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A mathematical model describing the behavior of low-resolution Fresnel encoded lenses 1LRFEL’s2
encoded in any low-resolution device 1e.g., a spatial light modulator2 has recently been developed. From
this model, an LRFELwith a short focal length was optimized by our imposing the maximum intensity of
light onto the optical axis. With this model, analytical expressions for the light-amplitude distribution,
the diffraction efficiency, and the frequency response of the optimized LRFEL’s are derived.
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1. Introduction

The codification of lenses of variable focal length in
optical setups is an important application of pixelated
spatial light modulators.1 The pixelated SLM is a
kind of low-resolution device that gives rise to several
unwanted effects if a quadratic wave is encoded.
These effects and their consequences on lens perfor-
mance have recently been described in terms of a
mathematical theory developed by Carcolé et al.2
Application of this theory permits the light-amplitude
distribution at all focal regions to be analytically
derived in the Fresnel approximation. The resultant
expressions are functions of several nondimensional
parameters that are dependent on the characteristics
of the low-resolution device and on the encoded focal
length. The latter dependence implies a dependence
of the amplitude-distribution shape on the focal length.
Some important characteristics of these lenses have
been studied experimentally.3
The main problem with the use of a low-resolution

Fresnel encoded lens 1LRFEL2 as a single lens is its
multifocusing property, which gives rise to an impor-
tant loss of image quality and of diffraction efficiency.
An optimization method for the LRFEL has been
proposed in Ref. 2. This method is based on the fact
that the diffraction pattern of each pixel in the focal
plane is just a spherical wave modulated by a sinc
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function. The sinc function has periodical changes
of sign. This implies that certain groups of pixels
1named blocks2 interfere with opposite sign in the
focal region, thereby making the total contribution
lower than the maximum available. If we assume
that the lens must take the maximum value at the
optical axis, the solution to this problem consists of
our shifting in p the phases of the blocks with
negative contributions. In this way an optimized
LRFELwill have a higher intensity on the optical axis
than will a nonoptimized LRFEL. This was demon-
strated and quantified from the theory. The full
width at half-maximum 1FWHM2 was numerically
calculated from the intensity distribution. It was
obtained through the addition of the diffraction pro-
duced by each pixel. The FWHMwas always near to
the one that corresponded to an infinite-resolution
lens.
The aim of this paper is to make a rigorous

deduction in the scalar Fresnel–diffraction approxima-
tion of simple expressions for the light-amplitude
distribution, the point-spread function 1PSF2 and the
diffraction efficiency for all the focus. Also the fre-
quency response for monochromatic illumination is
analyzed. The characteristics of the optimized
LRFEL, which were numerically studied and quanti-
fied, are justified from our new analytical expressions.
The energy distribution in the focal plane is also
studied and evaluated numerically. Several results
are appraised in comparison with the nonoptimized
case. For each purpose, the theory developed in Ref.
2 is used. In the following section, the basic notation
and the two basic expressions that are going to be
used are introduced.



2. Theoretical Background

When a single Fresnel lens with focal length f for a
wavelength l is encoded in a pixelated, low-resolution
device, with the center-to-center pixel distance given
by Dx and Dy, infinite new focal regions appear at the
coordinates 1kX, lY 2, where

X 5
lf

Dx
, Y 5

lf

Dy
, 112

and k and l are arbitrary integers. X3Y also defines
the apparent area of the lens that is associated with
each focus.2 Then, if the device has P 3 Q pixels
with a rectangular pupil of dimensions Lx 5 PDx and
Ly 5QDy, the apparent number of lenses appearing in
the device is given by

Wx 5
Lx

X
, Wy 5

Ly

Y
. 122

In Fig. 11a2 a binary LRFEL with Wx 5 Wy 5 5 is
shown. It resembles an array of 5 3 5 lenses, but for
only one lens was an attempt made to encode.
The light distribution at a 1k, l2 focus of an infinite

phase-stepped LRFEL for plane-wave illumination
with a unity amplitude is given by

