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The possibility of local elastic instabilities is considered in a first-order structural phase 
transition, typically a thermoelastic martensitic transformation, with associated interfacial and 
volumic strain energy. They appear, for instance, as the result. of shape change 
accommodation by simultaneous growth of different crystallographic variants. The treatment 
is phenomenological and deals with growth in both thermoelastic equilibrium and in 
nonequilibrium conditions produced by the elastic instability. Scaling of the transformed 
fraction curves against temperature is predicted only in the case of purely thermoelastic 
growth. The role of the transformation latent heat on the relaxation kinetics is also 
considered, and it is shown that it tends to increase the characteristic relaxation times as 
adiabatic conditions are approached, by keeping the system closer to a constant temperature. 
The analysis also reveals that the energy dissipated in the relaxation process has a 
double origin: release of elastic energy Wi and entropy production Si. The latter is shown to 
depend on both temperature rate and thermal conduction in the system. 

1. INTRODUCTION 

A first-order diffusionless structural phase transition is 
acknowledged to take place in thermoelastic equilibrium 
when, at each temperature, a local balance condition be- 
tween chemical and nonchemical forces is satisfied at the 
interfaces.lv2 The chemical force is provided by the free- 
energy difference between the two phases and drives the 
transition, while the nonchemical forces are mainly associ- 
ated with the development of strain energy in the material 
and oppose the transition. In these conditions, domain 
growth of the new phase represents a decrease in the free 
energy of the system and a simultaneous increase in elastic 
strain energy (both interfacial and volumic) that mutually 
compensate. In ideally thermoelastic conditions the transi- 
tion extends in a temperature range but does not show an 
observable thermal hysteresis. In this sense the process is 
reversible: Once a given two-phase configuration has been 
achieved at a given temperature, reverting the sense of the 
eliternal control parameter (temperature in the case con- 
sidered), the system follows a reverse path that coincides 
exactly with the forward path. 

Several bee metallic alloy systems (mainly those based 
in noble metals) undergo structural transitions of the mar- 
tensitic type which show thermoelastic behavior almost 
perfectly.3-5 The conditions for a system to be able to un- 
dergo a thermoelastic martensitic transformation have 
been discussed by several authors.6,7 Essentially, those con- 
ditions can be summarized by the need of elastic accom- 
modation of the transformation shape change, favored by: 
(i) a small chemical driving force at the transition temper- 
ature, (ii) a small transformation shape deformation, and 
(iii) a matrix with a high elastic limit. When accommoda- 
tion of the domains of the product phase gives rise to plas- 
tic relaxation the transition is no longer thermoelastic, and 
this is reflected in a large thermal hysteresis as observed in 
steels.8 

In practice, however, even when plastic relaxation is 

negligible the thermoelastic systems show hysteresis in 
their martensitic transformation to a different extent de- 
pending on the system.’ Moreover, detailed observations 
using optical” and coupled acoustic and calorimetric” 
methods have revealed that thermoelastic transitions actu- 
ally take place through a series of discontinuities, accom- 
panied by generation of elastic waves usually detected in 
the ultrasonic frequency range (the so-called acoustic 
emission). The same kind of behavior has been revealed by 
Monte Carlo numeric simulations of the martensitic trans- 
formation based on a thermoelastic potential.12 

The purpose of the present paper is the thermody- 
namic and kinetic study of the energy relaxation process 
associated with each of the discontinuities just described, 
adopting a phenomenological point of view. In Sec. II we 
define the problem of energy dissipation in the context of 
thermoelastic equilibrium; the evolution of the system in 
thermoelastic and out-of-equilibrium conditions is ad- 
dressed in Sec. III. Then, in Sec. IV we generalize the 
theory to take into account the roles of (i) the evolution of 
the external temperature and (ii) the latent heat of transi- 
tion. Finally, in Sec. V, we comment on the validity of our 
treatment to study hysteretic transition paths in ther- 
moelastic systems and give the conclusions. 

