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We report the study of the influence of optical aberrations in a joint-transform correlator: The wave
aberration of the optical system is computed from data obtained by ray tracing. Three situations are
explored: We consider the aberration only in the first diffraction stage (generation of power spectrum),
then only in the second (transformation of the power spectrum into correlation), and finally in both stages
simultaneously. The results show that the quality of the correlation is determined mostly by the
aberrations of the first diffraction stage and that we can optimize the setup by moving the cameras along
the optical axis to a suitable position. The good agreement between the predicted data and the exper-
imental results shows that the method explains well the behavior of optical diffraction systems when

aberrations are taken into account.
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1. Introduction

Optical correlation is an image-recognition method
that has been the object of numerous studies for sev-
eral years. This method is successful in determin-
ing the position of a specific pattern inside a complex
scene. Optical correlation techniques are based on
optical generation of the Fourier transforms (OFTs)
of images by means of diffraction. This diffraction
can be generated by use of either of two standard
setups: the VanderLugt correlator! or the joint-
transform correlator? (JTC), which have been widely
analyzed and compared.34

Usually, when the performance of a correlator is
analyzed, its optical systems are considered perfect;
i.e., authors do not take into account the optical
aberrations introduced by lenses associated with
nonparaxial working conditions. In several papers,
aberration problems in optical Fourier trans-
formers®-8 and even in correlators®1° have been an-
alyzed. However, these papers are somewhat
disappointing in that they do not consider the effects
of the aberrations on the correlation. In a previous
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paper!! we presented an analysis of a convergent
diffractometer with the object located behind the op-
tical system (the converging architecture allows con-
trol of the scale of the Fourier transform by displacing
the object along the optical axis). Using a combina-
tion of ray and wave optics, we studied the behavior
of a VanderLugt correlator that was partially affected
by aberrations.

Our aim in this paper is to analyze the aberration
effects in the other popular architecture, the JTC.
We study how the correlation light distribution is
affected by the aberration introduced by the optical
systems. In a JTC the correlation is obtained in two
Fourier-transform steps: in the first one, a joint
power spectrum (JPS) is generated; the second one
yields the correlation. We take into account the in-
fluence of the aberrations in each OFT and the global
effect over the correlation. Using the results ob-
tained in this study, one can deduce the best working
conditions for an optical system; moreover, it is pos-
sible to compare different optical systems when they
are working in their optimal conditions.

The paper is divided into the following sections:
in Section 2 the convergent JTC is reviewed, and in
Section 3 we present a method of computing wave
aberrations that is based on ray tracing and diffrac-
tion analysis. Then we take into account the aber-
rations introduced by two optical systems, namely, a
single-meniscus lens and a highly corrected system.
Some comparisons between theoretical predictions
and experimental results for the first system are pre-
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Fig. 1. Convergent JTC.

sented. Finally, we show how to optimize previous
results to ensure the best performance for an optical
correlator.

2. Convergent Joint Transform Correlator

Figure 1 shows a schematic of a convergent JTC: A
video camera captures the scene, which is then dis-
played side by side with the reference image on a
spatial light modulator (SLM) placed at the input
plane. At the Fourier plane a CCD camera captures
the JPS and displays it on a second modulator; fi-
nally, a camera placed at the correlation plane cap-
tures the result.

We analyzed the arrangement in which each OFT
is obtained by means of a converging-beam system
(see Ref. 3 for a detailed discussion of the advantages
of this system). The Fourier lens is illuminated by a
spherical diverging wave front generated by a point
source (pinhole), and the OFT is found at the image
plane of the source. The optical modulators are
placed behind the Fourier lens. The scale of the
Fourier transform depends only on the distance be-
tween the modulator and the image plane,'2 so, by
tuning this distance, one can easily adapt the size
and resolution of the diffraction patterns to those of
the CCD camera. Fourier transforms obtained in
this way are affected by a multiplicative phase factor,
but that is of no importance here because the JTC
manipulates only intensity distributions.