Uk,l
no1xi, yi2 5

1

ilf

1

DxDy 5Flf3rect1 xLx

, y

Ly
24

3 exp3i 2p

lf
1xkX1 ylY 24 * rect1 xDx8

, y

Dy82 ,
132
where the asterisk denotes convolution, Flf is the
Fourier transform with a lf scale, and no indicates
nonoptimized. The first rectangular function de-
fines the rectangular pupil of the device, whereas the
second rectangular function defines the pixel of dimen-
sions Dx8Dy8. Other useful parameters are

cx 5
Dx8

Dx
, cy 5

Dy8

Dy
. 142

To optimize the LRFEL for the 1k 5 0, l 5 02 focus,
it was necessary to shift in p the phase of blocks of
pixels that contributes with the opposite sign.
These blocks have dimensions 1X@cx, Y@cy2.
Performing the optimization is equivalent to deter-
mining the product of the pupil function with the
function Opt1x, y2, the optimizing function, which can
be written as

Optx1x2 5 5 1

21
,

2n
X

cx
# 0x 0 # 12n 1 12

X

cx

12n 1 12
X

cx
# 0x 0 # 12n 1 22

X

cx

,

Opty1 y2 5 5 1

21
,

2m
Y

cy
# 0y 0 # 12m 1 12

Y

cy

12m 1 12
Y

cy
# 0y 0 # 12m 1 22

Y

cy

,

Opt1x, y2 5 Optx1x2Opty1 y2, 152

where n, m 5 0, 1, 2, 3, . . ., `. Note that the
Fig. 1. Binary LRFEL’s: 1a2 a LRFELwhereWx 5 Wy 5 5, and 1b2 optimized LRFELwhereWx 5 Wy 5 5 and cx 5 cy 5 1.
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optimization process affects the lens when Lx . 2X@cx
and Ly . 2Y@cy. Throughout the paper we consider
whether these inequalities are verified. In Fig. 11b2
an optimized LRFEL corresponding to Fig. 11a2 for cx
5 cy 5 1 is shown.

3. Point-Spread Function

A. PSF for the 10, 02 Focus

One can see from Eq. 132 and from taking into account
that the pupil function P1x, y2 of an optimized LRFEL
is

P1x, y2 5 rect1 xLx

, y

Ly
2Opt1x, y2, 162

the light-amplitude distribution U1xi, yi2 of an opti-
mized LRFEL with a focal length f at the 10, 02 focus
for plane-wave illumination of wavelength l is

U0,01xi, yi25
1

ilf

1

DxDy
Flf 3P1x, y24 * rect1 xDx8

, y

Dy82. 172

Equation 172 is valid if the following inequality is
verified 3Eq. 1142 of Ref. 24:

1

2 1
Dx8

Dx

xi
X

1
Dy8

Dy

yi
Y29 1. 182

As shown below, the optimization process makes
Uk,l1xi, yi2 take negligible values for 0xi 0 . 2Dx8 and 0yi 0
. 2Dy8; thus, this condition is not a restriction on the
calculations in the rest of the paper.
In calculating the Fourier transform of Eq. 172 we

consider the case corresponding to the lens consti-
tuted by 2N 3 2M blocks, for the sake of simplicity.
This allows us to write the pupil function P1x, y2 as an
array of delta functions that have undergone convolu-
tion by a rectangular function whose size corresponds
to a block. Each delta is affected by the sign of the
corresponding block. Thus, we can write

P1x, y2 5 Ao
n50

N21

o
m50

M21

1212m1n5d3x 2 12n 1 12
X

2cx4
1 d3x 1 12n 1 12

X

2cx46
3 5d3y 2 12m 1 12

Y

2cy4
1 d3y 1 12m 1 12

Y

2cy46B * rect1
cxx

X
, cyy

Y 2 .
192

By performing the Fourier transform and using the
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definitions of our parameters we obtain

Fl,f 3P1x, y24 5 o
n50

N21

o
m50
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12121m1n25exp3i12n 1 12p
x
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Dx846
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Performing the addition we obtain

Flf 3P1x, y24 5 34
CSN1Np

x

Dx82CSM1Mp
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Dy82
cos1p x

Dx82cos1p
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Dy82 4
3
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where CSj1r2 is

