
Classical predictive electrodynamics of two charges with 
radiation: General framework. I 

R. Lapiedra and A. Molina 

Departamento de Fisica Teo rica, Facultad de Fisica, Barcelona, Spain 
(Received 7 July 1978; revised manuscript received 6 November 1978) 

Outgoing radiation is introduced in the framework of the classical predictive 
electrodynamics using Lorentz-Dirac's equation as a subsidiary condition. In a 
perturbative scheme in the charges the first radiative "self-terms" of the accelerations, 
momentum and angular momentum of a two charge system without external field are 
calculated. 

INTRODUCTION 

This is the first of a series of two papers dealing with the 
classical dynamics of a radiating system consisting of two 
structureless interacting charges. We assume that each 
charge is moving in the retarded field of the other according 
to Lorentz-Dirac's equation. I 

We take "the absorber" point of view ofWheeler-Feyn­
man2

.) and use the framework of predictive electrodynam­
ics,,· 5 This theory is seen to be consistent with the phenom­
ena of classical radiation and more precisely with the 
Lorentz-Dirac equation. 

In Sec. 2 we show within a perturbative scheme in the 
charges how to construct the dynamical predictive system 
(the accelerations) of two classical interacting charges when 
radiation is present and there is no external field. Then in 
Sec. 3 we give explicitly the first radiative "self-terms" of the 
accelerations. 

To fourth order in the charges (n + m,,;;;4, e7,e'{') the 
other terms in the accelerations, i.e., terms in e1e2 and eie~, 
are shown to be those of Refs. 4 and 5. 

Section 4 contains a review of the definitions of Hamil­
ton-Jacobi coordinates, momentum and angular momen­
tum in predictive relativistic mechanics together with some 
techniques to calculate them in our perturbative scheme. 
Proofs and explanations are omitted and the reader is re­
ferred to the work of Bel and Martin. 6 

Next, in Sec. 5, we calculate the first radiative "self­
term" of Hamilton-Jacobi's coordinates, momentum and 
angular momentum in the perturbative scheme. For all those 
magnitudes the terms in e1e2 can be found in Ref. 6, while 
terms in efe~ for the Hamilton-Jacobi's momenta will be 
given in paper II (this issue). Our calculations show that our 
radiative system is not conservative in the sense of Ref. 6: 
Angular momentum does not recover its free particle expres­
sion after the two particles have undergone mutual interac­
tion. This fact allows us to compute the lower "self-term" of 
the total intrinsic angular momentum radiated by the sys­
tem. This is done by calculating the limit for the "future 
infinity of the first radiative "self-term" in the intrinsic angu­
lar momentum. 

Finally we calculate the 3-accelerations of the two 

charges to third order in lie. This gives us the first correc­
tion to the accelerations which are derived from Darwin's 
Lagrangian,7 when outgoing radiation is accounted for. 

More detailed calculations, including scattering cross 
sections and the 4-momentum balance of a scattering pro­
cess, will be given in paper II. 

1. LORENTZ-DIRAC EQUATION FROM THE 
POINT OF VIEW OF PREDICTIVE RELATIVISTIC 
MECHANICS (PRM) 

Let us consider a system of n point structureless classi­
cal particles. In PRM the dynamics of such a system is gov­
erned by a differential system of the form 

dx~ 

du~ 

dSa 

(a,/3,y,'" = O,I,2,3,a,b,c,. .. = 1,2, ... ,n), (1.1) 

wherex~, u~, ands~ stand for the 4-position, 4-velocity, and 
proper time of the particle a. The functions S ~ (the accelera­
tions) are Poincare invariant 4-vectors which are the solu­
tion of the system 

at-a at-a 
uP, _~_a + S P, _~_a = 0 

a Jxa'p a Jua'p , 
(1.2) 

where we have raised index a' to invalidate the summation 
convention, which will only work in the case where equal 
indices stand in covariant and contravariant positions, re­
spectively. According to this, the indexp is summed in (1.2). 
Let us note that we will raise and lower latin indices without 
change of sign. Finally a' means "different from" a. 

