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Antireflection coatings from analogy between electron scattering
and spin precession

D. W. L. Sprunga) and Gregory V. Morozov
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada

J. Martorell
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~Received 24 September 2002; accepted 20 January 2003!

We use the analogy between scattering of a wave from a potential, and the precession of a spin-half
particle in a magnetic field, to gain insight into the design of an antireflection coating for electrons
in a semiconductor superlattice. It is shown that the classic recipes derived for optics are generally
not applicable due to the different dispersion law for electrons. Using the stability conditions we
show that a Poisson distribution of impedance steps is a better approximation than is a Gaussian
distribution. Examples are given of filters with average transmissivity exceeding 95% over an
allowed band. ©2003 American Institute of Physics.@DOI: 10.1063/1.1559942#
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I. INTRODUCTION

Antireflection coatings~ARC! are of great importance in
many areas. In optics the aim is to maximize the transm
sion of visible light through lenses by applying coatings w
suitable indices of refraction on both surfaces. For mic
wave transmission, the analogous problem is to minim
reflection at a junction between two sections of wavegui
by means of an impedance transformer consisting of sect
of varying cross-section. Solutions for these problems w
worked out in the 1950’s and can be found in many boo
and reviews, of which we cite some representat
examples.1–6

Recently Gornik’s group in Vienna7,8 have studied the
analogous problem of constructing an energy bandpass
for electrons in a semiconductor heterostructure. In a fi
paper they demonstrated a single-cell ARC, which raised
transmissivity through a superlattice to about 80% across
lowest-allowed band. In further work they proposed
double-cell device with even better properties. We have
rived exact criteria for optimizing the properties of a sing
cell ARC.9

The problem of constructing a passband filter for el
trons has been discussed by several groups. Gaylord
collaborators10,11 very early wrote a series of papers propo
ing to take over the well-established solutions from opt
and microwaves. Chang and Kuo12 translated the Gaylord
approach into the language of impedance transformers. T
and Lee13 and later Gomezet al.14 considered a rather differ
ent filter based on a Gaussian distribution of barr
strengths. Yang and Li15 extended this approach by using
variety of different distributions, but with no underlyin
theory as to why these might or might not work. In oth
words, previous approaches have either relied on the sim
ity to optical and microwave ARCs, assuming that this we

a!Electronic mail: dwsprung@mcmaster.ca
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developed theory would apply to electrons, or else they s
ply guessed at how to proceed.

The aim of the present article is threefold. First of all, w
draw attention to an interesting analogy between~i! a particle
scattering in a one-dimensional potential and~ii ! a spin-half
system precessing in a magnetic field. Second, we use
analogy to give a simple and intuitive explanation of how
impedance transformer, and consequently a bandpass
works. While such a picture does not entirely dispense w
the ingenious calculations underlying the classical recipes
ARC cells and impedance transformers, it certainly provid
insight to the crucial issues involved. In particular, it leads
the concept of stability conditions and their role in defini
the parameters of anN-cell ARC.

Our third contribution is to identify the most importan
difference between bandpass filters for electrons and t
counterparts in optics. This leads us to propose a sim
model, called the linear model, which is similar to the tr
situation for electrons in semiconductor superlattices.
solve this model analytically, and show that the resulti
filter is very different from the well-known Butterworth o
binomial filter of optics or microwave engineering. As
practical application, our method is applied to the device
Pacheret al. and Coquelinet al.7,8 We find that their trans-
missivity could be significantly improved by following ou
method.

II. TRANSFER MATRIX

In the single-band envelope function approximation, t
electron wave function satisfies the Schro¨dinger equation in
a real potential and with an energy- and position-depend
~real! effective mass16 m* (E,x)

C~x,t !5e2 iEt/\c~x!

d2c~x!

dx2 1
2mm*

\2 @E2V~x!#c~x!50
5 © 2003 American Institute of Physics
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k2~x!5
2m

\2 m* ~E,x!@E2V~x!#. ~1!

The time-reversed spatial wave function isc* (x). Con-
sider a potential cell, placed2d,x,d. Outside the cell,
assuming zero potential,k becomes constant and we ma
write the wave function in the form

c~x!5ae1 ik(x1d)1be2 ik(x1d), x<2d,
~2!

5a8e1 ik(x2d)1b8e2 ik(x2d), x>1d.

The amplitudes on opposite sides of a cell are related by

S a
bD5S M11 M12

M21 M22
D S a8

b8 D , ~3!

which defines our transfer matrixM . It has the properties
detM51, and through TrM52 cosf, defines the Bloch
phase associated with a periodic array of identical cells.

For a scattering problem with incident wave from t
left, a51, b5r L5r ; a85tL5t, b850, one easily sees tha
the first column ofM is given by

M115
1

t
, M215

r

t
. ~4!

The second column ofM is determined by conservatio
of flux, and by the corresponding equation for incide
waves from the right, with amplitudes denotedr R5r 8,tR

5t8. For a general potential, one can show thatt85t, and
r 8/t852r * /t* . The result is

M5S 1

t
2

r 8

t8

r

t

1

t*

D 5S 1

t

r *

t*

r

t

1

t*

D ~5!

without assuming parity invariance. Time reversal symme
alone makesM125M21* andM115M22* .

