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The use of fuzzy-logic techniques on the correlation output plane is analyzed as a method to improve the
discrimination capabilities of pattern-recognition procedures. The study is divided into two parts: one
recounts a computer-simulated example corresponding to pattern recognition by the use of input images
that may be defocused, tilted, or corrupted by additive Gaussian noise, and the second part describes an
experimental setup in which the deformation of foam material is studied. © 1996 Optical Society of
America
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1. Introduction

Fuzzy set theory and fuzzy logic, introduced by Za-
deh1 in 1965 as a way of handling imprecise data,
now have many fields of application in information-
processing schemes. The study of fuzzy control2 has
found several applications, such as decision making,3
process control,4 and pattern recognition.5
Since the development of the classical matched fil-

ter,6 pattern recognition by the use of optical correla-
tion techniques has been widely studied. Some of the
important problems encountered when different filters
are used are their sensitivity to noise or to deforma-
tions of the objects in the scene that hinder discrimi-
nation and limit the recognition capability; besides, the
presence of sidelobes in the correlation plane, caused
by nonuniformities in the scene or to a composite-filter
design, may lead to the occurrence of false alarms.
Several approaches have been used to overcome

these problems. One of them is designing filters to
minimize the effects of input-scene noise or deforma-
tions, which are constrained to yield narrow correla-
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Laboratori d’Optica, Universitat de Barcelona, Diagonal 647,
E08028 Barcelona, Spain.
Received 3 August 1995; revised manuscript received 14 June

1996.
0003-6935y96y356955-09$10.00y0
© 1996 Optical Society of America
tion peaks.7 Another approach is based on the
combination of the results of different filters, thus
reducing the probability of false alarms.8,9 Another
possibility would be to process the output by a
method that combines the information obtained with
other known features of the object to be detected,
which fuzzy logic achieves.
In this paper we present the use of fuzzy logic as a

postprocessing method to improve the results in cor-
relation applications. Our aim is to add more infor-
mation, such as the shape or the expected position of
the correlation peak, to the measurement of similar-
ity between the object and the scene. In particular,
we apply fuzzy logic because it is a suitable tool to
carry out this processing.
The remaining sections of this paperarenowdescribed

briefly. Section 2 gives a general background on fuzzy
logic and its application. Section 3 deals with the appli-
cation of fuzzy-logic postprocessing in the correlation out-
put plane in a case of pattern recognition: the detection
of an object affected by different kinds of degradation,
such as defocusing, tilting, and additive Gaussian noise,
by the use of a matched filter and a synthetic discrimi-
nant filter.10 Section 4 describes a real application of
the digital speckle-correlation method11 to the study of
deformations of foam materials under strain, as used in
the automotive industries. Finally, in Section 5 a sum-
mary is presented.

2. Fuzzy-Logic and Fuzzy-Control Theory: Summary
of Important Elements

There is a wealth of technical literature ~see Ref. 2,
for instance! introducing the subject of fuzzy logic, so
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only the definitions of the most important terms will
be given here. In fuzzy logic the normalized truth
value of a proposition does not have two discrete val-
ues, 0 and 1, like in Boolean logic, but lies in the
interval @0, 1#. Thus a proposition need not be ex-
actly true or false.
Quantities in fuzzy logic are operated as linguistic

variables ~e.g., temperature! that can take several
linguistic values ~e.g., high, low!. The relation be-
tween real values and linguistic values is defined by
themembership functions of fuzzy sets. The numer-
ical values of an input variable can belong to one or
more fuzzy sets to different degrees between 0 and 1.
Figure 1 shows the linguistic variable temperature
with five linguistic values ranging from very cold to
very hot. Each numerical value of the temperature
is assigned to at least one fuzzy set. The member-
ship function of each set determines the degree to
which a certain temperature belongs to the set.
Thus, 23.5° C is hot to a degree of 0.18 and warm to
a degree of 0.79. The process of assigning linguistic
values to a variable is known as fuzzification.
Linguistic rules describe actions that are to be per-

formed in certain input situations ~e.g., IF tempera-
ture is high THEN set cooling to high!. Several input
situations referring to different linguistic variables
~e.g., temperature and pressure! can be linked by
generalized operators of Boolean logic ~e.g., AND, OR!.
A common definition of the fuzzy AND operator is the
minimum method: the grade of membership result-
ing from an AND operation between two grades of
membership is the minimum of the two ~e.g., 0.3 AND

