
Front form and point form formulation of predictive relativistic mechanics. 
Noninteraction theorems 

x. Jaen and A. Molina 
Grup de Relativitat de la Seccio de Ffsica SCC (lEC), Departament de Flsica Teorica, Universitat de 
Barcelona, Barcelona, Spain 

V. Iranzo 
Grup de Relativitat de la Seccio de F{sica SCC (lEC), Universitat Politecnica de Catalunya (ETSECCP), 
Barcelona, Spain 

(Received 14 September 1984; accepted for publication 20 September 1985) 

The front form and the point form of dynamics are studied in the framework of predictive 
relativistic mechanics. The noninteraction theorem is proved when a Poincare-invariant 
Hamiltonian formulation with canonical position coordinates is required. 

I. INTRODUCTION 

Instantaneous relativistic dynamics of particles with di
rect interaction was initiated in a celebrated paper by Dirac, 1 

entitled "Forms of relativistic dynamics." The line of 
thought set up there was further developed by Bakanjian, 
Thomas, and Foldy, 2 in the framework that Dirac had called 
"instant form." 

The subsequent development of the theory met the im
portant drawback of the so-called "no-interaction 
theorem." 3 In general terms, it states that, if the position 
coordinates of the particles are to be canonical coordinates, 
and the particle worldlines must be Poincare invariant, then 
the only systems that are compatible with both requirements 
are those consisting of free particles. 

One attempt to circumvent this problem was initiated 
by Currie,4 and later on it has generated a rather wide stream 
of literature, which is known as predictive relativistic me
chanics (and maybe, it should be called an instant form of 
PRM). It consists, first, in giving up the Hamiltonian for
malism, which was taken for granted in former approaches, 
and starting from a more elementary level. The fundamental 
assumptions in predictive relativistic mechanics are (i) the 
equations of motion of the particles are Newton-like, that is, 
the acceleration of each particle is a given function of posi
tions and velocities of all particles; and (ii) Poincare invar
iance, which is understood to mean two things: the accelera
tion functions must be formally the same in all inertial 
reference frames, and particle worldlines must be Poincare 
invariant. These requirements imply that some condition 
(the so-called Currie-Hill equations5

) must be fulfilled by 
the acceleration functions. In addition, they also ensure the 
possibility of setting up a realization of the Poincare algebra6 

on the system's tangent space (the one spanned by positions 
and velocities). Now, the no-interaction result can be ob
tained again 7 if one seeks for a Hamiltonian formalism such 
that the aforementioned realization of the Poincare algebra 
is canonical, and the position coordinates can be taken as 
canonical. 

As far as we know, all proofs of the no-interaction 
theorem hitherto derived share a common feature, namely, 
physical variables are assumed to be simultaneous in a given 
inertial frame. This is a specific trait of the "instant form" of 
relativistic dynamics. However, in the pioneering paper by 

Dirac,l two other possibilities were considered, namely, the 
"front form" and the "point form" (in fact, a later paper by 
Leutwyler and Stem 7 increases that number by two more 
"forms"). 

One then wonders whether the no-interaction theorem, 
or a related result, also holds in these two alternative forms 
of relativistic dynamics. Although this is, indeed, an interest
ing point to be elucidated, it seems not to have been proven 
yet. Indeed, in a relatively recent paper by Leutwyler and 
Stem 7 we can find the following sentence: "Although this no 
go theorem has been established only for theories of class (i) 
(i.e., the "instant form" of relativistic dynamics) it likely also 
holds for the remaining four forms of Hamiltonian dynam
ics." 

In the present paper we intend to give an answer to the 
question that is more or less implicit in the quoted sentence, 
and derive a no-interaction theorem in the front form as well 
as in the point form. The master lines of our proof are the 
same as those of the proof given by Hill5 for the no-interac
tion theorem in the "instant form." 

