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An extension of the spin density functional theory simultaneously accounting for dielectric
mismatch between neighboring materials and nonparabolicity corrections originating from
interactions between conduction and valence bands is presented. This method is employed to
calculate ground state and addition energy spectra of homogeneous and multishell spherical
quantum dots. Our calculations reveal that corrections become especially relevant when they come
into play simultaneously in strong regimes of spatial confinement. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2803722]

I. INTRODUCTION

The conduction band of semiconductors shows a nearly
parabolic dispersion at the surroundings of the I" point and is
commonly described by the one-band model, the interactions
with the remaining bands being included in the electron ef-
fective mass. This is a sensible approach for wide-gap semi-
conductors. However, the small gap between the conduction
and valence bands in narrow gap semiconductors has impor-
tant nonparabolicity effects on the conduction band disper-
sion that warrant an improvement of the model. The use of
an energy-dependent effective mass, as proposed by Kane,"?
allows us to study narrow gap semiconductors still within the
framework of the one-band model. Nevertheless, as the ef-
fective mass is self-consistently adjusted for each energy
level, different kinetic energy, and therefore Hamiltonian op-
erators, are employed to compute the different eigenvalues,
so that the associate eigenfunctions are not necessarily or-
thogonal. In order to deal with orthogonal eigenfunctions,
the electron effective mass is kept constant and a power se-
ries expanded dispersion relation is incorporated into the ki-
netic energy term of the Hamiltonian yielding a fourth (or
higher) order differential Schrodinger-like equation.3 Al-
though this approach has been successfully employed to
study donor states in spherical quantum dots (QDs),4 it will
be accurate only to the extent that the truncated power series
succeed in describing the dispersion relation.

The energy-dependent effective mass, leading to nonor-
thogonal eigenfunctions, has been employed to study the
electronic structure’ and optical excitations®’ of quantum
wells (QWs). Intersubband spin-density excitations in QWs
have been addressed using the Kohn—Sham equations with
energy-dependent effective mass.® Extensive single particle
studies of different shaped QDs,” ™! quantum rings,12 and
artificial molecules'® have also been carried out. Recently,
the energy-dependent effective mass approach has repro-
duced experimental effective masses obtained from optical
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transition energies in QWs'* and provided quantitative inter-
pretations  of  capacitance  voltage  spectroscopy
experiments.15

Nonparabolicity has larger effects in the strong confine-
ment regime and for excited states, where the energetic cor-
rection can even exceed the electron-electron interaction.” A
recent spin density functional theoryl6 (SDFT) study of a QD
molecule with six electrons'’ shows that the energy-
dependent effective mass correction is comparable to the ex-
change energy that is obtained. Since the energy-dependent
effective mass corrects the kinetic contribution to the total
energy, minor effects coming from nonparabolicity could be
expected in the weak confinement regime. In the present pa-
per we incorporate nonparabolicity corrections into our
SDFT code,"®™ which also accounts for polarization and
self-polarization coming from dielectric mismatch between
neighboring materials. We then explore the relevance of non-
parabolicity corrections on the addition energies of homoge-
neous and multishell QDs subjected to different confinement
regimes. We will show that the interplay of both dielectric
mismatch and nonparabolicity effects may lead to relevant
changes in the electronic structure and addition energies of
QDs, the effect being particularly relevant in multishell QDs.

Il. THEORY AND COMPUTATIONAL DETAILS

The formulation of the extension of the SDFT which
accounts for position-dependent effective mass, polarization
of the Coulomb interaction, and self-polarization coming
from the dielectric mismatch between the QD and its sur-
rounding medium (and also between neighboring materials
in the case of multishell QDs) can be found in Ref. 18 and
will not be outlined here for the sake of conciseness. For the
present study we also implemented energy-dependent effec-
tive masses in a similar way to that reported in Ref. 17. It is
worth pointing out that the use of orbital energy-depending
masses is just an effective way of incorporating the pertur-
bation produced by the valence bands on the conduction
electron levels (the scheme we proposed here can be viewed
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as an approximation to the multiband calculation). Therefore,
it is equivalent to leaving the kinetic energy operator as it is
and introducing the appropriate perturbation external poten-
tial. As a consequence, same exchange-correlation functional
should be employed in parabolic and nonparabolic calcula-
tions. In our implementation we basically include m;ko(E,-U,r)
instead of m"(r) in the Kohn—Sham (KS) equation, i.e., a
single differential equation is replaced by a set of coupled

