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We study nonstationary non-Markovian processes defined by Langevin-type stochastic 
differential equations with an Ornstein-Uhlenbeck driving force. We concentrate on the long 
time limit of the dynamical evolution. We derive an approximate equation for the correlation 
function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. 
Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the 
correlation function in cases in which it becomes independent of these parameters in the 
Markovian limit. Several examples are discussed in which the relaxation time increases with 
respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, 
the non-Markovicity of the process decreases the domain of stability of the system, and it can 
change an infradamped evolution into an overdamped one. 

PACS numbers: 05.40. + j, 02.50.Ey 

1. INTRODUCTION 
In this paper we study non-Markovian processes (NM) 

defined by Langevin-type stochastic differential equations. 
Several authors 1-8.37 have discussed the equation satisfied by 
the probability density of these processes. The knowledge of 
this quantity is not enough to decide about the Markovicity 
or non-Markovicity of a process. We focus our attention in 
quantities like the correlation functions and relaxation 
times, which give a characterization of the peculiarities of 
non-Markovian dynamics. These quantities cannot be ob
tained from the equation for the probability density. We also 
study non-Markovian effects in the time-dependent mo
ments and in the stability properties of the process. We con
sider Langevin-type equations without memory kernels and 
driven by an Ornstein-Uhlenbeck process. The processes so
lution of this type of equation is nonstationary besides being 
non-Markovian (NMNS). In the white noise limit of the Orn
stein-Uhlenbeck noise, the process becomes simultaneously 
Markovian and stationary. Nonstationarity is an additional 
complication which is not present in NM processes de
scribed by other equations of the Langevin type.3 This paper 
aims to study the dynamical characterization of those 
NMNS processes. 

The physical motivation of this work is that the type of 
equation mentioned above is the one used in the description 
of systems under the influence of external or parametric 
noise. This description is usually given in terms of pheno
menological equations,9 in which a parameter is substituted 
by a random process. This random processes is often mo
deled by an Ornstein-Uhlenbeck process or in a particular 
limit by a Gaussian white noise. 10,11 Such systems have been 
studied experimentally,1O and, in particular, dynamical 
quantities like relaxation times have been measured. 12 Our 
results in this paper describe the dynamical response to an 
external source of noise coupled to the system. They show 
the main differences in the dynamical behavior of the system 
with respect to the Markovian limit in which the Ornstein
Uhlenbeck process is replaced by a Gaussian white noise. 
The dependence of the stationary distribution on the param
eters of an Ornstein-Uhlenbeck noise has been determined 

experimentally. 13 In the same way it is possible to measure 
the dependence of a relaxation time on these parameters. 

A relevant aspect of this paper is that it gives a practical 
method that allows an explicit calculation of the dependence 
of the correlation function and the relaxation time on the 
parameters of the Ornstein-Uhlenbeck noise. This method is 
based on ideas similar to the ones used to calculate the prob
ability distribution of these processes5,I4, 15: It is based on an 
approximate calculation, by functional methods, of the re
sponse of the system to the stochastic driving force. This 
response function plays a central role in our development. 
We note that with this method we are able to deal with non
linear processes, while the practical usefulness of a direct 
application of more standard approaches based on cumulant 
expansions seems to be restricted to linear processes. 

A central result of this paper is the derivation of an 
approximate equation for the correlation function of a non
linear NMNS process. This equation shows that the dynam
ics of the process depends on the noise parameters in situa
tions in which it is independent of these parameters in the 
Markovian limit. This is, for example, the case for a process 
described by a single variable with "additive noise.6

" In this 
case, the Markovian limit of the equation for the correlation 
function is noise-independent. This also happens for a Brow
nian harmonic oscillator with stochastic frequency. Another 
interesting feature of this equation is the existence of a term 
which cannot be obtained from the equation for the prob
ability density of the process. This term becomes in some 
cases the dominant non-Markovian effect. We have found 
that the relaxation time is increased with respect to the Mar
kovian limit for the most general one-variable model with 
"additive" or "multiplicative noise6

" and for the Brownian 
harmonic oscillator with stochastic frequency. The origin of 
this common behavior is different in both cases. For the 
Brownian harmonic oscillator with stochastic frequency, we 
have also found important non-Markovian effects as the de
crease in the range of values of the intensity of frequency 
fluctuations for which the system is energetically stable and 
the possibility of a change of dynamic regime from an infra
damped to an overdamped mode. This possibility is due to an 
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effective reduction of the frequency of oscillation that also 
appears for a mechanic oscillator with stochastic frequency. 

The outline of the paper is as follows. In Sec. 2 we first 
discuss the peculiarities of the class of nonstationarity non
Markovian processes that we consider. This is illustrated by 
means of a simple example. Next we derive approximate 
equations for the moments and correlation functions of that 
class of NMNS processes. Sections 3 and 5 are devoted to 
several examples. We compare our results with those of oth
er approaches. We only consider linear processes (although 
with multiplicative noise) to concentrate on pure non-Mar
kovian effects independently of nonlinear complications to 
be studied in future work. Section 3 is devoted to a one
variable model which corresponds to the point reactor kinet
ic equation. 16.17 Section 4 considers a general N-variable 
model used in quantum optics. 18.19 A particular case corre
sponds to the mechanic oscillator with stochastic frequen
cy.20.21 In Sec. 5 we study the harmonic Brownian oscillator 
with stochastic frequency. 22-24 

2. CORRELATION FUNCTIONS OF NON-MARKOVIAN
NONSTATIONARY PROCESSES 

A. Non-Markovicity and nonstationarity 

Time-convolutionless Fokker-Planck equations for the 
probability density ofNM processes have been considered in 
Refs. 1-7. It has been pointed oue·5

-
7 that these are not bon

afide Fokker-Planck equations because the conditional 
probability of the process is not a fundamental solution of 
the Fokker-Planck equation for two arbitrary times. In gen
eral, for an NM process, the conditional probability 
a(q, t; q', t '), t> t " depends not only on t and t " but also on 
the previous history of the process. Only when t' = 0 is 
a(q, t; q', 0) a solution of the Fokker-Planck equation for 
the probability density P (q, t) with initial condition 
P(q', 0) = t5(q - q'). As a consequence, the Fokker-Planck 
equation can in general be used to calculate correlation func
tions like (q(t )q(O) but not (q(t )q(t ') for arbitrary t'. Here 
t = 0 is taken as the time in which the initial conditions of the 
NM process are specified. In Ref. 3 an explicit discussion of 
some of these facts was given considering a Gaussian NM 
stationary (NMS) process for which exact expressions can be 
obtained for a(q, t; q', t') and (q(t )q(t '). 