II. LOCAL THERMOELASTIC EQUILIBRIUM 

Let us consider a crystalline solid undergoing a diffu- 
sionless first-order phase transition so that the low-temper- 
ature phase (the L phase) has a different crystallographic 
structure than the high-temperature phase (the H phase). 
In the transition considered, the L phase, is obtained from 
the H phase essentially by a homogeneous shear deforma- 
tion accompanied by a small volume change. Growth of a 
crystal of the new phase inside the other phase in the con- 
ditions described results, in principle, on the building up of 
elastic strain energy inside the solid. 
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Here we are interested in situations where the amount 
of plastic deformation in the crystal is practically negligi- 
ble. The thermodynamic driving force for transformation 
from H to L is opposed by the stresses elastically built up 
inside the crystal, to achieve a local thermoelastic equilib- 
rium: Experimentally one observes that growth is arrested 
while the temperature is kept constant, but a temperature 
change displaces the equilibrium point and the L phase 
grows on cooling or shrinks on heating. 

In addition to the concept of growth in thermoelastic 
equilibrium, one must consider that the symmetry proper- 
ties of the high-temperature phase usually result in an im- 
portant degeneracy g of the low-temperature phase. This 
means that the structural transformation can give rise to g 
structures of the L phase differing in their crystallographic 
orientation with respect to the H phase but energetically 
equivalent in the absence of externally applied forces. Con- 
sidering the transforming crystal as being free of external 
stresses, it follows that the g structures of the L phase 
(called variants) have equal probability of growing. Actu- 
ally, the variants tend to form in self-accommodating 
groups which minimize the internal strain fields in the 
crystal and hence the stored elastic energy.13-15 From this 
picture it comes out that the elastic strain energy in the 
system, which increases during thermoelastic growth of 
isolated single variants, can partially be released every time 
that two or more variants form a self-accommodating 
group. This is one of the relaxation mechanisms that the 
system operates to prevent an undelinite increase in elastic 
strain energy, which would finally lead to plastic 
accommodation.‘6 The energy relaxed in this way may ap- 
pear as entropy production in the crystal or may give rise 
to elastic waves propagating inside the crystal and.eventu- 
ally detectable as acoustic emission. 

A. Model 

Let us consider a coarse reticulation of the crystal un- 
der study such that one cell of the grid typically contains a 
fully transformed single variant of a self-accommodating 
group. It must be mentioned that the need of optimum 
strain accommodation gives rise, in practice, to self-accom- 
modating groups of sizes varying within one order of mag- 
nitude. Hence the size of individual cells in our grid may 
vary from group to group in the crystal. The dimension 
chosen for a cell is much larger than the linear dimension 
of the crystal unit cell and slightly smaller but in the same 
order of magnitude than the linear dimension of the self- 
accommodating group considered. 

Let us define the transformation state in cell i by means 
of a local variable xi which gives the molar fraction in cell 
i transformed to the L phase. The transformation state of 
the overall system is then defined by a vector x = {Xi}, and 
the transformed fraction of the complete crystal is: 

(1) 

where N is the number of cells in the grid and Mi is the 
mole number in the ith cell. 

We study now the thermoelastic growth of a single 
variant in cell i, keeping unchanged the transformation 
state of the remaining cells j#i. 

Assuming for cell i a condition of local thermoelastic 
equilibrium, the free energy of this cell is given by: 

gf=x&$ + ( 1 - xf)$ + gf, (2) 

where & and 8 are the free energies of phases L and H 
respectively, dependent on the local temperature rf of cell i, 
and gy is the elastic energy stored in the cell, dependent on 
all the Xi, i.e., on the transformation state of the overall 
system. 

Given that in the following we will be referring splely 
to cell i, we eliminate now the subindex i to simplify the 
notation. In local thermoelastic equilibrium, each configu- 
ration of the cell will minimize its free energy. For Xj+i 
constant and at a given temperature the condition of ther- 
moelastic equilibrium is then given by 

ag 
i 1 -ax r=op 

which leads to 

(8 -8, + g=o. 
(3) 

The difference in free energy between phases L and H is a 
function of the local temperature r of cell i such that 

(5) 
Next we impose a local stability condition: x increases 

when r decreases. Taking the derivative of Eq. (4) with 
respect to x and imposing this condition leads to 

a2ge1 
yjp-0. (6) 

