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Stochastic processes defined by a general Langevin equation of motion where the noise is the non­
Gaussian dichotomous Markov noise are studied. A non-Fokker-Planck master differential 
equation is deduced for the probability density of these processes. Two different models are 
exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is 
observed for a critical value of its correlation time. Critical slowing down does not appear in this 
point but in another one. 

PACS numbers: 05.40. + j, 02.50. + s, 02.30.Jr 

1. INTRODUCTION 

Stochastic differential equations have an important and 
successful role in the theory of nonequilibrium phenomena. 
Most of them them are Langevin type, which are first-order 
differential equations with stochastic terms. In some cases 
the stochastic forces enter additively and often it is assumed 
that they represent internal fluctuations. In other cases the 
noise enters externally by means of a parameter of the pheno­
menological equation of motion which fluctuates. This kind 
of external noise has received a great deal of attention be­
cause it can represent a fluctuating external environment or 
a controlled noise generated in the laboratory by specific 
devices and introduced in the system in order to study its 
influence. This external noise is independent of the system 
and it is characterized by its intensity and correlation time. 
Examples of the influence of external noise can be found in a 
variety of systems, such as electric circuits I or liquid crys­
tals,2 among others. 

The mathematical study of these equations begins with 
the modeling of the noise. The simplest assumption is to take 
a Gaussian white noise which has zero correlation time. In 
this case, the process is Markovian and a Fokker-Planck 
equation for the probability density always exists. 3 Never­
theless, this noise cannot always substitute for a real noise, 
which has a finite (perhaps small, but not zero) correlation 
time. In this case, the hypothesis of white noise, although 
suitable for a general description of the process, does not 
explore all the possibilities of a real noise. If we want to take 
into account the color of the noise, we should choose a math­
ematically tractable colored noise. Although many possible 
noises exist4 only two of them have been receiving enough 
consideration in the literature. 

The first one is the Ornstein-Uhlenbeck process, which 
is Gaussian and obeys the same equation of motion as the 
velocity of a free Brownian particle. Stochastic processes 
driven by this noise have been studied in Refs. 5-8 and inter­
esting features have been found which do not appear in the 
white noise assumption. 

The second noise is the two-step Markov process or 
dichotomous noise. 9

.
10 This noise is not Gaussian but Mar­

kovian and its influence in the stochastic process has been 
studied in Refs. 10--12. Interesting results, some of them 

quite similar to the former case, have been obtained, but only 
for the stationary state. A few dynamical properties are 
known in this case. 12 This paper will be mainly devoted to 
the study of the dynamics of two stochastic processes which 
allow an exact analysis. These are linear models except for a 
change of variables, but they are not trivial. Moreover they 
present mainly the second example-characteristics belong­
ing to the nonlinear cases, such as the possibility of having a 
nonequilibrium bimodal distribution. 

The study is carried out by means of the evaluation of 
the first two moments of the stochastic variable and the solu­
tion of the differential equation that obeys the probability 
density. 

Section 2 is devoted to the problem of finding the differ­
ential equation satisfied by the probability of the stochastic 
process. A short summary of the mathematical tools is pre­
sented and a differential equation of the non-Fokker-Planck 
type is obtained for the probability density. This new result is 
particularized to exact cases, whose probability density 
obeys a second-order partial differential equation of the hy­
perbolic type. 

In Sec. 3 we study two exact examples: the first one is a 
pure diffusive model and the second one is a linear case with 
linear drift and additive noise. This last case is the most rel­
evant and it will show interesting nonequilibrium character­
istics. In Sec. 4 we summarize the main results of this paper. 

2. GENERAL THEORY 

A. Differential equation for P(q,t) 

Here we summarize some known results. One can as­
sume quite generally 10. 1 1 the following equation of motion 
for the variable q: 

if =!(q) +g(q)S(t), (2.1) 

where S (t ) is a stochastic force that we identify with the di­
chotomous noise or two-step Markov process. 13 This noise 
will only have two possible values ±..1 with equal probabil­
ity and jumps with probability 0- dt fordt. 9 1t has zero mean 
and autocorrelation 

(s(t)s(t') =..1 2 exp( -A It- t'll· (2.2) 

By means of the "formula of differentiation" of Shapiro 
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and Loginov,14 