The functions S ~ also satisfy the constraints 

(1.3) 

This guarantees that solutions of (1.1) initially satisfying 
uZ = - I (We choose signature + 2) will maintain this rela­
tion forever. 

We summarize here the main results ofPRM. Further 
details can be found in the original papers. 6

•
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Using perturbation methods, and imposing the com­
patibility of PRM with classical electrodynamics Bel and 
Martin and co-workers have singled out the unique accelera­
tions 5 ~ describing the classical particle-particle electro­
magnetic interaction:·5.9 Classical electrodynamics, through 
the Lorentz force law and the formula of retarded (alternati­
vely advanced or time-reversal) potentials, specifies the val­
ues of functions 5 ~ for arguments x~ standing on null 
configurations, 

(x~ - x~.)(xaa - x U ' a ) = O. (1.4) 

Because of(1.1) PRM is a dynamical theory of "Newtonian 
type" in the sense that a finite number of initial conditions 
(more precisely initial positions and velocities) are enough to 
determine the trajectories. Hence the word predictive in the 
name (predictive relativistic mechanics) of the theory. Fol­
lowing this terminology we will speak about predictive elec­
trodynamics as it refers to the electrodynamics built into the 
framework of PRM. 

PRM, as it has been described here, concerns itself with 
isolated systems of particles. In this sense it seems at first 
sight that predictive electrodynamics is unable to account 
for the fundamental phenomena of electromagnetic radi­
ation. However, that this is not the case can be clearly seen if 
we take the point of view ofWheeler-Feynman2.1 and others. 
According to these authors the theory of classical electro­
magnetic radiation is only a way to account for the interac­
tion of a given system of charges with all other charges of the 
entire universe (theory of the absorber). In particular, the 
Lorentz-Dirac equation for an accelerated radiating charge 
is given by 

5 a = .!.-- Fa /3u/3 + 2e
2 ct a - 52ua), (1.5) 

m 3m 

where ua ,5 a, e, m are the 4-velocity, 4-acceleration, charge, 
and mass of the electric charge, respectively. F a /3 is the given 
external retarded electromagnetic field acting on the charge. 
Finally t a stands for (d /ds)5 a ands is the proper time of the 
charge. 

Ifwe take Eq. (1.5) as the differential equation describ­
ing the charges' motion we would have to abandon predic­
tive relativistic mechanics, since Eq. (1.5) is a third-order 
differential equation. Thus if we want to keep predictive elec­
trodynamics, Eq. (1.5) has to be taken as a differential equa­
tion for the acceleration. In fact, we always have differential 
equations for the accelerations in PRM; e.g., Eqs. (1.2), 
which are by no means the differential equations ofthe parti­
cle motion. In each physical situation we must supply (1.2) 
with the good asymptotic conditions in order to get a unique 
acceleration 5~. Then if we plug into (1.1) the acceleration 
obtained in this way, we will be able to write down the equa­
tion of motion. Analogously, Eq. (1.5) has many solutions. 
(For example those accelerations which allow for the run 
away trajectories.) The problem consists in finding the right 
asymptotic conditions in order to select the physical ones. 
We assume now that the physical solutions, Sa, of(1.5) can 
be expanded in powers of e, 

(1.6) 
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It is obvious that (1.5) has a unique solution of the form (1.6). 
Furthermore, accelerations such as (1.6) exclude automati­
cally the pathological solutions of(1.5) called run away solu­
tions, 10 since these solutions are not analytical functions in e 
(see for instance Ref. 11). For instance we get for the first 
terms of (1.6) 

15 a = J...F a/juf3, 25 a = 0, 
m 

2. THE CASE OF TWO PARTICLES 

(1.7) 

We will consider, within the framework of predictive 
electrodynamics, the case of two charged particles mutually 
interacting, without external fields, but taking account of 
their electromagnetic radiation. We write an equation simi­
lar to (1.5) for each particle. (Remember that we raise and 
lower latin indices a,b,··· without any change: 5 ua 5~' Here 
again we have raised the index a to invalidate the summation 
convention.) 

