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A new spinning axis representation is introduced. It allows us to calculate the evolution operator of a 
system with slowly varying time-dependent Hamiltonian with the desired degree of approximation in 
the parameter used for describing its dynamical evolution. The procedure is compared with a 
previously existing one and applied to a simple example. 

1. INTRODUCTION 

The application of perturbative methods to systems 
described by slowly varying time-dependent Hamilton­
ians allows one to obtain asymptotic rather than con­
vergent expansions for the solution of the Schrodinger 
equation. This is usually done making use of the "spin­
ning axis representation" (SAR) which is defined by the 
fact that, in it, the Hamiltonian eigenvectors are inde­
pendent of time. The application of the SAR to the 
Schrooinger equation satisfied by the evolution operator 
leads to an equation which makes easy the use of time­
dependent perturbation theory. In this way the ordinary 
adiabatic theorem is obtained, which can be established 
in the following form: "If the state of a system is repre­
sented at t = to by the ket I Ej(tO) which is a solution of 
the eigenvalue equation H(t) I Ej(t) = E/t) I Ej(t) for t = to, 

at t = t1 the state of the system is represented by the 
ket I E/t1) which is solution of the same equation for 
t = t1• " This result is more accurate the stronger is the 
inequality 

Imax(aMmin(w)12«1, (1.1) 

where max(a) is the maximum value of the "angular 
velocitY" of the eigenaxes of the Hamiltonian, and 
min(w) is the minimum value of the Bohr frequency for 
transitions between eigenstates. 1 

In the usual treatment of the adiabatic theorem it is 
supposed that the eigenvalues of the Hamiltonian re­
main separated during the transition period T = t1 - to. 

However, the adiabatic theorem remains valid if this 
assumption is violated2; in the same way, the hypothesis 
of discrete spectrum is not necessary. 3 These restric­
tions are introduced for the sake of simplicity, and we 
shall maintain them here. 

The ordinary adiabatic theorem, valid in the first ap­
proximation of order liT, may be generalized to any 
order without requiring special properties for the 
Hamiltonian. To this aim, instead of applying perturba­
tion theory to the Schrodinger equation in the SAR as is 
done in the usual adiabatic theorem, a new change of 
representation is made4 which fixes the eigenstates of 
the operator which plays the role of the Hamiltonian in 
the SAR of the Schrodinger equation. This transforma­
tion defines a new SAR, and the procedure can be re­
peated to get the desired order of approximation. In 
this way, to obtain the evolution operator U of a system 
up to terms of order (liT)", n succesive transforma­
tions (n SAR) are required. This makes the method 

rather cumbersome in practice, since to obtain the form 
of the nth transformation it is necessary to know the ex­
plicit form of the previous (n - 1) SAR. 

In this paper we propose a method which allows one to 
obtain the evolution operator U to the desired degree of 
approximation by means of only one change of represen­
tation which defines a generalized SAR (GSAR). The 
action of the operator defining the GSAR is obviously 
equivalent to the combined action of the n operators RI 

defining the succesive SAR of Ref. 4. 

In order to show this, we describe briefly in Sec. 2 
the ordinary SAR and introduce in Sec. 3 the GSAR. 
Finally, in Sec. 4 we consider a simple example which 
illustrates the method. 

2. THE ORDINARY SPINNING AXIS 
REPRESENTATION 

Let us consider a quantum system whose dynamical 
evolution is determined by its Hamiltonian H(t). We 
shall assume a good behavior for it and its derivatives 
in the interval to "" t "" t1 in which we consider the varia­
tion of H(t). We shall measure the time by means of the 
variable r=t- tolT, where T=t1 - to. We shall suppose 
T large (adiabatic evolution) in the sense that the 
inequality (1. 1) holds. 