For a potential with reflection symmetry the addition
propertyr R5r L holds, which makesM1252M215M21* pure
imaginary. Following Kard,3 for a symmetric cell we can
introduce a parametrization ofM , valid in an allowed band

M115cosf2 i sinf coshm5M22* ,

M2152 i sinf sinhm5M12* , where

cosf5
1

2
Tr M5ReM11, and tanhm5Im M21/Im M11.

~6!

This form respects the relation 1<1/utu2511sin2 f sinh2 m
as well as detM51, but applies only in an allowed miniban
where the Bloch phasef is real.17 We call m the impedance
parameter, because in the case of a square well,em is the
impedance, the ratio of velocity outside to inside the wel12

For an arbitrary cell, a different phaseb occurs on the
off-diagonal elements
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M2152eib sinf sinhm5M12* . ~7!

The symmetric cell corresponds to the special caseb
51p/2. For the moment we confine our attention to sy
metric cells for which we write

M5cosfS 1 0

0 1D 2 i sinfS coshm 2sinhm

sinhm 2coshm D
5cosfI2 i sinfU~2m!,

with U~2m!5coshmsz2 i sinhmsy5s•nW , ~8!

where nW is a ~complex! unit vector in theYZ plane. The
meaning of this becomes evident if we writem5 ih, giving

M5e2 ifsn5Rn~2f!,

where sn5s•n5cosh sz1sinh sy . ~9!

We recognizeRn as the operator which rotates a spin-1
system by angle 2f around the axisn,18 which in this in-
stance lies in theYZ plane. For asymmetric cells, the axis
rotation has azimuthal angleb. The axis of rotation is imagi-
nary, but this does not invalidate the analogy.

Now consider an array of cells which need not be ide
tical. The transfer matrix for thepth cell is of the same form
as Eq.~8!, with parametersfp andmp5 ihp . It can be fac-
torized as follows:

M p5e1 i (hp/2)sxe2 ifpsze2 i (hp/2)sx

[Y~mp!P~fp!Y~2mp!. ~10!

Y(m) is associated with a step-up in impedance from zero
m. The factors can be interpreted as follows. The top line
rotation operator acting to the right on a ket. The spin-h
system is rotated around OX by anglehp , so an axis in-
clined initially at anglehp , lines up along OZ. Then the
system is rotated by anglefp around OZ, and finally rotation
around OX by angle2hp restores the axis to its initial po
sition. The net effect is a rotation of the whole system
anglefp around the axis of rotation oriented at polar ang
hp . In the second line, a system consisting of left/right mo
ing waves is acted on by a transfer matrix. The first fac
lowers the impedance bymp ; then it propagates freely accu
mulating phase7fp on the upper/lower components, an
finally the impedance is restored to its original value. The
effect is the same as propagating at an average impedancmp

and accumulating the same phase.
In this analogy, a wave traveling to the right, outside t

array, corresponds to a spin-up~along OZ! state, and a wave
traveling to the left, to a spin-down state. When a rig
moving state encounters a potential, it is partly transmit
and partly reflected. Analogously a spin-up state placed
magnetic field oriented at polar angleh will precess around
the field direction, thereby acquiring some spin-down~re-
flected wave! component. For a symmetric potential cell, th
magnetic-field direction lies in theYZ plane. For a genera
cell, the polar angle is the same, but the azimuthal angle ib:
The asymmetric system differs only by a rotation around O
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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This analogy is very helpful in seeing how a system w
respond to a sequence of potential cells. For identical c
hp5h; fp5f, the rotations are all about the same axis. T
spin precesses on a cone whose polar angle ish; the cone
intersects the sphere in a circle. Viewed from above the
sphere, the spin moves on a circle centered ath. If there are
N such cells, the total angle of rotation will be 2Nf. The
condition for perfect transmission is that the spin state
returned to lie along OZ; this requires 2Nf52pm wherem
is an integer. Within an allowed band, the Bloch phase
creases byp, so the possible values arem51,2,...,N21. An
array ofN identical cells will showN21 narrow resonance
in each allowed band.19 They are narrow, for when the en
ergy is varied slightly, changingf→f2«, the total phase
changes by 2N«, which quickly moves off the resonanc
condition. This situation is illustrated in Fig. 1 for an array
seven cells, and form51; the phase angle is off resonan
by 1%. One is looking down on the surface of the sph
from a point above the center of the circle. The radial lin
mark off sectors of angular width 2f'2p/7.

If the cells are not identical, but the impedance para
etershp are close, then the sequence of rotations will be
arcs of circles whose centers jump about. So long as th
jumps are small compared to the radii of the circles, the to
angle of rotation will be just twice the sum of the anglesfp .
The behavior of the array will then be similar to a strict
periodic array. It will still windN times around a closed path
coming more or less close to the origin~at OZ! once on each
traversal. We will have similar behavior to the case of ide
tical cells, but with the sum of thefp playing the role of
Nf. This is the ‘‘mean phase lemma.’’

Conversely, if thehp are increasing rapidly, so the cent
of each rotation lies outside the circle of the previous o
then the path followed on the surface of the unit sphere
not wind more than once around the circumference. We
see that this topologically very different behavior is char
teristic of impedance transformers and filters.

III. QUARTER-WAVE IMPEDANCE TRANSFORMER

In this section we will show that the criteria for quarte
wave filters can be easily understood from our spin analo
Further we will show that the classic recipes do not apply

FIG. 1. Pseudospin path viewed from above for a periodic system
mX50.5, N57.
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the semiconductor case unless significant modifications
made. These lead to the conclusion that a Poisson distr
tion of the impedance steps between cells is more appro
ate than is a Gaussian recipe.