The JTC architecture is composed of two conver-
gent diffractometers, each with a light modulator and
a CCD camera. The intensity distribution captured
by the camera in the first diffraction stage is dis-
played on the modulator in the second stage, and thus
the JTC setup can be implemented by use of a single
diffractometer.’®> The JPS is displayed on the input
SLM, and the CCD captures the correlation. If a
single diffractometer is used, the OFTs of the input
distribution and that of the JPS are performed with
the same optical system and, consequently, they will
be affected by the same aberration. Nevertheless,
we demonstrate that, even in this case, the variation
in the distance between the modulator and the CCD
permits the reduction of the influence of aberrations.

3. Method of Wave-Aberration Computation

We study here the diffraction stage, that is, a con-
verging setup with the diffracting aperture placed
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behind the lens. Therefore a sketch of the system
under analysis is that shown in Fig. 2, composed of
the following elements:

¢ A coherent-light source (laser) of wavelength \.

¢ A point light source (pinhole) that generates the
diverging spherical wave front.

¢ The optical system that generates the converg-
ing spherical wave front.

e A SLM, placed behind the optical system, which
displays the image to be transformed.

¢ The Fourier plane, placed a distance D from the
modulator, at the image plane of the light source.

The SLM placed behind the lens limits the wave
front passing through the system; i.e., it acts as the
exit pupil. We compute the complex amplitude dis-
tribution at the Fourier plane through the propaga-
tion of the wave aberration at the exit pupil. Here,
we assume that all diffracting effects are associated
with the pupil. Lenses and other stops in the system
are assumed to be large enough not to cut the wave
front significantly, so propagation of light can be ac-
curately described by geometrical optics from the
light source to the SLM (Abbe—Rayleigh theory of
image formation'4). Thus, discarding irrelevant
constant phase terms for the sake of clarity, we can
write the light distribution U(x', y') at the image
plane (our Fourier plane), in a Fresnel approxima-
tion, as!5

Ulx', y') = exp[ —ie(x’, y')] “ f(x,y)
/Aper
. xx' +yy'
>< - v
exp[ﬂ*rr( R ”dxdy, 1)
where €(x’, y') is a quadratic phase term:
Lo 2w x4y
e(x,y)—)\(m) (2)
and f(x, y) is the generalized pupil function:
C2m
flx,y) = t(x, y)eXp[l N Wi(x, y)} ; 3)

where t(x, y) is the pupil transmittance (the image
displayed on the modulator) and W(x, y) is the wave
aberration, that is, the optical path difference be-
tween the wave front generated by the optical system
and the reference sphere (see Fig. 3). Itis clear from
Eqgs. (1) and (3) that the quality of the intensity of the
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Fig. 3. Schematic diagram showing an aberrated wave front and
its reference sphere.

Fourier transform of #(x, y) depends only on wave
aberration W(x, y).

The evaluation of W(x, y) is carried out by means of
an exact ray-tracing algorithm, which computes the
aberration at different points of the exit pupil accord-
ing to the relations between wave aberration and ray
aberration?6:

Wx,y) X W(x,y) Y
ix  R-W’ ay

where X and Y are the components of the ray aber-
ration (difference between the actual impact point
and that predicted by paraxial optics) and R is the
radius of the reference sphere. The ray-tracing al-
gorithm thus evaluates the wave aberration at dis-
crete points, those that result from the intersection of
the traced rays with the exit pupil plane. The com-
putation of W(x, y) on the entire pupil is carried out
by interpolation of the discrete values with an aber-
ration polynomial of the type!?

W(x, y) = Ay(x® + %) + Ay(x® + y*)°
+ As(xP+yD2+ .. (5)

where only terms that express radial symmetry have
been included in the expansion because the diffrac-
tion stage works with a point source located at the
axis of the optical system. If we neglect wave aber-
ration W (a few wavelengths) in front of R (several
centimeters in our case), Egs. (4), after differentiation
of Eq. (5) with respect to x and y, become

X
= 2A,x + 4A,x(x* + y?) + 6Ax(x? + y?)?