differential equations
ﬁ2
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that are solved up to simultaneous convergence. In the earlier
equation n is the total density and  represents the spin po-
larization. In terms of the spin-up and spin-down densities
ny(r) [where o=(+,—-) labels the spin] they can be written as
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n(r)=n,(r)+n_(r) and {(r)=[n.(r)-n_(r)]/n(r), respec-
tively.

The energy-dependent effective mass in Eq. (1) is given
by the Kane formula'?
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where m"(E,r) is the energy- and position-dependent effec-
tive mass, m is the free electron mass, P is the Kane param-
eter, and E,(r), V(r), A(r) are the position-dependent band
gap, confining potential, and spin-orbit parameter, respec-
tively. For a practical implementation, we employ the rela-
tionship between the position- and energy-dependent effec-
tive mass m"(E,r) and the position-dependent effective mass
at the bottom of the conduction band m"(0,r),
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Many implementationsz’g_l3’17 approximate the left-hand side

of Eq. (3) by m"(0.r)/m"(E.r). Here we use Eq. (3) as it is.

In order to achieve a solution to the set of differential
Eq. (1) we start by solving a single differential equation
where m; (E;,,r) is replaced by m"(0,r). From the ®,,(r)
orbitals and E,, energies thus obtained we compute the total
density n, spin polarization , and effective masses
m; (E;,,r) and build up the set of differential Eq. (1). In a
second step, we solve these differential equations one by one
to get the couple orbital and associate energy [®,,(r), E;,]
from the ioth differential equation. Then, from the new set of
energies we get the next energy- and position-dependent ef-
fective masses m;, (E;,,r) and from the new orbitals the next
total density n and spin polarization { are obtained. The pro-
cess is repeated up to simultaneous convergence of all dif-
ferential equations. We can build the first order density ma-
trix from a set of nonorthogonal orbitals or equivalently, we
may first orthogonalize them and then construct the density
matrix. We follow the second procedure in our code.

The good performance of our method computing addi-
tion energies of QDs with nearly parabolic conduction band
has already been tested.'® Additionally, the use of energy-
dependent effective masses has widely recognized as an ap-
propriate effective way of incorporating the perturbation pro-
duced by the valence bands on the conduction energy levels
(see the earlier section). Nevertheless, it is worth testing
these approaches working together on a narrow-gap semi-
conductor QD. Certainly, the amount of experimental data on
addition energies of spherical narrow-gap QDs in the pres-

ence of relevant dielectric mismatch with the environment is
rather scarce. We employ here experimental results by Banin
et al.*' on a 2.2 nm radius InAs QD embedded in an organic
environment which first three experimental addition energies
have already been very well reproduced by means of heavy
atomistic pseudopotential calculations.”” In these calcula-
tions the dielectric constant of the organic environment was
taken as a fitting parameter, yielding a value &,,,=6. In our
test we have assumed, though, a value &,,,=3, which seems
more reasonable for this kind of environment.”> The remain-
ing parameters employed are those of bulk InAs, namely
map=0.023, £9p=12.3, E’=0.354 eV, AGH=0.41 eV, and
for the external medium m,, =1, e,,=3, E;"=8 eV, Agg
=0 eV. Finally, the confining potential is assumed to be V
=3.2 eV, the same as in Ref. 22. Parabolic/no-parabolic cal-
culations predict (experimental data in parentheses) A,
=0.22/0.19(0.14) eV, A,3=1.59/0.59(0.52) eV, and Aj,
=0.20/0.14(0.14) eV. We see in this example that nonpara-
bolic corrections work well improving all parabolic results,
the improvement of A, ; being especially relevant. The ob-
tained results also show that our nonparabolic approach sup-
plied with bulk parameters compares well with reported ex-
perimental data by Banin et al.”' Further improvement may
be reached by fitting.

