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Antireflection coatings from analogy between electron scattering
and spin precession
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We use the analogy between scattering of a wave from a potential, and the precession of a spin-half
particle in a magnetic field, to gain insight into the design of an antireflection coating for electrons
in a semiconductor superlattice. It is shown that the classic recipes derived for optics are generally
not applicable due to the different dispersion law for electrons. Using the stability conditions we
show that a Poisson distribution of impedance steps is a better approximation than is a Gaussian
distribution. Examples are given of filters with average transmissivity exceeding 95% over an
allowed band. ©2003 American Institute of Physic§DOI: 10.1063/1.1559942

I. INTRODUCTION developed theory would apply to electrons, or else they sim-
ply guessed at how to proceed.
Antireflection coating$ARC) are of great importance in The aim of the present article is threefold. First of all, we

many areas. In optics the aim is to maximize the transmisdraw attention to an interesting analogy betwé&ga particle

sion of visible light through lenses by applying coatings with scattering in a one-dimensional potential gid a spin-half
suitable indices of refraction on both surfaces. For micro-system precessing in a magnetic field. Second, we use this
wave transmission, the analogous problem is to minimizénalogy to give a simple and intuitive explanation of how an
reflection at a junction between two sections of waveguideimpedance transformer, and consequently a bandpass filter,
by means of an impedance transformer consisting of section¥0rks. While such a picture does not entirely dispense with
of varying cross-section. Solutions for these problems werdhe ingenious calculations underlying the classical recipes for
worked out in the 1950’s and can be found in many bookPRC cells and impedance transformers, it certainly provides

and reviews. of which we cite some representativei”Sight to the crucial issues involved. In particular, it leads to
exampled® the concept of stability conditions and their role in defining

Recently Gornik's group in Vienri& have studied the the garamf?gers OI %N-tgell ARtC.'d - N .
analogous problem of constructing an energy bandpass filtey. ur third contribution 1s to 1den ify the most importan .
; . . _gifference between bandpass filters for electrons and their
for electrons in a semiconductor heterostructure. In a ﬂrscounter arts in optics. This leads us to bropose a simple
paper they demonstrated a single-cell ARC, which raised th P pHCS. brop P

L . 0 ?nodel, called the linear model, which is similar to the true
transmissivity through a superlattice to about 80% across thSituation for electrons in semiconductor superlattices. We
lowest-allowed band. In further work they proposed a

) . ) solve this model analytically, and show that the resulting
double-cell device with even better properties. We have degier is very different from the well-known Butterworth or

rived exact criteria for optimizing the properties of a single- pinomial filter of optics or microwave engineering. As a
cell ARC? practical application, our method is applied to the device of
The problem of constructing a passband filter for elecpacheret al. and Coqueliret al.” We find that their trans-

trons has been discussed by several groups. Gaylord amfissivity could be significantly improved by following our
collaborator&®* very early wrote a series of papers propos-method.

ing to take over the well-established solutions from optics

and microwaves. Chang and Kdaranslated the Gaylord
approach into the language of impedance transformers. Tu
and Leé® and later Gomeet al* considered a rather differ-
ent filter based on a Gaussian distribution of barrier  |n the single-band envelope function approximation, the
strengths. Yang and Hi extended this approach by using a electron wave function satisfies the Safirmer equation in
variety of different distributions, but with no underlying a real potential and with an energy- and position-dependent
theory as to why these might or might not work. In other (rea) effective mas® m* (E,x)

words, previous approaches have either relied on the similar-
ity to optical and microwave ARCs, assuming that this well-

P TRANSFER MATRIX

V(x,t)=e "F"y(x)

d®y(x)
a2 Tz [E-V]g(x)=0

3E|ectronic mail: dwsprung@mcmaster.ca
0021-8979/2003/93(8)/4395/12/$20.00 4395 © 2003 American Institute of Physics

Downloaded 09 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



4396 J. Appl. Phys., Vol. 93, No. 8, 15 April 2003 Sprung, Morozov, and Martorell

— _alBqj 1 —M*
K2(x) = i—Tm*(E,x)[E—V(x)]. n My =—€'Fsing sinhu=M7,. (7
The symmetric cell corresponds to the special c#se
The time-reversed spatial wave function/i§(x). Con- =+ m/2. For the moment we confine our attention to sym-
sider a potential cell, placed d<x<d. Outside the cell, metric cells for which we write

assuming zero potentiak becomes constant and we may

write the wave function in the form M d)( 1 0) o ¢(cosh,u —sinhu
=Cos —isin .
p(x)=ae Kord | pemikicrd) o g 0 1 sinhu  —coshu
) =cos¢l—isingpU(2u),
—a’etik-d) | premikx-d)  y= 4 g
with  U(2u)=coshuo,—i sinhuoy=o0-1, (8

The amplitudes on opposite sides of a cell are related by

wheren is a (comple® unit vector in theY Z plane. The
a’ meaning of this becomes evident if we wrjie=i », giving
b/

a
b

:(Mll M12 (3)