In a natural way, the paper is divided in two parts. The 
first one (Secs. II and III) is devoted to the front form, and 
the second one (Secs. IV and V) to the point form. Besides, 
each part is organized in two sections: one devoted to deve
lop what could be called the front (resp. point) form of pre
dictive relativistic mechanics, and the other to prove the no
interaction theorem. 

II. FRONT FORM OF PREDICTIVE RELATIVISTIC 
MECHANICS 

In the instant form of predictive relativistic mechanics8 

(which has been its only formulation up to now), the ex
tended configuration space of N spinless particles is spanned 
by the 3N + 1 variables: t, x~, b = 1, ... , N, i = 1,2,3; where 
the evolution parameter is the time ,coordinate as measured 
in a given inertial frame, and the x~ are the space coordinates 
of the event determined by the intersection of the worldline 
of particle b and the space hyperplane x 4 = t. 

The equations of motion are then required to be second
order differential equations, that is, 

(2.1) 
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Thus the space of initial data is spanned by the following 
6N + 1 variables: 

t, xL u~, b,e = 1, ... , N, i,k = 1,2,3. 

If the space hyperplanes x 4 = t characterize the instant 
fonn, likewise the null hyperplanes x 3 + X 4 = A will playa 
central role in the front fonn of relativistic dynamics (here t 
and A are two real parameters). So, the extended configura
tion space in the front fonn will be coordinated by the 
3N + 1 variables: A, x~, b = 1, ... , N, i = 1,2,3; where A is the 
evolution parameter and xL i = 1,2,3, are the space coordi
nates of the event where the worldline of particle b meets the 
null hyperplane 

X 3 +X 4 =A, (2.2) 

or, using the notation introduced in (AS), 

x + =A 

(the same value of A for all particles). 
For convenience, our configuration space coordinates 

will be (see Appendix A) 

x;: , a = 1, ... , N, A = 1,2, - , 

rather than the Cartesian x~, i = 1,2,3. 
We now require the motion to be governed by a second

order differential system, 

d 2xt A xl! _.D d~_A 
dA 2 = ab( a ,v;, ; A), dA = ITb , (2.3) 

a,b,e = 1, ... , N, A,B,D = 1,2, - . 

For every given solution of (2.3), we have a set of N 
worldlines describing the history of the system. Indeed, if 
lP:(x:,zf; A), A,B,D = 1,2, -, a,b,e = 1, ... ,N, is the solu
tion of (2.3) corresponding to the initial data 

lP :(x:,u~;o) = xt , 
(2.4) 

alP: xl! D u1 
aA ( a,uc;O) = b' 

then, according to (2.2) and (AS), the worldlinexb(A) of par
ticle b will be taken as 

X~(A ) = lP ~(x:,zf; A), i = 1,2, 

x~ (A ) = A /2 + lP b- (x:,u~; A ), 

x: (A ) = A /2 -lP b- (x:,u~; A ), 

which in the adapted coordinates (A4) reads 

xt(A) = lPt(X:,zf;A), Xb+(A) =A. 

(2.5) 

(2.6) 

Similarly to the instant fonn description, the principle 
of relativity will be used at two different levels. First, the 
"acceleration" functions at on the right of Eq. (2.3) must 
have the same fonn in every inertial frame. And second, the 
dynamic system must be worldline invariant. The latter re
quirement means the same as in the instant fonn case, name
ly, that if Sand S I are two inertial frames related to each 
other by a Poincare transfonnation (2'j,..ra1D ), A,Ii)) 
= 1,2, - , + -see the Appendix- and X:(A ), b = 1, ... ,N, 

A = 1,2, - ,+ are the worldlines of the particles in the 
frame S, when the system starts from a given set of initial 
data Zo=(X;:,u~), a,e = 1, ... ,N, A,D = 1,2, -; then the 
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Poincare-transfonned worldlines 

XbA(A) = 2'j(x!(J) _A:8) (2.7) 

must be obtained in the frame S I, when the system starts 
from the transfonned set of initial data Zo =(X~A ,U;D). 