CSj1r2 5 5cos
21r2

sin21r2
,

j 5 1, 3, 5, . . . , `

j 5 2, 4, 6, . . . , `
, 1122

In Eq. 1112 the sinc function modulates an oscillatory
function. Using Eq. 1112 in Eq. 172 and defining the
adimensional coordinates as

s 5
x

Dx8
, t 5

y

Dy8
,

si 5
xi

Dx8
, ti 5

yi
Dy8

,
1132

we finally obtain

U0,01si, ti2 5
4lf

iDxDy e
21@21si

1@21si CSN1Nps2

cos1ps2
sinc1s2ds

3 e
21@21ti

1@21ti CSM1Mpt2

cos1pt2
sinc1t2dt, 1142

where the convolution is explicitly done. From Eqs.
1132 and 1142, Dx8 and Dy8 act as scale factors on the
PSF. The resulting integrals can easily be evaluated
with standard numerical techniques.4 The main
characteristics of the resultant expression can now be
studied. For this purpose, it is necessary only to
study one of the integrals.
In Fig. 2 the integrand of the first integral of Eq.

1142 for N 5 11 is represented, along with the
modulating sinc function. The integrand has an



absolute maximum and a minimum at 0s 0 < 60.5
because of the cosine function in the denominator.
As N increases, the maximum 1minimum2 value in-
creases 1decreases2, and more oscillations take high
values near the maximum 1minimum2. For si 5 0,
the integration interval is 120.5, 0.52, and the inte-
grand is always positive. Thus, the intensity 0U10, 02 02
increases with N as expected. It should be noted
that the distance between the zeros of the integrand is
just 1@N, so if si is incremented in 1@N an absolute
maximum goes out of the integration interval and an
absolute minimum is now included. This produces a
high decrease in the value of U1si, ti2. From this fact
it can be concluded that the FWHM is approximately
FWHM < Dx8@N, i.e., almost double the FWHM value
corresponding to the infinite-resolution case. The
FWHMwas numerically calculated in Ref. 2, and this
fact was observed and quantified. Thus, optimiza-
tion allows us to obtain a higher and a thinner PSF
than does the nonoptimized lens. This is illustrated
in Figs. 3, where the PSF is computed from Eq. 1142 for
several cases: Figs. 31a2, 31b2, 31d2, and 31f 2 correspond
to the PSF of nonoptimized LRFEL’s that comprise 2
3 2 block, 43 4 block, 63 6 block, and, as a limit case,
22 3 22 block lenses; Figs. 31c2, 31e2, and 31g2 corre-
spond to the PSF’s of optimized LRFEL’s for the same
block lenses, respectively, excluding the limiting case.
Note from Eq. 152 that a 2 3 2 block lens has no phase
shifts and that the optimized lens coincides with the
nonoptimized lens.

B. PSF for a 1k, l2 Focus

Following the same steps as in the Subsection 3.A.
but taking as the starting point the amplitude-
distribution expression given in Eq. 132, with k and l

Fig. 2. Integrand of Eq. 1142 for N 5 11 1Solid curve2. The
integrand has absolute maxima and minima for 0s 0 < 60.5. The
modulating sinc function is also shown 1dashed curve2. The y axis
is in arbitrary units.
being different from zero, we obtain for the amplitude
distribution for a 1k, l2 focus the following expression:

Uk,l1si, ti) 5
4lf

iDxDy e
21@21si

1@21si

3CSN1Nps2

cos1ps2
sinc1s24

3 exp1i2pkcxs2ds

3 e
21@21ti

1@21ti

3CSM1Mpt2

cos1pt2
sinc1t24

3 exp1i2plcyt2dt. 1152

This expression is explicitly dependent on cx and cy.
Now a linear phase variation affects the integrand
and highly modifies the PSF. A particular case of
special interest is cx 5 cy 5 1. The shape of the lens
for this case is as the same as the one shown in Fig.
11b2. Lenses with this shape are listed in the bibliog-
raphy for studies of image derivation and alignment.5–7
To justify the shape of the PSF for this particular case
1i.e., cx 5 cy 5 12, the real and imaginary parts of the
first integral for k . 0 should be studied in terms of
the behavior of factors affecting the complex exponen-
tial 1the terms between square brackets2 and the
symmetry and antisymmetry of the real and imagi-
nary parts of the integrals involved.
Because of structures of the factors 1represented in

