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In this paper we give some ideas that can be useful to solve Schrodinger equations in the case when 
the Hamiltonian contains a large term. We obtain an expansion of the solution in reciprocal powers of the 
large coupling constant. The procedure followed consists in considering that the small part of the 
Hamiltonian engenders a motion adiabatic to the motion generated by the large part of the same. 

1. INTRODUCTION 

We define strong coupling, stating that the per­
turbation expansion is not valid. Then we pretend to 
obtain the solutions to the equations of motion in 
negative powers of the coupling constant g. Such an 
expansion has not been achieved so far and constitutes 
a crucial problem of elementary-particles dynamics. 
It is assumed nowadays that perturbation expansion 
is not valid; however, most of the calculation per­
formed at the present time to discover the symmetry of 
elementary particles assume the validity of pertur­
bation theory, an assumption that probably is not 
true. 

We cannot state without discrimination that in the 
case of strong coupling we have to expand the solu­
tions of the equation of motion into negative powers 
of the coupling constant. The coupling constant, being 
large, may be multiplied in the solution by factors that 
are small, which yields a small product. Thus, for 
strong coupling the general solution has to be ex­
panded into negative powers of the coupling constant 
when multiplied by small factors. Most likely there is 
an intermediate region in which the solution has to be 
evaluated by variational methods, as it corresponds 
to intermediate effective coupling. 

As is well knowil, it is hoped that, for the strong 
coupling approximation, the eigenstates of the large 
part of the Hamiltonian play the most important role. 
What we pretend in this paper is to find out, in powers 
of the reciprocal of the coupling constant, the mixing 
that the small part of the Hamiltonian produces 
among the eigenstates of the large part. The procedure 
followed consists in considering that the small part of 
the Hamiltonian engenders a motion adiabaticl to the 
motion generated by the large part of the same. This 
paper is no more than an introduction to the above­
mentioned problem. 

Indeed, we do not solve the problem completely, 
since we do not obtain completely a series of negative 
powers of the coupling constant; but this paper is a 
first approximation to the desired solution. 

The Schrodinger equation which is studied is 

iii ~ It) = (Ho + gHI ) It), ot 
where Ho and HI are time independent, while the 
coupling constant g is large. 

The solution to this equation is exactly 

It) = exp [~(Ho + gHI )] 10), 

but, written in this way, we do not see how the eigen­
states of HI are mixed amongst themselves. In what 
follows, we pretend to solve such a problem. 

2. STRONG COUPLING SOLUTIONS TO 
SCHRODINGER EQUATION 

Essentially, we want to solve the equation 

iii ~ U(t) = (Ho + gHI)U(t) ot 
for the unitary operator U(t), since the time evolution 
of the state vector It) at instant t is given by 

It) = U(t) 10) 

when we suppose that t = 0 is the time origin. Corre­
spondingly, we impose on U(t) the following boundary 
condition: 

U(O) = T. 

The total Hamiltonian H = Ho + gHI contains the 
dimensionless coupling constant g, which we suppose 
to be large. This implies that gHI gives a large contri­
bution to the time derivative of the evolution operator 
U(t), i.e., such an operator generates a fast time 
dependence of U(t). Perturbation expansion in powers 
of g is not valid, since g is large. 

We assume also, for the sake of concreteness, that 
Ho and HI do not have an explicit time dependence. 
The study of the cases when Ho and HI may have 
explicit time dependence yields much more complicated 
solutions and no better insight of the method used in 
this paper is gained. Besides, we should remember 
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that for most physical applications Ho and HI do not 
depend on time explicitly, though they may have a 
dynamical time dependence; this is the case of 
quantum field theory. 

