, and a 2
depth of 50 nm. Gate 3 has been shifted to the right by 5 nm, and the
voltages are those listed in Table I, chosen to restore cell symmetry.
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single-electron states are strongly degenerate and the ele
static interaction is comparable to the confinement energy
Hubbard-like approach to QCA cells is also feasible and
been shown to provide a qualitative understanding of
underlying physics,8 but requires a set of phenomenologic
parameters such as of the on-site electrostatic interaction
dot confinement energy and the tunneling energy, which c
not be easily obtained from the geometrical structure a
from experiments. With the CI method it is sufficient to d
termine the confinement potential from the layer struct
and the gate layout. This is an important advantage
makes simulations based on the CI method a reliable
effective design tool.

A disadvantage of the CI approach lies in the large co
putational resources which are required, since the numbe
Slater determinants to be considered exhibits a combinato
increase with the number of electrons in the system. In
paper, we have presented results for two electrons.~A QCA
cell with up to six electrons is currently being investigate!
Calculations for a larger number of electrons would requ
prohibitive memory sizes~well above 1 Gbyte! or extremely
long computation times.

We have focused our investigation on the sensitivity
fabrication tolerances for two coupled QCA cells. Our resu
demonstrate that the implementation of a simple hole-ar
approach is not feasible because it would require a preci
in the diameter of each hole that is well beyond the pres
state of the art in electron-beam lithography.

We have proposed an alternative cell layout, based
seven gates, whose bias voltages can be independently
justed, this approach is within the capabilities of current fa
rication technologies, since geometrical errors in the g
positions can be corrected by means of appropriate volt
variations. Admissible voltage tolerances are rather sm
but achievable using resistive voltage dividers cooled do
together with the sample. The approach we propose sh
allow an experimental demonstration of the QCA princip
from a single cell up to a chain of cells, but it is not suitab
for the realization of logic gates due to the impossibility
lateral branching, which is prevented by the leads reach
each gate. It is also impractical for large-scale integrat
due to the need for individual adjustment of each single c
Viable logic circuits will require drastically different solu
tions and new architectural concepts.
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APPENDIX A

The problem of computing the matrix elements of t
Hamiltonian in Eq.~3! between two Slater determinants
well known.19 For the diagonal elements one finds:
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where in general

^w iw j uguw lwm&5E dq1 dq2 w i* ~q1!w j* ~q2!g~r1 ,r2!

3w l~q1!wm~q2!. ~A2!

As far as the computation of the off-diagonal matrix e
ements of the Hamiltonian of Eq.~3! between two different
Slater determinants (Fk ,Fk8) is concerned, there are som
‘‘selection rules’’ ~Slater’s rules7! which state that there ar
only two possible cases in whicĥFkuĤuFk8& is not vanish-
ing, i.e., whenFk ,Fk8 either differ by one single spin orbita
or by two:

~1! one spin-orbital difference(wnik
Þwnik8

)

^FkuĤuFk8&5^wnik
uhuwnik8

&1(
jÞi

~^wnik
wnjk

uguwnik8
wnjk

&

2^wnik
wnjk

uguwnjk
wnik8

&!, ~A3!

~1! two spin-orbital difference(wnik
Þwnik8

andwnjk
Þwnjk8

!

^FkuĤuFk8&5^wnik
wnjk

uguwnik8
wnjk8

&2^wnik
wnjk

uguwnjk8
wnik8

&.
~A4!
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The expressions in Eqs.~A3! and ~A4! refer to the case in
which the spin orbitals that are common to both Slater de
minants occur in the same columns. If this is not the case
is possible to perform a permutation of the columns of o
determinant so that the above condition is satisfied; the
mutation has the effect of changing the sign of the ma
element if it is an odd order permutation.

Finally, it is worth noting that Eqs.~A1!, ~A3!, and~A4!
are valid only if the orthonormality condition on the sp
orbitals is satisfied.
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