e 2e2 
. {; a = _a Fa u/3 + _a_f {; a _ {; 2Ua) 

:. a a'/3 a 3 \!> a :. a a 
ma ma 

(t~ d5~), 
dSa 

(2.1) 

where a relates to the particle we are dealing with and F~'f3 is 
the retarded electromagnetic field created by particle 
a'(a'=I=a) on the particle a. The problem with equations (2.1) 
is that they are not differential equations-since the term 
(ea/ma )F~'/3u/3 is not defined for any x'( and x~, but only for 
null configurations 

(X~ - xf)(x2a - Xl,,) = O. (2.2) 

A similar problem must be faced when one considers the 
Lorentz equations of two interacting charges 

f~ = (ea/mJF~'fP/3, (2.3) 

where we have written f~ instead of 5~ to denote the accel­
erations. Using (2.3) as asymptotic conditions and making 
the assumption that accelerations can be expanded in powers 
of el e2, a unique acceleration to be used in (1.1) can be ob­
tained,··5 as explained before. This acceleration f~, could, in 
principle, be determined by using a perturbative scheme in 
the coupling constant g = e le2• The first two terms in the 
series, which we write in evident notation (l·l)f~, (2.2f~, are 
given explicitly in Refs. 4 and 5. [Attention must be paid to 
the fact that the acceleration notation is slightly ambiguous. 
The acceleration ~ about which we are speaking here is not 
the same as in (2,3). In (2.3), it is only defined for null con­
figurations (2.2) and here it is defined for any pair of four 

"'" positions xf and x~ and coincides with 5 ~ in (2.3) for null 
configurations. Something similar can be said about func­
tions 5 ~ in (2.4) and (2.1), respectively.] Now we substitute 
Eq. (2.1) for the new equations, 

(2.4) 

That is to say 
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Assuming that S ~ can be expanded in powers of el,e, we get 
for the first terms 

(2.6) 

(2.1) 

where 0.1) S ~ is the coefficient of e~e a' in the expansion of S ~. 
Then we have a crucial point to clarify: Does I; ~, as 

determined by (2.4), satisfy Eqs. (1.2)? It can be easily seen 
that this is the case for all orders. Furthermore, S ~ in (2.4) 
satisfies (1.3), so it is also easy to see that (1.3) is satisfied by 
€~ given by (2.4). 

Summing up, we have two accelerations, I;~, which de­
scribe a predictive relativistic dynamical interaction because 
Eqs. (1.2) and (1.3) are satisfied. Also S ~ satisfies Eqs. (2.4) 
with Eq. (2.1) as asymptotic conditions; hence this predic­
tive interaction describes two mutually interacting charged 
particles with outgoing radiation and without external 
fields. [For a more rigorous approach to Eq. (2.4) see Sanz, 12 

who first and independently of us has adopted most of the 
points of view that we have developed in Sees. 1 and 2.) 

3. THE FIRST RADIATIVE "SELF-TERM" IN THE 
ACCELERATIONS 

As it has been pointed out in the last section, the accel­
erations 5' ~ corresponding to the predictive electrodynamics 
of two isolated particles (no Dirac term, no external field) 
are in principle calculable within a perturbative scheme on 
the coupling constant. g=e Ie, and (I.I)[ ~,(2,2f ~ are explictly 
given in Refs. 4 and 5. Here we calculate the first radiative 
"self-term" in the accelerations; this is (3,1)€~. According to 
(2.6), [(2.1)] we only need (1,1)5' ~ (= (l,l)f~ to calculate 
(3,I)S~. For (l.I)S~ we have the expression4 

(3.1) 

N ow we have to compute t ~. In order to make the calcula­
tions easier, let us introduce a system of new variables which 
will replace x(l,uf,u~. We define the three linearly indepen­
dent 4-vectors 

where 

1Ja[(XUa) + (ulu,)(xua,)] 