B. Energy dissipation 

However, in some interval of x the elastic energy of the 
system might not verify Eq. (6) if, for instance, the mar- 
tensitic variant considered enters in accommodating inter- 
action with its neighbor variants (these remain static, since 
we are ignoring correlations between events in different 
cells). The situation is depicted in Fig. 1: As the local 
temperature r decreases quasistatically, x increases in ther- 
moelastic equilibrium from a to b. From b onwards the 
stability condition ceases from being satisfied, and an in- 
crease of x only can take place out of equilibrium, ending 
in some point of the c’-d branch such as c. Further growth 
between c and d is again thermoelastic. Increasing the tem- 
perature between d and c’, on reversion, causes the trans- 
formed fraction x to decrease in thermoelastic equilibrium. 
Between c’ and b’ the system reverts out of equilibrium and 
finally, from 6’ to a, the system evolves in thermoelastic 
equilibrium again. As a consequence of the instability the 
system follows noncoincident forward (a-d) and reverse 
(d-u) transformation paths. In each of the two nonequilib- 
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FIG. 1. Schematic diagram representing a generic elastic instability. The 
left-hand side shows the chemical free energy of the transformation, 
s” - 8, as a function of the local temperature r. The right-hand side 
shows a local evolution of ag”‘/ax ($’ is the elastic strain energy) with the 
local transformed fraction x: The function grows monotonically from a to 
b, decreases from b to c’ (the heavy dashed portion) and increases again 
from c’ to d. This behavior corresponds to a nonconvex shape of g”‘(x). 
Thus, between b and c’ a thermoelastic balance cannot be satisfied, and 
growth from b onwards takes place out of equilibrium, following the fine 
discontinuous Iine until point c if the temperature remains constant. 
Equivalently, on heating, reversion from c’ backwards follows the tine 
discontinuous line until point b’. The bottom part of the diagram shows 
the resulting hysteresis loop, traced by the transformed fraction x as a 
function of temperature T, when the condition of thermoelastic equilib- 
rium [Es. (4)] is imposed. 

rium evolutions the system dissipates energy and conse- 
quently the overall process exhibits hysteresis.r7 

The dissipated energy can be computed in the folIow- 
ing way: 

s c' a& 
-dx c ax 

=[h(c) - h(b)1 + [h(b’) - h(c’)], (7) 

where h(x) is defined as 

It is worth noting that only the states joining nonequilib- 
rium jumps appear in the final result for $iss. Further in- 
sight into the meaning of the function h(x) is obtained 
searching for a hypothetical transformation path, at a 
given temperature, that would not give rise to energy dis- 
sipation (equilibrium path), This is achieved by a Maxwell 
construction, 

(9) 

An integration by parts leads to the result h(x) = const, 
showing that h(x) is the thermodynamic potential charac- 
terizing the equilibrium between two states of different 
transformed fraction x at the same temperature. In addi- 
tion, it is clear from Eq. (7) that the equivalent of Eq. (4) 
for a nonequilibrium situation reads 

a& agjiss 
(&?-&?$I) +~+---&-=o’ (10) 

if one accepts a continuous formalism for the energy dis- 
sipation. A balance equation of this same form, though 
applying to the whole system, has been the usual starting 
point of different studies on the thermodynamics of the 
martensitic transformation. lgJ9 

Ill. TIME EVOLUTION 

A. Evolution in thermoelastic equilibrium 

When the system follows an evolution in thermoelastic 
equilibrium described by EQ. (4), with the temporal deriv- 
ative i = dr/dt tending to zero, we have 

a+-P> 2 ’ 
a7 dT+sdx=O. (11) 

In this equation T represents the temperature T of the 
whole system because the two temperatures coincide in 
pure thermoelastic equilibrium. Since each term in the 
equation can be integrated independently, x is only a func- 
tion of r, independent of i and hence of time. For the 
complete system as a whole this result predicts that X as a 
function of T does not depend on T, for low enough ? 
values, if the transformation takes place in thermoelastic 
equilibrium. 

B. Relaxation dynamics 

When, from point b in Fig. 1, the system continues 
being cooled (even very slowly) a relaxation process takes 
place out of equilibrium. We consider the temporal evolu- 
tion of x during the process given by the following dynamic 
equation: 

, (12) 

where, as seen before, [(@ - g”) + d$‘/ax] is the ther- 
modynamic force and K is a mobility. 
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FICA 2. Schematic diagram showing an approximation by straight lines to 
the function a$/& in the region of elastic instability, useful to perform. 
analytic calculations. 