Thus, as happens in the instant fonn, the mapping 
Zo -- Zo defines the induced action of Poincare transfonna
tion (2'j,..ra1D ) on the space of initial data. 

In tenns of the adapted coordinates, this mapping reads 

(2.8) 

where ~,?G, 'E;F,G = 1,2, - , + denote the parameters 
characterizing the specific Poincare transfonnation-see 
Eq. (All). 

The infinitesimal generators are then obtained in the 
usual way: 

af~ B _.D a ag! _-11 _.D a 
PE = ---(Xb'l'c ;0,0) --+ --= (~b'U~ ,0,0) -, 

a~ ax;: a~ au: 
(2.9) 

JEF = af~ (x:,zf;O,o)~+ ag! (x:,u~,O,O)~. 
a~Fax;: a~F au: 

To obtain the specific expressions for these generators, 
we shall work out the condition of worldline invariance 
(2.7), together with the worldline equations (2.6). Intro
ducing the latter into both sides of (2.7), we obtain 

lP~(zo, Aa (zo, A») = TX2'1 [ lP:(zo: A) _..ra1E ] 

+ 2'A+ [A - ..ra1+], A = 1,2, -
(2.10) 

It should be noticed that, since the "acceleration" func
tions have the same fonn in frame S and in S I, the same 
general solution lP ~ has been substituted into both sides of 
Eq. (2.7). However, whereas in the right-hand side we take 
the initial data Zo = (x;: ,v:), which correspond to the frame 
S, in the left-hand side we have to put the transfonned initial 
data Zo = (X~A,UbB) which correspond to the worldlines as 
viewed from the frame S I. Moreover, the value of the evolu
tion parameter in the left-hand side ofEq. (2.10), which we 
have written as Aa (zo, A), will be presumed different from 
the parameter A in the right-hand side. This is due to the fact 
that the worldline invariance only ensures that each world
line transfonns into another one as a whole, no matter how 
the respective parametrizations are related to each other. 

In our case, the relation between parametrizations, i.e, 
the function Aa (zo, A), can be derived from the fact that the 
evolution parameter corresponds to the space-time coordi
natex+; so that we have 

Aa (z()J A) = 2' it (lP : (zo, A) - dB) + 2'+ + (A - ..ra1+) . 

(2.11) 

By taking derivatives in (2.10) and (2.11) with respect to 
A we obtain the relation between velocities 

tP~(zo, Aa(Zo, A)) ·A.a(zo, A) = 2'1· tP :(zo, A) + 2'~ , 
(2.12) 

Jaen. Molina, and Iranzo 513 

Downloaded 12 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



with 

Aa(Zo,A) = 2': ·tP~(ZO,A) + 2'! , 
which, after one further differentiation, yields the relation 
between accelerations: 
q, :(zo, Aa (zo, A ))-t ~ (za, A ) + tP :(zo, Aa (zo, A Ma (zo, A ) 

.. B 
= 2'~lP a (Zo, A ) (2.13) 

and 

Aa(zo, A) = 2': q, ~(zo, A) . 

Since lP: is a solution of the differential system (2.3), 
Eqs. (2.13) can be written as 

.9/: ( lP g(zo, Aa (zo, A»); tP ~(zo, Aa (zo, A»); 
• 2 • A .. 

Aa (zo, A» • A a (zo, A) + lP a (zo; Aa (zo, A»). Ab (zo, A) 

= 2'~.9/~( lPf(zo, A), tP~(zo, A), A), (2.14) 
.. B' 
Aa (zo, A) = 2': .9/a (lP f(zo, A),lP ~(zo, A), A) . 

Equations (2.10)-(2.14), which hold for every value of 
A and for every Poincare transformation (2' ~ ,.9/ D), actual
ly determine the functions!:, gg in (2.8). Although, apart 
from a few trivial cases, it would be impossible to derive 
explicit expressions for such functions, the above equations 
permit us to obtain the infinitesimal generators in a rather 
straightforward way. 