Fig. 22, the real part of the integrand will take only
important values for si 5 0. For this value, the real
part is symmetric. For small values of N the factors
have a smooth variation with s and the value of the
real part of the integral is small. 1If they are con-
stant the integral is zero.2 If we consider N to
increase, the factors have a higher variation, espe-
cially for s = 0.5. Then the value at the origin
increases with N. Conversely, if we consider higher
values of k for a constant N, the frequency of the
oscillations of the integrands increases making the
value of the integral tend to zero. If a little variation
of si around zero is considered, a big lobe with an
opposite contribution is included and a contributing
lobe is excluded, thus making the real part of the
integral tend to zero. Thus, the real part takes a
maximum for si 5 0 and has a width of 1@N,
approximately. Also because of the symmetry of the
integrand, the imaginary part is null for this value of
si. But for si 5 0.5 the range of integration is 10, 12
and the factors are approximately antisymmetric
respect to s 5 0.5. Following analogous reasonings,
we can deduce that an important maxima that is due
to the imaginary part of the integral occurs around
this point. The width of this maxima is larger be-
cause of the fact that, for small variations of si, no
important lobes are included in or excluded from the
integration interval; this happens for an increment of
si of approximately 60.5. For si 5 20.5 we have
another maxima with the opposite sign. Because of
the sinc function of the factors, the integral does not
have another important maximum. Thus, in gen-
eral, the representation of the integral leads to a
10 September 1995 @ Vol. 34, No. 26 @ APPLIED OPTICS 5955
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Fig. 3. Three-dimensional representation of the PSF correspond-
ing to the 10, 02 focus of a LRFEL constituted by 2N 3 2N
blocks. The drawing has an area of 2 3 2 pixels: for 1a2 N 5 1
1optimized and nonoptimized lenses coincide2, 1b2 nonoptimizedN 5

2, 1c2 optimizedN5 2, 1d2 nonoptimizedN5 3, 1e2 optimizedN5 3, 1f 2
nonoptimizedN 5 11, and 1g2 optimizedN 5 11.
PPLIED OPTICS @ Vol. 34, No. 26 @ 10 September 1995



figure composed of two lobes with opposite signs that
are centered at si < 60.5, with an approximate unity
width and separated by a maximum with 1@N width.
As an illustration of this description, Figs. 4 show the
square modulus of Eq. 1142 1the PSF2 for an optimized
lens with N 5 3 with 1k, l2 5 11, 02, 12, 02, 11, 12, 12, 22.
The amplitudes of the lobes have opposite signs in
such a way that the 121, 02 can perform a derivative
in the x direction and 121, 212 makes the d2@dxdy
1Ref. 52.

4. Diffraction Efficiency

To calculate the energy concentrated in a 1k, l2 focus,
Ek,l, the following integral must be evaluated:

Ek,l 5 e
2`

` e
2`

`

0Uk,l1x, y2 02dxdy. 1162

The direct calculation of Eq. 1162 is rather difficult.
To simplify the calculations, the Parseval theorem
can be used.8 This theorem establishes the possibil-
ity of one’s evaluating Ek,l by one’s performing the
integral on the square modulus of the Fourier trans-
form of Uk,l. Applying the Parseval theorem we
obtain

Ek,l 5 3lfcxcy42 e
2`

` e
2`

`

rect231fx 2
k

Dx2
lf

Lx

, 1fy 2
l

Dy2
lf

Ly
4

3 0Opt3lf 1fx 2
k

Dx2 , l f 1fy 2
l

Dy240
2

3 sinc21Dx8fx, Dy8fy2dfxdfy, 1172
where fx and fy are the frequency coordinates in the
Fourier space. This is the volume under the product
of a squared sinc function and the rectangular func-
tion. Note that 0Opt1x, y2 02 5 1 for all x and y, hence
the optimization process has no effect on the diffrac-
tion efficiency. The only effect of the optimization
process is to change the energy distribution. It can
also be deduced from Eq. 1172 that an alternative
definition of Opt1x, y2 makes the efficiency equal or
lower. This result is because the maximum value of
the amplitude of Opt1x, y2 is, of course, unity. Thus,
each 1k, l2 focus of the optimized LRFEL has the same
diffraction efficiency as the 1k, l2 focus of the nonopti-
mized LRFEL. The diffraction efficiency of the
LRFEL has been analytically calculated in Ref. 9.