~ (s (t)cP [s (t )]) 
at 

= -A (s(t)cP [s(t)]) + (s(t) :t cP [SIt)]), (2.3) 

wherecP [S (t )]isafunctionalofs (I )andtheaverageisoverthe 
distribution of S (I ), we can obtain a closed set of equations for 
the probability density P (q,1 ).11.14 The method we are follow­
ingll is an alternative to that employed by Kitahara el al. \0 

We begin with the stochastic Liouville equation l5 for the 
density p(q,t ) of a set of realizations of (2.1), 

p(q,l) = - :q (f(q) + g(q)S (t ))P(q,t ). (2.4) 

Taking the average over S (t) and using Van Kampen's 
lemma9 

P(q,t) = (P(q,1 ), 

we arrive at 

. a a 
P(q,t) = - -f(q)P(q,t) - -g(q)PI(q,t), 

aq aq 

where 

PI(q,l) = <S (t )p(q,t ). 

(2.5) 

(2.6) 

(2.7) 

Since p(q,t ) is a functional of S (t ), we will use the formula of 
differentiation (2.3) to obtain an equation of motion for 
PI(q,t): 

PI(q,t) = - APtIq,l) - ~ f(q)Pl(q,t) 
aq 

- ~ g(q).1 Z P (q,t ), (2.8) 
aq 

where we have used the fact that the square of the dichoto­
mous noise is a constant S Z(t ) = .1 z. 

The set of equations (2.6) and (2.8) form a closed system 
of linear partial differential equations whose solution will 
give us P (q,t ), provided that we know the initial condition 
P(q,O). We also need another initial condition because we 
have two linear equations. The second one is obtained as­
suming statistical independence between S (t ) and p(q,t ) in 
t = 0 14: 

<s (t )P(q,t) I t ~ 0 = PI(q,O) = 0, 

which implies in (2.6) 

ap (q,t) _ ~ f(q)P (q,t ) I = 0, 
at aq t~O 

which together with 

P(q,t)lt~O =o(q) 

will be the initial conditions of the system (2.6), (2.8). 

(2.9) 

(2.10) 

(2.11) 

A closed equation for P (q,t ) cannot easily be obtained. 
Nevertheless, a formal expression can be given II in the fol­
lowing way. 

Let us formally integrate the linear equation (2.8): 

PI(q,t) = - A zi'exp { - (A + ~ f(q)}t - t')} 

:q g(q)P (q,t ')== -A ZB(q,t), (2.12) 
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where we have used (2.9). Substituting it in (2.6) we arrive at a 
formal differential equation for P (q,t ) II: 

P(q,t) = - ~f(q)P(q,t) +.12~g(q)B(q,t). (2.13) 
aq aq 

The main object of this paper will be the exact solution, for 
two particular cases, of this integrodifferential equation. 

Although the time-dependent solution is not always 
known, the stationary solution is well known and it reads, in 
the case that it exists, 10.1 I 

If in (2.13) we take 

exp( -A It-t'IJ~(2/A)8(t-t'), (2.15) 

we arrive at the white noise limit for S (t ). This limit holds for 
A--+oo, .1--+00, and.1 2; A finite and it give us an insight about 
a possible perturbation procedure, taking A as a large param­
eter. 

B. Expansion in 1/ A. 

Let us review a perturbative approach to (2.13) consid­
ering A large. The limit A--+ 00 is a very crude approximation 
because we lose all the specific characteristics of the dichoto­
mous noise. Let us see how to retain the properties of S (t ) by 
means of an expansion in 1/ A. 

We take a time derivative in (2.13) 

P (q,t ) = - ~ f(q)P (q,t ) +.1 Z ~ g(q) ~ g(q)P (q,t ) 
aq aq aq 

- A Z ~ g(q)A (1 + J.. ~ f(q))B (q,t ). (2.16) 
aq A aq 

If we use now the approximation (2.15) in B (q,t ), we obtain 

P (q,t ) = - ~ f(q)P (q,t ) + .1 2 ~ g(q) ~ g(q)P (q,t ) 
aq aq aq 

- .1 2 ~ g(q)(l + J.. ~ J(q)) ~ g(q)P (q,t), 
aq Aaq aq 

(2.17) 

which is valid to first order in 1/ A. 
So we have reduced (2.13) to a second-order partial dif­

ferential equation. The procedure is extended to the desired 
order in 1/A, deriving (2.16) succesively. 