[(u,u z)' - 1] 

(3.3) 

(3.4) 

These two 4-scalars, Za' with h aha and (u IU,)' - 1 constitute 
a set of four independent variables: 

(3.5) 
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and they replace the 4-scalars x', (xua), (ulu,). With these 
new variables, using the definition of (3.2), ra can be written 

(3,6) 

From (3. 1) we get 

(3.1) 

where 

k _ - (ulu,). (3.8) 

Now since we want the first order in t~, (1,I)t~ in our 
notation, we can write 

thus 

a(l,I)1; ~ 
(I,l)ia = uP __ _ 

~ a a axap 

On the other hand, it can be seen that 

(' a a 
U --

a axap az" 

at~ 
uP -- =0, 

o ax"p 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

in the system of variables (3.5). Taking into account (3.10), 
(3.11), and (3,1), the calculation of (3.9) is straightforward. 
We get 

(J.I)i Cl = _ 317akA'Zaha+(3A2Z~ _ _ l_)t a, 
~a S 2'\"3 a 

mara mar~ m~ra 

(3.13) 

(3.14) 

4. MOMENTUM AND ANGULAR MOMENTUM 
FOR TWO PARTICLES 

In this section we review the definitions of momentum 
and angular momentum in PRM, the asymptotic conditions 
and calculational techniques. Proofs and detailed explana­
tions are omitted. We refer the reader to Ref. 6 for them. 

The momentum pa is a 4-vector invariant by M4 trans­
lations such that 

dpn = 0 (a = 1,2;~ = u~~ + s~~), (4.1) 
ds" dSa axoa auo" 

The angular momentum is an antisymmetric 4-tensor, 
J of', such that 

dJ a /3 
--=0 

ds" 

and its behavior under M4 translations is given by 

aJ,,/3 
+ 

aJ,,{3 

a J' x2 

= f:/3'P" _ w'p(3 u j U)'. 
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Let us consider a canonical coordinate system q~, p~ in 
PRM. If q~ - x~, p~ are invariant vectors under the Poin­
care group they are said to form an adapted canonical co­
ordinate system. For such a coordinate system we have 

pa =p~ +p~, 

J a{3 = q~pa{3 _ qf3aPaa , 

(4.4) 

(4.5) 

where pa, J a{3 given by these expressions are a solution of 
(4.1) and (4.2), (4.3), respectively. A particular kind of 
adapted canonical coordinates are the so-called Hamilton­
Jacobi coordinates, which are characterized by the supple­
mentary relations 

dp" 
_u =0 
dS

h 
' 

(4.6) 

We will first calculate a system of Hamilton-Jacobi coordi­
nates and then (4.4) and (4.5) will give uspa and J a {3. In this 
way when determining momentum and angular momentum 
we get a coordinate canonical system and this is interesting if 
one wants to quantize the system. Calculations will be made 
in the perturbative scheme that we have mentioned in para­
graph two. So, we make the assumption that p~, q~ can be 
expanded in a power series of e"e2• Accelerations 5 ~ are 
known explicitly in this perturbative scheme up to fourth 
order: ( 1.1) 5 ~ is given in (3.1), (3.1)5 ~ (term relative to e~e a') in 
(3.6) and (2,2)5 ~ is not given here because we will not use it (it 
can be found in Ref. 4). 

To the same fourth order we have to calculate 
(1.1 )p~, (3, 1 )p~, and (2.2)p~ and the same for q~. The first terms, 
(1.1)p~, and (I.l)q~, can be found in Ref. 6: Obviously they are 
the same as in the more conventional case where the Dirac 
term is absent. We will limit ourselves to the calculation of 
the terms (3.1) which represent the first radiative "self­
terms." Weare able to do this because in the differential 
equations (4.6) they are not coupled to terms (2,2p~, (2,2)q~. 

Neither are they coupled to (2.2)5~. 