+ ..

Y 2 2 2 212
—§= 2A,y + 4A,y(x* + y%) + 6A5y(x* + y°)

+.... (6)

For each traced ray we have two linear equations
with £ unknowns, A;, A,, . .., A,, the coefficients of

Table 1. Meniscus Lens Data

Medium

Index (Abbe

Radii for Lens 1 (mm)* Thickness Number)

R, = —12826 R,= —59.37 544mm ny = 1.523 (v; = 59)

“Focal length, 206.5 mm.

the aberration polynomial. The remaining informa-
tion (ray aberrations, ray intercepts at the exit pupil)
are all available through the ray-tracing algorithm.
We typically compute several rays (n > k) and obtain
an overdetermined set of linear equations, which is
then solved by minimization of the quadratic error
between the two sides of Eq. (6). Once the coeffi-
cients of the aberration polynomial have been found,
the generalized pupil function is computed according
to Eq. (3). Finally, the distribution of light at the
Fourier plane is obtained by transformation of the
pupil function by means of a discrete Fourier-
transform algorithm.

4. Optical Systems and Experimental Configuration

To analyze the behavior of the correlator as a function
of the degree of aberration, we have taken two differ-
ent optical systems with the same focal length into
consideration. The first one consists of a single-
meniscus lens and the second one is a more-complex
system (Meopta objective), with four lenses and bet-
ter optical quality. See Tables 1 and 2 and Fig. 4 for
details.

The target used for detection is the image of a fish.
The scene is the same fish displayed at eight positions
on the input modulator to produce input images with
variable amounts of aberration and to permit the loss
of spatial invariance in the correlator to be investi-
gated. The target is placed at the center. Figure 5
shows the centered target and the eight scenes su-
perimposed.

Note that, as we are dealing with aberrated optical
systems, we do not have an exact Fourier transform
at the image plane of the light source but only an
approximation. This means that we are not re-
quired to use that plane as the Fourier plane of the
correlator. Defocusing may compensate to some ex-
tent for the aberrations of the optical system; there-
fore a better approximation of the Fourier transform
may be found at a different position along the optical
axis. Such has indeed been our experience, as we
show in the following results. Figure 6 shows plots
of the wave-aberration polynomial for different posi-
tions of the Fourier plane as a function of radial
coordinate r:

r=(x*+yH)¥2 (7N
The eight positions of the scene are indicated by ver-
tical lines. Figure 6(a) (meniscus lens) shows six
aberration polynomials that correspond to the parax-

ial plane and six positions of the image plane. Fig-

1 February 2004 / Vol. 43, No. 4 / APPLIED OPTICS 843



Table 2. Meopta Objective Data”

Radii (mm)

Media

Thickness (mm) Index and (Abbe Number)

Lens 1 R, =283.19 R, = —389.42
Air

Lens 2 R; = 100.93 R, = 30247
Air

Lens 3 R; = —169.45 Ry = 80.59
Air

Lens 4 R, =476.44 Ry = —86.32

17.9 n, = 1.61375 (v, = 59)
1.38

30.96 n, = 1.620410 (v, = 62)

11.02

10.32 ng = 1.717360 (v, = 62)

24.78

24.78 ng = 1.620410 (v, = 62)

“Focal length, 206.5 mm.

ure 6(b) (meopta objective) shows five aberration
polynomials at different planes that correspond to the
paraxial distance and four other positions. Dis-
tances are given with respect to the paraxial image
position of the point source: The paraxial plane is
d = 0; planes farther away from the lens than the
paraxial plane take positive values, and closer planes
take negative values.