lll. RESULTS AND DISCUSSION

We study the ground state and addition energies of
spherical QDs built of narrow gap semiconductors versus the
number N of electrons. Spherical nanocrystals are commonly
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TABLE 1. Parameters employed in this paper (taken from Ref. 25). Namely,
effective mass (mg), dielectric constant (&), band gap (Eg), split of (A), and
spatial confining potential barrier (V).

Eg A
Material mg e (eV) (eV)
HgS 0.04 11.4 0.5 0.08
CdS 0.15 5.5 2.5 0.08
H,O 1 1.78 8. 0.08
HgS/H,O0 CdS/H,0 HgS/Cds
V (eV) 415 28 1.35

synthesized in colloidal solutions. This technique allows the
smallest QDs with sizes of very few nanometers to be pro-
duced. The QDs can be either homogeneous or onionlike,
i.e., built up of concentric layers (shells) of different semi-
conductors with controllable shell thicknesses down to a
single monolayer. In the present paper, we consider both ho-
mogeneous HgS nanocrystals and multishell double quantum
well CdS/HgS/CdS/HgS/CdS, similar to those experimen-
tally synthesized in Ref. 24. Then, in all cases the surround-
ing medium of the QD is considered to be water. The param-
eters employed in our calculations for the different materials,
namely effective masses, dielectric constants, band gaps,
split-off parameters, and spatial confining potentials are the
same as those employed in Ref. 25 and are shown in Table 1.
The bottom of the HgS conduction band is assumed to be the
origin of energies in all cases. We have carried out calcula-
tions from 1 up to 25 electrons, using an orbital basis 1s, 1p,
1d, 1f, 2s, and 2p.

A. Homogeneous nanocrystal

In this section we consider HgS QDs with 5 and 20 nm
radii in water. From the HgS effective Bohr radius, aj
=ape/ m" =15 nm, we see that the confinement regime of the
small/large QD is strong/weak. For the time being the polar-
ization coming from the dielectric mismatch is disregarded
in our calculations, i.e., we use the dielectric constant of the
QD for the whole system. We carry out three series of cal-
culations versus the number N of electrons in the QD ranging
from 1 up to 25. These are (i) independent particle (IP) cal-
culations employing a parabolic effective mass; (ii) IP calcu-
lations with energy-dependent masses; and (iii) interacting
electrons at the SDFT level with a parabolic effective mass
(excluding dielectric mismatch effects). The results for the
small and large QD, as representative of strong/weak con-
finement regime, are summarized in Figs. 1(a) and 1(b).
Solid lines represent IP with parabolic mass, dashed lines
correspond to IP including nonparabolicity corrections, and
dotted lines refer to interacting particles with parabolic ef-
fective mass. The obtained results go along with expecta-
tions, i.e., nonparabolicity corrections increase with the num-
ber of electrons in the QD; in the strong confinement regime
these corrections can be as large as the corrections originat-
ing from the electron-electron interaction [Fig. 1(a)] while in
the weak confinement regime they are negligibly small [Fig.
1(b)]. The inset in Fig. 1(b) shows the evolution of the
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FIG. 1. Ground state energy vs number N of electrons of a (a) 5 nm radius
HgS QD, (b) 20 nm radius HgS QD, and (c) 5 nm radius QD defined by the
HgS material parameters except for Eg that is set to 3 eV. Solid lines cor-
respond to the parabolic IP calculations, dashed lines to IP including non-
nonparabolicity corrections, and dotted lines to parabolic SDFT. The inset
encloses the energy-dependent effective masses of the 5 nm radius HgS QD
(solid lines) and 20 nm radius HgS QD (dotted lines) corresponding to the
low-lying KS orbitals.