At this moment, a question arises: does a process exist 
which obeys an equation exactly similar to (2.17)? The an­
swer is affirmative and we are going to study it in the next 
subsection. 

c. Exact cases 

In (2.16) we can use (2.13) to substitute for the term 
+.1 2A (ag(q)/aq)B (q,t), 

2 a . a 
.1 -a g(q)B (q,t) = P (q,t) + -J(q)P (q,t). (2.18) 

q aq 

The other term -.1 Z(ag(q)/aq)(aJ(q)/aq)B (q,t) needs 
a careful analysis. By means of the commutation of the q­
derivatives, this term is expressed as (Note: from now on an 
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upper point means a partial time-derivative and a comma 
means a q-derivative): 

- A 2 ~ g(q) ~ f(q)B (q,t) 
aq aq 

- A 2 !.- (g(qlf'(q) - g'(qlf(q))B (q,t ) 
at 

- A 2 ~ f(q) ~ g(q)B (q,t), 
aq aq 

(2.19) 

where the last term can be written in terms of P (q,t ) by means 
of(2.13) so that 

- A 2 ~ f(g) ~ g(q)B (q,t) 
aq aq 

= - ~ f(q)P (q,t) - ~ f(q) ~ f(g)P (q,t). (2.20) 
aq aq aq 

Joining all these partial results, the ger.eral equation (2.16) 
can be written in the following form: 

P(q,t) = - AP(q,t) - 2 ~ f(q)P(q,t) 
aq 

- A ~ f(q)P(q,t) 
aq 

+ A 2 ~ g(q) ~ g(q)P (q,t) 
aq aq 

- ~ f(q) ~ f(q)P(q,t) 
aq aq 

- ~ (g(qlf'(q) - g'(qlf(q))A 2B (q,t). (2.21) 
aq 

As far as solvability is concerned, this formal equation is 
equivalent to (2.16). In order to advance in this way, we need 
to eliminate B (q,t ) in the last term in (2.21). This can be done 
in the case that 

g(qlf'(q) - g'(qlf(q) = g2(q)(f(q)/g(q))' = Cg(q), (2.22) 

where Cis a constant. If this condition holds, the last term in 
(2.21) is - a (Cg(q)B (q,t))/aq and by means of(2.13), it is 
transformed into 

- C ~ g(q)A 2B (q,t) 
aq 

a 
= - CP (q,t ) - C -f(q)P (q,t ), 

aq 

and hence (2.21): 

.. . a· 
P(q,t) = - (A + C)P(q,t) - 2 - (q)P(q,t) 

aq 

- (A + C) ~ f(q)P(q,t) 
aq 

+ A 2 ~ g(q) ~ g(q)P (q,t) 
aq aq 

a a - aq f(q) aq f(q)P (q,t ), 

(2.23) 

(2.24) 

which is a second-order partial differential equation for the 
probability density of the process (2.1). This equation is one 
of the main results of this paper and it has a time-dependent 
exact solution with the initial conditions (2.10) and (2.11). 
For this reason, those processes (2.1) obeying (2.22) will be 
called exactly solvable models and not surprisingly the con-
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dition (2.22) is the same one that was discussed by Hiinggi 16 
and San Miguel l7 in the context ofthe white noise hypothesis 
for the stochastic force 5 (t) in (2.1) and by Sancho and San 
Miguel5 in the case of a Gaussian but a nonwhite assumption 
for 5(1 l· 

In all these cases, the equation for the probability den­
sity was of first order in time (Fokker-Planck equation) with 
a linear drift and a constant diffusion whose solution is well 
known. In our case, there are higher time derivatives and the 
exact solution is, as of now, unknown. The exact solution of 
(2.24) will be another important result of this paper. 

Before starting with the process of solving (2.24), we 
will write it in the standard form of second-order partial 
differential equations. This is done by commuting the q-de­
rivatives 

[
a a2 

at 2 + (p(q) - L1 2g(q)) aq2 

a2 a + 2f(q) - + (A + C + 2f'(q)) -
ataq at 

a + ((A + Clf(q) - 3L1 2g(q)g'(q) + 3f(qlf'(q)) aq 
+ ((f(qlf'(q)), - L1 2(g(q)g'(q))' 

+ (A + Clf'(q))k(q,t). (2.25) 

In order to classify this partial differential equation, we 
need to evaluate the discriminant, which is 

(2.26) 

because g(q) should always be positive. Equation(2.25) is 
classified as an hyperbolic second-order partial differential 
equation for whose solution we are going to follow the cur­
rent studies on this mathematical topic. 