Since the contribution of gHI to U(t) is very large, 
it is sensible to suppose that the eigenvectors of HI 
play an important role in the expansion of U(t) in 
powers of g-I. This evident fact means that we will 
have difficulties in interpreting the physical meaning 
of the solution found, since ,usually , free or undressed 
particles are the eigenvalues of the Hamiltonian Ho, 
which in this case has a much smaller contribution 
to the motion than gHI' 

Therefore, we use the eigenvectors of HI as the 
basis for the representation of the solution. So we 
assume that the following equation has been solved, 

HI IE) = E IE), 

and that the eigenvectors IE) form a complete set in 
the sense that the identity operator is given by 

I = IIE)(EI. 
E 

Let A be any time-dependent operator. We can 
split it into a diagonal part AD and a nondiagonal part 
AN, in relation to the basis of our representation, the 
eigenvectors IE). SO we have 

A = AD + AN, 

where 

AD == I IE) (EI A IE) (EI, 
E 

AN == I {IE) (EI A IE') (E'I (-CJE •E , + l)}. 
E.E' 

It is very easy to check that diagonal parts of any two 
operators commute, while the corresponding non­
diagonal parts generally do not commute; the product 
of any two diagonal parts of operators is a diagonal 
operator, while the product of two nondiagonal parts 
of operators may have diagonal and nondiagonal 
parts. We also have from the definitions above 

(EI AD IE) = (EI A IE). 

The diagonal part of the Hamiltonian H is 

HD = H{? + gHI , 

and its nondiagonal part is 

HN = Hi/. 

We solve the time equation for U(t) exactly for HD 
and treat HN as the perturbation that mixes the 
eigenvectors of HI, as we have already done in 
preceding papers.2- 4 Accordingly, we write 

U(t) = SD(t)S(t), (1) 

where SD(t) is a diagonal operator in our chosen 
representation, i.e., an exact solution of the following 
equation, 

iii ~ SD(t) = (H{? + gHI)SD(t) , 

and Set) is an operator that contains diagonal and 
nondiagonal parts in general and that we have to 
expand in negative powers of g. 

We have to impose the conditions S D(O) = I 
and S(O) = I. We have 

SD(t) = exp L~ (H{? + gHI )}, (2) 

the exact solution of the equation for SD(t). The 
equation for Set) is 

iii ~ S(t) = Hi![t]S(t), at 
when, as usually occurs, the effective-perturbation 
Hamiltonian is defined by 

Hi![t] = Si}(t)Hi!SD(t), 

which is well known since SD(t) has been obtained 
exactly and Hi! can be evaluated. Then 

Set) = I + ~ (tdt'Hi![t'] 
Iii Jo 

+ _1_ dt'HN[t'] dt"HN[t"] + .. . (3) it it' 
(ilil 0 0 0 0 , 

as is well known. We have to show that, indeed, the 
terms of the expansion (3) as a series in powers of H~ 
contain negative powers of g only, when g is large. 

We define 

where 

A(t) == ~ (tdt'Si}(t')A(t')SD(t') 
Iii Jo 

=1. (tdt'S-l(t')AN(t')S (t') 
iii Jo D D 

+ 1. (tdt'S-l(t')AD(t')S (t') 
iii Jo D D 

= sn\t) ~[AN]S D(t) + [AD]d' 

~[AN] == SD(t){~ L (tdt'(exp ~ [(EI H{? + gHIIE) 
Iii E.E' Jo Iii 

- (E'I H{? + gHl IE')]) 

and 

X IE) (EI AN(t') IE') (E'I}S:D1(t) (4) 
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Integrating (4) by parts, we obtain 

a[AN] = ! «(EI HfI + gHl IE) 
E.E' 

- (E'I HfI + gH1 IE,»-1 

x {SD(t) [ (exp i~ [(EI HfI + gHl IE) 

- (E'I HfI + gHl IE')]) 

x IE) (EI AN(t) IE') (E'I]>n\t) 

- SD(t)[fdt'(exp~ [(EI HfI + gH1IE) 

- (E'I HfI + gHl IE')]) 

x IE) (EI ~ AN(t') IE') (E'I]SI}(t)} 
dt' 

= O(l/g), (5) 

because we suppose, as usual, that ACt) and its deriva­
tives are bounded operators. 