In order to get a family of Hamilton-Jacobi coordinates 
giving us to this order one unique momentum and one 
unique intrinsic angular momentum, we need to define ap­
propriate asymptotic conditions for Eqs. (4.6). To do so we 
work with the system of new variables (3.3), 

The asymptotic conditions that we are going to define 
are of two different kinds, corresponding, roughly speaking, 
to the assumption that we have a free particle system when 
(a) x 2

_ + 00 or when (b) eaea.-O. As far as case (a) is con­
cerned it can be seen that in the system of variables h ',za ,11 " 
the limit x'- + 00 corresponds to one or both of these two 
different situations, 

(4.7) 

where r takes the values + I or - 1. Situation (I) means 
that we consider successive pairs of trajectories more and 
more further away. Situation (II) means that we go to future 
infinity (r = I) or past infinity (r = - I) along the straight 
lines defined by the two initiaI4-velocities. To distinguish 
both cases-future or past infinity-we will put X2_00 for 
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x'- 00 p' respectively. With these notations the first group of 
asymptotic conditions to be attached to (4.6) is 

lim p~ = mau~, lim ..!..(q~ - x~) = 0, (4.8) 
x1·+oo" Xl_OO"X 

or 

(4.9) 

while the second group leads to 

(4.10) 

Because of (4.8) and (4.9), p~,q~ are called "regular" in past 
infinity or future infinity, respectively. 

It can be proved that iffor a PRM system there exist 
invariant Poincare vectors p~,q~ - x~, such that (4.6), (4.8) 
[or alternatively (4.9)] are satisfied, thenp~,q~ are a set of 
canonical coordinates and so a set of Hamilton-Jacobi co­
ordinates. Finally it can also be shown in a perturbative 
framework that Hamilton-Jacobi coordinates regular at in­
finity really do exist.!J 

Under supplementary assumptions which roughly 
speaking reduce again to the general assumption that we get 
a free particle system when x 2

_ + 00, it can be proved that 

PdJaa = - m~. (4,11) 

These identities show that, in the language of Dirac, !4 we are 
in the presence of a dynamical system with primary con­
straints. These constraints have their origin in the identities 
u~ = - 1. Primary constraints introduce difficulties when 
one tries to quantize classical dynamical systems. One way of 
getting round this problem is to substitute the dynamical 
system (1.1) by a new auxiliary one, the so-called "auxiliary 
dynamical system": 

dxCt 

a a 
-- =1T dJ. a' 

where J. is a 4-scalar parameter and (~_ - ~1T aa) 

e~(X~,1T'{) = ~5~(~,1Tc- l1T;,mr1Td)' 

(4.12) 

(4.13) 

In this way we go round the constraints u~ = - I since the 
~ are now to be considered as two new independent varia­
bles to add to the other four: x', (x1Ta), (1T!1Tl)' Definitions 
(3.3) and (3.4) now become 

(4.14) 

and 

(4.15) 

with 

X, (1T11T,)2 - ~~" (4.16) 

Now we can determine Hamilton-Jacobi coordinates,p~,q~, 
regular at past (or future) infinity for the dynamical system 
(4.12), taking 4-vectors p~ ,q~ such that p~, q~ - x~ are Poin­
care invariant and such that they are solutions of (4.6) satis­
fying the asymptotic conditions 
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lim ft~ = 1T~, lim ~(q~ - x~), (4.17) 
x< "00 I' Xl ---l> 00 " X 

or the equivalent ones for the infinite future, all of which are 
the subsidiary conditions corresponding to (4.8) or (4.9), re­
spectively. On the other hand, conditions (4.10) become 

(4.18) 

The differential operator d /dsa is now 

~ =7f::~ +oa~ 
dSa a axaa a a~a 

instead of the similar expression given in (4.1). Finally the 
identity (4.11) becomes 

(4.19) 

Fromft~, q~ we get the momentum, jia, and angular mo­
mentum, Ja(3 of the auxiliary dynamical system (4.11) 
through expressions like (4.4), (4,5). Then it can be proved 
that we obtain P a and J a(3, the momentum and angular mo­
mentum, respectively, of the original dynamical system (1.1) 
by "mass geometrization" of jia and Ja(3, that is, making the 

substitution 1T~-maU~. 