To verify the validity of the method we designed an
experimental on-axis JTC. Our aim in using this
setup was to reproduce the simulated working condi-
tions as closely as possible, so the meniscus lens de-
scribed in Table 1 was used as the diffractive system.
The light source was a He—Ne laser (\ = 632.8 nm)
located at the object plane [Fig. 4(a)], and a CCD
camera was placed at the image plane. The image to
be transformed, which included the fish to be de-
tected and the centered reference fish, was located at
the exit pupil and was obtained in the form of a
photographic negative to prevent the appearance of
any undesirable effects from electro-optical elements.

5. Effects of Aberrations on the Correlation Results

The method allows us to isolate the effect of aberra-
tions in each of the two Fourier-transform steps in-

Object Plane Image Plane

’ Exit Pupil (SLM) ‘

‘ d=1320.0mm d=191.0mm d=7374.0mm ’
(a)

Object Plane Image Plane

Exit Pupil (SLM)
d=220.0mm d=238.0mm d=373.7mm
(b)
Fig. 4. (a) meniscus lens, (b) meopta objective.
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volved in a JTC and to study how they separately
affect the final correlation.

A. Effects of Aberrations in the First Diffraction Stage

To evaluate how the aberration of the first diffraction
stage affects the final correlation, we captured the
JPS with a CCD camera placed at the image plane
and then transformed it by means of a fast-Fourier-
transform algorithm. This procedure isolates the ef-
fect of the aberrations that arise in the first
diffraction stage, inasmuch as the second Fourier
transform is digital and thus without aberrations.
The values of the correlation peak heights are com-
pared to those that result from the aberration-free
case.

Figure 7 shows the relative height of correlation
peaks, that is, the ratio between the correlation value
for which aberrations are considered only in the first
diffraction stage and that of an ideal correlator with
no aberrations. Different scene positions and cap-
ture planes for the JPS are represented in the figure.

Figure 7(a) corresponds to the simulated results
obtained, and Fig. 7(b) shows the experimental re-
sults. From an analysis of these figures it can be
concluded that the peak heights in the paraxial plane
exhibit an unstable behavior; that is, the results show

Fig. 5. Centered target and eight scenes superimposed.
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Fig. 6. Aberration polynomial for several image planes (a) for a

meniscus system and (b) for a meopta objective. The eight posi-
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a strong spatial variance. The peak values decrease
quickly when the target is far off the center of the
scene. If we move away from the paraxial plane
(d = +12 mm) the behavior is even worse. Never-
theless, if we come closer to the system, the height of
the peaks becomes more stable. The best results are
obtained for d = —15 mm, where the peak values are
stable for targets in a fairly large neighborhood near
the center of the scene.

One can obtain stable behavior of the correlation
peak values by choosing a suitable plane, closer to the
lens than the paraxial plane, with which to capture
the OFT. However, for targets located far from the
center of the scene, total invariance of the height of
the peaks is not possible.
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Fig. 7. Relative height correlation peaks. Aberration in only
first OFT. meniscus lens: (a) simulated results, (b) experimen-
tal results.

B. Effects of Aberration in the First and Second
Transforms

In this section we describe aberration in both the
first and the second transforms. In this case we
have two transforms and consequently two possible
positions of the image plane. Nevertheless, we
have considered the position of the Fourier plane to
be the same in both steps. This corresponds to the
practical case in which a single optical setup is used
twice sequentially!3 (as opposed to two different
stages in series).

The experimental process developed in this situ-
ation is different from that described in Subsection
5.A in that the second transform is not digital.
The JPS captured by the CCD camera is printed
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Fig. 8. Relative height correlation peaks. Aberration in first and
second OFTs. Meniscus lens: (a) simulated results, (b) experi-
mental results.

and transformed into a photographic negative.
This image is located at the exit pupil of the JTC,
and then the correlation image is obtained at the
image plane. Finally, we analyze the images to
obtain the relative values of the correlation peak
heights as before.