0.5 5 0.3!. Similarly the OR operator is commonly
defined by the maximum method ~e.g., 0.3 OR 0.5 5
0.5!.
Inference is the process of evaluation of the linguis-

tic rules and integration of the resulting actions, thus
leading to a linguistic conclusion. For fixed values of
input variables several rules are often valid to a cer-
tain degree. The results of all these rules are com-
bined by the OR operation, producing a fuzzy set for

Fig. 1. Examples of fuzzy-logic linguistic values for the linguistic
variable temperature.

6956 APPLIED OPTICS y Vol. 35, No. 35 y 10 December 1996
the output variable. The defuzzification process cal-
culates a crisp value from this fuzzy set ~e.g., the
speed of a cooling fan!. This is often done by the
center-of-gravity method, which consists of a mean of
the output numerical values weighted by their grades
of membership.
A fuzzy processor can be incorporated into any pro-

gram by the insertion of its characteristic diagram
~membership functions and rules! into the code by
means of sentences such as

~i! IF ~input1 , 0.5! AND ~input2 , 1! THEN out-
put 5 f1~input1, input2!.

~ii! IF ~input1 . 0.5! AND ~input2 , 1! THEN out-
put 5 f2~input1, input2!.

We implemented this procedure by building up the
fuzzy system using a program that produces C-CODE to
represent the characteristic diagram of the fuzzy con-
troller. This C-CODE can easily be interfaced with the
user programs. Fuzzy logic is not the only way to
build up an appropriate controller, but an essential
advantage of fuzzy logic is the ease of the transfer of
expert knowledge into variables and rules.

3. Use of Fuzzy Logic as a Postprocessing Method for
Pattern Recognition by Correlation

In this section we show how fuzzy logic can be applied
to the classification of output intensity peaks from a
correlation process. To carry out this process digi-
tally we first use a classical matched filter because of
its simplicity and because it retains some information
about the shape of the objects in the input scene. In
a further step, we generalize our results to the case of
a composite filter, as it is a linear combination of the
classical matched filters of each image in the training
set. We use this composite filter as a synthetic dis-
criminant function ~SDF! adapted to detect two dif-
ferent classes and to reject a third.

A. Postprocessing of Classical-Matched-Filter Output

To show the methodology to build the fuzzy proces-
sor and its performance, we use a generated scene
composed of a matrix of images belonging to three
classes ~columns!, see Fig. 2, obtained from the ap-
plication of different degradations to the top row of
objects. Therefore, the first row has the original
images; in the second row the images are defocused
by convolution with a circle that has a 5-pixel ra-
dius; in the third row the images are rotated by 5°;
in the last row the images have zero-mean Gauss-
ian noise added ~with a variance of 90, in 8-bit
gray-scale images!. The energy of the images is
not normalized in order to consider a more realistic
problem. The correlation of the overall scene and
the fish at the top left-hand corner is shown in Fig.
3~a!. The height of the correlation maxima is not a
determining measure to assess detection because a
simple threshold in this image retains peaks other
than those belonging to the first class ~left-hand
column!.