For an electron in the conduction band, a layered hete
structure acts as a series of nonoverlapping potential cell
cell can contain any number of homogeneous layers, or m
even be continuously graded. No matter how complicated
potential~or the effective mass! may be, the scattering prop
erties of a single cell are described by just two~or three!
energy-dependent parametersf,m ~andb!.

As discussed in Ref. 9, the first step in designing
energy bandpass filter is to find a cell with an allowed mi
band covering the desired energy range. If it is the lowe
allowed band, then cosf(E,)51 and cosf(Eu)521 at the
lower- and upper-band edges. By placing a numberK of
such cells together, a well-defined miniband will be obtain
with essentially zero transmission outside the allowed ba
If the cell is symmetric, any number of them will also b
reflection symmetric, and the transfer matrixMX

K for this
array will be described by just two parameters,mX andfX .

An ARC consists of an additional potentialvA(x) placed
on one side ofX and its reflectionvA

p(x) on the other side.
The corresponding transfer matrices will be denotedA and
Ap. According to the spin analogy,A rotates the spin by
angle 2fA about an axis specified by its impedance para
etersmA and bA . For simplicity consider the case wher
both X andA are symmetric cells. Then the axes of rotati
both lie in theYZ plane. At an arbitrary energy in the a
lowed band, ifA rotates the initial spin-up state by anglep,
it will be converted to a state whose spin is oriented alo
another radius in theYZ plane. By choosingmA5mX/2, the
new orientation of the spin state will coincide with the dire
tion mX . Passing through the potential cellsX alters the spin
state only by a phase factor7fX , because the new state
an eigenstate of spin along this direction.

Rotation by anglep means thatfA5p/2, so that the
ARC cell vA must be a Bragg reflector at the desired ener
This is the solution obtained in Ref. 9. The downstream AR
cell Ap then rotates the spin state back to lie along O
representing a wave moving purely to the right, and givi
perfect transmission. The path followed by the pseudos
state is illustrated in Fig. 2~a!. It does not matter how many
cells of typeX there are, because once the state is alig
along the directionmX it is in a spin eigenstate along tha
direction, and precession gives just an overall phase, wh
does not alter the probability of being in a spin-up or -dow
state along OZ. Such a state is a scattering eigenstate fo
potentialvX .

An ARC may consist of more than one cell, for examp
two as illustrated in Fig. 2~b!, or three in Fig. 2~c!. In the
general case we will number the cells 1,2,...,N on the left,
with the reflected ordering on the right. LetMX be the trans-
fer matrix for the central cells,~the original system!. Then,
using the representation of Eq.~10!, the total transfer matrix
can be written in two equivalent forms

MT5AMXA21* 5AY~mX!P~fX!Y~2mX!A21*

[M P~fX!M 21* . ~11!

h

IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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In the first form, A represents an impedance transform
which takes the incident plane wave and prepares it to pro
gate through the central cells, described byMX .

In the second form,A is combined with a step-up opera
tor Y(mX) which undoes this, rotating the state back to t
OZ axis, so that the propagatorP(fX) need only supply the
phase factors7fX as the wave propagates through the c
tral cells. In detail,M consists of

M5M1M2¯MNY~mX!. ~12!

According to the spin picture, whenM acts on a state
u1,Z& which is ‘‘spin-up’’ along OZ, it has to leave it in the
same condition. This requires that the elementM2150. The
reflected operatorM 21* performs the inverse rotations, re
storing the state to be spin-up along OZ. It is sufficient
constructM in order to make a passband filter. Incidental
this proves that the design of a passband filter, at the de
energy, does not involve the Bloch phasefX of the central
cells. While it may appear complicated to combineY along
with A, it is actually a big simplification, because each of t

FIG. 2. Pseudospin paths for binomial ARCs. Thefk are off the Bragg point
by ~a! 1%, ~b! 8%, and~c! 12%. Themk are in units ofmX .
Downloaded 09 Jun 2010 to 161.116.168.169. Redistribution subject to A
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transfer matricesMk needs to be considered only once, n
twice as would be the case if we worked withMT .

In the classic designs, each cell of a multicell ARC
reflection symmetric, soM and M 21* differ only in the
reverse ordering of the cells, and replacement of the step
impedance factorY(mX) by a step-down,Y(2mX). In this
case, the simplest solution is to make each cell into a Br
reflector at the design energy, withfp5p/2. Such a solution
was illustrated in Fig. 2~b!, for N52 cells. The question
arises, what possible advantage can come from using
cells as opposed to a single cell? The answer is found
supposing that the energy is varied by a small amount
that fp→p/22«p . Then on the first rotation, the spin doe
not quite reach the axis. In the small angle approximati
the second rotation has a head start by 2«1 , and it will land
within 2(«22«1) of the pointmX . If the phasesfp are in
fact equal, then the two deviations cancel out, and theN
52 filter will have first-order stability. Since the single-ce
filter has no such compensation available, it will go off res
nance as soon as the energy varies from the design en
The two-cell filter goes off resonance only when the squa
«p

2 become significant.
The situation of equal Bloch phases in every cell gen

ally applies in optics or microwaves, because~for normal
incidence! the phase accumulated in passing through a ce
just fp5k0npap , the product of wave number in vacuum
the index of refraction, and the cell thickness.~Usually a cell
is a single homogeneous layer in optics.! If the fp are ar-
ranged to be equal at the common Bragg point, then they
remain equal so long as the index of refraction is consta
This is not the casehowever in semiconductors because t
wave-numberk(x) is the square root of an energy differenc
as in Eq.~1!.