When the system is in thermodynamic equilibrium the 
second member of the equation above, according to Eq. 
(4), vanishes and hence dx/dt = 0. This does not mean 
that growth arrests, since in thermoelastic equilibrium 
dT/dt-,O as well and hence it is possible that $x/d7 re- 
mains finite. The situation is equivalent to a quasistatic 
evolution of a thermodynamic system in classical ec$lib- 
rium thermodynamics. 

Suppose now that the system has been brought to point 
b in thermoelastic equilibrium, i.e., with i-0, so that T can 
be considered to remain constant during the relaxation 
process. This assumption, additionally, takes for granted 
that the latent heat released or absorbed during the process 
does not modify substantially the temperature of the sys- 
tem. The more general situation will be discussed later. 

For the sake of being able to integrate the dynamic 
equation (12) explicitly, we simplify the behavior of the 
elastic energy to the following form, shown in Fig. 2: 

-= - ax a(x - xb> + 8, xb<x<&', 

z=a’(x - Xd) + B’, x,1 <X<& (13) 

where /3= (ag”‘/d”),, and 8’~ (dti’/ax)+. On the other 
hand, since the entropy change of the transformation is 
practically independent of temperature, 

ti - $i=ab - To), (14) 

where a= AS is the entropy change and To is the temper- 
ature of chemical equilibrium between the two phases. Be- 
tween xb and x,1 the differential equation (12) takes now 
the form 

dx _ 
-;if=dx-xb) - [B+Ka(T-To)], 

where Z = aK and B = PK. Note that if the system reaches 
the point xb in pure thermoelastic equilibrium, the second 
member of the equation vanishes (as it should) at this 
point. For the system to be able to relax from xb one needs 
an arbitrarily small difference between driving and resistive 
forces at xb; the difference is measured by the second term 
in the right-hand side of Eq. ( 15). Solution of the equation 
(with 7 constant) reads 

X-X,=(l/f?)[B+Ka(T- To)](l -4”‘). (16) 

A similar solution can be found between x,f and x,. A 
characteristic relaxation time tc will be given by 

t+- 1= &P - 1 
(I 1) K-s ’ 

(17) 
and is therefore inversely proportional to the mean slope of 
the function (dg’/ax) in the unstable region (Fig. 1). Ex- 
perimental estimates of tc for noble-metal-based alloys can 
be found in Ref. 20 and estimates of interface velocities and 
jump distances in Refs. 10 and 21-23. 

It is important to note that a change of variables dr 
= idt in Eq. ( 15) leads this time to a transformed fraction 

x dependent on T and on i as well. Thus, growth in ther- 
moelastic equilibrium should be experimentally recogniz- 
able from growth out of equilibrium: In thermoelasttc equi- 
librium we exp?ct the curves of X to scale with t 1 T [ (for 
small enough T), but this will not be the case out of equi- 
librium. 

IV. GENERAL TREATMENT 

The oversimplified way of dealing with. the growth 
problem in the previous paragraphs is only valid if actually 
i -+O and if temperature changes due to the latent heat 
exchanged in the transformation can be neglected. 

In this section we face a more general situation where 
T = 7(t) and therefore the role of the latent heat of trans- 
formation, whose relevance has been pointed out in Refs. 
24 and 25, is amenable to study. We only give results for 
the b-rc’ relaxation stage since results for the other stages 
go along the same lines. 

The dynamic differential equation, generalization of 
Eq.~ ( 15)) to consider in the b + c’ stage of relaxation out of 
equilibrium reamds 

dx _ 
z=a(x - xb) - @ + Ka[7’(t) - To]), 

where T(t) gives the evolution of local temperature with 
time. To evaluate r(t), we take the region (a cell in our 
grid) where the relaxation process occurs as a domain of 
heat capacity C connected to its surroundings at a temper- 
ature T,,, through a thermal contact resistance P- ’ (Fig. 
3). The thermal power dq/dt released in the domain con- 
sidered is 

dq dx 
t=L-& 
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FIG. 3. Symbolic representation of one cell in the system as an element of 
infinite thermal conductivity, heat capacity C, and thermal coupling to 
the ambiance P. 

where L is the absolute value of the latent heat of trans- 
formation. Hence, the temperature evolution in the domain 
considered is given by 

dx dr 
L;ii=C-&+P/T- T&j]. i20) 

This equation couples to Eq. ( 18) to give the solutions 
x(t) and 7(t). 