5. Energy Distribution

As we are interested in the energy distribution in the
focal region for the optimized focus 1k 5 0, l 5 02, we
have numerically studied the cases corresponding to
Figs. 3. The results are shown in Figs. 5, in which
the amount of energy concentrated in the rectangular
region defined by 312x@Dx8, x@Dx82, 12y@Dy8, y@Dy824 is
represented. In these figures the energy distribu-
tion of the nonoptimized LRFEL is also represented.
Curiously, for the optimized lenses, the energy distri-
bution is quite independent of N, and 50% of the
energy is always concentrated in an area approxi-
mately defined by 0x@Dx8 0, 0y@Dy8 0 # 0.2. Thus, the
energy distribution is optimized, but it is not compa-
rable with the infinite-resolution case.
Fig. 4. Three-dimensional representation of the PSF of an optimized LRFEL with 6 3 6 blocks in an area of 3 3 3 pixels 3the scale of the
figures is the same as that of Fig. 31c2 and 31d2: for 1a2 k 5 0 and l 5 1, 1b2 k 5 0 and l 5 2, 1c2 k 5 1 and l 5 1, and 1d2 k 5 2 and l 5 2.
10 September 1995 @ Vol. 34, No. 26 @ APPLIED OPTICS 5957



6. Frequency Analysis of the Optimized LRFEL for
Monochromatic Illumination

A. Frequency Analysis for the 10, 02 Focus

To obtain the coherent transfer function H, the Fou-
rier transform of the amplitude distribution given in
Eq. 172must be performed.8 Taking 1@Dx and 1@Dy as
natural-frequency unities and defining as follows the
adimensional frequency coordinates:

u 5 Dxfx, v 5 Dyfy, 1182

where fx and fy are the frequency coordinates in the
5958 APPLIED OPTICS @ Vol. 34, No. 26 @ 10 September 1995
Fourier space, we obtain forH1u, v2

H1u, v2 5 lfcxcy rect1 uWx

, v

Wy
2

3 Opt1Xu, Yv2sinc1cxu, cyv2. 1192

Using the definition of Opt 3Eq. 1524we get

H1u, v2 5 lfcxcy rect1 uWx

, v

Wy
20sinc1cxu, cyv2 0 . 1202

Thus, as a result of the optimization process, the
transfer function always becomes positive. If
Fig. 5. Energy distribution for the 1k 5 0, l 5 02 focus for an optimized 1solid curve2 and a nonoptimized LRFEL 1dashed curve2 composed of
2N 3 2M blocks: for 1a2N 5 1 1optimized and nonoptimized lenses coincide2, 1b2N 5 2, 1c2N 5 3, and 1d2N 5 11.



Opt1x, y2 5 1 1i.e., we have a nonoptimized LRFEL2,
then the sinc function can cause negative values for a
certain range of frequencies. This is illustrated in
Fig. 6 for cx 5 cy 5 1 and Wx 5 Wy 5 5. Negative
values of H imply an inversion of contrast.8 Thus,
clearly, the coherent transfer function of an optimized
LRFEL is the optimum one. Note that the cut-off
frequency depends on the dimensions of the pupil and
is given by 1u 5 Wx@2, v 5 Wy@22 and the first zero is
determined by 1u 5 1@cx, v 5 1@cy2. Analog com-
ments apply for the incoherent optical transfer func-
tion 1OTF2, which is obtained from the normalized
autocorrelation of the coherent transfer function.
The OTF for the nonoptimized lens will have oscilla-
tions with periodical changes of sign. The OTF for
the optimized lens is always positive, and the cut-off
frequency is exactly double and also the first zero.