For N53 cells the classic Butterworth filter design h
m151/8mX , m251/2mX , andm357/8mX . In units of mX ,
the rotations of the spin analogy have radii 1/8, 1/4, and 1
as illustrated in Fig. 2~c!. It is not hard to see that this mode
also shows linear stability as the energy varies from
multi-Bragg point, with a deviation in angle of twice«1

22«21«3 which vanishes when the«p are all equal. More-
over, this design also exhibits quadratic stability, defined
second order in the«p . In other words, the zero of the re
flection amplitude at the design energy will be a seco
order zero, leading to a flatter maximum in transmissi
Comparing the three panels of Fig. 2, one sees that the B
phasesfk can be further off the Bragg point whenN is
larger, and the device can still give very good transparen

IV. ANALYTICAL DEVELOPMENT

At this point it is useful to derive and extend the abo
results analytically. From Eq.~10!, for each symmetric cell
included in the ARC transfer matrixM , we can write

M p52 i sinfp@U~2mp!1 i cotfpI #. ~13!

For brevity, we will write Up for U(2mp). At the design
energy, everyfp5p/2, and M reduces to a product o
U-matrices. This product is easily reduced because the m
tiplication table for theU andY matrices is very simple:
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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U~m!5S coshm/2 2sinhm/2

sinhm/2 2coshm/2D ,

Y~m!5S coshm/2 sinhm/2

sinhm/2 coshm/2D 5e(m/2)sx,

UaUb5Y~ma2mb!, UaYb5U~ma2mb!, ~14!

YaUb5U~ma1mb!, YaYb5Y~ma1mb!.

Like matrices give aY; unlike give aU. If a Y is to the left
we get the sum of arguments, and if aU, the difference.
Therefore at the Bragg point we can reduce the produc
follows:

~ i !NM5 )
p51

N

U~2mp!Y~mX!

5Y~2m122m2!)
p53

N

U~2mp!Y~mX!

5U~2m122m212m3!)
p54

N

U~2mp!Y~mX!¯ . ~15!

If N is even we arrive at the penultimate step with aY whose
argument is an alternating sum ofm’s, ending with22mN .
The last multiplication uses the rule forY3Y, which adds
mX . WhenN is odd, we end up with aU, whose argumen
ends with12mN , and theU3Y product gives aY whose
argument~denotedmS) ends with 2mN2mX . In either case,
the matrix element isM215sinhmS , and the condition for
zero reflection is thatmS50. Explicitly,

mS5 (
p51

N

~2 !p112mp1~2 !NmX . ~16!

All the equations we will deal with are simpler whe
written in terms of thestepsin m, ~including m050), which
we define asDp5mp112mp . Then we can write

mS5 (
p50

N

~2 !pDp50

while

mX5 (
p50

N

Dp . ~17!

For a single-cell ARC,N51, the solution isD15D0

5mX/2, som15mX/2. In terms of indices of refraction, fo
the optical case this is the well-known solutionn15AnXn0.

For more than one cell these two conditions are not s
ficient to select a unique solution. A solution can be writt
down by considering the function

FN~x!5 (
p50

N

xpDp

with

FN~1!5mX ; FN~21!5mS50. ~18!
Downloaded 09 Jun 2010 to 161.116.168.169. Redistribution subject to A
as

f-

The Butterworth6 or binomial solution makesFN(x) propor-
tional to (11x)N, by setting

Dp5
mX

2N NCp5DN2p . ~19!

So it is thesteps, not the impedances themselves, which a
the simple quantities. TheN52 and 3 filters drawn earlie
are of this type. The solution is plausible if you interpretx
5e2if as being the same for every cell, and taking the va
21 at the multi-Bragg point. Then the matrix elementM21

will have anNth order zero there.
Even for moderately largeN, the limit of the binomial

distribution is a Gaussian. With the stepsDp obeying a
Gaussian law, themp will be distributed like the error func-
tion. This may be the basis for the folklore that a Gauss
distribution of barrier heights should be associated with AR
cells.

V. STABILITY CONDITIONS

For small deviations from the multi-Bragg point, w
write fp5p/22«p , and in Eq.~13!, the cotfp becomes
tan«p[tp for short. We treat thetp as small quantities, and
derive stability conditions which involvem of them at a
time.

Using the representation Eq.~13! in the product of Eq.
~12!, and grouping terms with the same number oftp , the
general form of the transfer matrix becomes

M5 )
p51

N

~2 i sinfp!F)
p5 i

N

Up1 i (
k51

N

tk)
pÞk

Up

2 (
k,m

tktm )
pÞk,m

Up2 i (
k,m,r

tktmtr )
pÞk,m,r

Up

1¯GY~mX!. ~20!

Using the multiplication table for the matricesU it is
straightforward to write down the terms of any order. T
leading term involves notk . Then there are sets of term
which involve 1,2,3,..., of the tk . The first N21 of these
sets give stability conditions which must be imposed to ma
the resulting transmission amplitude as flat as possible in
region around the multi-Bragg point. The last term involv
the product of all thetk and is simply

M5Y~mX!)
p51

N

cosfp . ~21!

This is what remains when all the stability conditions ha
been satisfied, and is the generalization of the Butterwo
filter for unequal phasesfp .