5. CALCULATION OF THE LOWEST RADIATIVE 
"SELF-TERM" IN MOMENTUM AND ANGULAR 
MOMENTUM 

Taking (3.14) into account we get from (4.13) 

1 )-3 t~" 

(5,1) 
where 

F =(rr:,h' + A'i2)112 k - ( ) a- a a' = - 1T11T,· (5,2) 

Let us write ft~ in the general form 

(5,3) 

In Ref. 6 the reader will find the first order expressions 
for ft~ and q~, which in our notations are (1,I)ft~,(I,I)q~. Here 
we are interested in (3, 1)ft~ (and later on in (3, I)q~). From the 
first group of Eqs, (4,6) we get to this order 

a(3, 1 )ft" a(o,Q)fta 

1T p ___ G +(3,I)Op ___ a =0, 
h axhl' b a1Tbp 

or taking (4.19) into account 

Dh (3,I)ft~' = - Dah (3,i)0~, 

(5.4) 

(5.5) 

where Dah is the Kronecker delta and Db is the differential 
operator 

= p~ D h _1T h ' 

axhp (5,6) 

Now it can be seen that 

Dila = Dbt~ = O. 

From (4.19) and the first equation of (4.18) we get 

(3.1)/; = 0 
raC1 . 

(5.7) 

(5.8) 

Taking this and (5.7) into account, Eqs. (5.4) become 

(5.9) 

a(3, 1 )jiaa' _ ( 2~, 2A 2i~~') 
- _2-.1 - ~::5 Dab' 

aib 31'ar~ 1Tara 
(5.10) 

where use has been made of the following results: 

Db~ = Di/2 = D;f2 = 0, DrJa = Dah. (5.11) 

[We can get (3,10) and (3.11) from (5.7) and (5.11), respec­
tively, by making the substitutions: 1T~-maU~.] On the other 
hand, we have the asymptotic conditions (4.20) (or the 
equivalent ones for the future). The only solution to (5.8), 
(5.9) "regular" at infinity is 

(5,12) 

(J,I)jiaa' = 2~'r" dia 2A'rr: a' 

3~ )'00 
F3 ~ a 

X f~ 
i~dia 2~,ia 

--
r 3~F~ a 

(5.13) 

So we have 

.1 21]a~,k - 2~,ia-
(.,I)ft~= h a + --t~,. (5,14) 

3~F~ 3~F~ 

Let us calculate (3, 1 )q~. From the second equation (4.6) we get 

Db (J,l)q~ = (3,I)ft~Dab 

and if we write 

(:\,l)q-a = 71 (3,1)-y h-a + (3,I)V- -ta + (3,1) -ta 
a '/a a ao a Vaa' ai, 

Eqs, (5, 15) become 

(5.15) 

(5.16) 

(5,17) 

(5.18) 

(5.19) 

The general solution of these equations satisfying the asymptotic condition given by the second of the equations (4, 17) (or 
the equivalent ones for the future) gives the following expression for (3, I)q~, 

21] k( y i ) 2rr:, - -(J,i)qa = __ a_ -= _ ...!!.. h a _ a t a , + (3,I)V t a + (3,1)V ,ta" 

a 3~h' A Fa 3~ ~ 'Fa a * aa a * aa a 
(5.20) 
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where ~3,llvab are arbitrary functions of ii\ A\ 7Tb except for the condition that limh- I 
.Vab = O. We can see that at variance 

, t" h d' (3,I)-a with (3,l)p~, we do not have umqueness lor t e coor mates qa' 