Let U( r) be the evolution operator of the system de­
scribed by H(r). U(r) is then the solution of 

in ddr U( r) = TH( r)U( r) (2.1) 

with the initial condition 

U(O) =1. (2.2) 

After applying the unitary transformation A (r), (2. 1) 
takes the form 

in~ U<A>( r) = T[H(A)( r) - (l/T)K(A)( r) ]U(A)( r) (2.3) 
dr 

where U(A)(r)=At(r)U(r) is the new evolution operator, 
H(A)( r) =At (r)H( r)A( r) is the transformed Hamiltonian, 
and K(A)(r)=At(r)K(r)A(r), with K(r) being the genera­
tor of the transformation A( r), i. e., the solution of the 
differential equation 

iff ddr A(r) =K(r)A(r) (2.4) 

subjected to the initial condition K(O) = O. Note that in 
(2.3) the operator which plays the role of the Hamilton-
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ian of the new representation differs from the trans­
formed Hamiltonian in the small term - (l/T)K(A) ( ,). 

It is clear that the equation satisfied by the evolution 
operator is easily integrated if the projectors of the 
eigenvectors of the Hamiltonian do not depend on time. 
Thus, to calculate U in the adiabatic approximation, A 
(SAR) is defined in such a way that A I EJ(O» = I EJ( ,», 
j = 1,2,"', and then the transformed Hamiltonian 
H(A) = L:J EJ(,) I EJ(O»(EJ(O) I is treated by perturbation the­
ory. The procedure can be improved by finding a new 
SAR for the operator [H(A)(,) - (l/T)K(A)(,)] of (2.3). 
In this way one is naturally led to the method of Ref. 4 
in which, to get an approximation of nth order, n suc­
cesive SAR are needed. Instead of doing this, however, 
we look in the next section for a unique transformation 
which will allow us to calculate U with the same degree 
of approximation. 

3. THE NEW TRANSFORMATION 

Let us write (2.3) in the form 

in dd, U(S)(,) = TSt( ,)(H(,) - ~K( ,») S( ,)U(S)(,) 

'" TSt (,)H' ( ,)S( ,)U( S)(,) 

= TH'(S)(,)U(S)(,). (3.1) 

If it were possible to find a transformation S such that 
H'(S)(,) [not H(S)(,)] had time-independent eigenvectors, 
i. e., such that 

where 

H' (,) IEJ(,» =EJ(,) leJ(,», 

(3.1) could be exactly solved giving for U, 

U(,) = S(,) '0 exp[ - iTcpJ( ,)/n] I eJ(O»(EJ(O) I 
J 

with 

cP J(') = 10 T E J(' ') d, I. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

It is obvious that S, which defines the GSAR, cannot be 
found exactly: A simple inspection of (3.1)- (3.3) shows 
that, to find S(,), one needs to solve the eigenvalue 
problem for H' (,) and that, with this aim, it is neces­
sary to know the generator K of the transformation S 
which enters in the definition of H'(,). We show next, 
however, that it is possible to determine S (and thus U) 
with the desired degree of approximation taking into ac­
count that T is large in the already specified sense. 

A. First approximation 

Let IE?)(,», S(1)(,), K(1)(,), and E~1)(,) be the re­
sults of this approximation (the order corresponds to 
that in which the practical calculation is to be made). 
Since 

H' (,) =H(,) - (l/T)K(,) (3.6) 

in the first approximation, we find that I E}1> (,» are de­
fined through 

H(,) I E~1l( ,» =E~1>(,) IE}1>( ,», j = 1,2, ... , (3.7) 

and 
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(3.8) 

S(1)(,) clearly corresponds to the transformation A(,) 
mentioned in Sec. 2 and to R(ll(,) of Ref. 4. The gen­
erator K(1)(,) can also be calculated, and is given by 

(3.9) 

The choice in (3.9) implies that the arbitrariness of the 
phase of IE}1l(,» has been eliminated in such a way that 

(E}1l(,)I(:, IE?)(,») =0. (3. 10) 

Finally, 

cp}1l(,) = 10 T d,' E}il(,/), (3.11) 

where e?)(,) is the perturbation value for eJ('), which, 
since 

(E}1l(,) I (l/T)K(1l(,) I e}1)( ,» = 0 (3.12) 

is precisely the eigenvalue of H(,) [(3.7)]. 

In this approximation, the evolution operator is 

U(il(,) = S(1)(,)6 exp[- iT cp}1l(,)/n] le}1l(o»(e}1l(o) I 
J (3.13) 

and, as one would expect, coincides with the result 
which is obtained in the ordinary adiabatic theorem, 1 

which corresponds to an approximation of order l/T. 