Now we can evaluate every term in (3): 

I =.l [ldt'HN[t'] =.l (tdt'S-l(t')HNS (t') 
1 iii Jo 0 iii Jo DOD 

= S1)l(t) a[Ht']SD(t) = O(1/g), 

I =...L dt'HN[t'] dt"HN[t"] L
t Lt' 

2 (ili)2 0 0 0 0 

= ~ f dt'S1)l(t')Ht'a[Ht']SD(t') 

= S1)l(t) b[Ht',,[Ht']]SD(t) + ~ (tdt , [Ht'" [Ht'llD. 
Iii Jo 

The first term in the expression of 12 is of the order of 
g-2 and the second is of the order of g-3 because 

rjh c:: Ijg2 

by definition of the coupling constant g, where r is 
approximately the time during which the interaction 
takes place. Similarly, 

13 = ~ (tHt'[t']12(t') 
Iii Jo 

= sn1
(t) b [Ht'b [Ht'" [Ht'mS D(t) 

+ ~ [ldt' [Hfi" [Hfi" [Hfi)]]D. 
Iii Jo 

Therefore, the degree of approximation of every term 
can be simply obtained by adding to the number of () 
twice the number of integrals. The terms in 13 are 

Therefore, the unitary evolution operator in the 
second-order approximation, for instance, is 

Vet) = {I + b[H~] + 6[H~b[H~ll + O(1/g3)}SD(t). 

(6) 

Evidently, it is quite easy to continue with the 
calculation of further terms in the expansion of Set). 
We see that successive terms contain higher and higher 
negative powers of the dimensionless coupling con­
stant g. 

A very interesting case is that in which both Ho and 
HI can be simultaneously diagonalized. Then our 
procedure results are considerably simplified (the same 
occurs in the ordinary perturbation theory). The ex­
pression for Vet) can be reduced to 

Vet) = SD(t). 

Then,in this special case, it is not possible to obtain 
the evolution operator as an expansion in reciprocal 
powers of the large coupling constant using this pro­
cedure. But when this occurs, the problem is easier 
than usual and frequently can be solved, as in Example 
I in the next section. 

We should remark that it is essential for the validity 
of this expansion that the difference 

(E'I HfI + gHl IE') - (EI HfI + gHl IE) 

be large for any two values of E and E'. If it were 
small, the method would not be acceptable, since the 
denominators in brA] would not be large. 

The time dependence of Vet) is very fast, since the 
exponent of SD(t) contains a constant without dimen­
sions which is large. But Set) will not necessarily vary 
rapidly with time. We have here two time scales: the 
fast one generated by HD and the slow one generated 
by HN. We separate the two time dependences, fast 
and slow, to solve the problem considering the slow 
time dependence as producing a small perturbation 
compared to the fast time variation. Both motions 
are adiabatic to each other. The method is similar to 
those used by us in preceding papers to treat adiabatic 
motions. 

3. EXAMPLES 

A. Example I 

Consider two identical linear oscillators with spring 
constant k and an interaction potential given by 
gX1X2, where Xl and X 2 are the oscillator variables, 
and g is large. The total Hamiltonian is 

Je = Jeo + gJe1 , 

where 

li
2 

( a2 
(

2
) k Jeo = - -2 ;--2 +;2 + -2 (x~ + x:) 

m UX1 UX 2 
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and 

Jel = X I X 2 • 

The energy levels of Jeo are thus given by 

Eo = (nl + !)liw + (n2 + t)liw, 
where 

w2 = kIm. 

As we really have a two-dimensional problem, it is 
advantageous to use a Jf ® Jf representation, Jf 
being the occupation number of each oscillator. Then 
the unperturbated eigenfunctions are 

Inln2) = n1 11.0) + n2 10.1). 

The Hamiltonian matrix of the unperturbed motion 
is 

Jeo = tliw (~ ~) 
and the Hamiltonian matrix ofthe perturbation, taken 
witl~ respect to the unperturbed states, is 

where 

a = (1.01 Jel 10.1) = g (01 Xl 11) (11 x 2 10) = Iij2mw, 

as may be deduced from the quantum-mechanical 
version of the virial theorem. 

In order to apply the approximation given by (6), 
it is necessary to make a transformation of state 
vector bases to achieve a new representation in which 
Jel is diagonal. This matrix transformation is 

Then 

and 

A __ 1_(1 
- i~2 1 

a[Ho] = SD(t)[fdtISDI(tl)H~SD(t')JSJi(t) = o. 