The linear stability terms are obtained by including o
of the tk5tan«k in place of the factorUk in the product Eq.
~12!. The typical contribution is

d (1)M;U1 . . . Uk21tkUk11 . . . UNY~mX!, ~22!
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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whereUp5U(2mp). BecauseUk is missing from the prod-
uct, the result of these multiplications is to arrive at eithe
U or Y matrix whose argument differs frommS in two re-
spects:~i! the argument 2mk is missing and~ii ! the terms
following mk21 have the wrong sign as compared tomS .
The typical case is
2m122m21¯12mk2122mk11¯

52m012m12¯12mk212mk1mk22mk11¯

5D02D11¯2Dk212Dk1Dk111¯

which is to be compared withmS :

05D02D11¯2Dk211Dk2Dk111¯ . ~23!

The contribution of this term toM21 involves a factortk

times the sinh of this argument. Again the aim is to make
2,1 matrix element vanish, which means that the sum of
these contributions must be zero. We can simplify the ar
ment of the sinh by adding to itmS which is already zero,
~the last line above!. Then the terms followingDk21 cancel
out. As a result we can write the linear stability condition
follows:

d (1)M5 (
k51

N

tk sinhF (
p50

k21

~2 !pDpG50

5t1 sinhD01t2 sinh~D02D1!

1t3 sinh~D02D11D2!1¯ . ~24!

In the small angle approximation for the hyperbolic fun
tions, this expression agrees with the linear stability con
tion for the filters drawn in Fig. 2.

The quadratic stability condition arises from term
where two of the matricesUkUm are replaced bytk ,tm fac-
tors. For the three-cell caseN53, one has

t1t2U3Y~mX!1t1t3U2Y~mX!1t2t3U1Y~mX!

5t1t2 sinh~m32mX/2!1t1t3 sinh~m22mX/2!

1t2t3 sinh~m12mX/2!

5t1t2 sinh~m12m2!1t1t3 sinh~m122m21m3!

1t2t3 sinh~m32m2!

5t1t2 sinh~2D1!1t1t3 sinh~D22D1!1t2t3 sinh~D2!.

~25!

TABLE I. Equations which determine theDk for the N57 filter, in the
optical case.

D0 D1 D2 D3 D4 D5 D6 D7 5value

7 26 5 24 3 22 1 0
26 10 212 12 210 6 0

35 220 15 216 19 220 15 0
220 20 216 16 220 20 0

21 26 11 212 9 210 15 0
26 2 24 4 22 6 0

1 0 1 0 1 0 1 0 mX/2
0 1 0 1 0 1 0 1 mX/2
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It is easily seen that this vanishes for the binomial filt
providing that thetk are all equal. But for semiconductor
where they are unequal, it is a new condition to be impo
on theDk .

The generalmth-order stability condition is worked ou
in Appendix A. It takes into account all terms wherem of the
tk are involved, form51,2,. . . ,(N21).

VI. PRACTICAL APPLICATION OF STABILITY
CONDITIONS

For anN-cell impedance transformer, Eq.~20! expresses
M as a sum of 2N terms, which fall intoN11 classes labeled
by the numberm of tk occurring in the terms of classm. The
matrix elementM21 must be zero for perfect transmissio
into the central cellsX.

The vanishing of them50 term is expressed bymS

50 in Eq. ~17!. It involves just the alternating sum of th
stepsDk , k50 ¯N. The linear, quadratic, and higher st
bility conditions involve products of thetk times hyperbolic
sinh’s whose arguments are specific linear combinations
theDk . In the optical and microwave applications, thetk are
the same for allk, so their value is just an overall factor tha
can be dropped from all terms in classm. In effect one can
set tk51.

In semiconductors it is found that the strongest barr
has a cosfk that varies most rapidly with energy, and th
others vary progressively less rapidly. It will also be seen
the next section that in the vicinity of the multi-Bragg poin
the tk vary linearly with energy. To the extent this is true w
can replace thetk by their slopes, taking say the weakest o
to be unity. A reasonable first approximation to this regime
to set tk5k, which we will call the linear model.20 This
contrasts with the situation in optics, wheretk5constant ap-
plies, at least for normal incidence.

If we further make the small~hyperbolic! angle approxi-
mation, then the terms of classm reduce to a linear combi
nation of the unknowns (2)kDk multiplied by sums of prod-
ucts of thetk . For example, forN53, from Eqs.~17!, ~24!,
and ~25! we can write

(
p

Dp5mX ,

(
p

~2 !pDp50, ~26!

~ t11t21t3!D02~ t21t3!D11t3D250,
2~ t1t21t1t3!D11~ t1t31t2t3!D250.

TABLE II. Equations which determine theDk for the N57 filter, in the
linear model.