3. EXAMPLES 

If our process (2.1) obeys the necessary and sufficient 
condition (2.22) to be exactly solvable, we define a new vari­
able Q (q(t )),5.16.17 

J
q dq 

Q(q)= -, 
g(q) 

(3.1) 

and we have 

Q =f(q)/g(q) + 5(l) = CQ +A + 5(t), (3.2) 

where we have used (2.22) in the integrated form and A is an 
irrelevant integration constant. We can assume A equal to 
zero. Our problem has been reduced to a linear one with 
additive noise. This is well known5.16.17 in the context ofsolu­
ble cases. 

Equation (3.2) with A = 0 presents two possible and dif­
ferent versions: C equal to zero or not. These two cases will 
be called the pure diffusive case and the linear case, respec­
tively. 

A. Pure diffusive case 

This case corresponds to the equation of motion (2.1) 
withf(q) = O. The representative model can be written, after 
performing the changes (3.1) and relabeling the variable as 

iI(t) = 5 (t). (3.3) 
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Some exact results can be obtained without solving the cor­
responding equation of motion for P (q,t). For example, the 
statistical averages are obtained as follows: The solution of 
(3.3) is 

q(t) = q(O) + LS(t')dt" (3.4) 

and hence the first two moments of the variable q are 

(q(t) = (q(O)IC = 0, (3.5a) 

(q2(t) - (q2(0)IC = i'S(S)dSi's(S')dS' 

= ~ 2 (t _ (1 _ ;-At)). (3.5b) 

They are expressed in terms of the initial averages and we 
have used the statistical properties of S (t ) in (2.2). These re­
sults coincide with the well-known ones for the position of a 
free Brownian particle. We can obtain more interesting in­
formation about the system obeying (3.3). The knowledge of 
the time-dependent probability density P (q,t ) shows interest­
ing behavior very different from that in the white noise limit. 

From the general expression (2.25), particularized to 
the model (3.3),f(q) = 0, g(q) = 1, we obtain the equation of 
motion for P (q,t ): 

a2 a2 a 
-P(q,t) _.el 2 -P(q,t) +A -P(q,t) = O. (3.6) 
at 2 aq2 at 

The initial conditions (2.10) and (2.11) become in this case 

P(q,t) I t~O = 8(q), 

ap(q,t) I = o. 
at t~O 

(3.7) 

(3.8) 

A similar equation to (3.6) with the initial conditions (3.7) 
and (3.8) appeared in the context of the generalized Smolu­
chowski diffusion equations 18. 19 and the present example 
was solved by Hemmer.20 Therefore, we will not reproduce 
the details. The probability density is 

P (q,t) = !e - At /2 [8(.elt - q) + 8(.elt + q)] 

+ ~ 1 (~(.el2t2 _ q2)1/2) 
2.el 0 4.el 

At 1 ( A (.el 2t 2 2)112) 
+ 2(.el 2t 2 _ q2) 1/2 1 2.el - q , 

(3.9) 

where 10'!1 are the Bessel functions of the imaginary argu­
ments of orders 0,1, respectively. 

From (3.9) one can see that P (q,t ) is almost a flat distri­
bution bounded by two delta functions moving to q = ± 00 

with a velocity ±.el, respectively. This shape is very differ­
ent from that corresponding to the white noise case,20 which 
presents a Gaussian distribution spreading out in time. 

B. Linear case 

In this case, Eq. (2.1) takes the general form (3.2), and 
after relabeling the variables, it is expressed as 

q = - yq + sit). (3.10) 

As in the former case, some interesting results can be ob­
tained using the formal solution of (3.10). This is 
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q(t) = q(O)e - yt + Le - y(t- t'IS(t ')dt', 

so the mean value is 

which goes to zero for t~oo. 