Using expressions (S.14), the formula (4.4), and making the substitution ~----+mau~ we get one unique radiative "self­

term" in linear momentum, 

2 2 3 3) Z ez e l 2 eizi a e2Z2 a 
rp a-e3e (3,I)pa + e3e (3,l)pa - _ e e k (-- - --) h a + --ele2(-- t 2 + --t I • = I 2 I 2 I Z - I 2 ,3 _3 3 __ 1 3 

3 m2~ ml'l ml'l m2rZ 

(S.21) 

Since the (3,I)q~ given by (S.20) are not unique, the radiative "self-term" in angular mome~tu~ ?a{J, given by (4.S), (5.14~ 
(S ,20) is not unique. Nevertheless it can be seen that the radiative "self-term," rw a

, of the mtnnslC angular momentum W , 
defined by 

wa= _1_ {ja{JAP-p{JJA [P _( _ paPa)ll2, {jom = 1] 
2P P-

(5.22) 

is unique. We first get 

e31e2 (3,l)Wa + ez3el (1,3lWa = 1 [eiel3,I)YI - i l (3,llal) + e~e/3,I)Y2 - i2 (3,I)a2) 
[ _ «0,0) P a (0,0) P a) ] 112 

and then 

where we have put 

"a{JAp- - a 
U XpUuuZp-=n. (S.2S) 

One could ask why we have not considered the terms 
(1,3)p~,o,3lq~. The answer is that if one considers them, then a 
similar calculation such as the one that has been used to 
calculate (3.1)p~,(3.1)q~, gives (l,3)p~ = 0, (1,3)q~ = ~1,3)vaat~ 

+ ~I,3)vaaT~, and these expressions do not change either 
(S.21) or (S.24). rw a depends on yand so it has different 
values at past or future infinity (it goes to zero at one of these 
two infinities depending on y). In the language of Ref. 6, 
when radiation is present, wa is not "conservative." Of 
course, wa maintains its numerical values along a given pair 
of trajectories, but it does not keep the form of the expres­
sions corresponding to free particles, which w a takes at the 
past (or future) infinity. On the other hand, pa does not 
depend on y, so it is "conservative." 

When the Dirac term is not considered, pa, w a are 
conservative to first order6: That is, (l,l)p a, (l,I)Wa do not 
depend on y. [It can be easily recognized that terms like 
(n,n)pa, (n,n)wa are the same if we consider the Dirac term 
(Lorentz-Dirac equation) as if we do not (Lorentz equation 
with retarded potentials).]. 
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(S.23) 

(S.24) 

So, to fourth order in e~e;' (n + m,4), we have that the 
momentumpa 

pa = mluf + m2u~ + ele2 (l,l)pa + eie~ (2,2)pa + rpa, 
(S.26) 

with rpa given by (S.21), is numerically conserved along any 
given pair of trajectories and the same can be said about wa. 
In the spirit of field theory and to this order the first part of 
(5.26)-ppa mluf + m2Ur + ele2 (l,l)pa + efe~ (2.2)pa_ 
could be interpreted as the total momentum of the system, 
consisting of the two charges plus their electromagnetic 
field, excluding self-interactions, while rp a would represent 
the momentum of the radiated electromagnetic field that 
takes the self-interaction into account. Neither pp a, nor rpa 
are conserved numerically by themselves; but their sum to 
this order is conserved. In a similar way we could define p W a 

and then decompose Wa as PWa + rw a . 

Now we make the choice y = - 1 in (S.24), so we take 
the intrinsic angular momentum W a to be "regular" at past 
infinity. 