D0 D1 D2 D3 D4 D5 D6 D7 5value

28 227 25 222 18 213 7 0 0
0 227 75 2132 180 2195 147 0 0

392 2333 245 2176 168 2221 245 0 0
0 2333 705 2792 600 2585 1029 0 0

13132 28028 4870 27018 7782 23562 11368 0 0
0 2669 630 2319 875 2130 1029 0 0
1 21 1 21 1 21 1 21 0
1 1 1 1 1 1 1 1 mX
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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It is convenient to takeDp5(2)pDp as the unknowns; this
removes most of the negative signs from the equatio
Leaving aside the top equation, which gives the overall n
malization of the solution, a bit of algebra puts the remain
three into the form

S 1 1 1 1

0 x1 x2 x3

0 x1
2 x2

2 x3
2
D S D0

D1

D2

D3

D 50, ~27!

wherexk5t11¯1tk is a partial sum of the slopes. We ca
solve these equations forD1 ,D2 ,D3 in terms ofD0 and then
use the top equation of Eqs.~26! to give the normalized
solutions. In this case~but not for largerN), the coefficient
matrix is equivalent to the well-known Vandermonde matr
and the solution can be written down immediately.23

In general, the stability conditions of orderm
51,2,. . . ,(N21), together with Eqs.~17! become a set o
N11 linear equations for the unknownsDk , and a similar
strategy can be used to solve them. An example is show
Table I, forN57, where we have set all thetk equal to unity,
appropriate for optics. As expected, the solution is the bi
mial filter for N57. In contrast, in Table II we show th
equations for the linear model, withtk5k. The solution,
shown in Table III is now completely different. The first fe
steps inmk are much larger than in the binomial filter, an
the last few steps are very much smaller. The reason is
the relatively rapid variation of the last few Bloch phases c
only be countered by making the radii of the circles of~spin!

FIG. 3. StepsDk for binomial and linear models, compared to Gaussian a
Poisson distributions, for 12 cell ARC.

TABLE III. Linear model solutionsDk for the N57 filter.

k5 Dk mk11 Poissonk mPoisson

0 0.125 0.125 0.166 0.166
1 0.2917 0.4167 0.298 0.464
2 0.2917 0.7083 0.268 0.732
3 0.1856 0.8939 0.160 0.892
4 0.07954 0.9735 0.072 0.964
5 0.02244 0.9959 0.0259 0.990
6 0.00379 0.9997 0.0077 0.998
7 0.000291 1 0.0002 0.998
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rotation as small as possible. The structure of a filter
semiconductors therefore will have a very different profi
than for optical or microwave applications.

This difference in character is illustrated in Fig. 3, for
12-cell ARC filter. The stepsDk for the binomial filter are
peaked atk56, and are well fitted by a Gaussian distrib
tion. In contrast, for the linear model, the steps~at left! peak
at k52 and are better represented by a Poisson distribu
than by an asymmetric Gaussian having the same ave
value.

The general solution of the linear model forN cells is

Dp5~2p11!
N!

~N2p!!

N!

~N1p11!!

5
2p11

N1p11
NCp

N1pCp
, p50¯N. ~28!d

FIG. 4. Analysis of the~adjusted! six-cell device of Coquelinet al. ~a!
logur/tu2, ~b! cosfk , and their tangents at the band center, and~c! mk .21
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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For large p'N the linear model steps are exponentia
small. Correspondingly,D051/(N11), which for N.4
greatly exceeds the value for the binomial or Butterwo
filter, 22N. The Poisson distributionPk5ake2a/k! can be
fitted by settingD05e2a to fix the mean valuea. Alterna-
tively we can choosea to give the second moment of th
distribution of steps, as was done in the figure.

One conclusion we can draw is that a semiconduc
bandpass filter should have many fewer cells than a sim
optical or microwave filter. Most of the work will be done b
the first few cells, so the later ones contribute less to
performance. This is useful information because it is ea
to make a semiconductor device with fewer cells.

FIG. 5. Analysis of the self-consistentN52 ARC device derived from
Coquelinet al. ~a! logur/tu2, ~b! cosfk , and their tangents at the band cent
and ~c! mk .21
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VII. EXAMPLE

On the web site of Gornik’s group in Vienna, Coquel
et al.8 presented an example of a six-barrier system wh
achieves 83% transmissivity over the first allowed miniba
The structure was modeled as a sequence of AlxGa12xAs
quantum barriers withx50.3, and GaAs wells. Viewed as
one-dimensional~1D! potential array, the barrier heights a
290 meV, and the widths were varied according to a Gau
ian law,14 taking the values 9, 28, and 40 Å. The well width
were set at 30 Å.

We can consider this an example of an ARC system w
N52 cells, surrounding two central cellsX. We define a cell
to consist of one barrier and a 15 Å spacer on each side o
In our calculation, we took the effective mass at the cond
tance band edge to be 0.092 and 0.067, respectively, and
energy gaps 1800 and 1424 MeV, based on Davies.22 We
took account of energy dependence of the effective ma

FIG. 6. Pseudospin trajectories for the self-consistentN52 device at three
energies as labeled.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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following the recipe of Nelsonet al.16 Finally, following
Pacheret al.7 we took the barrier height to be 290 MeV. As
check of these parameters, we reproduced the five p
shown between 128 and 160 meV in the figure of Ref. 8
a periodic six-cell array.

Computing the Bloch phases and impedance parame
for each cell of their Gaussian array, one finds that every
is a Bragg reflector close to the band center. The multi-Br
character was improved by using 10 Å for the width of t
weakest barrier and 15.05 Å for the corresponding half-w
with these small adjustments, the common Bragg point i
138.3 meV. We will refer to this as the ‘‘adjusted’’ Coquel
array. The performance is illustrated in Fig. 4~a!, where we
plot ur /tu2 for the entire device, on a natural log scale. This
a more sensitive presentation than simply plotting the tra
mission probability which would merely show a flat ban
with values atutu251.

Themp are plotted21 in Fig. 4~c!; at the Bragg point they
take values 0.580 : 1.623 : 2.319 which are very nearly in
ratio 1:3:4 of a classic Butterworth filter. However, movin
away from the multi-Bragg point, the slopes of the cosfp

lines, seen in Fig. 4~b!, are in the ratio 0.17:0.51:1.0 which
very far from equal slopes; indeed, rather close to the lin
model.