Indeed, introducing the infinitesimal expression (AI2) 
for the Poincare transformation (2'~,.9/D) into Eqs. 
(2.10)-(2.12) and keeping first-order terms only, we ob
tain, after some manipulation, 

P+= L L u;:-+a:- , N [a a ] 
A = i,2, - a = I ax;: au;: (2.15a) 

N a 
P A = - L --, A = 1,2, - , 

a=1 ax;: 
(2.15b) 

(2.16a) 

(2.16b) 

(2.16c) 

N { a a 
J iz = L -Xaz -a I -Xal -a 2 

a= I Xa Xa 

a a } + Vaz -a I - Val -a 2 ' 
Va Va 

(2.16d) 

where r = 1,2. 
Notice that, as expected, there are seven kinematical 

generators PA' J 12, J r _, J + _, A = 1,2, -, r= 1, 2; and 
three dynamical ones P +' J +" r = 1,2; or Hamiltonians. 

Now, by introducing the same infinitesimal Poincare 
transformation (AI2) into Eqs. (2.14), we obtain the set of 

514 J. Math. Phys., Vol. 27, No.2, February 1986 

differential equations 

PAa~ = 0, A,B = 1,2, - , 

J12a~ = a~l5f - a!l5f , 
Jr_ a~ = - a~l5~ , 

J + _ a~ = - (aa-l5~ + za~) , (2.17) 

which playa similar role as the Currie-Hill conditions5 in 
the instant form of predictive relativistic mechanics. 

III. NO-INTERACTION THEOREM IN THE FRONT FORM 
OF DYNAMICS 

Let us now assume that we have a symplectic structure 
in the space of initial data, such that the "position variables" 
X;:, A = 1,2, -, are canonical, i.e., the symplectic form is 

0' = dX;: 1\ dp~ , (3.1 ) 

wherep~ = p~(X:,v~,a,b,c= 1, ... ,N,A,B,D= 1,2, - ,and 
summation over repeated indices (A as well as a) is under
stood. 

Let us furthermore assume that the realization of the 
Poincare group that we discussed in the previous section is 
canonical relatively to 0'. This implies that 0' is Poincare in
variant or, equivalently, 

(3.2) 

where l]j = 1,2, - ,+ and 2' means "Lie derivative." 
As a consequence ofEq. (3.2), there exist ten generating 

functions PA(x,p), JAB (X, p) such that 

i(PA)O' = - dP;t and i(J AB)O' = - dJAB , 

or (3.3) 

PA = {PA, - 1 and JAB = {JAB' - I , 

where i means "inner product" and { ,lis the Poisson 
bracket associated to 0'. 

Now, using Eq. (3.3) and the expressions (2.15) and 
(2.16) for the Poincare generators, we arrive at 

IX;:'PB 1 = 15~, {X;:,J121 = - x~151 + x~I5~, 
{X;:,J + _ 1 = xa-I5~, {X;:,Jr- 1 = x~l5~ , 

IX;:, J +r 1 =xa-l5: + x~U;:, IX;:,P +1 = - U;:, 
r = 1,2, A,B = 1,2, - . 

(3.4) 

By applying the commutation relation of the Poincare alge
bra and using the Jacobi identity and Eqs. (3.4), we find, after 
some calculations, 

{J +r,IX:,x;:}} = 15~ Ixa- ,X:I + u: Ix~,xgl + x~ I U;:,xgl 

- V:lxb,x;: 1 - Xb I v:,x;: 1 , (3.5) 

(3.6) 
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{X;:,an = {v:,v:} + ({v:.x:},P +) , 

- ({X:,V:}, J +r} + {Xb- ,V:M~ + {x~,V:M~ 
+ {x;,V:}V: + {x:.x:}x; 
= {va- 4M1 + V~ {v: 4} + V:{v~ 4} 

- a:{x~.xn - x~ {a:.xf} , 
- ({V:,V:},J + r) + {vb ,V:M~ + {VI"V:}V: 

+ {V:,V:}v; - {x;,V:}a! - {a!,V:}x; 
= {va- ,V:M1 + {v~,vnv: 

+ {v: ,V:}v~ - {x~ ,V:}a~ - {a: ,V:}X~ . 