M21 M22

M=e =R, (2¢),
which defines our transfer matril. It has the properties
detM=1, and through T =2 cos¢, defines the Bloch
phase associated with a periodic array of identical cells.
For a scattering problem with incident wave from the We recognizeR, as the operator which rotates a spin-1/2
left, a=1, b=r_=r; a’=t, =t, b’ =0, one easily sees that System by angle & around the axig,*® which in this in-

where o,=0-n=cosno,+siny o, . 9

the first column ofM is given by stance lies in th& Z plane. For asymmetric cells, the axis of
rotation has azimuthal angfeé The axis of rotation is imagi-
1 r nary, but this does not invalidate the analogy.
Mllzfv lezf- (4) Now consider an array of cells which need not be iden-

tical. The transfer matrix for thpth cell is of the same form

The second column d¥l is determined by conservation as Eq.(8), with parametersp, and u,=i7,. It can be fac-
of flux, and by the corresponding equation for incidentigrized as follows:

waves from the right, with amplitudes denoted=r"',tg

=t’. For a general potential, one can show ttiatt, and M .= et i(1p2oxa=idpoza=i(np/2)oy
r'/t’=—r*/t*. The result is P
EY(Mp)P(¢p)Y(_Mp)- (10)
1 _ l 1 Z Y(w) is associated with a step-up in impedance from zero to
t t’ t ot w. The factors can be interpreted as follows. The top line is a
M= = (5) rotation operator acting to the right on a ket. The spin-half

r 1 r4 system is rotated around OX by angig,, so an axis in-
tt* t t* clined initially at angles,, lines up along OZ. Then the

. . o . ) system is rotated by angtg, around OZ, and finally rotation
without assuming parity invariance. Time reversal symmetry. . T

" * around OX by angle- , restores the axis to its initial po-
alone maked ;,=M3, andM ;= M3,.

. . . . sition. The net effect is a rotation of the whole system by
For a potential with reflection symmetry the additional | d th is of . . d | |
ropertyr s=r, holds, which makeM ,= — M =M%, pure angle ¢, around t e axis of rotation oriented at polar angle
Propertyrp=r, nolds, 12 22l 7, In the second line, a system consisting of left/right mov-
imaginary. Following Kard, for a symmetric cell we can

introduce a parametrization . valid in an allowed band ing waves is acted on by a transfer matrix. The first factor
eap 0 ' 0 lowers the impedance by, ; then it propagates freely accu-

M1,=cos¢—i sing coshu=M3,, mulating phase+ ¢, on the upper/lower components, and
finally the impedance is restored to its original value. The net
M= —ising sinhu=M?%,, where effect is the same as propagating at an average impedgnce

and accumulating the same phase.
1 In this analogy, a wave traveling to the right, outside the
CoS¢p= z'|'r M=ReM,;, and tanbu=ImM,;/ImM;. array, corresponds to a spin-(gdong OZ state, and a wave
traveling to the left, to a spin-down state. When a right-
6) moving state encounters a potential, it is partly transmitted
This form respects the relation<l1/|t|>=1+sir? ¢sintff . and partly reflected. Analogously a spin-up state placed in a
as well as detM=1, but applies only in an allowed miniband magnetic field oriented at polar angigwill precess around
where the Bloch phasé is reall’ We call . the impedance the field direction, thereby acquiring some spin-dofwe-
parameter, because in the case of a square etlis the flected wave component. For a symmetric potential cell, the
impedance, the ratio of velocity outside to inside the Well. magnetic-field direction lies in th¥ Z plane. For a general
For an arbitrary cell, a different phageoccurs on the cell, the polar angle is the same, but the azimuthal anghe is
off-diagonal elements The asymmetric system differs only by a rotation around OZ.
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the semiconductor case unless significant modifications are
made. These lead to the conclusion that a Poisson distribu-
tion of the impedance steps between cells is more appropri-
ate than is a Gaussian recipe.

For an electron in the conduction band, a layered hetero-
structure acts as a series of nonoverlapping potential cells. A
cell can contain any number of homogeneous layers, or may
even be continuously graded. No matter how complicated the
potential(or the effective magsnay be, the scattering prop-
erties of a single cell are described by just tar three
energy-dependent parametefg. (and g3).

As discussed in Ref. 9, the first step in designing an

0 02 04 o.l:e 08 ] energy bandpass filter is to find a cell with an allowed mini-
FIG. 1. Pseudospin path viewed from above for a periodic system withd@nd covering the desired energy range. If it is the lowest-
ux=0.5N=7. allowed band, then cas(E,)=1 and cosp(E,))=—1 at the