TO calculate the behavior of the local temperature 7(t) 
for a general form of dissipation, assume a linear temper- 
ature variation rat(t) = T(t - to) + Text( to), with T 
constant, and consider an impulsional (infinitely short in 
time) power dissipation at t = to. For any t > t,,, the 
differential equation for r(t) is 

dr P 
z+$- 

Solution of this equation with the initial condition 

C[dh,j - T.&to> I = 1 - (22) 

determines the Green function for heat conduction in our 
problem. The solution reads 

oci-r,)=(~+~f) exp( -g(f@) -g+, 

(23) 
and the thermal relaxation time is ,U = C/P. The solution 
for an arbitrary dissipation L(dx/dt) is then 

s f dx 
7(t) - Text(t) =L fo a G( t’ - t,)dt’. (24) 

This equation shows that, in general, the drift in local tem- 
perature 7(t) of the cell considered with respect to the 
temperature T,,,(t) of the neighbor cells depends on the 
transformation rate dx/dt in the cell, solution of the dy- 
namic differential Eq. ( 18), which in turn depends on the 
local temperature r(t) of the cell. Solution of the two cou- 
pled equations appears to be simpler in the two limiting 
cases of interest: isothermal growth and adiabatic growth. 

A. isothermal limit 

In the isothermal limit, which will apply to a system 
with very large thermal diffusivity or very slow kinetics of 
nonthermoelastic relaxation, ,U --+ 0 and therefore 

t’ - t&L, Vt’, (25) 

which leads to 

Gs -F= - &O, (26) 

so that, obviously, 

T(t) 3 T,,(t). (27) 

This means that, due to its large thermal diffusivity, the 
cell considered follows the temperature of the neighbor 
cells in this limit. Now we can explore the consequences of 
such behavior on the relaxation kinetics. 

Putting this result into Eq. ( 18) for the evolution be- 
tween b- and c’ (Fig. 1 j we obtain 

$==- xb) - @ + Ka[T,,,(t) - To]}, (28) 

and. considering a linear temperature variation T,,,(t) 
= T(t - to) + Text(to), with T constant, we obtain 

dx 
z=- Kfkt - to) + &(x - xb) 

[To- Text( -5 . (29) 

If we consider the system to be in thermoelastic equilib- 
rium at point b, remembering that x(to) = xb, we obtain 

[To - Te,,(to) 1 - (P/a) =O (30) 
and the resulting equation of motion reads therefore 

dx 
-= 
dt - K&f - to) + (r(x - xb). 

It has for solution , 
x -xb=(Kaf/fi) [ (t - to) + (l/ii)( 1 - e”(f-fO))]. 

(32) 
The first term in the square bracket arises from a linear 
variation assumed for Text(t), which implies a continuous 
increase in chemical driving force and hence in trans- 
formed fraction x; the second term shows that the relax- 
ation kinetics in the isothermal limit is dominated by the 
same characteristic time previously found in Eq. ( 16). 

6. Adiabatic limit 

In the adiabatic limit, corresponding to a small ther- 
mal diffusivity of the system or very fast relaxation kinet- 
ics, p = C/P-+ w and therefore 

t’ - t&A, Vt’. (33) 
Expanding the exponential of Eq. (23) in series and cut- 
ting to first order leads to 
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G(t - toI Y (l/C) - (t - t&j, 

where 

q=( l&p) + i: 
Then, 

Q-(t) - T&) =L dt’ 

=L ; [x(t) -x(&J)] 

--77[x(t) --act---o) 9 

where 

1 t 
X=t-r, to s 

x dt’ 

is the mean value of x in the time interval (t - 
accept that, approximately, 

Q[x(t> + x(to) I, 
we obtain 

(34) 

(35) 

(36) 

d.t) - Text(t) ==; [x(t) - x(to) 1 
t - to 

1 - rlC2 , 

(37) 

to). If we 

(38) 

and in the purely adiabatic limit (q = 0) , 

T(t) - T,,,(t) = u/a [x(t) --x00) 1. (40) 

Thus, we find that in the adiabatic limit the temperature of 
the cell where the relaxation takes place is highly affected 
by the latent heat released in the transformation. 