(3.7) 

(3.8) 

(3.9) 

Since the coordinates x;: are assumed to be canonical, 
we have that {x;: 4} = 0, which, combined with (3.5) and 
(3.6), implies 

x~ {vt.x:} - x; {vt.x!} = 0, (3.10) 

whence 

{vt.x:} = 0, for a # b. 
From (3.8), (3.10), and (3.11), we obtain 

{a:, X:} = 0, a # b , 

which, introduced into (3.7), yields 

{v: ,v:} = ° , a # b . 

(3.11) 

(3.12) 

(3.13) 

Now, using the Jacobi identity with V:, V:, and P +' we 
can write 

{a:,v:} = {a!,V:} + {p +,{v:,v:n, 
which, with the help of (3.13), leads to 

{a:,v:} = {a!,V:}. 
Upon substitution into (3.9), this finally yields 

{a!,V:} =0, a#b. (3.14) 

Now taking into account the identity 

{J, g} = . ± {l1;,l1j} aaf aag 
, (3.15) 

',J = I 11; l1j 

where f and g depend on the variables 111 ... 11k only; we can 
write 

(3.16) 

whence, by using Eqs. (3.10)-(3.14) there follows that 

aa! 
-=0 
all! ' c 

aa! 
--=0, 
a~ 

c#b. (3.17) 

That is, the acceleration a:, B = 1,2, - , of each particle b 
does not depend on the positions and velocities of the re
maining ones, but only on its own position xt and velocity 
vt. This conclusion would be enough to consider that the no
interaction result is proven, since the motion of each particle 
is not affected by the presence of the others. However, in the 
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case we are considering (i.e., front form) a little bit deeper 
analysis reveals that the accelerations actually vanish. 

Indeed, from (2. 15b) and (3.17), we have 

aaB 
_a_=O 
ax;: 

and using (2.16), (3.17), and (3.18), we arrive at 

a: = 0, a = 1, ... , N, A = 1,2, - , 

which completes the proof. 

IV. POINT FORM OF PREDICTIVE RELATIVISTIC 
MECHANICS 

(3.18) 

(3.19) 

In the instant and front forms of dynamics, the con
struction of the configuration space was somehow linked to 
the choice of either the space hyperplanes X4 = t or the null 
ones x3 + X4 = A., respectively. In the point form, the hyper
boloids xP xp = - A. 2 will be assigned a similar role. 

Each point in the extended configuration space will be 
characterized by 3N + 1 coordinates (x~ , A. ), 
a = 1, ... , N, i = 1,2, 3, where A. is taken as an evolution pa
rameter and the x~ are the spacelike coordinates of the event 
where the worldline of the ath particle intersects the hyper
boloid 

xP xp = - A. 2 • (4.1) 

As in the earlier two cases, the equations of motion are 
second-order differential equations 

2 . . 
dx~ ; i k dx~ i 
--2- = aa (Xb' Vc ' A.), --= Va , 

d...1. d...1. 
(4.2) 

where a, b, c = 1, ... , N, i,j, k = 1,2, 3. 
Now, let tp~ (xL V~,...1.o,...1.) be the general solution of 

( 4.2) determined by the initial conditions 

tp ~ (~, v~, ...1.0 ; ...1.0 ) = x~ , 

tP ~ (x~, v~, ...1.0 ; ...1.0 ) = v~ , 
(4.3) 

where an overdot means a partial derivative with respect to 
the parameter A.. As in the former two cases, the worldline of 
the ath particle is then defined by tp ~ (~, v~, ...1.0 ; A.), where 

O'k 2 "k 2 
{ 

3 } 1/2 

tpa (x'b' Vc'...1.o;...1.) = A. + i~1 tp~ (~, Vc'...1.o;...1.) 