lower- and upper-band edges. By placing a numkeof
} ) . i _such cells together, a well-defined miniband will be obtained
This analogy is very helpful in seeing how a system will \yith essentially zero transmission outside the allowed band.
respond to a sequence of potential cells. For identical cell§ ihe cell is symmetric, any number of them will also be
7p= 1 $p= ¢, the rotations are all about the same axis. Theeflection symmetric, and the transfer matha$ for this
spin precesses on a cone whose polar anglg e cone  array will be described by just two parametess, and ¢y .
intersects the sphere in a circle. Viewed from above the unit  aAn ARC consists of an additional potentia)(x) placed
sphere, the spin moves on a circle centereg.dt there are 4 gne side oK and its reflectiorv Z(x) on the other side.
N such cells, the total angle of rotation will bN&. The  The corresponding transfer matrices will be denotednd
condition for perfect transmission is that the spin state bey« According to the spin analogyA rotates the spin by
returned to lie along OZ; this requireNZ=2mm wherem  gngje 25, about an axis specified by its impedance param-
is an integer. Within an 'allowed band, the Bloch phase INeters u, and B,. For simplicity consider the case where
creases by, so the possible values ame=1,2,.. N=1. An  oth X andA are symmetric cells. Then the axes of rotation
array ofN identical cells will showN—1 narrow resonances poth lie in theY Z plane. At an arbitrary energy in the al-
in each allowed bantf. They are narrow, for when the en- o yeqd band, ifA rotates the initial spin-up state by angte
ergy is varied slightly, changing—¢—e, the total phase it wj|l pe converted to a state whose spin is oriented along
changes by Re, which quickly moves off the resonance another radius in th¥ Z plane. By choosingia= uy/2, the
condition. This situation is illustrated in Fig. 1 for an array of haw orientation of the spin state will coincide with the direc-
seven cells, and fom=1; the phase angle is off resonance oy ;. . Passing through the potential celsalters the spin
by 1%. One is looking down on the surface of the sphere;;,ie only by a phase facter ¢y, because the new state is
from a point above the center of the circle. The radial linesy, eigenstate of spin along this direction.
mark off sectors of angular width¢2~2/7. Rotation by angler means thatp,= /2, so that the
I the cells are not identical, but the impedance paramuRrc celly, must be a Bragg reflector at the desired energy.
etersy, are close, then the sequence of rotations will be onrpjs js the solution obtained in Ref. 9. The downstream ARC
arcs of circles whose centers jump fa_tbout. Sc_) long as thesgy A™ then rotates the spin state back to lie along OZ,
jumps are small co.mpar.ed to t.he radii of the circles, the tOta}epresenting a wave moving purely to the right, and giving
angle of rotation will be just twice the sum of the angis.  perfect transmission. The path followed by the pseudospin
The behavior of the array will then be similar to a strictly state is jllustrated in Fig.(@). It does not matter how many
per|<_)d|c array. It will still windN times ground a closed path, g5 of typeX there are, because once the state is aligned
coming more or less close to the origat OZ) once on each  5ong the directionuy it is in a spin eigenstate along that
t_raversal. We W|II_ have similar behavior to the case of iden-gjrection, and precession gives just an overall phase, which
tical cells, but VY"th the sum of the, Playmg the role of  yoes not alter the probability of being in a spin-up or -down
N¢. This is the “mean phase lemma.” state along OZ. Such a state is a scattering eigenstate for the
Conversely, if thep, are increasing rapidly, so the center potentialv y .

of each rotation lies outside the circle of the previous one, apn ARC may consist of more than one cell, for example
then the path followed on the surface of the unit sphere wilko a5 illustrated in Fig. ®), or three in Fig. &). In the
not wind more than once around the circumference. We W”beneral case we will number the cells 1,2N on the left

see that this topologically very different behavior is characiih the reflected ordering on the right. Lty be the trans-

teristic of impedance transformers and filters. fer matrix for the central cellthe original system Then,
using the representation of EQ.0), the total transfer matrix
1. QUARTER-WAVE IMPEDANCE TRANSFORMER can be written in two equiva|ent forms

In this section we will show that the criteria for quarter- _ 1k _ 1
. . ) Mi=AMyA =AY P Y(—ux)A
wave filters can be easily understood from our spin analogy. T X (k) PLx) Y (= p1x)
Further we will show that the classic recipes do not apply to =MP(py )M 1*, (11
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transfer matriceM, needs to be considered only once, not
twice as would be the case if we worked with; .

In the classic designs, each cell of a multicell ARC is
reflection symmetric, ssM and M~ ** differ only in the
reverse ordering of the cells, and replacement of the step-up
impedance factol (uy) by a step-downyY(— ux). In this
case, the simplest solution is to make each cell into a Bragg
reflector at the design energy, widhy,= 7/2. Such a solution
was illustrated in Fig. @), for N=2 cells. The question
arises, what possible advantage can come from using two
cells as opposed to a single cell? The answer is found by
supposing that the energy is varied by a small amount, so
that ¢,— m/2—e,. Then on the first rotation, the spin does
Phth not quite reach the axis. In the small angle approximation,
b)N=2ARC mu_k « the second rotation has a head start by ,2and it will land
within 2(e,— &) of the pointuy. If the phasesp, are in
fact equal, then the two deviations cancel out, and the
=2 filter will have first-order stability. Since the single-cell
filter has no such compensation available, it will go off reso-
nance as soon as the energy varies from the design energy.
The two-cell filter goes off resonance only when the squares
&% become significant.

. . . . The situation of equal Bloch phases in every cell gener-
0’2 04 08 08 i - . . .

ally applies in optics or microwaves, becauger normal
. . . . . incidence the phase accumulated in passing through a cell is
¢) N=3 ARC mu_k just $pp,=Kkgnpa,, the product of wave number in vacuum,
the index of refraction, and the cell thickne@dsually a cell
is a single homogeneous layer in optjcK.the ¢, are ar-
ranged to be equal at the common Bragg point, then they will
remain equal so long as the index of refraction is constant.
This is not the cas@owever in semiconductors because the
wave-numbek(x) is the square root of an energy difference,
as in Eq.(1).