We are interested in the calculation of the correlation 
function and the relaxation time in the steady state of a pro
cess solution of a stochastic differential equation of the gen
eral form 

ij(t) = v(q(t)) + g(q(t ))s (t ), (2.1) 

where v(q) and g(q) are in general nonlinear functions of q. 
The stochastic force S (t ) is an Ornstein-Uhlenbeck process: 
A Gaussian process with zero mean and correlation function 

(s (t)S (t ') = r(t, t') = (D /1') exp( - It - t'I/1'). (2.2) 

A particular process is defined by (2.1) and a given initial 
condition at the preparation time t = O. Any solution of (2.1) 
is non-Markovian due to the fact that S (t) is not a white 
noise. 25 For whatever initial condition, the solution of (2.1) is 
also a nonstationary process. Therefore, Eq. (2.1) defines a 
class ofNMNS processes. These processes are characterized 
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by being a solution of (2.1) and differ from each other in the 
choice of initial conditions. The nonstationarity gives rise to 
some difficulties which are not present in the example dis
cussed in Ref. 3 for an NMS process. We note that in the 
limit 7 -+ 0, (2.1) defines a Markovian process which is also 
stationary when the distribution of initial conditions is cho
sen as the stationary distribution. This distribution is the one 
reached for t -+ 00 and arbitrary initial conditions. Never
theless, there do not exist two separate limits in which the 
process becomes NMS and MNS. Therefore, it is important 
to realize that, in the particular class of processes defined by 
(2.1), the effects of non-Markovicity and nonstationarity 
cannot be disentangled. Both have the same origin, which is 
the finite correlation time 7 of the stochastic force S (t). To 
clarify some features of this class of NMNS processes and 
the differences with NMS or MNS processes, we first consid
er a simple explicit example. This example is a Gaussian 
process defined by (2.1) with 

v(q) = - aq, a> 0, g(q) = 1. (2.3) 

Following the methods in Refs. 5, 14, and 15 one can imme
diately obtain the equation satisfied by the probability den
sity of the process P (q, t). This is a time-convolutionless 
Fokker-Planck equation with time-dependent diffusion co
efficient: 

a 
-P(q, t)-Lq(t)P(q, t), (2.4) at 

a a2 

Lq(t) = -aq +D(t)-2' (2.5) aq aq 
D(t) = .....!!....... {I - exp[ - (7- 1 + a)t J). (2.6) 

1 + 7Q 

The steady-state probability density Pst(q) is obtained as the 
limit for t -+ 00 of the solution of (2.4) with an arbitrary 
initial condition: Pst(q) = limt _ 00 P(q, t). This distribution 
corresponds to the stationary solution of (2.4) when D (t ) is 
replaced by D ( 00 ). 

The intrinsic nonstationarity of (2.1) is explicitly seen in 
this example: Whatever the initial condition P (q, t = 0), the 
solution of (2.4) depends on time during a transient. In parti
cular, even choosing P (q, t = 0) = P" (q), we obtain a nonsta
tionary process. In the example considered by FOX,3 the 
equation for P (q, t) also features a time-dependent operator 
Lq (t ). Nevertheless, the process is stationary when the sta
tionary distribution is chosen as initial condition.Mathema
tically this happens because the time dependence of Lq(t) is 
only given by a common factor a(t ), that is, Lq (t) = a(t )Iq. 
This does not happen in (2.5). The factorization of the time 
dependence of Lq (t ) follows from the assumption of a fluctu
ation-dissipation relation. In our case (2.1) has to be inter
preted as a phenomenological modeling of a system coupled 
to an external source of noise. This parametric noise is mo
deled by S (t). Therefore, the constant a in (2.3) and the noise 
parameters D and T are assumed to be independent. 

In passing, we note that there exists a Markovian non
stationary process (MNS) associated with the NMNS pro
cess (2.1), (2.2), and (2.3). It is defined by (2.1) and (2.3) and 

(S (t)S (t ') = 2D (t )t5(t - t ') (2.7) 
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and D (t ) given by (2.6). The bonafide Fokker-Planck equa
tion for this Markovian process is also (2.4). This explicitly 
shows that Markovicity cannot be decided in terms of the 
equation satisfied by the probability density. For r ---+ 0 and 
D fixed, (2.3) and (2.7) define an ordinary Markovian station
ary process which is also the Markovian limit of (2.2)-(2.3). 

The calculation of the steady-state correlation function 
of the example (2.2)-(2.3) is straightforward. Integrating 
(2.1 )-(2.3) with arbitrary initial conditions and using (2.2), we 
have 

(q(l )q(t /)SI = lim (q(t )q(t ')~ = Dr 
t,t'~ 00 (1 + ra)(ra - 1) 
t- t' =s 

(2.8) 

We can also consider the quantity (q(s) q(O) sl IC' This is de
fined as the correlation function of the process (2.3) with 
initial conditions at t = 0 given by Ps,(q). We have 

D 
(q(s)q(O)SIIC = exp( - as). (2.9) 

a(1 + ra) 

The two quantities (q(t) q(t /)SI and (q(s)q(O)stIC are two 
correlation functions which can be considered for the pro
cess defined by (2.1)-(2.3) and P(q, t = 0) = Pst (q). They are 
different because the process is not stationary. Nonstation
arity also implies that (q(t + s)q(t) sl IC =1= (q(s)q(O) sl IC for a 
finite t. 26 

The steady-state relaxation time TSI is given by 

TsI = lOOds(q(t)~(t')sl-~q);t =a-I+r. (2.10) 
o (q )st - (q)sl 

Similarly, a relaxation time can be defined for (q(s) q(O) sl IC 

T. = roo ds (q(s)q(O)stlc - (q);1 = a-I (2.11) 
o Jo ( 2) ()2 . o qSI-qsl 

In the Markovian limit of the process (r ---+ 0), TSI and To 
coincide. The dependence of TSI on r is a dynamical effect 
which we study in this paper for the class of NMNS pro
cesses defined by (2.1). To does not depend on r because 
(q(s)q(O) sl IC only depends on r through static quantities like 
(q2)sl' This dependence cancels in the calculation of To. 