Inserting this result now into Eq. ( 18) leads to 

$=(=Ka;) (x--b) -#+Ka[T,,(t) - To]), 

(4.1) 

having taken into account that x ( to) = xb. If again we take 
Text(t) = T(t I_g to) + Text( to) with T constant, we 
arrive at an equation that looks exactly the same as in the 
isothermal case [Eq. (3 l)] replacing Cr: by E - KaL/C. 
From the solution (32) we see that the consequence is an 
increase in the characteristic relaxation time, which now 
reads 

tc” [ii - Ka(L/c)] - I. (42) 

This means that a temperature lag between the cell con- 
sidered and its neighbor cells, characteristic of the adia- 
batic limit, slows down the relaxation process and hence 
the overall growth of the L phase. 

C. Energy dissipation 

The energy dissipated in the relaxation process can be 
written in the general form 

(43) 

ax 

FIG. 4. Schematic diagram showing the evolution of a&‘/&e with the 
local transformed fraction x and two trajectories in the instabihty region. 
The horizontal discontinuous straight line corresponds to an out-of-equi- 
librium evolution at constant temperature; the ascending discontinuous 
straight line corresponds to an out-of-equilibrium evolution with a con- 
stant temperature rate. 

where Xi are generalized forces and Ji the corresponding 
conjugate fluxes acting during the process. In our case the 
equation reads 

&ok 1 
-= - 

dt a[dt) - To] + g (44) 

In the isothermal approximation P(t) N T,,(t) and tak- 
ing T.&t) = T(t - to) + T.&to> we obtain 
&liss 1 
-= - 

dt a[Text(to) - ToI +f& $-&(t- to) 2. 

(45) 

Hence the energy dissipated will be given by ( as”’ 
4Text(to) - ToI + -JJ dx 

1 

agel - a[Text(to) - ToI +z 
I 

dx 

s x3 
- a?( t - t,)dx. (46) 

Xl 

Here, as shown in Fig. 4, x1 is the point qvhere #$‘/~x” 
= 0, x2 is the value that x would reach if T = 0, and x3 is 
the actual final point in the relaxation process. 

The first term in the second member of Eq. (46) is the 
dissipation of elastic energy, i.e., h (xs) - h (xi) according 
to Eq. (7). The other two terms give an additional dissi- 
pative effect due to the fact that T is not constant. In the 
purely adiabatic limit Eq. (41) shows that 

df) --Text(t) + [x(t) - x(to) IL/C. 
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Substituting into Eq. (44), and following the same argu- 
ment than above, one finds diss- x2 s ( age’ g -- 

x1 
a[Te,t(to) - To] +dx dx 

x3 

s ( 

agel - a[Text(to> - To] +z dx 
x2 

s x3 - ai-(t - t,)dx 
Xl 

J- x3 aL 
- x, c Ex(t> - x(to) I& (47) 

which looks the same as Eq. (46) with the addition of a 
new last term. 

Both Eqs. (46) and (47) show that the energy dissi- 
pation can actually be written as the sum of two 
contributions? 

gdiss= wi + (T)Si * (48) 

Wi is the elastic energy dissipation which, in principle, 
does not give rise to entropy production in the system, and 
(r>Si is the dissipation associated with entropy produc- 
tion, (T) being-an average temperature in the process. For 
small enough T, since x2 will be very close to xs, we can 
neglect the second integral in the second member of any of 
the two equations. Hence, in the isothermal limit 

(T)SiE - JI af’(t - to)dx- - ~aC&x, (49) 

where tc is the characteristic relaxation time of Eq. ( 17) 
and Ax--x3 - x1. In the adiabatic limit we have an addi- 
tional integral, which leads to 

s x3 aL 
~ [x(t) - x(qJ]dx=$ (Ax)2, 

x1 c 
(50) 

where we have used that x(to) =x1. Thus, in this limit 

(T)Si, -$[ftc+ (L/C)Ax]Ax. (51) 
It is worth noting that ? and Ax always have opposite 
signs, so that the new contribution in the adiabatic limit 
favors a smaller entropy production. This is understood 
when one considers that self-heating of the cell (because of 
the latent heat of transformation L) keeps the system 
closer to the thermoelastic equilibrium temperature for the 
transformed fraction x1. 