For N=3 cells the classic Butterworth filter design has
M1= 1/8,U,X y Lo= 1/2,LLX y and M3= 7/8/,LX . In UnitS Of MX s
FIG. 2. Pseudospin paths for binomial ARCs. Thgare off the Bragg point  the rotations of the spin analogy have radii 1/8, 1/4, and 1/8,
by (&) 1%, (b) 8%, and(c) 12%. Thex, are in units ofuy . as illustrated in Fig. @). It is not hard to see that this model

also shows linear stability as the energy varies from the
multi-Bragg point, with a deviation in angle of twice;
In the first form, A represents an impedance transformer,—2¢,+ &5 which vanishes when the, are all equal. More-
which takes the incident plane wave and prepares it to propaver, this design also exhibits quadratic stability, defined as
gate through the central cells, describedNby . second order in the,. In other words, the zero of the re-

In the second formA is combined with a step-up opera- flection amplitude at the design energy will be a second-
tor Y(ux) which undoes this, rotating the state back to theorder zero, leading to a flatter maximum in transmission.
OZ axis, so that the propagatB( ¢x) need only supply the Comparing the three panels of Fig. 2, one sees that the Bloch
phase factors- ¢y as the wave propagates through the cenphases¢, can be further off the Bragg point wheX is
tral cells. In detail M consists of larger, and the device can still give very good transparency.

a) N=1ARC

02 04 06 08
mu

(=2

(=

0 02 0.4 mlg).e 0.8 1

M=M1My - -M\Y(ux). (12

According to the spin picture, wheM acts on a state
|+,Z) which is “spin-up” along OZ, it has to leave it in the
same condition. This requires that the elemiht=0. The
reflected operatoM ~'* performs the inverse rotations, re-
storing the state to be spin-up along OZ. It is sufficient to o .
constructM in order to make a passband filter. Incidentally, ~ Mp~ ! SinplU(2pp) +i coteppl]. (13

this proves that the design of a passband filter, at the desigfor brevity, we will write U, for U(2u,). At the design
energy, does not involve the Bloch phagg of the central energy, every¢,=m/2, and M reduces to a product of
cells. While it may appear complicated to combivielong  U-matrices. This product is easily reduced because the mul-
with A, it is actually a big simplification, because each of thetiplication table for theU andY matrices is very simple:

IV. ANALYTICAL DEVELOPMENT

At this point it is useful to derive and extend the above
results analytically. From Eq10), for each symmetric cell
included in the ARC transfer matridl, we can write
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coshu/2 —sinhu/2 The Butterwortf or binomial solution makeE y(x) propor-
U — . , . N .
(w) sinhu/2  —coshu/2 tional to (1+x)N, by setting
coshu/2  sinhu/2 Mx
Y = . :e(,u/Z)(r , A :_NC :AN— . (19)
(W= sinhul2  coshu/2 " PN NEP P
_ _ So it is thesteps not the impedances themselves, which are
UUp=Y(a—mp):, UaYp=U(a— up), 14 . " . .
aUp=Y(pa=uo) aYo=Ulra= ko) (14 the simple quantities. Th8=2 and 3 filters drawn earlier
YaUp=U(matup),  YaYp=Y(at up). are of this type. The solution is plausible if you interpret
_ _ _ o _ =e?'?¢ as being the same for every cell, and taking the value
Like matrices give a&'; unlike give aU. Ifa Yistothe left  _ 1 5t the multi-Bragg point. Then the matrix elemdi,

we get the sum of arguments, and ifla the difference. \yi have anNth order zero there.

Therefore at the Bragg point we can reduce the product as gyen for moderately larg8l, the limit of the binomial

follows: distribution is a Gaussian. With the steps, obeying a

Gaussian law, the, will be distributed like the error func-

Nk tion. This may be the basis for the folklore that a Gaussian

(i)"M= pﬂl U2ap)Y (pex) distribution of barrier heights should be associated with ARC
cells.

N

N
=Y(2p1=2u9) [ U(2pp) (10
P V. STABILITY CONDITIONS

N
:U(2M1—2M2+2M3)H UQup)Y(ux)--. (15 For small deviations from the multi-Bragg point, we
_ _ p=4 _ write ¢,=m/2—¢,, and in Eq.(13), the cotg, becomes
If N is even we arrive at the penultimate step with whose  tang,=t, for short. We treat the,, as small quantities, and
argument is an alternating sum afs, ending with—2un.  derive stability conditions which involven of them at a
The last multiplication uses the rule forX'Y, which adds  tjime.
mx . WhenN is odd, we end up with &, whose argument Using the representation E€L3) in the product of Eq.

ends with+2uy, and theU XY product gives & whose  (12), and grouping terms with the same numbertgf the

argument(denotedus) ends with 2uy— ux . In either case, general form of the transfer matrix becomes
the matrix element igvi,;=sinhus, and the condition for

zero reflection is thats = 0. Explicitly,

N N
ITu,+iX tll v,
p=i k=1 p#k

N
y szﬂl (—isingy)
ps= 2 () 20+ (=) . (16

=2 e [T Up=i >ttt T U
. . . . k<m p#k,m k<m<r p#k,m,r
All the equations we will deal with are simpler when

written in terms of thestepsin u, (including wo=0), which

we define as\p= 41— pp. Then we can write T Y(ux). (20)
N Using the multiplication table for the matriced it is
s = 2 (—)PA,=0 straightforward to write down the terms of any order. The
p=0 leading term involves na,. Then there are sets of terms
while which involve 1,2,3,.., of thet,. The firstN—1 of these
N sets give stability conditions which must be imposed to make
Ly = 2 A,. (17)  the resulting transmission amplitude as flat as possible in the
p=0 region around the multi-Bragg point. The last term involves

For a single-cell ARCN=1, the solution isA;=Aq,  the product of all the, and is simply
= uxl2, soui;=ux/2. In terms of indices of refraction, for

the optical case this is the well-known solutiop= ynyng. N

For more than one cell these two conditions are not suf-  M=Y(uy) [] COS¢hy, . (21
ficient to select a unique solution. A solution can be written p=1
down by considering the function This is what remains when all the stability conditions have

been satisfied, and is the generalization of the Butterworth

N filter for unequal phaseg,,.