(4.4) 

And, as before, we shall require Poincare invariance of 
worldlines that reads as 

tp~ (z~, ...1.a (zo, A.)) = LP v [tp ~ (zo, A.) - AV] , (4.5) 

where Zo and z~ are abbreviations of the initial data, (~, ~, 
...1.0 ) and (x~, v;\ A. ~), respectively. These initial data corre
spond to two different inertial frames that are related to each 
other by the given Poincare transformation (LP v' AP). The 
mapping zo-z~ defines the induced transformation on the 
extended configuration space. 

The value of the parameter ...1.a (zo, A. ) on the left-hand 
side of Eq. (4.5) can be easily derived. Indeed, taking (4.4) 
into account, we have 

A. ~ (zo, A.) = - [tp ~ (zo, A.) - AP] [tpav (zo, A. ) - Av] . 

(4.6) 
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As is easily seen from this equation, and also from (4.4), the 
correspondence between A and the time coordinate qJ ~ is not 
one-to-one. In order to avoid the nondifferentiability in the 
branch point A = 0, we shall take hereafter ..10 and A positive. 
Moreover, the translation parametersAIt will be assumed to 
be small enough for A ~ (zo, A ) on the left-hand side of Eq. 
(4.6) to remain positive. 

By differentiating (4.5) with respect to A we obtain the 
transformation formula for the velocities 

Lit v 4; ~ (zo, A ) = 4;: (z~, Aa (zo, A )) Aa (zo, A) , (4.7) 

where 

Aa(zo,A) = [Aa(Zo,A)]-l[qJ~(Zo,A) _AV] 4;av(Zo,A). 
(4.8) 

And, differentiating again, we have the relationship 
among accelerations 

Lit v ip ~(zo, A) = ip:(z~, Aa (zo, A)) A ~(zo, A) 

(4.9) 

where 

x = a 

A2 -t- + -1- {(qJ~(zo,A) _AV) ipav 
a a 

+ 4; ~(Zo, A) 4;av(Zo, A)} . (4.10) 

Now using (4.3) and (4.4), taking (4.6)and (4.8) into ac
count, and setting A = ..10' Eqs. (4.5) and (4.7) yield a set of 
6N implicit equations involving x~, ~,x;\ V~l, Ao, Lit v' AP. 
Similarly to the front form case, it will be generally impossi
ble to derive explicit expressions 

for the action induced by a finite Poincare transformation 
(Lit v' AP). However, by introducing the infinitesmial expres
sions 

Lltv =8'v +€"p(8'a 1/vp -8'p 1/va) + o (c), AP=~ 
(4.11) 

into Eqs. (4.5) and (4.7), we can easily derive the following 
expressions from ten infinitesimal generators: 

(4.12) 

1( .... v~~)a} + T ~ a~ + v~ v~ - -..1- av~ , 

{
.a ·a ·a ia} J .. = ~ xl -- - x' --+ v} - - v - . 

I} £.J a . a . aai aa j a ax~ a~ Va Va 
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Finally, substituting the infinitesimal Poincare transfor
mation (4.11) into Eq. (4.9), and taking (4.10) and (4.12) into 
account, we arrive at 

where 

(
. a . a) a H=I V~-,-. +a~-i +-

a, i aXa ava aA 
(4.14) 

is the infinitesimal generator of A evolution. 
Equations (4.13) play a similar role as Currie-Hill condi

tions in the instant form of dynamics. It can be easily proven 
that they are equivalent to the following requirements. 

(i) The generators Pit' JltV given by (4.12) generate a re
alization of the Poincare algebra on the space of initial data 
(i.e., their commutation relations are the suitable ones). 