Taking the parameterstp to be the above-mentione
slopes, and solving the stability conditions predicts that
mp should be close to those of the linear model, which

FIG. 7. Logarithmic plot ofur /tu2 for N52 ARC, with four and six central
cells, self-consistent solution.
Downloaded 09 Jun 2010 to 161.116.168.169. Redistribution subject to A
ks
r

rs
ll
g

l;
at

s-

e

ar

e
e

1/3, 5/6, 1 timesmX . This suggests that improved perfo
mance should result from changing the barrier widths,
produce impedances which are consistent with the ens
slopes.

Because the barriers are relatively high, themp are
roughly proportional to the widths. Keeping the central c
parameters fixed (bX540 Å), we found that with b1

515.4 Å and b2535.4 Å, the resultingmp took values
0.893,2.052, compared tomX52.319, which are self-
consistent with the solution of the stability equations us
t150.24, t250.76. In Fig. 5~c! we show themk(E) across
the allowed band. The values are quite flat in the cente
the band, though all three curve upwards as the band ed
approached. It is not necessary for themk to be strictly con-
stant; if their ratios are constant the spin analogy shows
the ARC mechanism will still work. The cosfp are shown in
Fig. 5~b! along with the linear approximation from which th
tp were estimated. In Fig. 5~a! we show, on a log scale,ur /tu2

for this solution. This is to be compared with Fig. 4~a!, which
used the~adjusted! Coquelin parameters. The average tran
missivity over the bandt has increased from 0.83 to 0.90.

In Fig. 6 we show the trajectories of the spin analogy,
three energies. In the first two cases~near the band center!
the spin orientation has indeed been moved to the pointmX ,
and then back to the origin. This confirms that linear stabi
has been satisfied for the self-consistent filter. The third pa
~c! is at 150 meV, in a deep trough ofur /tu2. The perfor-
mance is degrading and is only maintained because the A
cells bring the spin to a point belowmX , and the two central
cells bring it ~almost! to the mirror image point above th
axis. Then the downstream ARC cells can bring it ba
to OZ.

TABLE IV. Barrier widths,tp andmp for N-cell ARCs, both self-consisten
and modified fits.

Type b1 b2 b3 b4 bX

t1 t2 t3 t4

N t m1 m2 m3 m4 mX

2 adj. 10.0 28.0 40
0.17 0.51

0.828 0.580 1.623 2.319
2 s-c 15.4 35.4 40

0.24 0.76
0.902 0.893 2.052 2.319

2 mod 16.4 35.3 40
0.25 0.73

0.920 0.951 2.047 2.319
3 s-c 12.4 31.1 38.6 40

0.21 0.64 1
0.942 0.719 1.803 2.238 2.319

3 mod 12.4 30.4 38.2 40
0.21 0.63 1

0.944 0.719 1.763 2.215 2.319
4 s-c 10.3 27.6 36.6 39.3 40

0.18 0.50 0.84 1
0.962 0.597 1.600 2.122 2.279 2.319

4 mod 10.3 27.5 36.3 39.2 40
0.18 0.50 0.84 1

0.964 0.597 1.594 2.105 2.273 2.319
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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The performance should not depend on the numbe
central cells. This is true close to the design energy, but
further away, as seen in the previous paragraph. In Figs.~a!
and 7~b! we show logur/tu2 for the same ARC withK54 and
K56 central cells. Additional humps are seen, the num
increasing likeK, but always lying below some upper limi
This limit is related to the envelope of transmission minim
as discussed in Ref. 9. The width of the region with go
performance widens slightly asK increases. Mostly this is
the expected effect of the band edges becoming better
fined by the central periodic structure. The transmissiv
rises from 0.902 to 0.912 (K54) and 0.915 (K56), using
the self-consistentN52 parameters.

Some further improvement can be obtained by sm
variations in the parameters. Basically this involves a tra
off, making the inside humps ofur /tu2 a little higher and the
outlying ones a little lower. One gains a bit on the width
the region of low reflectivity, while keeping the value und
some maximum, saye25. Our theory is based on assumin
constantmp and tp , but both of these break down as yo
move away from the multi-Bragg point. The small adju
ments gain on the edges at the price of not hitting the ta
at the Bragg point.~In optics or microwaves, such a fit i
referred to as a Chebyshev filter. In our case of unequalfp ,
one cannot use the Chebyshev polynomials, but rather

FIG. 8. Logarithmic plot ofur /tu2 for N53 andN54 ARCs, with param-
eters optimized.
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intent, which is to widen the passband while maintaining
maximum value on the reflectance.! The best fit does depen
on K because the humps that are being reduced have l
tions which depend onK.

We conclude that the ARC obtained from solving t
stability equations has improved the filter performance
about 10%, or close to half the gap from ideal performan
even forN52 cells.

Further improvement is obtained by using a three-
four-cell ARC. The parameters of these ARC solutions
shown in Table IV. The barrier widths are in Å, while th
other values are dimensionless. In all cases the well wid
are 30 Å, except for the weakest barrier where 30.05 is m
tained. The difference between the self-consistent and m
fied solutions is always small, but there is a gain in avera
transmissivity.

In Fig. 8 we show plots of logur/tu2 for the modified
solutions. They show that the filter bandwidth has increa
as compared to theN52 filter. Note the change of vertica
scale between panels~a! and ~b! by a factore22.