FN(X)=p20 xPA, The linear stability terms are obtained by including one
of the t,=tane, in place of the factolJ, in the product Eq.
with (12). The typical contribution is
Fn(1)=px; Fn(=1)=ps=0. (18) SHOM~Uy. . U gty Upig - UpY(px), (22)
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TABLE |. Equations which determine tha, for the N=7 filter, in the TABLE Il. Equations which determine tha, for the N=7 filter, in the

optical case. linear model.
Ay Ay A, Ag Ay Asg Ag A, =value Ay Ay A, Ag Ay Asg A A, =value
7 -6 5 —4 3 -2 1 0 28 —=27 25 —-22 18 —13 7 0 0
-6 10 —-12 12 —-10 6 0 0 —-27 75 —132 180 —195 147 0 0
35 —-20 15 —16 19 —-20 15 0 392 —333 245 -—-176 168 -—221 245 0 0
-20 20 -—16 16 —-20 20 0 0 —-333 705 —-792 600 —-585 1029 O 0
21 -6 11 —-12 9 —-10 15 0 13132 —8028 4870 —7018 7782 —3562 11368 O 0
-6 2 -4 4 -2 6 0 0 -669 630 —-319 875 —-130 1029 O 0
1 0 1 0 1 0 1 0 uxl2 1 -1 1 -1 1 -1 1 -1 0
0 1 0 1 0 1 0 1 w2 1 1 1 1 1 1 1 1 puy

It is easily seen that this vanishes for the binomial filter,
whereU,=U(2u,). BecausdJ is missing from the prod- providing that thet, are all equal. But for semiconductors
uct, the result of these multiplications is to arrive at either ayhere they are unequal, it is a new condition to be imposed
U or Y matrix whose argument differs fromy in two re-  on theA,.

spects:(i) the argument 2, is missing and(ii) the terms The generamth-order stability condition is worked out
following u—, have the wrong sign as compared4@ .  in Appendix A. It takes into account all terms whereof the
The typical case is t, are involved, fom=1,2,...,(N—1).
21— 2ppt 21— 2
=— ot 2uy— 21— Mkt pk— 2 ka1 VI. PRACTICAL APPLICATION OF STABILITY
CONDITIONS

=Ag— At = A = At Ay g o
For anN-cell impedance transformer, E@0) expresses
which is to be compared withus : M as a sum of Y terms, which fall intoN+ 1 classes labeled
B by the numbem of t, occurring in the terms of claga. The
0=A0=Ast = Ay F Ak Appatoo. @23 matrix elementM »1 must be zero for perfect transmission

The contribution of this term tdM,; involves a factort,  into the central cellX.

times the sinh of this argument. Again the aim is to make the ~ The vanishing of them=0 term is expressed bys

2,1 matrix element vanish, which means that the sum of alF 0 in Eq. (17). It involves just the alternating sum of the
these contributions must be zero. We can simplify the argustepsAy, k=0 ---N. The linear, quadratic, and higher sta-
ment of the sinh by adding to jty which is already zero, bility conditions involve products of thg times hyperbolic
(the last line above Then the terms following\,_; cancel ~ Sinh’s whose arguments are specific linear combinations of

out. As a result we can write the linear stability condition asthe Ai. In the optical and microwave applications, theare
follows: the same for alk, so their value is just an overall factor that

can be dropped from all terms in class In effect one can

N k—1
sett,=1.
N — ; _\PA | = k . . .
5M gl tksmk{pzo (=) AP} 0 In semiconductors it is found that the strongest barrier
. _ has a cog, that varies most rapidly with energy, and the
=ty sinhAg+t; sinh(Ag—Ay) others vary progressively less rapidly. It will also be seen in

(24) the next section that in the vicinity of the multi-Bragg point,
thet, vary linearly with energy. To the extent this is true we
In the small angle approximation for the hyperbolic func-can replace thg by their slopes, taking say the weakest one
tions, this expression agrees with the linear stability condito be unity. A reasonable first approximation to this regime is
tion for the filters drawn in Fig. 2. to sett,=k, which we will call the linear model’ This
The quadratic stability condition arises from terms contrasts with the situation in optics, whefe= constant ap-
where two of the matrices U, are replaced by,,t,, fac-  plies, at least for normal incidence.