To apply fuzzy logic, we have chosen two parame-
ters ~designated as z and r! to characterize a peak.
First, z is related to the height of the peak. With the
peak’s height denoted by Z and the autocorrelation
peak’s height by Z0, the value of the z parameter is
calculated as

z 5 U1 2
Z
Z0

U. (1)

This is a measure of the deviation of Z from the ideal
value Z0, so that the best value for z is 0. The second
parameter, which models the peak’s shape, allows us
to introduce this imprecise measure into fuzzy-logic-
based processing. It is also related to the shape of
the autocorrelation peak. If Dx and Dy are the full
width at half-maximum ~FWHM! of the peak in two
orthogonal directions and Dx0 and Dy0 are the corre-
sponding width values for the autocorrelation peak,
then

r 5 minSU1 2
Dx
Dx0

U, U1 2
Dy
Dy0

UD . (2)

To analyze the correlation intensity plane, we first
localize digitally the local maxima in the plane, and
we consider these maxima as possible peaks. Then
we compute the values of Z, Dx, and Dy for each
peak and combine these values with the previously
computed values of Z0, Dx0, and Dy0 to obtain the
parameters z and r. We define the parameters as
relative to the expected ones to permit the use of the
same fuzzy-logic processor for any other target.
The definitions of the fuzzy sets are shown in Fig.

Fig. 2. Scenes used in the simulations. The top row contains the
nondegraded objects.
4. For the parameter z we have defined four fuzzy
sets, labeled very good ~VG!, good ~G!, medium ~M!,
and bad ~B!; for the parameter r the fuzzy sets are
only G, M, and B. The membership functions and
their characteristic values are chosen by the study of
a set of z and r values obtained from a database of
images of the three fishes affected by a wide range of
degradations. The rules are shown in Table 1. The
defuzzification strategy chosen is the center-of-
gravity method ~see Ref. 2, page 385!.
After the correlation plane has been scanned for

local maxima and the values of z and r have been
found for each, these values are passed to the fuzzy
processor to obtain an output value ranging from 0
to 100. We consider as detection peaks the max-
ima with output values above 50 and reject those
below this. This procedure has been tested with
the scene shown in Fig. 2 with the filter matched to
the top left-hand object and resulting in the corre-
lation plane shown in Fig. 3~a!. The results of
fuzzy-logic postprocessing allow us to select the four

Fig. 3. ~a! Correlation intensity plane corresponding to the scene
and the filter matched to the top left-hand object. ~b! Output
image plane with the values of the fuzzy logic postprocessing.
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Fig. 4. Definition of fuzzy sets for matched filters.
left-side peaks, as can be seen from Fig. 3~b!, in
which the output value of the fuzzy processor has
been written at the maximum position. If we use
the same set of fuzzy rules with the filter matched
to the top-central and right-hand targets, the re-
sults for both cases are also fully satisfactory.

B. Postprocessing a Composite-Filter Output

The second type of filter to which we have applied this
postprocessing method is a composite filter used as a
SDF designed to give a value of 1 for two classes ~the
true-class images corresponding to the left-hand and
center columns in Fig. 2! and a value of 0 for the other
~the false-class image in the right-hand column, Fig.
2!. The filter is a linear combination of the training
images, thus containing negative values. It is well
known that the results of the correlation show side-
lobes that can result in wrong identifications ~see Ref.
8!.
Our aim is to identify these sidelobes among the

correctly located peaks. The definitions of the pa-

Table 1. Rules for Fuzzy-Logic Postprocessing with Matched Filters

r

z

VG G M B

G G G G M
M G M M B
B M B B B
rameters to pass to the fuzzy-logic system are as
follows: We correlate the first target of the true
class with the composite filter to obtain the model
parameters Z1, Dx1, and Dy1, defined as in Section
3.A. Similarly, with the second target we obtain Z2,
Dx2, and Dy2. Then we scan for local maxima of the
correlation plane resulting from the scene and the
composite filter, computing Z, Dx, and Dy for each
one.
Because the filter is designed to give the same Z

value for each target, it is equivalent to using Z1 or Z2
~instead of Z0! to calculate z in Eq. ~1!. For the
widths, we compute r as follows:

r 5 minSU1 2
DyyDx

Dy1yDx1
U, U1 2

DyyDx
Dy2yDx2

UD . (3)