B. Second approximation 

We proceed now to calculate le}2)(,», S(2)(,), K(2)(,), 
and e}2)(,). Straightforward application of ordinary 
perturbation theory to (3.6) gives 

I 
(2)( » _I (1)()) '" (elo(,) 1- (l/T)K(o(,) lej1>(,» 

ej , - eJ ' +L.J (1)() (1)() 
i~J eJ ,-el ' 

x I e! 1> ( ,» , 
which, with (3.9), is 

le?)(,» = le~1>(,» - (i/T) 6 cli(') lel1l (,», 
J UJ 

where 

c!}>(,) = aW( ,)/wW( ,), 

(1)() ep)(,)-eJi)(,) 
wlJ ' If 

In this order, S(2)(,) is given by 

S(2)t(,) I e}2)(,» = le}2)(O» 

and K(2)(,) is 

K(2)(,) = my (dd1' I e?)( ,») (e}2)(,) I 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

'''K(1)(,) +!!. 6 6 {(~c(1>(,)\ le(1)(1'))(e(1l(1') I 
T J I~J d1' IJ ') I J 

- cW*(1')Cd, I e}i)(1'»)(el1l(,) I 

+ cli)( ')(dd, I e!1l( 1'») (e}i) (1') I} 

"'K(1l(1')+!!.~6 F U )(,). TT I~J IJ 
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Putting in (3.6) (1/T)K(2) instead of (l/T)K and applying 
perturbation theory, one finds that to order 1/ T2 the 
contributions to Ej2)(r) will come from the diagonal and 
nondiagonal terms of K(O( r) and from the diagonal ele­
ments of Fir(r). Of all these, only the nondiagonal ele­
ments of K ) contribute, giving the final result 

(2)( ) _ (1)() .!£" 1 QiJ(r) 12 (3.19) EJ r-Ej r+rrl)t,...J () 
1" .#J WJj r 

The expression for the evolution operator in this ap­
proximation is thus 

U(2)(r) =S(2)(r) 

x 6 exp [- iT r T (EjD( r') + .!!... ~ I aiJ(r') 1
2
)dr'] 

j Jo T2 '~J wji 

x IE?)(O»(Ej2)(O) I, (3020) 

where everything has been previously calculatedo 

C. nth approximation 

For nth order, 1 Ejn» is obtained from I Ejn-D) by 
taking (1/ T)K(n-D (r) as the perturbation and calculating 
to order l/Tn. Sen) is then determined by the relation 

sen) I Ejn) (0» = IEjn)(r» (3.21) 

and K(n)(r) given by 

K(n)( r) = iii L) (dd
r 

I fjn)( r») (fj")( r) I 0 

This allows one to calculate Ejn) through the perturbing 
term - (l/T)K(n)( r), and finally one would obtain 

U(n)( r) = s(n)(r) 6 exp[- iT r \(n)(r') dr'] 
J J o J 

X IEj")(O»(Ejn)(O) I, (3.22) 

which is the explicit expression for the evolution opera­
tor to order (l/T)"o 

4. AN EXAMPLE 

As an application of the described method we cal­
culate now, in second order, the evolution operator of a 
system conSisting of an atom in a magnetic field whose 
direction is reversed adiabatically. t 

The Hamiltonian is given by 

'" (212 0 1- 2P ) 
u b" b ' 

(4.4) 

and the C1 are the Pauli matrices. 

The starting point of our procedure is the eigenvalue 
problem for H( r) given by (4.3). The two solutions, 
labelled ±, are 

(4.5) 

I (1)(»_ 1 (l+U z )_ 1 (1-2P +b) 
f+ r - h(l+uz ) ux+iu~ - V2b(1-2p+b) 2,'2 

(4.6a) 

I (1) ) _ 1 (- U x + iU~) _ 1 ( - 212 ) 
E_ (r)-h(l+u z ) l+u z -v'2b(I-2p+b) 1-2p+b' 

(4.6b) 

NOW, S(D(r) is determined by (3.8), which in this case 
is 

and gives 

<1) 1 
S (r) = r.v'3;C::;b7.(I;"'_=;;=2p=+=b"') 

( 
3 + b - 2p 

X (l/v'2)(3-b+2p) 
- (1/12)(3 - b + 2p)\ 

3 +b- 2p J' 

(4.7) 

(4.8) 
The evolution operator is now determined by (3.13), a 
result which corresponds to the ordinary adiabatic the­
orem, valid in order liT. 