+t3 SinHAO_A1+A2)+"' .

tors. For the three-cell cas¢= 3, one has If we further make the smalhyperbolig angle approxi-
mation, then the terms of class reduce to a linear combi-
tataUsY (ax0) +1ataU2Y () +tataUs Y (1x) nation of the unknowns-)*A, multiplied by sums of prod-
=1t,t, SINN g — xl2) +tyts SN o — wyl2) ucts of thet,. For example, foN=3, from Eqgs.(17), (24),
and(25) we can write

+ oty sinh( g — ux/2)
=tato sinh(uy — wo) + gtz sinh(wg —2u,+ pa)
+ otz sinh(ug— pp) > (—)PA,=0, (26)
P

=t4t, SinH(—A4) +tqtgSinh(A,— Aq) + otz SINN(AS). (ty+tot1a)Ag— (ta+13)Ag+134,=0,
(25) _(t1t2+t1t3)A1+(tlt3+t2t3)A2:0.

% Ap:/-LX:
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TABLE Ill. Linear model solutionsA for the N=7 filter. a)
0
k= Ay Mk+1 Poissog Mpoisson -1 \ /
0 0.125 0.125 0.166 0.166 2 \
1 0.2917 0.4167 0.298 0.464 /
2 0.2917 0.7083 0.268 0.732 §'3 \
3 0.1856 0.8939 0.160 0.892 o-d
4 0.07954 0.9735 0.072 0.964 - \
5 0.02244 0.9959 0.0259 0.990 5 /
6 0.00379 0.9997 0.0077 0.998 iy
7 0.000291 1 0.0002 0.998 , \ /
ST 0 135\E (1?n0eV)145 750 155 160
It is convenient to takd,=(—)PA, as the unknowns; this b)
removes most of the negative signs from the equations. 1 . T
Leaving aside the top equation, which gives the overall nor- Ezé:;—:
malization of the solution, a bit of algebra puts the remaining 0.5 5 RN
three into the form S %\\
e o,
11 1 1\ /Do S 0 -mm“““léﬁwyhmﬁ
0 X1 Xp Xz Dy -0 27) 8 \\\\f'wm\"%
2 2 2 D2 , 05 O
0 X7 X5 X3 D, -0. S S
AN \
wherex,=t;+---+t, is a partial sum of the slopes. We can N
solve these equations for;,D,,D5 in terms ofDy and then S TS5 T30 T35 T40 T45 150 155 160
use the top equation of Eq$26) to give the normalized E (meV)
solutions. In this casébut not for largerN), the coefficient )
matrix is equivalent to the well-known Vandermonde matrix, 4 y E: é — N
and the solution can be written down immediately. 3.5 7y RRET AR
In general, the stability conditions of ordem ] B ," Y
=1,2,...,(N—1), together with Eqs(17) become a set of o5l S . _ L
N+1 linear equations for the unknowrs,, and a similar B e T
strategy can be used to solve them. An example is shown in 8 2 T
Table I, forN=7, where we have set all thig equal to unity, L] S R i S ——
appropriate for optics. As expected, the solution is the bino- 1
mial filter for N=7. In contrast, in Table Il we show the 05
equations for the linear model, with=k. The solution, ’
shown in Table Il is now completely different. The first few ST T S i i a0 15 e0
steps inu, are much larger than in the binomial filter, and E (meV)

the last few steps are very much smaller. The reason is th&iG. 4. Analysis of the(adjusted six-cell device of Coqueliret al. (a)

2
the relatively rapid variation of the last few Bloch phases carl°d"

only be countered by making the radii of the circlegggin)

0.3
Binomial —
normal
0.25 lingar Model.
asym. normal ----
Poisson —
0.2
.l
Z0.15
[
a

S

. ELWL_
4 10 1

0.05 }/

FIG. 3. Steps\, for binomial and linear models, compared to Gaussian and

Poisson distributions, for 12 cell ARC.

, (b) cos¢y, and their tangents at the band center, &ndu, .>*

rotation as small as possible. The structure of a filter for
semiconductors therefore will have a very different profile
than for optical or microwave applications.

This difference in character is illustrated in Fig. 3, for a
12-cell ARC filter. The stepa, for the binomial filter are
peaked ak=6, and are well fitted by a Gaussian distribu-
tion. In contrast, for the linear model, the stdpsleft) peak
atk=2 and are better represented by a Poisson distribution
than by an asymmetric Gaussian having the same average
value.

The general solution of the linear model fdrcells is

N! N!
(N=p)! (N+p+1)!
_ 2p+l G,
CN+p+1 s ,Cp’

A,=(2p+1)

p=0---N. (29)
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log [r/t|"2
IS
/
T ——

8 ¢ o2 o4 06 08
120 125 130 135 140 145 150 155 160 mu
E (meV)
' ' ' ' Path —
b) b) E= 140 meV ok
1 !
*.‘\ \\ =1 —
AN E:é
05 ey
- Ny z 1 2
_ T N X
s 9 \k‘
o
RN
05 N
\\\ N
NN 6 o2 o4 o o8 i
1 N mu
120 125 130 135 140 145 150 155 160
E (meV) ' ' ' ' '
N Path —
0 ¢) E=150 meV mik
ET = T
H ] =g e 1
3.5 ity s Y
- A ,’ A
3 "x/’ ‘\\ /' \\\
25l .. - ~i — = e - N
E Py [ T e SOOSONIN SU WO
15
1
05 0 oz o ds 0B
0 . . . . .
120 125 130 135 140 145 150 155 160 FIG. 6. Pseudospin trajectories for the self-consisiért2 device at three

E (meV) energies as labeled.