The inequality of the two correlation functions defined 
above is an important difference with respect to the NMS 
example studied in Ref. 3. This inequality is a direct conse
quence of the intrinsic nonstationarity of the process. In fact, 
it is easy to see that, in general, this inequality holds for any 
nonstationary process regardless of its Markovian or non
Markovian character (see below27

). For NMS processes,3 the 
two correlation functions are equal. The existence of this 
inequality for the NMNS process precludes the use of the 
operator Lq(t) to obtain an equation for (q(t) q(t /)SI' In the 
following we will derive an approximate equation for this 
quantity for a general NMNS process specified by (2.1). Let 
us first summarize the situation for the different cases. We 
assume that the probability density obeys a Fokker-Planck 
equation of the form (2.4): 

(i) If the process is MNS like the one given by (2.1)-(2.3) 
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and (2.7), then (2.4) is a bonafide Fokker-Planck equation 
and the conditional probability obeys (2.4) for any t, t /. Thus 

d 
dt (q(t)q(t/) = «(Lq+q)(t)q(t'), (2.12) 

where L q+ (t) is the adjoint operator of Lq(t). This is, of 
course, true for any Markovian process. 

(ii) For an NM process, a(q, s; q/, 0) is in general a solu
tion of (2.4): 

:s a(q, s; q/, 0) = Lq(s)a(q, s; q', 0) (2.13) 

with initial condition a(q, 0; q', 0) = b(q - q'). Therefore, 

d 
ds (q(s)q(O) = «(L q+ (s)q(s))q(O)). (2.14) 

This equation is valid for arbitrary initial conditions. 
(iii) Consider now that we choose stationary initial con

ditions and that the process is then stationary (NMS). 3 For a 
stationary process we have that a(q, t; q/, t')' = a(q, s; q', 0) 
for arbitrary t' and t = t' + s. Therefore, from (2.13) 

:t a(q, t; q', t ') = Lq (s)a(q, t; q/, t ') (2.15) 

with 

a(q, t '; q', t ') = b(q - q'). (2.16) 

Thus, 

d 
dt (q(t )q(t ')~ sl = «(L t (s)q(t ))q(t 'I) sl 

= a(s)«(l q+ q)(t )q(t '),to (2.17) 

where we have used the relation Lq (t ) = aft )Iq • For station
ary initial conditions in (2.14), (2.17) and (2.14) coincide. This 
is in agreement with the fact that (q(s)q(O) sl IC and 
(q(t )q(t ')SI coincide for an NMS process. In the example 
discussed in Ref. 3 the non-Markovicity of the process is 
explicitly seen because the solution of (2.15)-(2.16) does not 
satisfy the Chapman-Kolmogoroff equation. 

(iv) For the NMNS process (2.1 )-(2.2) Eqs. (2.13) and 
(2.14) remain valid but the argument made above for an 
NMS process cannot be repeated here. Therefore, no general 
equation is known for (q(t )q(t ') sl up to now in this case. 

In conclusion, the steady-state correlation function 
(q(t )q(t ')SI cannot be identified with (q(s)q(O)sIIC for a 
nonstationary process. As a consequence, for an NMNS pro
cess we do not have an equation for (q(t )q(t ') sl expressed 
only in terms of the Fokker-Planck operator Lq (t ). From the 
point of view of the argument above, the difficulty is the 
nonstationarity of the process. But we remark that for the 
class of NMNS processes defined by (2.1), nonstationarity 
cannot be separated from non-Markovicity. Our goal is now 
to derive an equation for the correlation function 
(q(t )q(t ')SI of this class ofNMNS processes. 

B. Equations for the correlation functions 

In general it is not possible to obtain exact equations for 
the moments and correlation functions of a process defined 
by (2.1)-{2.2). Our strategy is then to look for systematic 
approximation schemes in which the zeroth-order approxi-
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mation is the Markovian limit 7 = O. We do that by consid
ering 7 as a small parameter. Our approximation essentially 
consists in an expansion in powers of 7. This program was 
already carned out for the equation satisfied by the probabil
ity density P(q, t) in Refs. 5, 14, and 15. From the approxi
mate equation for P (q, t) follows an equation for (q(t). This 
last equation can be directly obtained as follows: Averaging 
(2.1) we have 

:t (q(t) = (v(q(t))) + (g(q(t))S (t) 

= (v(q(t))) + Sa' dt , y(t, tt!( D:J~~:)). (2.18) 

In the last equality we have used the functional characteriza
tion of the Gaussian property of S (t ).14,15,28 Performing 
successive partial integrations over t I in (2.18) and using 
(2.2), we obtain an expansion in powers of 7. This amounts to 
an approximate calculation of the response function Dg(q(t ))/ 
DS (t I) by expanding around t I = t. 

We have 

f'dt , y(t, t l ) ( Dg(q(t))) = D exp( - t /r){ [7 exp(tl/r) 
Jo Ds(t l ) 7 

. ( Dg(q(t)) Dq(t))] I, = I _ [r exp( !.l) 
Dq(t) DS(t l ) 1,=0 7 

.( Dg(q(t)) d (Dq(t)))]"=' + ... }. (2.19) 
Dq(t) dt , DS(t l ) 1,=0 

Recalling that '4,'5 

Dq(t) I = g(q(t )) (2.20) 
Ds(ttl I, " 

~ Dq(t) I = v(q(t)) ag(q(t)) 
dt, Ds(tt! I, .1 aq(t) 

- av(q(t )) g(q(t ))_M (q(t)), (2,21) 
aq(t) 

we obtain 

f' dt r(t t )( Dg(q(t))) 
Jo I 'I DS(tt! 