In Figs. 8(a) and 8(b), respectively, simulated and
experimental results are presented. It can be ob-
served that the curves have a behavior similar to
those shown Figs. 7(a) and 7(b) but with a notice-
able decrease in their values. The curve that cor-
responds to the paraxial plane (d = 0) shows the
largest variation, and, in contrast, that which cor-
responds to —15 mm is almost constant. This in-
variance, as in the preceding case, can be attributed
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Fig. 9. Relative height correlation peaks. Meniscus lens. Dif-
ferent image plane positions in first and second transforms.

to the aberrations in the first transform. The ef-
fect of aberrations in the second transform is a
global decrease of the curves: the curve that cor-
responds to the paraxial plane goes down by
roughly 30% (from approximately 100% to 70%),
and the one that corresponds to plane at —15 mm
goes from some 90% to 50%.

Then, considering all the aberrations and the var-
ious capture positions for the CCD, it is possible to
find a plane in which the spatial invariance is pre-
served. However, the values of correlation maxima
decrease because of the effect of aberrations in the
second OFT. It is worth mentioning that this is a
general pattern, whether or not the first transform is
also affected by or free from aberrations. That is
why we do not include a separate study of the aber-
rations in the second diffraction stage only. The
peaks behave in the same way as in the aberration-
free case, except that they are lower.

C. Optimization of the Position of the Image Plane

In Subsection 5.B we analyzed the effect of the aber-
rations on the height of the correlation maxima when
the detector at the Fourier plane is placed at the same
position in both transforms. One also can move the
detector to various positions and acquire the JPS and
the correlation at different distances from the parax-
ial plane. This corresponds to the experimental sit-
uation of operating with two diffracting setups or
with a single processor and moving the position be-
tween the two transforms.

From Fig. 7(a) we have seen that the best condi-
tions for correlation appear when the power spectrum
is obtained in a plane located at —15 mm from the
paraxial spectrum. We kept this position fixed and
optimized the capture position of the second trans-
form. The results obtained are those shown in Fig.
9. Here the first OFT is captured at —15 or —17 mm
and the second OTF is acquired at a different plane.
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Fig. 10. Relative height correlation peaks. Meopta objective
(simulated results): (a) aberration in first OFT only, (b) aberra-
tion in first and second OFTs.

As can be seen, by choice of a suitable combination of
the positions of the acquisition planes it is possible to
obtain higher values of correlation peaks as well as a
larger degree of spatial invariance [curves d = 0 and
d = —15 in Fig. 7(a) are also included here for com-
parison]. The best combination of planes corre-
sponds to a first transform at d = —15 mm and to the
second one at d = —4 mm.

D. Highly-Corrected Optical System

The experimental verification presented above allows
us to ensure that the method developed is a good
model of the diffractive behavior of optical systems
used in the correlation process. The next step was to
apply the method to more-sophisticated systems and
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Fig. 11. Relative height correlation peaks. Meopta objective.
Different image plane positions in first and second transforms.

to determine whether the effects observed in the cor-
relation, when one is working with a single-meniscus
lens, still appear when a system with a better optical
quality is used. To take the second step we repro-
duced the whole process explained in Section 4 as we
worked with the meopta objective described in Table
2 and Fig. 4(b). The results obtained were almost
the same as those obtained for the meniscus lens, as
shown in Figs. 10 and 11.

For Fig. 10(a) we considered aberration only in the
first diffraction stage. It can be observed that, at
d = 0 mm, the heights of the peaks vary with target
position; at d = —5 mm this effect is still more evi-
dent. When the OFT is evaluated at d = +4, +8,
+12 mm, however, the peak values are more stable.
As can be seen, the best behavior is obtained when
the plane is placed at d = +4 mm. As the meopta
objective is a better optical system than the single-
meniscus lens, the more suitable plane is found closer
to the paraxial plane, and global stable behavior can
be achieved.

If the aberrations in the two diffraction stages are
considered [Fig. 10(b)], we can also attain invariance
of the correlation values by changing the position of
the image plane (at d = +4 mm) in the first Fourier
transform. However, the effect of the aberrations in
the second transform decreases the value of the cor-
relation peak heights from 100% to some 65%.