After these parameters have been computed, we
pass them to the fuzzy-logic processor. The fuzzy
sets are shown in Fig. 5 and the rules in Table 2.
The results are shown in Fig. 6. The correlation
values @Fig. 6~a!# at the center of the false-class
object peaks are actually zero, but the remain-
ing energy is high enough to make the sidelobes as
high as those corresponding to the true-class ob-
jects. However, the fuzzy-logic postprocessing de-
scribed is able to select the true detection peaks
@Fig. 6~b!#.
Fig. 5. Definition of fuzzy sets for composite filters.
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4. Fuzzy Logic and Correlation Techniques in the
Analysis of Structural Deformation on Foam-Based
Materials under Strain

A. Description of the Experiment

Soft polymer foams are generally used for vibration
and shock absorption in packaging.12,13 For charac-
terizing these foams mechanically, their deformation
behavior is studied in compression tests. The whole
three-dimensional displacement-vector field ~i.e., the

Fig. 6. ~a! Correlation intensity plane corresponding to the scene
and the composite filter designed for the left-hand and top-central
objects. ~b! Output image plane with the values of the fuzzy-logic
postprocessing.

Table 2. Rules for Fuzzy-Logic Postprocessing with Composite Filters

r

z

G M B

G G G B
M G M B
B M B B
in-plane and out-of-plane components of the surface
displacements! has to be determined.
The in-plane displacements are measured with the

digital speckle-correlation method.11 The surface of
the foams is illuminated with white light from a high
angle relative to the viewing direction of a CCD cam-
era ~Fig. 7!. The camera and a frame grabber pro-
vide digitized 8-bit gray-level pictures of the foam
surface. The rough surface of the foams generates a
gray-level pattern with high contrast.
To obtain the in-plane displacement field, the algo-

rithm compares the images of the foam surface in the
deformed and undeformed states. This is done by
the division of these images into a number of equi-
distant rectangular subsets of defined size, which we
call correlation windows. Each correlation window
has its characteristic pattern.
There are methods14 that interpolate the data of

the deformed and undeformed specimen to give a
continuous intensity pattern. The pattern of the de-
formed state is varied numerically to map the real
data of the undeformed state of the specimen. The
success of the variation is monitored by the calcula-
tion of the correlation coefficient of the numerically
varied data and the measured data. For little strain
this method converges quickly. However, measur-
ing the in-plane deformations of our foams with this
variation method failed because the decorrelation ef-
fects were too strong. We therefore used a more
efficient method based on the cross correlation of the
windows in the undeformed and deformed state.
The software then attempts to locate these charac-
teristic patterns in both pictures to obtain the dis-
placement between them.
If the displacement of a surface pattern between

the two states of the specimen exceeds half the win-
dow size, there is no correlation between the win-
dows. Thus large deformations would need
correlation windows of 256 3 256 pixels or more,
resulting in a long calculation time. As the calcu-
lated displacement of a window is just an average
over the local displacements inside the window, local
differences cannot be seen if the window size is too

Fig. 7. Image-acquisition configuration.
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big. Therefore, it is necessary to use small correla-
tion windows of 32 3 32 pixels or less.
A priori knowledge has to be used with this tech-

nique to obtain a correlation between the two states
in the case of a smaller window size. With some
materials @i.e., poly~ethylene!# the in-plane displace-
ment of the specimen is almost proportional to the
distance to the fixed end of the specimen. Thus, the
approximate location of the window’s pattern in the
deformed state is known as predisplacement ~Dx,Dy!,
and it can be cross correlated with the window in the
deformed state ~Fig. 8!. The position of the correla-
tion peak now gives only the deviation ~dx, dy! of the

Fig. 8. Schematic diagram of the deformation process and the
evolution of one compared window.
position of the pattern from the estimated position.
The full displacement now is given by