"-' D ( ag(q(t)) g(q(t))) _ D7( ag(q(t)) M (q(t ))) 
aq(t) aq(t) 

_ D exp( _ ~)( ag(q(t)) Dq(t) I ) (2.22) 
7 aq(t) DS(tt! 1,=0 ' 

where the first terms neglected are proportional to Dr and 
D7 e - tIT. The last term in (2.22) contains the quantity Dq(t)f 
DS (t,) I t which is not immediately calculable in general. 

1_0 

Nevertheless, this is a transient term that can be safely ne
glected for t'~7. In this approximation and substituting (2.22) 
in (2.18), we obtain to first order in 7 

!!..- (q(t) = (v(q(t i)~ + D ( ag(q(t)) g(q(t i)) 
dt aq(t) 

- 7D ( ag(q(t )) M(q(t i)). (2,23) 
aq(t) 

The validity of keeping only terms to first order in 7 in the 
above 7 expansion depends on the value of 7, the range of 
values of q of interest and of the particular model. A discus
sion of this point in a related context is given in Ref. 15. A 
criterion of validity is obtained comparing the terms of order 
7 with the following term in the expansion of order r. Past 
experience with this type of expansion for the calculation of 
probability densities indicates that it gives good results for 
reasonably small values of 7.

14 

The equations for the correlation functions can be ob
tained along the same lines. Since q(O) is statistically indepen
dentofs (t ) the equation for (q(t )q(O) is derived with no extra 
complication: 

!!..- (q(s)q(O) = (v(q(s))q(O)) + D ( ag(q(s)) g(q(S))q(O)) 
ds aq(s) 

- 7D ( ag(q(s)) M(q(s))q(O)). (2.24) 
aq(s) 

In (2.24) transient terms have also been neglected. Therefore, 
this equation cannot be used to calculate To because, by its 
definition (2.11), To also depends on the time domain s S 7. 

The identical formal structure of (2.23) and (2.24) is a 
consequence of the fact that both can be obtained from the 
equation for P (q, t). The equation for (q(t )q(t ') requires 
more care: 

!!..- (q(t )q(t ') = (v(q(t ))q(t ') + (g(q(t))S (t )q(t '). 
dt 

(2.25) 

Proceeding as we did in (2.18) 

(g(q(t))s(t)q(t')) = f'dt , r(t, tt!( Dg(q(t)) q(t')) + (" dt , r(t, tt!(g(q(t)) Dq(t')). 
Jo DS(tt! Jo DS(t\) 

(2.26) 

The second term in (2.26) has no counterpart in (2.24) since Dq(O)f DS (t I) = O. The two terms in (2.26) can be calculated again by 
successive partial integrations. For the first term we have 

Sa'dt, r (t, tt!( D:J~~:) q(t ')) 

= f'dt , r(t, t l
)( ag(q(t)) Dq(t) q(t '))=D ( ag(q(t)) Dq(t) I q(t ')) 

Jo aq(t) DS (tt! aq(t) DS (tt! I, = I 

_ D7( ag(q(t )) (~ Dq(t)) I q(t ')) _ D exp( _ ~)( ag(q(t)) Dq(t) I q(t 'i), 
aq(t) dt , DS(t l ) 1,=1 7 aq(t) DS(tt! 1,=0 

(2.27) 

where the first terms neglected are proportional to Dr and D7 e - 1 IT. The last term in (2.27) is again a transient term that we 
neglect. Substituting (2.20) and (2.21), we have to first order in 7 

1069 J. Math. Phys., Vol. 25, No.4, April 1984 A. Hernandez-Machado and M. San Miguel 1069 

Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



f' dt 1 r (t, t d( 8g(q(t )) q(t ')) = D ( Jg(q(t)) g(t )q(t ')) - Dr( Jg(q(t)) M (q(t ))q(t ,)). 
Jo 8s(t l ) 8q(t) Jq(t) 

(2.28) 

For the second term in (2.26) we have 

- D exp( - ~)(g(q(t)) 8q(t ') I ), 
r 8s(t l ) t, ~o 

(2.29) 

where the first terms neglected are proportional to Dr e - It -- t ')IT and Dr e - t IT. Once again the last term in (2.29) is a transient 
term that we neglect. We remark that, given the definition (2.8) in which t, t' ~ 00, to neglect transient terms in the calculation 
of (q(t )q(t ')SI is not an approximation. In the definition (2.10) ofTs! we integrates = t - t' froms = 0 tos = 00, and therefore 
the first two terms in (2.29) cannot be neglected since we cannot assume that t - t ':>r. In an expansion in powers of r aimed to 
calculate Ts, ' the quantity e - It - t ')IT has to be regarded as being of zeroth order in r. Substituting (2.20) and (2.21) in (2.29), we 
have to first order 

(" dt l r (t, tl)(g(q(t)) 8q(t ')) = D exp [ - (t - t ')] f (g(q(t ))g(q(t '))) - r(g(q(t ))M (q(t '))) l. 
Jo 8s(t l ) r 

(2.30) 

From (2.25), (2.26), (2.28), and (2.30) we finally have 

~ (q(t )q(t ')SI = (v(q(t ))q(t ')SI + D ( Jg(q(t )) g(q(t ))q(t ')) - Dr( Jg(q(t )) M (q(t ))q(t ')) 
dt Jq(t) st Jq(t) st 

+ D exp [ - (t ~ t ')] I (g(q(t ))g(q(t')))st - r( g(q(t ))M(q(t')))st l. (2.31) 

This can be rewritten as 

where 

h (q) = g(q) - rM (q) 

and 

L q+ (r) = [V(q) + D J~~) h (q) ]Jq + Dg(q)h (q) J~ 

is the adjoint of the Fokker-Planck operator which appears 
in the approximate Fokker-Planck equation for the prob
ability density P(q, t ) of the process. 14.15 The comments made 
about the domain of validity of(2.23) apply also for (2.32). 
This question is further discussed for a particular example in 
Sec. 3 and in the Appendix. 