VIII. CONCLUSION

We have used the analogy between potential scatte
and precession of a spin-half system, to provide a simple
intuitive picture of the workings of a quarter-wave impe
ance transformer or passband filter. Based on this picture
have identified the stability conditions which take into a
count the different rates of variation of the cosfp with en-
ergy. Enforcing these conditions makes anNth order zero of
the reflection amplitude for a system with anN-cell antire-
flection coating. The rules for writing down these conditio
are given in Appendix A.

Under the small-angle~hyperbolic! approximation, the
stability conditions become a set ofN11 linear equations
for the impedance stepsDp . When the Bloch phases of th
cells vary at the same rate, as in optical ARC’s, the solut
of these equations is the well-known binomial filter, Eq.~19!.
For semiconductor superlattices, the rate of variation of
Bloch phases depends strongly on the strength of the po
tial cell. A reasonable first approximation is provided by t
linear model, in whichtp5p. We have given the exact solu
tion of the linear model in Eq.~28!. As seen in Fig. 3, the
steps of the linear model are close to a Poisson distribut
completely different from the Gaussian limit of the binomi
distribution.

For arbitrary values of thetp , the stability conditions
can be computed and the linear equations solved for the
respondingDp . A numerical strategy for computing the co
efficient matrix is outlined in Appendix B. This allows for a
iterative approach to the design of impedance filters.
have illustrated this process by finding a system similar
that of Coquelinet al. Their system was shown to be a Bu
terworth filter. By adjusting it to satisfy the stability cond
tions we improved the average transmissivity from 0.83
0.90 over the allowed band. Increasing the number of A
cells provides further improvement.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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APPENDIX A: GENERAL STABILITY CONDITION

The stability condition of orderm includes terms where
some setk5k1 ,k2 ,...,km of the tk’s replace the correspond
ing factorsUk in the expansion Eq.~20!. We define the re-
sulting 1,2 matrix element contribution of this term
sinhx(k1,k2,...,km), times the product of the correspondin
tk , and with the requisite number of factors of2 i . The case
m51 was treated in full in the main text, as wasm52.
Learning from these examples we can state the general
The argumentx(k1 ,k2 ,...,km) involves a sum of the
(2)pDp , each with its proper sign. Ifm is even, then the
included terms are those betweenk1 andk221, then fromk3

to k421, etc. Whenm is odd, however, the first sum run
from p50 to k121, and then successive groups run fromk2

to k321, etc. In every case the last group ends atkm21. The
reason is that removal of any of theUp matrices causes
glitch in the progression of signs, and with an odd numbe
glitches, the final entrymX will occur with the ‘‘wrong’’ sign.
Then we mustadd mS to removemX from the phase. Con
versely, with an even number of glitches we must subtr
mS . Addition causes the first group of entries to be includ
in x while subtraction removes them.

We can now write down the general term in the expa
sion of the transfer matrix forN cells. The leading term is the
product of sinfp times sinhmS . @See Eq.~20!.# Dropping an
overall phase, this contributes to the real part ofr /t for the
system. Them51 terms, Eq.~24!, contribute to the imagi-
nary part ofr /t. In them, one of the sines is changed into
cosine; which is accounted for by the factortp . In general,
the odd-order corrections contribute to the imaginary p
and the even order ones to the real part~or vice versa de-
pending on the parity ofN). There are altogetherN such
correction types, which we call the stability condition
Along with the normalizing condition(Dp5mX , they are
sufficient to determine the values of theDp (p50,1,. . . ,
N21). This solution is valid over a range of energies whe
the tp vary linearly with energy around the multi-Brag
point. This allows the design of a generalized Butterwo
transformer for application to electrons in semiconductor

APPENDIX B: PROGRAMMING STABILITY
EQUATIONS

The expansion Eq.~20! contains 2N terms, which are in
~1,1! correspondence with the binary integersj
5@bNbN21¯b1#. ~The bq are binary bits.! Those j which
havem nonzero bits contribute to themth stability equation.
For eachbk51, a factortk is included in the coefficient.
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We make the small-angle approximation sinhx'x. The
stability equations reduce to the form

(
p50

N21

Cp
(m)~2 !pDp50, m50¯~N21!. ~B1!

Starting with j 50, up to 2N21, each binary integer is
parsed, assigned to classm, and the argumen
x(k1 ,k2 , . . . ,km) is constructed as stated in Appendix A
Then for each of theDp occurring inx, the coefficientCp

(m)

is augmented by the product oftk , with k5k1 , . . . ,km . In
this way theN21 stability equations can be constructed u
ing only N2 storage locations.

The j 50 term corresponds to the basic equation E
~17! for mS50. As m ranges over the values 0,1,. . . ,
N21, we obtainN such equations, in theN11 unknowns
Dp . They are supplemented by the second equation in
~17!, which normalizes the sum of theD’s to mX , and makes
the system soluble.DN occurs only in this extra equation, s
one strategy is to solve the stability equations for theDp ,
p50,1,. . . ,N21 in terms ofDN , and then use the last equa
tion to complete the solution.

Obviously, asN increases, the time taken to accumula
the 2N contributions to the coefficients increases expon
tially. Our code, written in C11, works well up to N
524. The method is general but for largerN one needs to
use higher-precision integer representation forj . Fortunately,
for the binomial and linear models, we have analytic so
tions for generalN, and these can be used to check t
computer program.
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