Finally, as can be seen from Fig. 11, it is also pos-
sible to find a combination of acquisition planes that
increases the values of correlation peaks without los-
ing the spatial invariance. In this case the best com-
bination corresponds to a first transform captured at
d = 4 mm and the secondoneatd = 1,2 mm. Based
on these results, it can be concluded that the behavior
of a well-corrected optical system does not differ sig-
nificantly from that observed for the single-meniscus
lens. Nevertheless, as presumed, the effects of the
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aberrations of the diffractive system in the final cor-
relation were not so marked as in the previous case.

6. Conclusions

We have analyzed the effect of the aberrations asso-
ciated with optical systems in a joint-transform cor-
relator with a converging diffractometer architecture
by computing the wave aberration by exact ray trac-
ing. As the JTC has two identical Fourier-
transform optical setups, we studied the effect of the
aberrations in each one separately by both simulation
and experiment.

We analyzed the global effect over the height of the
correlation maxima. One of the problems that we
found is that the presence of aberrations produces a
space-variant output. To study this effect we used
scenes with the target placed at eight different posi-
tions with respect to the reference image.

We obtained the first set of results by considering
the influence of the aberrations only in the first op-
tical Fourier transform (joint power spectrum) and
considering the second OFT perfect. In these condi-
tions the main relevant conclusions are that

e If we place the first Fourier plane (correspond-
ing to the power spectrum) at its theoretical paraxial
position, the final correlation is strongly space vari-
ant, that is, the height of the correlation peak de-
pends on the position of the scene image.

¢ If we slightly move the plane of the device that
captures the power spectrum from the paraxial posi-
tion, the variations of the correlation output can be
decreased.

e It is possible to find a Fourier plane position
where aberrations have almost no effect and the cor-
relation peak height is nearly invariant within a
fairly large neighborhood. For the single-lens sys-
tem (meniscus lens), the peak value invariance is
achieved only for five of the eight tested target posi-
tions. Better performance is obtained (full invari-
ance for those eight positions), however, when the
meopta objective is used.

In the second step we considered the influence of
the aberrations in both OFTs. First we considered
that the position of the detector is the same in each
transform. This situation corresponds to the exper-
imental setup in which the two transforms are cap-
tured sequentially in the same optical bench. In this
situation we conclude that

¢ The behavior of the correlation is analogous to
that in the previous situation: It is possible to find a
position for locating acquisition planes where the
space-variant effect related to paraxial distance de-
creases. The heights of all the correlation peaks re-
main almost constant but lower: approximately
50% (meniscus lens) and 65% (meopta objective) of
the heights that correspond to theoretical values (ab-
erration free).
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The simulated behavior of one of the optical sys-
tems (meniscus lens) has been corroborated by means
of an experimental setup that reproduced the same
two configurations, namely, when the aberration ap-
pears only in the first diffraction stage and when both
transforms are taken into account. The good agree-
ment between experimental and numerical results
proves the value of the method in predicting the in-
fluence of optical aberrations in the final correlation
for real systems.

Finally, we combined different displaced positions
of the OFT acquisition planes, with the following con-
clusion:

¢ Among all possible combinations it is possible to
find one optimal trade-off position at which the cor-
relation peaks are space invariant despite the pres-
ence of aberrations. With this configuration, all
peaks are ~70% (meniscus lens) or 80% (meopta ob-
jective) of the value without aberration.

In summary, the aberrations of Fourier-
transforming optical systems used in a JTC
strongly affect the correlation results. The aber-
rations on the first transform induce space variance
in the final correlation, and the aberrations on the
second transform produce a global decrease in the
heights of the correlation peaks. The experiments
performed corroborate this behavior. By selection
of a suitable combination of positions of the two
acquisition planes it is possible to compensate for
both effects and to find an optimal configuration in
which the correlation peaks are sharp and almost
invariant.
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de Ciencia y Tecnologia) under project DPI2001-
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