(ii) This realization is invariant under A evolution, that 
is, 

[H, Pit] = [H, J ltv] = ° . (4.15) 

v. THE NO-INTERACTION THEOREM IN THE POINT 
FORM OF DYNAMICS 

Let us now assume that by introducing some 3N mo
mentap~ (xb , VC ' A), a = I, ... ,N, i = 1,2,3, the extended 
configuration space can be mapped onto the extended phase 
space, spanned by the 6N + I independent variables (x~, 
It, , A ). Let us further assume that the latter is endowed with 
the canonical structure defined by the elementary Poisson 
brackets 

{x~, xD = {p~,It,} = 0, {x~,It,} = 6ab 6ij (5.1) 

and the Poincare transformations as well as A evolution are 
both canonical relative to this structure. 

The latter condition implies the existence of 11 generat
ing functions H, Pit' J"v, 1-', v = 1, 2, 3, 4, such that 

H = {H,}, PI' = {Pit'}' J"v = {J"v,}, (5.2) 
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where H, PI" andJl'v are given by (4.14) and (4.12), respec
tively. 

According to (4.12), (4.14), and (5.1), we have 

{H,x~} =v~, 

{Po,x~} = [(A2+X;)1/2/A] v~, 

{ Pj , x~ } = - ~ v~ /..1. - oj ' 
{ 

; } ; k {:; . 
Jjk,xa =OjXa-UkXa, 

{J OJ' x~} = (A 2 + X;)1/2 0; . 

(5.3a) 

(5.3b) 

(5.3c) 

(5.3d) 

(5.3e) 

Now, writing down the Jocobi identity for Pj' x~, x~, 
taking (5.1) into account and using (5.2), we arrive at 

(5.4) 

Applying the same treatment to the functions Po, x~, xib, we 
have 

{x{" V~} = {x~, vi} , (5.5) 

which, once introduced in (5.4), implies 

{x{" v~} = 0, a"l=b. (5.6) 

Then, starting from the Jacobi indentity for ~, v~, x{, 
and using (5.2), (5.3), and (5.6) we obtain 

~ {x~, a~} = xib {v~, v~} , (5.7) 

which, substituted in the Jacobi identity corresponding to 
Po, v~, x{, leads us to 

{ k ;} {k; } Xb' aa = 0, Vb' Va = 0, a"l=b. (5.8) 
Finally, using (5.8) in,the Jacobi identity corresponding 

; k • 
to Pj' Va' Vb' we amve at 

(5.9) 

Since the Poisson bracket has rank 6N and the mapping 
(x~, vi, A )~(x~, P{, A ) is assumed to have rank 6N + 1, 
there follows from (5.8) and (5.9) that 

aai, 
-=0 ax; , 

a 

or, equivalently, 

(5.10) 

ai, = ai,(x~, v~, A), (5.10') 

which means that the acceleration of the b th particle does 
not depend on the state of motion of the remaining one. We 
can conclude that particles do not interact among them
selves. 

However, the no-interaction theorem we are intending 
to prove goes further still. Indeed, not only does it state that 
particles do not interact but also that their worldlines are 
straight. 

The specific form of the acceleration a~ can be deter
mined by introducing (5.10') into (4.13). This leads us to 

(5.11) 

which, since the acceleration is proportional to the velocity, 
implies that motions are rectilinear. A suitable reparametri
zation of trajectories will yield uniform motions, and there
fore, the proof is complete. 

In fact, the a priori knowledge that the above-mentioned 
suitable parameter will be the "physical time" rp ~, and its 
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relationship (4.4) to the "unphysical" scalar parameter A, 
will allow us to derive the general solution of Eq. (5.11). In
deed, we can easily prove that 

c + b T(A, ..1.0 , c, b), (5.12) 

with 

T = (1- b2)-1{b.c - bo - ((h·c - to)2 

(5.13) 

and 

to = (A ~ - C2)1/2 

is the general solution ofEq. (5.11); the parameters b·c being 

related to the initial data Xb Vb according to 

C=Xb, 
o 

APPENDIX A 

o 0 

(5.14) 

In this Appendix we present the most useful expressions 
concerning the action of the Poincare group on the Min
kowski space M 4, in terms of the set of coordinates and pa
rameters which are most suitable for the null plane formal
ism (or front form). Throughout this paper, we take c = 1 
and 1JI'V = (+ + + -), p, v = 1, 2, 3,4. 