(3.11) 

(3.12) 

An interesting dynamical quantity is the correlation 
function 

(q(t )q(t 'I). (3.13) 

Using the solution (3.11), the statistical properties of S (t) in 
(2.2), and assuming statistical independence between the ini­
tial conditions and S (t), with q(O) = 0, the quantity (3.13) is 

(q(t )q(t ') = 2.cl 2 (_1 ___ 1_) e- 11t + t'l 
A +y y-A 2y 

.el 2 _ yt _ At' .el 2 _ yt' _ At 
,:2 2 e - ,:2 2 e 
r -A r -A 

+ ( .el 2 .el 2 ) _ 111 _ t'l 
(A + y)y - r _ A 2 e 

+ .el 2 _ A (t _ t'l r -A 2 e , (3.14) 

and in the stationary state (t, t '~oo) but t - t' finite, 

(q(t)q(t')" = A.el
2 

e- l1t - t'l 
y(r -A 2) 

.el 2 
+r 2 e - A1t

-t'l. 
-A 

(3.15) 

The equal-time correlation function in the stationary state is 

(q2)st =.el 2/y(A + y). (3.16) 

From the exact solution (3.15), we can obtain the linear re­
laxation time and see if critical slowing down exists at any 
point: 

T= ("" (q(t)q~t+t')st dt,=A+y. (3.17) 
)0 (q (t )st Ay 

We can see that only in the cases y~ or A~, the linear 
relaxation time diverges. In both cases, the formal stationary 
probability density is not normalizable, as we will see. The 
first case (y~) is a trivial one because the dissipative drift 
disappears and the problem reduces to the case 3A. The sec­

ond case (A~) is new and more interesting because even 
with nonzero dissipative drift, the "color" A and not the 
intensity.el of the noise S (t ) precludes the existence of a sta­
tionary state. This corresponds to having a noise with infi­
nite correlation time, and hence in the opposite limit of white 
noise. 

The stationary distribution can be obtained from (2.14): 

Pst(q) = N(.el 2 - rq2)AI2Y- I, (3.18) 

defined between the boundaries q = ±.el /y. The normaliza­
tion constant is 

N= yr(! +A/2y) 
.el Aly- lr(~)r(A /2y) 

(3.19) 

One can see that the correlation function in the stationary 
state evaluated with (3.18) and (3.19) agrees with (3.16). 

The study of (3.18) manifests two different shapes for 
Pst (q), which we relate to a nonequilibrium phase transition. 
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The critical value of the parameters is IL = 2y. In the case 
IL > 2y, Pst (q) has a maximum in q = 0 and goes to zero in the 
boundaries. For IL < 2y, Pst (q) has a minimum in q = 0 and 
goes to infinity at the boundaries. This gives rise to a bimodal 
distribution when we change the "color" of the noiselL from 
IL > 2y to IL < 2y. Then we have found a non equilibrium 
phase transition induced only by the "color" of the noise. 
The transition takes place at the value IL = 2y. We have seen 
in (3.17) that no critical slowing down appears in this point 
but in IL-+o. This is a very interesting example of Suzuki's 
theory,S which states that in nonequilibrium phase transi­
tions, the phenomena of critical slowing down and the ap­
pearance of new maxima in Pst (q) are separate processes 
which can take place for different values of the parameters. 

We should mention that in the case IL---+ 00, we recover 
the white noise Pst (q) corresponding to this problem. Let us 
now return to the problem of finding the solution of P (q,t), 
which in this case is not known. As the details of the math­
ematical process are very cumbersome, we will state only the 
main steps and references used in the evaluation. 

In the model (3.10), wheref(q) = - yq, g(q) = 1, the 
equation of motion (2.25) for the probability density is 

[
aZ a2 a2 

-0 + (yq2 _Ll2) __ 2yq-
at- aq2 ataq 

- (3y -IL) i!...- - y(1L - 4y)q 
at 

x~ - y(1L - 2Y)]P(q,t) = 0 
aq 

(3.20) 

with the corresponding initial conditions (2.10) and (2.11): 

P(q,t)lt~O =8(q), 

( i!...- - yq~ - Y)P(q,t) I = o. 
at aq t~O 

(3.21) 

(3.22) 

The standard approach in the solution of (3.20)21 begins 

I 

with its reduction to the canonical form. This is done by 
means of a change of variables 

(3.23) 

(3.24) 

where the new variables S, rt are called the characteristics. 
The partial differential equation for P(s,rt) takes the hyper­
bolic form 