The two terms in (2.32) contain in a different way the 
effects of r being #0. The existence of the second term indi
cates that, as discussed in Sec. 2A, the equation for 
(q(t )q(t ') sl cannot be obtained from the equation for the 
probability density. This term dissappears in the limit r ~ O. 
The first term remains in this limit but with L q+ (r) replaced 
by the Markovian operator L q+ (r = 0). The second term in 
(2.32) is the main formal difference with (2.24). As seen in 
(2.29), it appears becauseS (t )andq(t ')arecorre1atedfort > t'. 
This correlation dissappears for r = O. Such a term vanishes 
in (2.22) since S (t ) and q(O) are uncorrelated because the sys
tem is prepared at t = O. 
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(2.32) 

(2.33) 

(2.34) 

Equation (2.32) is the starting point for the dynamical 
characterization of the steady state of the NMNS processes 
defined by (2.1) and in particular for the calculation of T,t . 
No general statement about the dependence of T,t in r can be 
made due to the nonlinear problem involved in the first term 
in (2.32). A point to remark is the importance of the contri
butions coming from the second term in (2.32). This is al
ready seen in the case of additive noise [g(q) = const]: The 
equation for (q(t )q(t ')st only depends on the noise param
eters D and 7 through those terms. Therefore, in the Marko
vian limit, the dynamics of (q(t )q(t ')st is independent of the 
noise parameters but it is not in the NMNS situation. In the 
Markovian limit (q(t )q(t ')st only depends on the noise pa
rameter D through the initial condition (q2)st. Therefore, in 
this limit, Tst is independent of the noise parameters. The 
importance of the second term in (2.32) is shown in the sim
pie example (2. 1)-(2.3). In that example, (g(q(t))5' (t )q(t ') can 
be calculated exactlv. and one obtains an eauation whose 
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solution is (2.8). Since Tst is linear in T [see (2.10)], the ap
proximate equation (2.32) leads to a correlation function 
which reproduces exactly the result (2.10). Explicitly, we 
have 

(g(q(t))S (t )q(t 'i) 

= (S (t )q(t 'i) 

= _D_ {exp [ _ (t - t'l] 
1 + Ta T 

- exp [ - ( ~ + at')]} 

~D(I-Ta)exp[ - (t~t'l (2.35) 

The approximate correlation function solution of (2.32) is 
the expansion of(2.8) to first order in T. In this simple exam
ple TSI is independent of D. The important point to remark is 
that the T dependence of TSI has its origin in (2.35) which is 
the term proportional to exp[ - (t - t ')IT] in (2.32). There
fore, this term originates the T dependence of TSI in this ex
ample, and it is the dominant non-Markovian effect. 

The equations above are easily generalized to the case of 
several variables q;, i = 1, ... ,N. We just quote here the re
sults. The generalizations of (2.1) and (2.2) are 

qi(t) = vAq(t)) + gij(q(t ))Sj(t), (2.36) 

(Si(t) = 0, (Si(t )Sj(t 'i) = D 0ij exp [ -
Ti 

It - t'l ]. 
Ti 

(2.37) 

We obtain 

:t (qi(t) = (v;(q(t))) +D (a~~~~;t/) gnj(q(t))) 

_ DT ( agij(q(t)) M .( (t i)) 
} aqn(t) njq 

- DT j ( a~~~~;t/) Kn/j(q(t ))S/(t)), (2.38) 

where29 

(2.39) 

(2.40) 

The last term in (2.38) has to be further elaborated in each 
particular case. The equation for (qi(t)q j(O) is formally 
identical to (2.38). For (qi(t)q j(t 'i) we have30 
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+ Dexp[ - (t - t ')]! (gidq(t ))gjk(q(t 'J) 
Tk 

- Tk (gidq(t)) [Mjdq(t 'J) 

+ Kjidq(t'))S/(t ')])I· (2.41) 

3. EXAMPLE I: ONE VARIABLE MODEL WITH 
MULTIPLICATIVE NOISE 

As a first application of the general equations derived 
above, we consider in this section the model defined by (2.1) 
and (2.2) with 

u(q) = - aq + e, (3.1) 

g(q) = - bq. (3.2) 

a, b, and e are constants, and a is chosen to be positive. This is 
a simple but nontrivial model because of the multiplicative 
character of the noise [g(q) being nonconstantl For e = 0 the 
model becomes mathematically much simpler, but it then 
has a degenerate steady state in the sense that 
P (q, t) ---+'-00 O. Besides its intrinsic interest as an illustra
tive example, this model is the point reactor kinetic equation 
used to describe the evolution of the number of neutrons in 
the presence of parametric noise in a n uc1ear reactor. 16.17 For 
e = 0 is a one-variable version of models describing the inter
action of an atomic system with a laser whose phase fluc
tuates. 18

•
19 The model admits a formal exact solution for 

(q(t), (q(t )q(t ').33 Here we concentrate in the calculation in 
first order in T which gives a more direct way of obtaining 
concrete information. In this approximation we obtain ex
plicit results which illuminate the general discussion of Sec. 
2B. 

To calculate Ts, we need to know (q)st' (q2)st' and 
(q(t )q(t ')s,' Specifying (2.23) to the model (3.1), (3.2) and 
setting (d /dt )(q(t) = 0, we have 

(q) = e(1 - TDb 2) + O(~). (3.3) 
sl (a -Db 2 ) 

An equation for (q2( t ) is obtained following step by step the 
method used to derive (2.23). We obtain 

~ (q2(t) = - 2a(q2(t) + 2e(q(t) 
dt 

+ 4Db 2(q2(t) - 4TeDb 2(q(t) (3.4) 
and therefore 

( 2) e
2
(1 - 3rDb 2) + 0 (~). (35) 

q st = (a _ 2Db 2)(a _ Db 2) . 