energy-dependent effective masses in the low-lying 1s, 1p,
1d, 1f, and 2s states versus the number N of electrons in the
QD. Solid/dashed lines correspond to strong/weak confine-
ment regimes. The results reveal that higher energy states
have larger effective masses and that the electron effective
mass increases almost linearly with N (within the range stud-
ied here), these changes in effective masses being relevant
only in the strong confinement regime. Interestingly, correc-
tions coming from nonparabolicity and from electron-
electron interactions are of opposite signs. In the strong con-
finement regime where nonparabolicity corrections are
relevant [Fig. 1(a)], these corrections partially cancel out
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FIG. 2. Calculated addition energy spectra of a 5 nm
radius HgS QD. (a) With a parabolic mass. (b) Includ-
ing nonparabolicity corrections. (c) Same as (a) except
that the QD material Eg is set to 3 eV. (d), (e), and (f)
Same as (a), (b), and (c) but also including polarization
coming from the dielectric mismatch between neighbor-
I ing materials.
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with the electron-electron interaction corrections, so that cal-
culations including both corrections yield energies close to
those of the simple IP parabolic approach. In other words, it
appears that simple parabolic IP calculations yield a reason-
able, at least qualitative, description of the QD electronic
structure in the strong confinement regime. In the weak con-
finement regime, where Coulomb interactions cannot be ex-
cluded for a reasonable description of the QD electronic
structure, nonparabolicity corrections are negligibly small
[see Fig. 1(b)], and it seems they can safely be ignored, at
least for a qualitative description.

In order to show the extent to which these corrections
can influence the electronic structure of QDs built of wide-
gap semiconductor materials, we carried out a third series of
calculations for a QD described by the same parameters as
the small HgS nanocrystal except for the band gap that was
set to 3 eV. Then, this QD is in the (same) strong confine-
ment regime where nonparabolicity corrections become
large. However, the results obtained reveal, as expected, that
despite the strong confinement regime, nonparabolicity cor-
rections are much smaller than those coming from Coulomb
interactions [see Fig. 1(c)]. The behavior observed is there-
fore similar to narrow gap semiconductor QDs in the weak
confinement regime [Fig. 1(b)].

So far we have excluded polarization coming from the
dielectric mismatch and focused on total energies, the calcu-
lations revealing that nonparabolicity corrections are not
small in the strong confinement regime, although no particu-
lar situations have been found in which these corrections
play a fundamental role. Next, we consider a QD in the
strong confinement regime, carry out calculations of the
quite sensitive addition enelrgy,26 and allow polarization ef-
fects to come into play. To this end, we study the small 5 nm
radius HgS QD in water again and estimate addition energies
including and excluding polarization effects coming from the
dielectric mismatch between the QD and its surrounding me-

0....5....10....15....20....250....5....10....15...