V. DISCUSSION AND CONCLUSIONS 

In this work we have faced the possibility of local elas- 
tic instabilities during thermoelastic growth in a first-order 
phase transition, which are at the origin of the energy dis- 
sipation manifested by hysteresis phenomena. In ther- 
moelastic martensitic systems the instability is typically 
expected to appear as a result of shape change accommo- 
dation by groups of self-accommodating crystallographic 
variants. Another example, that has been theoretically 
demonstrated,27 is the elastic instability experimented by a 

spherical inclusion that grows anisotropically to become an 
ellipsoid in an infinite elastic medium. Our work deals with 
the consequences of such instabilities on the growth kinet- 
its and does not depend on the particular features of the 
instability mechanism. 

We adopt a phenomenological approach where the in- 
stability appears as the result of representing the elastic 
energy by a nonconvex function. In this sense the treat- 
ment has some points in common with the study of the 
hysteresis during pseudoelastic behavior by Miiller and 
xu 2829 

The first prediction of our work is the existence of 
scaling of the transformed fraction X with temperature if 
growth was purely thermoelastic. On the contrary, growth 
out of equilibrium introduces an explicit dependence of the 
transformed fraction on the temperature rate T. This sug- 
gests that a measure of the influence of T on the X-T 
curves would give information on the relative importance 
of nonequilibrium growth during transformation. The ex- 
perimental studies of the thermoelastic martensitic trans- 
formation in several copper-based alloy systems seem to 
validate our prediction: A representation of X vs T (once 
a good reproducibility of the hysteresis cycle has been 
achieved by cycling) is independent of the temperature 
rate, at least for temperature rates small enough to guar- 
antee the proximity of the system to a condition of equi- 
librium at any time. Unfortunately, however, to our knowl- 
edge there are not systematic experiments designed 
specifically to check our prediction. 

We have also considered the role of heat conduction in 
the system: One expects the latent heat of transformation 
to hinder the interface motion during both forward and 
reverse transformations. In our treatment this appears as 
an increase in the characteristic relaxation time when the 
transforming cell is supposed to behave adiabatically 
rather than isothermally. In addition, the effect of the la- 
tent heat is to keep the system closer to thermoelastic equi- 
librium during relaxation. 

The energy dissipated in the relaxation process appears 
as the sum of two contributions of a different origin: f&t, 
the elastic energy release that one would expect associated 
with the local elastic instability considered; and second, an 
energy dissipation,related to heat conduction in the system 
because of both T#O and the need of evacuation of the 
latent heat. We associate the first contribution with the 
generation and propagation of elastic waves inside the ma- 
terial, usually detected experimentally as acoustic emis- 
sion, and the second contrib-ution with entropy production 
in the system. The latter appears to be comparatively small 
for small temperature rates T. This is in agreement with all 
the calorimetric experiments on copper-based thermoelas- 
tic systems analyzed to this purpose, where we have found 
a negligible entropy production.30’3’ 

The approach presented applies locally to one cell, at 
scales of the order of a self-accommodating group in ther- 
moelastic transformations. The individual behavior of one 
cell that we have isolated in our treatment will actually 
depend on the behavior of neighboring cells. Thus, the 
overall transformation behavior will be determined by the 
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elastic and thermal interaction between cells. A detailed 
analysis of the complete problem appears to be a very com- 
plex task. 

A first approach to the interaction problem could be 
the following: We pay attention only to states of ther- 
moelastic equilibrium. Since we know that an applied 
stress shifts the equilibrium transformation temperature, 
the modification of the stress field on each cell following a 
relaxation process in some part of the system can be mod- 
eled as a change in the equilibrium temperature To of the 
cells. The change is different from cell to cell, depending on 
their mutual interactions. Work along these lines is cur- 
rently in progress, with the ultimate goal of modeling the 
hysteretic behavior in thermoelastic martensitic systems. 
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