Formula (5) gives 

U(t) = SD(t) = exp [ - i t(Ho + gHI )} 

or, in the original representation, 

U(t) = exp [ - ~ t(Jeo + g~) 1 
In this case we have not achieved an expansion in 
powers of g-l. But, owing to the simultaneous 

diagonalization of Jeo and Jel , the problem can be 
easily solved. Defining new variables u and v by 

Xl = (u + v)/2, X2 = (u - v)/2, 

we express the Hamiltonian as 

H = - !t..(~ +~) + t(k + g)u2 + t(k _ g)v2
• 

2m au2 av2 

The exact energy levels are thus given by 

E = niliw i + n2liw2 + (lij2)(WI + w2), 

where nl and n2 are positive integers and 

wi = (k - g)jm, w~ = (k + g)jm, 

and the eigenfunctions are 

In1n2 ) = Fn1(u)Fn .(v), 

where the F's are simple harmonic oscillator wave­
functions. 

Actually, this problem has nothing to do with the 
procedure that we introduced in Sec. 2. It is easy 
enough to be solved with a simple change of the 
variables. 

We have included it for two reasons: First, it 
serves to introduce the notation that we are going to 
employ with some further complications in the next 
example, which is the one that demonstrates the 
validity of our method. Secondly, it represents the 
special case in which Jeo and Jel can be diagonalized 
simultaneously. In this case, our procedure is not 
available, but then we have shown that the problem is 
easy to solve, as we anticipated in Sec. 2. 

B. Example II 

In the foregoing example, it has not been possible to 
check the validity of the approximation suggested by 
formula (6). In order to verify it, we consider two 
different oscillators strongly coupled. In this case, 

where 

a = (1.01 JeI IO.1) = 1i(2m)-I(wI W 2)-!. 

The diagonalization of Jel as in the preceding 
example can be done by transforming both Hamil­
tonians with the matrix 

A = _1_(1 1) 
i~2 1 -1' 
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The new Hamiltonians are 

Ho = A-1JeoA = !1i(Wl + w2 w2 - WI), 
W2 - WI WI + W2 

HI = A-1Je1A = (~ ~a) = 1i(2m)-1(WIW2)-t(~ _~), 

H = ~(-l(Wl + ( 2) + g(m)-1(W1W2r l ~(W2 - WI) ). 
2 -l(W2 - WI) -l(Wl + (2) - g(m)-1(w1W2)-t 

The first-order approximation of formula (6) is given by 

U(t) = (1 + o[H~DSD(t), 
where 

and 

Hf=!Ii(Wl+W2 0). 
o WI + W2 
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The validity of the method can be checked by evaluating H~ and verifying that it is of the order of g-l. 
Now we may easily calculate 

( 
0 exp [-gt(im

o
)-1(W1W 2)-t]). SL}(t)H~SD(t) = !1i(W2 - WI) . -1 -t 

exp [gt(zm) (W1W2) ] 
Integration yields 

o[H~] = SD(t)[fdtISli(tl)H~SD(t')JSINt) 
= !1i(W2 _ WI) im~( 0 1 - exp [gt(i

o
m)-1(W1W2)-t]) , 

g 1 - exp [-gt(imr1(wlw2rl ] 
in accordance with (5). 

The above expression is of the order of Ilg because W2 =F: WI' Thus, 

U(t) = {(I 0) + !1i(W2 _ WI) im.,jo;;;J;( 0 1 1 - exp [gt(i
o
m)-1(W1(1)2)-l])}Sn. 

o 1 g 1 - exp [-gt(im)-1«(I)I(l)2)-~] 

(7) 

Expression (7) allows us to solve this problem in the first order and prove our assertion about the non­
diagonal character of o[H~]. 

4. CONCLUSION 

We have found how the eigenvalues of HI mix. We have found an expression of Set) that, expanded in 
powers of g-l, is the term that indicates how the eigenvalues of HI mix. 

The process developed in this paper will be applied in a future paper to evaluate the mass renormalization 
of a nucleon coupled to a cloud of mesons when the coupling constant is large. 
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