We then have to require that a > 2Db 2 to guarantee the exis
tence of steady-state values of (f) and (q(t )q(t 'i) .34 The 
equation for (q(t )q(t ')>'t follows directly from (2.32) and 
(3.1)-(3.2) (see the Appendix). Its solution can be written to 
first order in T as 
(q(t )q(t ')st = ({q2)st - (q);, )exp[( - a + Db L)(t - t ')J 

+ (q);, +rDb 2{I-exp[ _ (t~t')]) 
xexp[( - a + Db 2)(t - t ')J (q2)st 

_ TDb 2 exp [ _ (t ~ t ')] 

X [1 - expel - a + Db 2)(t - t ')]1 (q);t. 
(3.6) 
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A criterion for the validity ofEq. (2.32) for (q(t )q(t ')st can 
be given in this example by comparing the terms of order l' 
kept in (2.32) with the terms of order r, which are neglected. 
This comparison is made in the Appendix. We obtain for this 
model that to justify the approximation it must be 7Q < 1. 

From the definition of Tst> (2.10), (3.3), (3.5), and (3.6), 
we obtain to first order in l' 

1 
T,t = 2 + l' + 0 (r). 

a-Db 
(3.7) 

The quantity lI(a - Db 2) is the Markovian relaxation time. 
Therefore, we obtain the same result as that in (2.10): For a 
small 1'#0 a contribution l' is added to the Markovian value 
of Tst • It is easy to see that the terms proportional to 
l' exp[ - (t - t ')17] in (3.6) contribute in order r to Tst • The 
1'contribution comes from the term in (3.6) proportional to 1'. 
This term has its origin in the terms proportional to 
exp[ - (t - t ')17] in (2.32). Thus we conclude that for linear 
processes with additive or multiplicative noise Tst depends 
additively on l' (for small 1') and that this dependence is ob
tained from the second term in (2.32). For nonlinear pro
cesses the first term in (2.32) will also contribute to the l' 
dependence of Tst • 

In the simpler case with c = 0 it is possible to write 
explicit exact equations for (q(t) and (q(t )q(t 'I). From (2. 18) 
we have 

!!... (q(t) = - a(q(t) - b r'dt l ( 8
q
(t)) r (t, tl)' 

dt Jo 85'(td 
(3.8) 

The response function is calculated from the integral form of 
(2.1), (3.1), and (3.2) with c = 0: 

8q(t) = _ bq(t). (3.9) 
D5'(td 

Substituting in (3.8) (see also Ref. 35) 

:t (q(t) = - a(q(t) + Db 2[ 1 - exp( -;)] (q(t I)· 
(3.10) 

Similarly, substituting (3.9) in (2.25) and (2.26), we obtain an 
exact equation for (q(t )q(t '): 

!!... (q(t )q(t ') 
dt 

= - a(q(t)q(t') +Db 2
{ 1 - 2 exp( - t h) 

+ exp[ - (t - t')h]J (q(t)q(t 'I). (3.11) 

This equation is in agreement with the one obtained in Ref. 
36. 

4. EXAMPLE II. N-VARIABLE MODEL WITH 
MULTIPLICATIVE NOISE 

We consider here a particular example of (2.36) and 
(2.37) given by 

qi(t) = - IAijqj(t) - IBijqj(t)5'(t), ij= 1, ... ,N. (4.1) 
j j 

A and B are in general noncommuting matrices and 5' (t ) 
is the Omstein-Uhlenbeck process defined in (2.2). The 
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model is a generalization to N variables of (3.1H3.2) with 
c = O. The complications that appear in this generalization 
are due to the noncommutativity of A and B. As already 
mentioned, (4.1) is a general model used in quantum op
tiCS. IS.19 For a specific choice of A and B, (4.1) also describes 
the evolution in phase space of a mechanic oscillator whose 
frequency fluctuates around a mean value. 20

•
21 As we did in 

Sec. 3, we concentrate here on the calculation in first order in 
1'. 

An approximate equation for (q,(t) follows from 
(2.38): 

d 
- (q,(t) = I( - A'j + DB'kBkj 
dt j. k 

- 1'DB,dA, B ] kj )(q j(t) + 0 (r), (4.2) 

where [A, B] = AB - BA. It is interesting to note that the 
non-Markovian contribution proportional to l' only appears 
when A and B do not commute. If A and B commute, no 
contribution to any order in l' appears in the equation for 
(q,(t I). For [A, B] = Othe exact equation is a trivial general
ization of (3.10): 

d
dt (q,(t) = .2:( - Aij + DBjkBkj 

j. k 

X[I-exp( -;)])(qj(t). (4.3) 

A different approximation scheme than ours has been 
proposed in Ref. 18 to obtain an equation for (q,(t I). The 
first-order equation in such a scheme has been interpreted in 
terms of an approximation of Bourret's equation. 19 In com
parison with our scheme we wish to point out that the first
order approximation in Ref. 18 does not correspond to a 
first-order approximation in 1'. Indeed, when [A, B] = 0, the 
first-order equation of Ref. 18 still contains a correction to 
the Markovian equation (1' = 0). Such a term does not appear 
either in the exact equation (4.3) or in our approximation 
(4.2). On the other hand, Van Kampen's approximationS dis
cussed for this model in Ref. 19 reproduces the exact equa
tion (4.3) when [A, B] = O. For [A, B] #0 an expansion to 
first order in 7' of van Kampen's equation leads to our result 
(4.2). 