B. Frequency Analysis for the 1k, l2 Focus

Performing the Fourier transform of Eq. 132 3but
taking as the pupil function Eq. 1624 and following the
same steps as in Section 6.A., we obtain for the 1k, l2
focus the following coherent transfer function:

Hk,l1u, v2 5 lfcxcy rect31u 2 k2

Wx

, 1v 2 l2

Wy
4

3 Opt3X1u 2 k2, Y1v 2 l24sinc1cxu, cyv2.

1212

The case of cx 5 cy 5 1 is now considered. This case is
represented in Fig. 7 for k 5 1, l 5 0, cx 5 cy 5 1, and
Wx 5 Wy 5 5. The two halves of the main lobe of the
sinc function always have opposite signs. This im-
plies a derivative effect in the coherent image-
formation process. The signs of the other small
lobes depend on k and l; the Opt function causes a
correct change of sign 1for derivation purposes2 for the
frequency range 312`, k@cx2, 12`, l@cy24 for k,

Fig. 6. Comparison of a section of the coherent transfer function
H for an optimized 1dashed curve2 and a nonoptimized 1solid curve2
LRFEL for k 5 l 5 0, cx 5 cy 5 1, andWx 5 Wy 5 5.
l . 0 and 31k@cx, `2, 1l@cy, `24 for k, l , 0. Other
frequencies have a wrong sign, but note thatH takes
small values for those frequencies and that the error
is smaller for increasing k and l 3the only purpose for
the optimization process was to improve the PSF of
the 10, 02 focus4. Note that the rectangular function
is shifted for each 1k, l2 focus but that the main lobe is
always included for the encoded orders 1 0k 0 , Wx@2,
0l 0 , Wy@22. TheOTF clearly does not preserve these
properties and has no interesting characteristics.

7. Conclusions

To improve the performance of the 1k 5 0, l 5 02 focus
of the LRFEL so that it might be used as a single lens
when a short focal length is encoded, Carcolé et al.2
designed an optimization process. From the resul-
tant expressions, the followingmain characteristics of
the PSF have been deduced in this paper:

112 For the 10, 02 focus the FWHM is almost double
that of a lens of infinite resolution 1diffraction limited2.
The spatial resolution is thus much better than the
nonoptimized lens; it has a FWHM equal to the size of
the pixel for a short-focal-length encoded lens. The
intensity in the optical axis increases with the num-
ber of blocks encoded.

122 At the 1k, l2 focus the PSF has a special interest
for cx, cy 5 1. At these focuses, derivatives of the
image are obtained.

132 The diffraction efficiency for all focuses coin-
cides with the nonoptimized case, and it has been
demonstrated that it is impossible to increase the
diffraction efficiency.

142 The energy distribution for the k 5 l 5 0 focus
is better than for the nonoptimized case, but it is not
comparable with the infinite-resolution case. Ap-
proximately 50% of energy is concentrated in a region
defined by 0x 0 , 0.2Dx8, 0y 0 , 0.2Dy8. The energy
distribution is to a very small degree dependent on
the number of encoded blocks.

Fig. 7. Coherent transfer function H for an optimized LRFEL for
k 5 1, l 5 0, cx 5 cy 5 1, andWx 5 Wy 5 5.
10 September 1995 @ Vol. 34, No. 26 @ APPLIED OPTICS 5959



152 The frequency analysis shows an optimum
performance for the optimized lenses for the 10, 02
focus. The coherent transfer function and the OTF
for the nonoptimized lens have periodical changes of
sign, but for the optimized lens the signs are always
positive.

162 For any 1k, l2 focus other than k, l 5 0, with k ,

Wx@2, l , Wy@2 and cx 5 cy 5 1, its ability to perform
derivatives has also been shown at least for the
frequency range 121@Dx, 1@Dx2 to 121@Dy, 1@Dy2, which
corresponds to the main values of the coherent trans-
fer function.

Finally, an optimized LRFEL produces a better
imaging quality than does a nonoptimized LRFEL for
the 1k 5 0, l 5 02 focus. For the particular case of
cx 5 cy 5 1 and coherent illumination, the other focus
gives derivatives of the image. Thus, a further study
of the possible application of this type of lens in
optical-image processing is necessary.
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