Vx 5 Dx 1 dx,

Vy 5 Dy 1 dy, (4)

If the predisplacement is well known, the distance of
the correlation peak to the center of the window
should be very small or even zero ~dx 5 dy 5 0!.
Successive scanning of the complete surface then

yields the in-plane displacement field. The quantity
and size of the correlation windows can be defined by
the user. Figure 9 shows a specimen in the unde-
formed state and one under a compression of 10%.
The surface has been divided into 10 3 10 correlation
windows with sizes of 32 3 32 pixels. The resulting
in-plane displacement field has been drawn into the
picture of the undeformed state.
The underlying results obtained from each corre-

lation window are shown in Fig. 10. The dark re-
gions correspond to a high value of the correlation
function, and the white regions to a low value.

B. Use of Fuzzy Logic to Determine the In-Plane
Displacement Field

A large strain on the specimen, up to 40%, leads to
decorrelation effects. This produces errors and false
alarms when correlation techniques are applied.
Fig. 9. ~a!Gray-level pattern of the illuminated surface of a foammaterial in the undeformed state with the displacement field. ~b! Foam
material deformed under 10% compression.
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The most important cause of this trouble is the de-
formation of the pattern inside a correlation window
when the specimen is under strain. Figure 11 shows
the calculated in-plane displacement field of a foam
under a strain of 30%. The deformation of the foam
is expected to be homogenous, thus errors in the dis-
placement field are obvious to an experienced user.
We have marked with black dots these errors in the
displacement field.
Figure 12 shows two of the correlation windows

that lead to incorrect displacement values if the cor-
relation peak is identified only by the global maxi-
mum of the correlation function inside the range of

Fig. 10. Cross-correlation pattern of the windows defined for the
images in Fig. 9.

Fig. 11. Calculated displacement field under a 30% compression.
The errors are marked with black dots.
the window. Also shown are the neighboring win-
dows that lead to a correct evaluation of the displace-
ments. Correlation peaks inside these windows are
marked by a white dot. It is obvious that, in each of
those windows in which an error occurred, the user
would have identified the smaller local maximum in
the center of the window as the correlation peak.
This identification is based on the positions of the
peaks in the neighboring windows and the knowledge
that compression of the studied foammaterial should
result in an almost homogenous deformation of the
specimen’s surface. So, even if there are several
false alarms in the correlation plane that may even
have the expected shape and higher correlation val-
ues than the correct peak, it is still possible to dis-
tinguish between these false alarms and the correct
correlation peak by the distance of the peak from the
center of the correlation window.
To make use of this knowledge we created a fuzzy-

logic processor. In the first step all local maxima in
the correlation plane have to be found. For each of
these maxima the following input variables have to
be calculated and entered as inputs to the fuzzy-logic
processor. First is the peak-to-correlation energy
PCE9 ~Ref. 15! as a normalized value of the peak’s
height:

PCE95K9~mp9np!yH 1W2 (
m,n

mÞnp9nÞnp

@K9~m, n!#2J1y2

, (5)

with

K9~m, n! 5 K~m, n! 2
1
w2 (

i, j50

W21

K~i, j!, (6)

where K~i, j! is the correlation-value pixel ~i, j!, W is
the pixel size of the rectangular correlation window,
m and n are the x and y pixel positions, respectively,

Fig. 12. Correlation windows illustrating the sources of the errors
shown in Fig. 11.
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inside the correlation function, and mp and np are
the x and y pixel positions, respectively, of the local
maximum under observation.
Second is the distance of the peak to the center of

the correlation window with respect to the size of the
correlation window. This accounts for the fact that
in larger correlation windows the user may allow a
greater distance from the correlation peak to the cen-
ter of the window.

d2 5
~x 2 xcenter!