To obtain U in second order, we need an> and wW. 
From (3.16), (4.5), and (4.6) we get 

Q!:)=_2v'2[(d/:zr)p]=_a~~), a!!)=Q~:)=O, (4.9) 

(4.10) 

from which 

C(1)- -4v'2[(d/dr)p] =C_<1+)",C. 
+- - b3AIi (4.11) 

With (4.11), Eq. (3.15) gives 

(4.1) jE!2)( r» = V2b(1 ~ 2p + b) (~~ ::(;/~)~1(i~~~2~~) 
where the magnetic field H is always parallel to the z 
axis and changes adiabatically from H 0 to - H 0 according 
to the law 

H(t) =Ho(2r-l), (4.2) 

r being t - tol T, T large. 

Let us suppose that the system is initially in a state 
2p with Jz=~' There are two eigenvectors of H(t) cor­
responding to this value that will be linear combinations 
of the eigenstates (I L", Sz» I O,~) and 11, -~) of H(O). 

Taking the corresponding H(O) eigenvalue as the zero of 
energy, we get, in this basis, 

H( r) = iAli2{[ - 1 - 2p( r) ] + b(CTU)}, 

where 
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(4.3) 

'" (at (r») (4. 12a) 
a2( r) , 

I E(2)( » _ 1 (- 212 - (iIT)(1 - 2p + b)C) 
- r - v'2b(1 _ 2p + b) (1- 2p + b) - (iIT)2v'2c 

'" (b t (r»)o (4. 12b) 
b2( r) 

Finally, (3.17) defines S(2)(r), which in terms of the 
variables introduced in (4.12) is given by 

S(2)(r) = 1 
at (0)b2(0) - a2(0)b t (0) 

x (at (r)b2(0) - a2(0)b! (r) at (O)b! (r) - at (r)b t (0») 
a2(r)b2(0) - a2(0)b2(r) at (0)b2(r) - a2(r)b t (0) , 

(4. 13) 
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and the eigenvalues E!2)(T) are obtained from (3.19), 
(4.9), and (4.10) with the result 

(2)( ) = Ali 
2 
(-1- 2 b) !!.... 16[(d/dT)p] 

E± T 4 P ± ± T2 Alib3 • (4.14) 

Equations (4.13) and (4.14) determine completely the 
evolution operator U(2) by (3.20), 

U(2) (T) = S(2) (T) {exp[ - iTcp~2) (T)/Ii] I E~2) (0)<E~2 )(0) I 
+ exp[ - i T cp~2)( T)/Ii] I E~2)(0)<E~2) (0) I}' 

(4. 15) 

The procedure can be continued to higher orders with 
increasing computational difficulties. 

5. CONCLUSIONS 

As stated previously, the advantage of the spinning 
axis representation proposed here lies in the fact that it 
allows one to calculate the evolution operator in the ap­
proximation 1/ Tn performing only one transformation 
sIn) on the original system. In the second approximation 
only S(2) is necessary; it is simple to see that the com­
bined action of the R(2), R(O of Ref. 4 is equivalent to 
the action of S(2), etc. 
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It should be remarked that although in the previous 
example we have calculated the explicit form of S(1) for 
the sake of completeness, it is not necessary to know 
it to obtain S(2) and that, in general, sIn) can be obtained 
directly without going through the succesive changes 
of representation of Ref. 4. This is the advantage of 
the method, since to calculate SIn) it is only necessary 
to apply straightforward perturbation theory, the 
perturbation being "finer" at each succesive step. 

We finally mention that, taking into account that the 
role of the SAR is played in classical mechanics by a 
canonical transformation, the method of this paper could 
be extended to classical systems in a form similar to 
the one used in a previous work. 5 
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