.20. A .25

dium (hereafter we will refer to these calculations as polar-
ized and unpolarized) and with/without nonparabolicity cor-
rections. The calculations are summarized in Fig. 2. Panels
on the left- and right-hand side show unpolarized/polarized
calculations. Top row panels correspond to parabolic effec-
tive mass while those in the middle row include corrections
from nonparabolicity. As earlier, for the sake of comparison,
we enclose a series of calculations on a wide-gap semicon-
ductor QD (panels at the bottom of Fig. 2). Thus, the calcu-
lations shown in the panels in the middle and bottom rows
correspond to QDs defined with the same parameters and
geometry except for the band gap (set to 0.5 and 3.0 eV,
respectively). The unpolarized calculations with parabolic ef-
fective mass, assumed to be the reference, are shown in Fig.
2(a). We see that polarization and nonparabolicity correc-
tions in isolation do not yield qualitative changes in the ad-
dition energy profile [Figs. 2(b) and 2(d), respectively]. In all
three panels (a), (b), and (d), one can neatly recognize that
the shell filling is done according to the Afbau and Hund
rules. Large peaks reveal complete shell filling, small peaks
show half filling. Then, the observed filling sequence is
1521p®1d'°2s*1f*. Only when both corrections are simulta-
neously included, can a reconstruction be observed. The or-
bital 2s is not filled before 1f [see Fig. 2(e)]. The reconstruc-
tion disappears if the QD is built of a wide-band
semiconductor material [Figs. 2(c) and 2(f)]. The earlier
mentioned reconstruction originates from the following facts.
On the one hand, polarization corrections increase the orbital
energies, thus enhancing the nonparabolicity corrections. On
the other hand, s-symmetry orbitals (/=0) have a null cen-
trifugal term [(I+1)/m"r*> while this term is relevant for f
orbitals (/=3). When nonparabolicity corrections come into
play and increase the effective masses, 1f undergoes a larger
stabilization than 2s, and it is filled first. This is not the case
for the wide-gap semiconductor QD because it has small
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FIG. 3. Calculated SFDT addition energy spectra of a
multishell ~CdS/HgS/CdS/HgS/CdS  spherical QD
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(c) but also including polarization. Solid lines represent
calculations with parabolic effective mass. Dashed lines
indicate that nonparabolicity corrections are included.
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nonparabolicity corrections, that never allow 1f to reach an
energy lower than that of 2s. Then 2s is again filled first [see
Fig. 2(f)].

In summary, in addition to exceptional situations where
the interplay of nonparabolicity and polarization corrections
may yield reconstructions and thus changes in the addition
energy profile, the main effect that nonparabolicity correc-
tions produce on the addition energy spectrum is a reduction
in the height of the peaks [see e.g., Fig. 2(b) versus Fig. 2(a)]
as the result of a higher degree of closeness of the orbital
energies originating from an increase in the effective mass.

B. Multishell quantum dots

In the previous section we found a reconstruction in the
addition energy spectrum originating from the relative close-
ness of orbital energies and the differential nonparabolicity
effects on energy levels with distinct angular momentum
quantum number /. Double quantum wells are good candi-
dates for a nonregular energy spectrum. Thus, in this section
we consider a multishell CdS/HgS/CdS/HgS/CdS spherical
QD double QW like those synthesized in Ref. 24. The pa-
rameters employed in our calculations can be found in Table
L. It is no straightforward task to unambiguously define the
confinement regime of these heterogeneous systems in which
the electronic density is mainly concentrated in the wells, but
it seems reasonable to assume that the volume of the wells
will basically determine it.

We consider two systems with different confinement
strengths defined by the following core radius and shell
thickness, 3/2/1/2/1 and 10/5/2/5/1 nm, respectively,
and carry out polarized/unpolarized calculations with/
without the inclusion of nonparabolicity corrections. The re-
sults can be seen in Fig. 3. Panels (a) and (b) in Fig. 3
correspond to the stronger spatial confinement while panels
(c) and (d) correspond to the weaker confinement. Solid/
dashed lines refer to parabolic/nonparabolic effective
masses.

First we analyze the smaller (strong confined) system.
The reference addition energy spectrum [unpolarized and
parabolic, solid line in Fig. 3(a)] shows a regular sequential

20 25

filling up to 20 electrons (1s>1p%2s21d'%). Then, a shoulder
emerges at N=22 involving the 2p orbital. This shoulder
disappears when nonparabolicity corrections are included
(dashed line in the same panel), which reveals a regular fill-
ing of the 1f orbital, due to the fact that 1f(/=3) undergoes a
larger energy stabilization coming from nonparabolicity cor-
rections than 2p(l/=1), this fact being mainly related to the
centrifugal term. Except for this reconstruction, unpolarized
calculations with and without nonparabolicity corrections
yield similar addition spectra. The main difference is a re-
duction in the height of the peaks when corrections are taken
into account. This reduction comes from a higher degree of
closeness of the orbital energies as the effective masses in-
crease, due to nonparabolicity effects.