Let usintroducerW such that rwa = rWna. Thenobvi­
ously we have 

lim rw= 0 
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and for future infinity 

'W + x- lim 'W= 
x· 4' ex I 

Since 

lim (1.I)w," = 0, 
x "X, 

4m 1m,e1eleilmi + e~/mDk 
3(mi + m~ + 2m 1m,k )I/'Ah 2 

(5.27) 

we have the evident notation 

(5.28) 

where it is clear that having W a = (0.0) w a at past infinity we 
do not recover the form of this expression in the infinite 
future. [From the definition (5.25) we get 

(O,O)W" = m1m,n" I(mi + m~ + 2m 1m,k )112,] 

On the other hand, if we calculate 

'p'~ 7. lim 'pa 
X· .. x, 

we will get zero since' P" does not depend on y, 

From the point of view of the "theory of the absorber" 
(see Sec, 1) eie~ (2,2 l W + xn" + 'w + ocn" could be interpret­
ed as all the intrinsic angular momentum that our two parti­
cles, have delivered during all their history to the charges of 
the entire universe, The term 'W + ",n a accounts for the in­
trinsic angular momentum which corresponds, in the lan­
guage offield theory to the "self-terms" of the radiated elec­
tromagnetic field, while the other term eid (2,2lW + cona 
belongs to the system consisting of the two charges plus their 
electromagnetic field (self-interaction excluded), This term 
would be absent if the two charges were to interact through 
time-reversal invariant potentials instead of through retard­
ed ones, as it is actually the case in the Lorentz-Dirac equa­
tion (2,1), 

Similar considerations can be made about the momen­
tum pa but now the term 'P'~ oc cancels, that is to say, in our 
approximation, the all radiated "self-term" in the momen­
tum by the two interacting particles, is zero, 

Probably we would have to go on with our expansion in 
e't'e~' up to order n + m = 6 to get 'P',+ ",*0, In fact dipolar 
radiation in conventional electrodynamics begins at sixth or­
der in the charges involved, 

We end this paper by making some physical consider­
ations, First of all, we could recover the formal expansions in 
the charges of this article by making the reasonable assump­
tion that the magnitudes we have calculated can be expanded 
in powers of the dimensionless quantities eaeble'mc x 
(x 3 - distance between the two charges). These are not 
Lorentz scalar quantities. So, we cannot attach an invariant 
meaning to the fact that these quantities were small in a 
given inertial system. In spite of this, expansions in 
eaeble'm, x are meaningful since, because of the Poincare 
in variance, accelerations, momentum, etc., are always the 
same functions of positions and velocities, no matter which 
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inertial system we are talking about. Then each inertial ob­
server must only make sure that quantities eaeble'mc x are 
small enough for him in order to get a fast convergence ofthe 
expansions, 

For electrons we have eaeble'm c x ~ 1 when x - 3 Fer­
mi. So we can see that eaeble'm c x will be very small in all the 
physical situations where the classical theory developed here 
can be used, 

In the case of the accelerations, where the terms (2,2)5 ~ 
are known,4 we can easily get the 3-accelerations 
f..l~ = d 'x~/dt' up to third order in lie. (see, for instance, 
Ref. 8 about the three-dimensional formalism of the PRM.) 
From (1.1)5;;, (3,I)S~' given by (3,1), (3,14), respectively, 
from (2,2)5 ;; .. and making use of the relation' 

f..l~ = (1 - ~:)[ (5~\c t - +(5~)t' ~ tV~] (5,29) 

(where V~ is the 3-velocity of the particle a) we get to third 
order in lie 

27]ae~ea,r.V. 27]aeie~ 27] e3e -:...:.....:.....:=---1" _ Vi + a a a'V i 
elm~r5 3elmlm,rl 3elm~rl' 

(5.30) 

where we have put 

V' V; - V~, ri Xi, V (V.V)II', r (r·r)112 

and V.V, r·r are R 1 scalar products. 

In (5,30), to zeroth order, we recognize, Coulomb's law, 
The second order is the correction of Darwin's Lagrangian 
to Coulomb's law,' In the third we have two kind of terms: 
Only those in e~ea" come from the Dirac term in the 
Lorentz-Dirac equation. We can think about it as a radiative 
term. The other two terms in lIe l have nothing to do with 
the Dirac term. They would be absent if we had taken time­
reversal potentials instead of the retarded ones that must be 
used in the case of the Lorentz-Dirac equation. 

Notice the fact that the term off..l~ in 1/e l vanishes when 
eJml = e,/m" 
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