(3.25) 

where 

a = 1 -IL 12y. (3.26) 

The equation (3.25) has been studied by Koshlyakov et a/. 21 

in several cases. We follow their approach. The next step is to 
transform (3.25) into the Euler-Darbouse equation by the 
change 

(3.27) 

Q (s,rt) obeys the partial differential equation 

[
a

2 
a a a a] --+------- Q(s,rt)=O (3.28) 

as art rt - s as rt - s art 
with 

f3 = 2a. (3.29) 

The solution of the Cauchy problem associated with 
(3.28) with the corresponding boundary conditions given by 
(3.21) and (3.22), following the Rieman method, is indicated 
in Ref. 21. This gives, after transforming variables, 

P(q,t) = P1(q,t) + P2(q,t) + P3(q,t), 

where 

(3.30) 

PM,t) = !ye1u - ' )Yt{8(Ll (1- e- yt ) + yq) + 8(yq -Ll (q _ e -- Yl)}, 

P2(q,t) = y(1 - 2a)(2Ll )2a-I(Ll 2(1 + e- Y? - yq2) --UF(a,a,l;a), 

(3.31) 

(3.32) 

P3(q,t) = - ~y(2L1 )2u+ le-Yt(yq -Ll (1 + e- Yt ))-I(Ll 2(1 + e -Yt)2 _ yq2)-UF(a,a,l;a) 

+ !y(2L1 )2u + Ie - Yt(Ll 2(1 + e - Yt)2 _ yq2) - aF'(a,a,l;a)(ygZ _ Ll 2(1 + e - yt)2)-1 

X {(yq + Ll (1 - e - yt ))(yq + Ll (1 + e - yt ))-1 + (yq - Ll (1 - e - yt ))(yq - Ll (1 + e yt))- I}, 

a = (Ll 2(1 - e - yt)2 _ yq2)(Ll 2(1 + e - yt)2 _ yq2)- " 

(3.33) 

(3.34) 

(3.35) Iql«Ll Iy)(l ± e- yt). 

F(a,a,l;a) andF'(a,a,l;a) are the hypergeometric function 
and its derivative with respect to a. 

P1(q,t) gives thebehaviorofP(q,t lin the initial regime as 
one can see taking the limit t-+O. P2(q,t) dominates in the 
limit t---+ 00, giving the stationary solution Pst (q), which coin­
cides with (3.18) and (3.19). P3(q,t) refers to the intermediate 
regime. 

Although the solution(3.30)-(3.35) has its own impor­
tance because of its existence, only a few results can be ob­
tained from it because of its extraordinary complexity. This 
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shows that the non-Gaussianity of the process (3.10) mani­
fests itself by the complexity of the solution, even in the case 
that we have a linear problem. As in the former case, we have 
that P (q,t ) is bounded by two delta functions moving to the 
stationary boundaries ± Ll I y, and following a deterministic 
equation given by 

ql:- = -yq± ±Ll or q± =f(q±)±g(q±)Ll, 

(3.36) 
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where q ± is the peak position of the delta functions. This is 
easily understood if we think that the stochastic dichoto­
mous process has only two possible values ±..:1. This is a 
characteristic of this kind of stochastic process modeled by 
this special noise, which has also been found in nonlinear 
equations by means of numerical simulation, and whose re­
sults will be presented elsewhere. 

4. CONCLUSIONS 

We have explored the possibility of obtaining dynami­
cal properties for a Langevin-like equation of motion with 
dichotomous Markov noise. We have presented a general 
method to obtain the differential equation obeyed by the 
probability density of the process. This differential equation 
involves higher time derivatives and hence it is not of the 
Fokker-Planck type. The main point in this deduction is to 
consider the correlation time of the noise as an expansion 
parameter. In two particular cases, we have been able to 
write an exact differential equation which is a second-order 
partial differential equation of the hyperbolic type. In these 
two cases, we have found the exact solution of P (q ,t). In the 
second case, which has a nontrivial stationary state, we have 
studied the possibility of the appearance of critical slowing 
down by means of the explicit evaluation of the correlation 
time. Although the stationary analysis gives the existence of 
a phase transition for some value of the noise parameters, no 
critical slowing down appears in this point but in another 
one. This is an example of Suzuki's criteria of the appearance 
of slowing down in nonequilibrium stochastic processes. 
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