FIG. 5. Analysis of the self-consiste™M=2 ARC device derived from
Coquelinet al. (a) log|r/t|?, (b) cos¢y, and their tangents at the band center,
and(c) uy .2 VIl. EXAMPLE

On the web site of Gornik’s group in Vienna, Coquelin
et al® presented an example of a six-barrier system which
achieves 83% transmissivity over the first allowed miniband.

For large p~N the linear model steps are exponentially The structure was modeled as a sequence QGAl ,As
small. CorrespondinglyAg=1/(N+1), which for N>4  quantum barriers wittk=0.3, and GaAs wells. Viewed as a
greatly exceeds the value for the binomial or Butterworthone-dimensionallD) potential array, the barrier heights are
filter, 2~ N. The Poisson distributio®,=a e ?/k! can be 290 meV, and the widths were varied according to a Gauss-
fitted by settingA,=e 2 to fix the mean valua. Alterna-  ian law!*taking the values 9, 28, and 40 A. The well widths
tively we can choose to give the second moment of the were set at 30 A.
distribution of steps, as was done in the figure. We can consider this an example of an ARC system with
One conclusion we can draw is that a semiconductoN=2 cells, surrounding two central cel(& We define a cell
bandpass filter should have many fewer cells than a similaio consist of one barrier and a 15 A spacer on each side of it.
optical or microwave filter. Most of the work will be done by In our calculation, we took the effective mass at the conduc-
the first few cells, so the later ones contribute less to théance band edge to be 0.092 and 0.067, respectively, and the
performance. This is useful information because it is easieenergy gaps 1800 and 1424 MeV, based on Daiasle
to make a semiconductor device with fewer cells. took account of energy dependence of the effective masses
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a) Self Consistent, N = 2 ARC, 4 Central Cells TABLE IV. Barrier widths,t, and u, for N-cell ARCs, both self-consistent
‘ / and modified fits.
! | | Type b, b, by b, by
-2 A A ty t, ts t,
3 U \ \ ) N T M1 M2 M3 Mg Mx
E, / \ / U 2 adi. 100 280 40
8 { | 0.17 0.51
5 0.828 0580  1.623 2.319
5 [\ / i 2 s-c 15.4 35.4 40
, \ / \ 0.24 0.76
7 0.902 0.893 2.052 2.319
8 / l 2 mod 16.4 35.3 40
120 125 130 13 _ 140 145 150 155 160 0.25 0.73
E {meV) 0920 0951  2.047 2.319
b) Self-Consistent, N = 2 ARC, 6 Central Cells 3 sC 124 311 38.6 40
0.21 0.64 1
4 A 0942 0719  1.803  2.238 2.319
\ / \ 3 mod 12.4 30.4 38.2 40
2 V 0.21 0.63 1
3 \ / 0.944 0719  1.763  2.215 2.319
g \ [ A ’ 4 sc 10.3 27.6 36.6 39.3 40
g4 0.18 0.50 0.84 1
g U \ / l 0.962 0597  1.600 2122 2279  2.319
f \ / \] 4 mod 10.3 27.5 36.3 39.2 40
& 0.18 0.50 0.84 1
7 \” //\‘ 0.964 0597 1594 2105 2273  2.319

Yo s T P10 145150 155 160
ret) 1/3,5/6,1 timesuy. This suggests that improved perfor-
FIG. 7. Logarithmic plot ofr/t|? for N=2 ARC, with four and six central mance should result from changing the barrier widths, to
cells, self-consistent solution. produce impedances which are consistent with the ensuing
slopes.

Because the barriers are relatively high, thg are
following the recipe of Nelsoret al!® Finally, following  roughly proportional to the widths. Keeping the central cell
Pacheret al.” we took the barrier height to be 290 MeV. As a parameters fixed bx=40 A), we found that withb,
check of these parameters, we reproduced the five peaks15.4 A andb,=35.4 A, the resultingu, took values
shown between 128 and 160 meV in the figure of Ref. 8 f010.893,2.052, compared tuy=2.319, which are self-