We now consider the equations for the correlation func
tion. The equation for (q,(t)q j(O) is formally identical to 
(4.2). An approximate equation for the correlation function 
(qi(t)q j(t ') follows from (2.41): 

!!... (qi(t)q j(t ') = I( - Aik + DBi/Blk 
dt k, I 

-1'DBi/ [A, B ]/d(qdt )qj(t ') 

+ I D exp [ - (t - t ')](BikB jl 
kl 7' 

+1'BidB,A ]jl)(qdt)q/(t'). (4.4) 

This equation is only valid for long times since transient 
terms have been neglected. In particular, if a steady state 
exists, (4.4) becomes an equation for (qj(t)q j(t ').t· 

A particular case of (4.1) is given by a mechanic oscilla
tor with position q, momentump, unit mass and stochastic 
frequency [n ~ + 5' (t)] 1/2 with mean value no: 
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q(t) = p(t), 

PIt ) = - [IJ ~ + S (t )] q(t ). 

The matrices A, B, and [A, B] are in this case 

A = (IJ ~ -~). B = (~ ~), 
(-1 0) 

[A, B] = 0 l' 

Equation (4.2) becomes 

!!...- (q(t) = (P(t I), 
dt 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

!!...- (P(t) = ( - n 6 + Dr) (q(t I)· 
dt 

(4.10) 

This means that for smallr and t:>rthe mean values oscillate 
with a frequency Q) = (IJ 6 - Dr) 1/

2. This effective reduction 
of the frequency of oscillation is a non-Markovian effect 
which disappears in the limit r _ O. For white noise fre
quencyfluctuations, (q(t) and (P(t) oscillate with the mean 
frequency no independently of the noise intensity D. 

The equations for the correlation functions are easily 
written from (4.4) and (4.7)-(4.8). 

5. BROWNIAN OSCILLATOR WITH FLUCTUATION 
FREQUENCY 

The stochastic differential equations that describe the 
evolution of the position q and momentum p of a Brownian 
harmonic oscillator of unit mass and fluctuating frequency 
are22-24,37 

q(t) =p(t), 

p(t)= -Up(t)- [IJ6 +S(t)]q(t)+77(t). 

(5.1) 

(5.2) 

Here IJo is the mean value of the frequency and S (t) the fluc
tuating part of IJ 2. This fluctuating part is modeled by the 
Omstein-Uhlenbeck process (2.2). The damping coefficient 
is U and 77(t ) is the thermal noise assumed to be Gaussian 
white noise with zero mean value and satisfying the usual 
fluctuation-dissipation relation: 

(77(t )77(t 'I) = 4AKB T <5 (t - t 'I. (5.3) 

The process (5.1) and (5.2) is NMNS due to the fact that S (t) is 
not a white noise. In the following we study non-Markovian 
dynamical effects (to leading order in the correlation time r) 
in the equations for average values, in the stability properties 
of the system, correlation functions and relaxation time. 
Equations (5.1 )-(5.2) are a particular case of (2.36) in which 
Sl = Sand S2 = 77 (r2 = 0). 

The approximate equation for the first moments follow 
from (2.38): 

:t (q(t) = (P(t I), (5.4) 

!!...- (P(t) = ( - IJ 6 + Dr) (q(t ) - U (P(t I). 
dt 

(5.5) 

The effective reduction of the frequency is the effect already 
found in (4.10) but here has an important consequence: The 
solution (q(t) of(5.4H5.5) decays to zero in aninfradamped 
oscillatory mode when A 2 < IJ ~ - Dr. It decays to zero in 
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an overdamped mode when A 2> IJ 2 - Dr. Therefore, 
changing the degree of non-Marko vi city measured by r it is 
possible to change the regime of the oscillator from the over
damped to the infradamped mode and vice versa when 
A 2~IJ6. 

The equations for the second-order moments are easily 
obtained by means of the r expansion used in Sec. 2B. We 
find 

(q(t )77(t) = 0, (5.6) 

(P(t )77(t) = UKB T, (5.7) 

(S (t )q2(t) = - 2Dr(q2(t) + 0 (r), (5.8) 

(S(t)q(t)P(t) = -D(1-Ur)(q2(t) +O(r). (5.9) 

Therefore, the approximate equations to first order in rare 

!!...- (q2(t) = 2(P(t )q(t I), (5.10) 
dt 

!!...- (P(t )q(t) = ~ (IJ 6 - 2Dr) (q2(t ) 
dt 

+ (P2(t) - U (P(t)q(t), (5.11) 

!!...- (P2(t) = 2D (1 - Ur)(q2(t) - 4,1 (P2(t) 
dt 

- 2IJ 6 (P(t )q(t) + 4AKB T. (5.12) 

If a stationary-state value exists for the second-order 
moments, this is given by the stationary solution of (5. 101-
(5.12) 

(Pq)st = 0, (5.13) 

(P2)st = (q2)st(IJ6 -Wr), 

2 UKBT 
(q)st= UIJ6- D (Ur+1) 

(5.14) 

(5.15) 

Equation (5.15) indicates that a finite stationary value of (q2) 
isnotreachedfort_ 00 whenUIJ~ - D(Ur + 1) <0. We 
then take the stability limit as D = Dc, where 

UIJ6 2 
Dc = ~UIJo(l- Ur). (5.16) 

Ur+1 

For D > Dc the oscillator is energetically unstable. It is easy 
to check that the condition D < Dc guarantees that the linear 
system (5.lOH5.12) has no real positive eigenvalue. The non
Markovicity of the process decreases the stability ofthe sys
tem in the sense that Dc is smaller than the critical value of D 
for r- O. 

We now consider the correlation functions in the steady 
state. From (2.41) we have 

:t (q(t)q(t')st = (P(t)q(t')sl' 

:t (P(t)q(t')st 

= {-IJ6 +Dr+Drexp[ _ (t~t')]} 

X (q(t)q(t')st - U (P(t)q(t')sl' 

:t (q(t )PIt ')st = (P(t )PIt ')81' 
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:t (P(t)P(t')SI 

=Dexp [ - (t~t')](I-Ur)(q(t)q(t')s, 

+ { -n~ +Dr-Drexp [ _ (t~t')]} 

X (q(t )PIt ') sl - U (P(t )p(t ') 51' (5.20) 

The position-position correlation function solution of 
(5.17)-(5.20) is given in the overdamped mode by 

(q(t)q(t')sl = (q2)sl exp[ -A (t - t')][coshw(t - t') 

+ (A 12UJ) sinh w(t - t ')], (5.21) 

where w2 = A 2 - (n ~ - Dr). In the infradamped mode we 
have an oscillatory decay of the correlation function 

(q(t )q(t ')SI = (q2)sl exp[ - A (t - t ')][cos wIt - t') 

+ (A 12w) sin wIt - t ')), (5.22) 

where w = (n ~ - Dr) - A 2. To obtain (5.21) and (5.22), we 
have neglected the term proportional to l' exp[ - (t - t ')/r] 
in (5.18), which gives a contribution to the correlation func
tion of higher order in r. 