When polarization is taken into account in the parabolic
mass calculation [solid line in Fig. 3(b)] no relevant changes
in the addition energy spectrum can be seen. We may men-
tion the disappearance of the shoulder at N=22 and some
“noise” when filling orbital 1d. However, when both polar-
ization and nonparabolicity corrections are simultaneously
taken into account [dashed line in Fig. 3(b)] severe changes
in the addition energy spectrum occur. On the one hand, full-
and half-filling peaks become similar in height. On the other
hand, the largest peak at N=20 corresponding to the full
filling of orbital 1d drops out.

The shell structure of the larger multishell QD is not
neatly apparent in the addition spectrum. However, the ref-
erence unpolarized and parabolic addition energy spectrum
[solid line in Fig. 3(c)] still shows peaks at N=2(1s?), N
=5(1s1p?%), N=8(1s%1p°), N=10(15%1p%2s?), N
=15(15%1p%2s1d°), and N=20(1s51p%25%1d'?), although the
profile is far from being as regular as the one for the smaller
multishell QD [solid line in Fig. 3(a)]. When nonparabolicity
corrections are taken into account [dashed line in Fig. 3(c)]
the most significant change observed is a peak flip from N
=15 (corresponding to the filling 1s*1p%2s*1d°) up to N
=14 (when corrections are included and that corresponds to
15%1p%2s%1d°). Additionally, as in all previously studied ex-
amples, the height of the peaks are reduced due to a higher
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degree of closeness of orbital energies coming from an in-
crease in effective mass induced by nonparabolicity.

Accounting for polarization while employing a parabolic
mass does not introduce qualitative changes in the addition
energy spectrum [solid line in Fig. 3(d)] except, as earlier,
for the shift from N=15 to N=14 of the half filling of 1d.
Finally, in contrast with the results corresponding to the
smaller (more strongly confined) multishell QD, by includ-
ing both polarization and nonparabolicity corrections, no se-
vere changes occur in the spectrum [dashed line in Fig. 3(d)].
This is related to the fact that both corrections are smaller in
larger systems.

IV. CONCLUSIONS

In this paper we have studied the relevance of correc-
tions coming from nonparabolicity on the ground state and
addition energies of homogeneous and multishell spherical
QDs and their interplay with effects coming from the pres-
ence of dielectric mismatch. To this end we employ a SDFT
approach modified to include polarization coming from the
dielectric mismatch between neighboring materials and non-
parabolicity originating from the interaction between con-
duction and valence bands. This approach basically translates
into a set of coupled differential equations that are solved up
to simultaneous convergence.

Our calculations show that homogeneous QDs built of
narrow gap semiconductor materials show large nonparabo-
licity energy corrections if the QD regime of spatial confine-
ment is strong. In such a case, these corrections are of the
same order and opposite sign as corrections coming from
electron-electron interaction and partially cancel each other
out, so that the simple parabolic IP approach yields reason-
able, at least qualitative, results. A similar conclusion applies
to the addition energy spectra. Since most of the spherical
QDs are chemically synthesized in colloidal solutions, in our
calculations we have incorporated the polarization originated
by the dielectric mismatch between the QD and its surround-
ings that we consider to be water (and also between different
materials in the case of multishell QDs). Our results reveal
that the interplay of polarization and nonparabolicity correc-
tions may yield reconstructions in the addition energy spec-
trum. Our analysis points out two reasons for this. On the
one hand, polarization increases orbital energies thus enhanc-
ing nonparabolicity corrections. On the other hand, the dif-
ferent centrifugal terms felt by orbitals with different angular
momentum quantum number / include the effective mass in
the denominator. As a result, nonparabolicity corrections
may even flip the orbital energy and the filling sequence of
orbital with different /. As a major conclusion we can say
that the calculations on addition energy spectra of multishell

J. Appl. Phys. 102, 094304 (2007)

QDs is the scenario where corrections play a prominent role.
The most significant changes arise in the stronger spatial
confinement when the dielectric mismatch effects are also
relevant and come into play together with nonparabolicity
corrections.
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