a periodic six-cell array. consistent with the solution of the stability equations using
Computing the Bloch phases and impedance parametets=0.24,t,=0.76. In Fig. %¢c) we show theu,(E) across
for each cell of their Gaussian array, one finds that every celihe allowed band. The values are quite flat in the center of
is a Bragg reflector close to the band center. The multi-Bragghe band, though all three curve upwards as the band edge is
character was improved by using 10 A for the width of theapproached. It is not necessary for fhgto be strictly con-
weakest barrier and 15.05 A for the corresponding half-wellstant; if their ratios are constant the spin analogy shows that
with these small adjustments, the common Bragg point is athe ARC mechanism will still work. The ca, are shown in
138.3 meV. We will refer to this as the “adjusted” Coquelin Fig. 5b) along with the linear approximation from which the
array. The performance is illustrated in Figag where we  t, were estimated. In Fig.(8 we show, on a log scalér,/t|?
plot |r/t|? for the entire device, on a natural log scale. This isfor this solution. This is to be compared with Figay which
a more sensitive presentation than simply plotting the transused the(adjusted Coquelin parameters. The average trans-
mission probability which would merely show a flat band missivity over the band has increased from 0.83 to 0.90.
with values aft|?>=1. In Fig. 6 we show the trajectories of the spin analogy, at
The u, are plotted® in Fig. 4(c); at the Bragg point they three energies. In the first two cas@®ar the band center
take values 0.580:1.623:2.319 which are very nearly in thehe spin orientation has indeed been moved to the point
ratio 1:3:4 of a classic Butterworth filter. However, moving and then back to the origin. This confirms that linear stability
away from the multi-Bragg point, the slopes of the ¢gs has been satisfied for the self-consistent filter. The third panel
lines, seen in Fig. @), are in the ratio 0.17:0.51:1.0 which is (c) is at 150 meV, in a deep trough &f/t|2. The perfor-
very far from equal slopes; indeed, rather close to the lineamance is degrading and is only maintained because the ARC
model. cells bring the spin to a point belowy , and the two central
Taking the parameters, to be the above-mentioned cells bring it(almos}) to the mirror image point above the
slopes, and solving the stability conditions predicts that theaxis. Then the downstream ARC cells can bring it back
ip should be close to those of the linear model, which areo OZ.
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3) N =3 ARC, Modified intent, which is to widen the passband while maintaining a
maximum value on the reflectang&he best fit does depend
- on K because the humps that are being reduced have loca-
\ / tions which depend oK.
\ / We conclude that the ARC obtained from solving the
/ stability equations has improved the filter performance by
about 10%, or close to half the gap from ideal performance,

(]

2 log |r/t|
. e .

)

\
\ / even forN=2 cells.

\ I Further improvement is obtained by using a three- or
|

\

f
(=23

four-cell ARC. The parameters of these ARC solutions are
A N shown in Table IV. The barrier widths are in A, while the
’ ~ \ other values are dimensionless. In all cases the well widths
'8120 125 130 135 140 145 150 155 160 are 30 A, except for the weakest barrier where 30.05 is main-
£ (meV) tained. The difference between the self-consistent and modi-
b) N = 4 ARG, modied fied so!utipps is always small, but there is a gain in average
2 transmissivity.
\ l In Fig. 8 we show plots of Idg/t]* for the modified
l solutions. They show that the filter bandwidth has increased
4 as compared to thBl=2 filter. Note the change of vertical
‘ scale between panefa) and (b) by a factore™2.

‘
U

2 log |r/t]
. >

3 \ Ia VIIl. CONCLUSION

-9 \ / \ /\ We have used the analogy between potential scattering
\ ( \ / \ / \ and precession of a spin-half system, to provide a simple and
20 125 130 185 _ 140 145 150 155 160 intuitive picture of the workings of a quarter-wave imped-
E (meV) ance transformer or passband filter. Based on this picture we
have identified the stability conditions which take into ac-
FIG. 8. Logarithmic plot ofir/t|? for N=3 andN=4 ARCs, with param-  cgunt the different rates of variation of the Q%With en-
eters optimized. ergy. Enforcing these conditions makesNih order zero of
the reflection amplitude for a system with &hcell antire-
flection coating. The rules for writing down these conditions
The performance should not depend on the number oére given in Appendix A.
central cells. This is true close to the design energy, but not Under the small-angléhyperbolig approximation, the
further away, as seen in the previous paragraph. In Figs. 7 stability conditions become a set dbf+1 linear equations
and Tb) we show lody/t|? for the same ARC wittk =4 and  for the impedance steps,. When the Bloch phases of the
K=6 central cells. Additional humps are seen, the numbecells vary at the same rate, as in optical ARC's, the solution
increasing likeK, but always lying below some upper limit. of these equations is the well-known binomial filter, ELP).
This limit is related to the envelope of transmission minima,For semiconductor superlattices, the rate of variation of the
as discussed in Ref. 9. The width of the region with goodBloch phases depends strongly on the strength of the poten-
performance widens slightly & increases. Mostly this is tial cell. A reasonable first approximation is provided by the
the expected effect of the band edges becoming better dénear model, in whictt,=p. We have given the exact solu-
fined by the central periodic structure. The transmissivitytion of the linear model in Eq(28). As seen in Fig. 3, the
rises from 0.902 to 0.912K(=4) and 0.915K=6), using steps of the linear model are close to a Poisson distribution,
the self-consisteni=2 parameters. completely different from the Gaussian limit of the binomial
Some further improvement can be obtained by smaldistribution.
variations in the parameters. Basically this involves a trade-  For arbitrary values of the,, the stability conditions
off, making the inside humps ¢f/t|? a little higher and the can be computed and the linear equations solved for the cor-
outlying ones a little lower. One gains a bit on the width of respondingA,. A numerical strategy for computing the co-
the region of low reflectivity, while keeping the value under efficient matrix is outlined in Appendix B. This allows for an
some maximum, sag °. Our theory is based on assuming iterative approach to the design of impedance filters. We
constantu, andt,, but both of these break down as you have illustrated this process by finding a system similar to
move away from the multi-Bragg point. The small adjust-that of Coqueliret al. Their system was shown to be a But-
ments gain on the edges at the price of not hitting the targatrworth filter. By adjusting it to satisfy the stability condi-
at the Bragg point(In optics or microwaves, such a fit is tions we improved the average transmissivity from 0.83 to
referred to as a Chebyshev filter. In our case of unegyal  0.90 over the allowed band. Increasing the number of ARC
one cannot use the Chebyshev polynomials, but rather theells provides further improvement.
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