If ~,p = 1, 2, 3, 4, are the Cartesian coordinates of an 
event in M 4 , then the Poincare transformation (LI' v' AI' ) 
changes them into 

(AI) 

A proper orthochronous Poincare transformation (LI' v, AV) 
is characterized by ten parameters (EA, ~v), 
A, p, v = 1, 2, 3,4, P < v. In the standard parametrization, 
and for infinitesimal values of these parameters, we have that 

La p = oa p + ~V (oa I' 1Jv{J - oa v 1Jpp) + O(~), 
(A2) 

Aa = ~ oa I' . 

Hence, in Cartesian coordinates, and in the standard para
metrization, the infinitesimal generators are 

a a a 
PI' = - axl" JI'V = Xv axl' - xI' axv ' (A3) 

In the front form, it is more convenient to use the new 
adapted coordinates 

~ = MA.I' xI', A = 1,2, +, - , 
where 

(A4) 

x+ =x3 +X4, x- =! (x3 +X4), Xl =Xl, x 2 =x2 , 

(A5) 
that is, 

M'. ~(~ 
0 0 0 
1 0 

o ) 0 1 1 . 

0 1/2 -1/2 
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In these coordinates, the Minkowski metric is given by 

1fAB = (M-I)JJ A (M-I)v B TJJJv 

~(~ ~ ~ V. (A6) 

From this expression it is obvious that 

MAJJ=TJAB MBv rj-tV = (M-I)JJA. (A7) 

So, the lowering and raising of indices works as 

MI =MI, M 2 =M2, M+ =M_, M- =M+. 

(AS) 

Expressed in these new coordinates, the transformation 
(AI) reads 

X,A = .,?AB (XB - dB), 'Ii, B = 1,2, +, - , (A9) 

where 

.,?AB==MAI-' LJJ v (M-I)v B, dB==MBv 'Ii v . (AlO) 

According to these definitions, and performing the 
change of parameters, 

ii =MA
JJ e', e4B = e'v M A

JJ MBv , (All) 

the infinitesimal expressions (A2) transform into 

.,?AB = 8A
B + ECD(8A

c TJDB - 8A
[j 1fcJj) + O(c) , 

dA=Ec~. (A.I2) 

Hence, the corresponding generators are 

PA = - a~ JAB =XB a~-XA a~' (AI3) 

The relationship between the two sets of generators (A3) 
and (A13) can be easily derived from their definitions and 
Eq. (All); this relationship being 

PA = MAJJ P JJ' JAB = MAJJ MJjv JJJv . (AI4) 

Notice that the coordinates xA, 'Ii = 1,2, +, -, are 
specially suitable to work in the instant form approach, since 
the null hyperplane equation X3 = X4 = 0 is written in the 
new coordinates x+ = O. Moreover, the generators PA and 
JAB split in a natural way into kinematic ones (those pre-
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serving the null hyperplane) 

P _, PI' P2, J 12, J I_, J 2 _, J+_ 

and dynamic ones 

P +, J I +, J2 + . 

APPENDIXB 

In the future sheet of the light cone in Minkowski space 
defined by 

X
4 >0, xl-' xI-' <0, (BI) 

we introduce the following coordinates: 

i _ i . _ 1 2 3 4 - ( ..J1, )1/2 (B2) Y - X, I - , , , y - - A' xJJ . 

In terms of these coordinates, the generators of infinite
simal Poincare transformations are 

P = II-
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