2 1 ~y 2 ycenter!
2

0.5 Î2 W . (7)

Third is the shape of the local maximum obtained
by the calculation of the ratio of the FWHM in the x
and y directions. This quantity is compared with a
user-given value.

r 5 SDx
DyDYSDx0

Dy0
D . (8)

For different basic foam materials and different
strains there will be different values of the PCE9 and
shapes of the peaks. There are two ways to handle
this problem. One is to create different fuzzy pro-
cessors for different materials and strains. An eas-
ier way is to determine default values of the PCE9 and
the shape and then to scale the input values to the
range of the linguistic variables.
To determine these default values, two steps are

needed: First, the in-plane displacement field has to
be determined without fuzzy logic. An average
PCE9 of the global maxima of each correlation win-
dow has to be calculated. This value will contain the
values of several false alarms ~approximately 5–10%!
but is good enough to serve as a default value for the
first examination with the help of fuzzy logic because
the PCE9 values of false alarms usually differ from
the PCE9 of correlation peaks by only ;20%.
Second, the in-plane displacement field is determined
with only the PCE9 and the distance d as input vari-
ables. Most of the errors will now be removed. The
PCE9 and the shape of the peaks detected by fuzzy
logic now serve as default values for the determina-
tion of the in-plane displacement field with fuzzy logic
and all three input variables. These default values
can be used to test all specimens of the same mate-
rial.
Figure 13 shows the fuzzy sets of the linguistic

input variables and the output variable, which is
referred to as the peak quality. Figure 13 contains
six singletons ~fuzzy sets with a Dirac delta as a
membership function!, each corresponding to a dif-
ferent peak quality ~1 denotes bad, 6 denotes very
good!. Because of the high number of rules ~27
altogether! many different output fuzzy sets are
needed to distinguish between rules with close in-
put values.
Table 3 lists, in three sections, the linguistic rules

used in the fuzzy-logic processor. They contain the
values of the peak quality for different combinations
of the input values. After the first fuzzy processor
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was built and its decisions examined, only three mod-
ifications had to be applied to the processor to achieve
overall satisfactory results.
The fuzzy-logic system calculates a peak-quality

value for all local maxima inside a correlation win-
dow. The local maximum with the highest peak
quality is identified as the correlation peak.
Figure 14 shows the calculation of the displace-

ment field shown in Fig. 11, with the help of fuzzy
logic. The default values are PCE9 5 3.99 and r0 5
0.563. Figure 15 shows how the number of errors
increases with compression applied to the specimens
made of poly~ethylene!. With the help of fuzzy logic
the number of remaining errors is substantially di-
minished when evaluating compression tests with a
strain of greater than 20%.

Fig. 13. Definition of the fuzzy sets for application to foam-based
materials.

Table 3. Rules of the Fuzzy-Logic System for Application on
Foam-Based Materials for d 5 OK, d 5 Much, and d 5 Too Much

PCE9

Shape Ratio

Too Small OK Too Big

d 5 OK
Small 0 2 0
Medium 1 4 1
OK 3 6 3

d 5 Much
Small 0 1 0
Medium 0 2 0
OK 2 4 2

d 5 Too much
Small 0 0 0
Medium 0 1 0
OK 1 2 1



5. Summary

We have shown that the use of fuzzy logic for post-
processing the output of a correlation-based evalua-
tion method is a valuable tool for selecting detection
peaks. Our procedures have been tested for two
cases. The first case was analyzed by computer sim-
ulation for input images that may be defocused,
tilted, or corrupted by Gaussian noise and by the use

Fig. 14. Calculated displacement field after the application of the
fuzzy-logic controller.

Fig. 15. Plot of the number of errors in the calculated displace-
ment field versus the compression ratio for several calculation
methods.
1

of matched and SDF filters. In the second, and prac-
tical, case the analysis by digital speckle correlation
of the deformations of foam materials under strain
was studied. In all situations the fuzzy-logic
method shows good behavior even when the inputs
are not normalized in energy.
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