Equations (5.21) and (5.22) exhibit an important non
Markovian dynamical effect: The correlation function de
pends on the frequency fluctuations not only through the 
static part (q2) sl but also through the effective frequency (w 
or w) which characterizes the dynamics. In the Markovian 
limit l' ---+ 0, the dynamical evolution of the correlation func
tion is independent of the frequency fluctuations. In this lim
it the evolution equations for the correlation functions do 
not depend on the frequency fluctuation. These only come 
into the expression of (q(t )q(t ') sl through the initial condi
tion (q2) sl' The same effect was already discussed in general 
after (2.32) for a single variable process with additive noise. 
Here we have a two-variable process with multiplicative 
noise such that the Markovian dynamics is noise-indepen
dent. Analogously to what happens in (2.10), this non-Mar
kovian dynamical effect manifests itself in a dependence of 
the relaxation time on the frequency fluctuations. This de
pendence does not exist in the Markovian limit: The relaxa
tion time of (q(t )q(t '» st as defined in (2.10) is, in the over
damped mode, 

T" = - + - KBTr + 0(72
) 

U ( 2,1)2 
n~ n~ 

(5.23) 

Here T~: is the Markovian relaxation time obtained in the 
limit 7 ---+ O. This result is qualitatively the same that we 
found in (2.10) and (3.7), that is, an increase of T" to leading 
order in 7 with respect to the Markovian limit. Nevertheless, 
this 7 dependence does not originate here in the terms pro
portional to e .. (I - I ')/', which have been neglected in the 
equations for the correlation functions. 

Finally, we wish to compare our results with other stud
ies of the problem of a Brownian harmonic oscillator with 
fluctuating frequency. In Refs. 23 and 24 the case 7 = 0 has 
been studied. Our results reduce to those of Refs. 23 and 24 
in this limit. For 1'#0 we have found that the dynamics de
pends on the frequency fluctuations and that the system is 
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energetically less stable. In Ref. 22, S (t) is taken to be a two
state Markov process instead of an Omstein-Uhlenbeck 
noise and in Ref. 21 thermal fluctuations modeled by 1]( t ) are 
neglected. Due to the simpler assumption for S (t ), an exact 
stability condition was obtained in Ref. 22. To first order in 
the correlation time of the noise, this condition coincides 
with our result (5.16). The stability condition of Ref. 21 is 
just the condition (5.16) with l' = O. The effect of a finite l' 
does not appear there due to the crudeness of the approxima
tion. There is no explicit expression for the relaxation time in 
Ref. 22 that could be compared with (5.23). 
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APPENDIX 

Equation (2.31) becomes, for the model (3.1 )-(3.2), 

~ (q(t )q(t ')'1 = ( - a + Db 2)(q(t )q(t '»51 
dt 

Integration of (AI) with (3.3) leads to (3.6) in first order in r. 
We now consider the first terms neglected in (2.31) for 

this case. The first nontransient terms neglected in (2.27) and 
(2.29) are, respectively, 

D~/ ag(q(t)) (~ Dq(t)) I q(t I)) (A2) 
\ aq(t) dti DS(t1) 1,=1 51 

and 

D~exp[- (t-t
'
) ] (g(q(t))( d: Dq(t

l
)) I ). 

l' dt 1 DS(t1) 1,=1' sl 

(A3) 
For the model (3.1 )-(3.2) we have 

Dq(t) = _ b exp { - (' dt' [a + bS (t 1)]q(O)} 
Ds(td Jo 

-cb fdtlex p{ - Idt" [a+bs(t"ll} 

= - bq(t) + cb J' dt I 

I, 

xexp { - I dt" [a + bS(t ")]}, (A4) 

and therefore 

d 2 Dq(t) I 
dti Ds(td 1,=' 

Substituting in (A2) 

- cb [a + bs(t)]. 
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(A2) = Drcb 2 [a(q),t + b (5 (t )q(t '),t] 

= Drcb 2[ a(q),t + b f' dt l y(t, t l ) 

x (bq(tl)) ] 
bs(tl ) st 

= Drcb 2{a(q)st 

_ D exp [ - (t ~ tl)]b 2(q),t + O(r)}. (A6) 

Substituting (A5) in (A3), 

(A3) = Dr exp [ _ (t ~ t 1)]Cb 2 

X [a(q)st +b (q(t)s(t')sd 

= Dr exp [ _ (t ~ tl)]Cb 2 

X [a(q),t +b (dt l y(t', tIl( bq(t)) ] Jo bs(t l ) st 

=Drexp [ - (t~tl)]cb2[a(q)st _Db 2 

X exp[( - a + Db 2)(t - t ')] (q)st + 0 (r)] ,(A 7) 

where (bq(t )lbs (tIl)st is calculated from (A4), recalling that 
5 (t ) is Gaussian and using a trivial cumulant expansion. The 
first terms neglected in (A 1) are given by the addition of (A6) 
and (A7): 

Wcb 2a(q)st +Drexp [ _ (t~tl)]Cb2 

X!a - Db 2(q) [1 + exp( - a + Db 2)(t - t')] I. (AS) 

Comparing these terms of order r with the corresponding 
ones of order r in (A 1) our criterion of validity for (A 1 ) gives 

1 >ra and 1 >1'(a - 2Db 2); (A9) 

since a > 2Db 2, we finally obtain r<a- I
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