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The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint 
systems. A procedure to construct the Lagrangian constraints from the Hamiltonian 
constraints is given. Those Hamiltonian constraints that are first class with respect to the 
Hamiltonian constraints produce Lagrangian constraints that are FL-projectable. 

I. INTRODUCTION 

The current interest in constrained systems was 
spawned by Dirac· and Bergmann2 in their study of the ca
nonical formalism of gravitational fields. Since that time sev
eral people contributed to the building of a mechanics for 
such systems.3 In particular the Lagrangian,4 Hamilto
nian,4,S Hamilton-Jacobi,6 and geometrical formalisms7 

have been studied. For a time this field of research had little 
more than mathematical interest, but now with the increas
ing interest in gauge theories (any theory with gauge trans
formations is a theory of constrained systems), more people 
are beginning to use this formalism at the classical and quan
tum level. 

On the other hand, constrained systems with a finite 
number of degrees offreedom have been used to construct an 
N-body relativistic mechanics of direct interactions8 whose 
corresponding quantum mechanics,9 which is multitem
poral, is related to the Bethe-Salpeter equation. 

Despite increasing interest, the mechanics of these sys
tems is not as elaborate as the corresponding mechanics for 
unconstrained systems. For example, the equivalence 
between the Lagrangian and Hamiltonian formalism has not 
been definitely established. 10--12 

In this paper we give an explicit and complete proof of 
this equivalence. We construct an implicit inverse relation 
between velocities and momenta, i.e., the inverse Legendre 
transformation. Using that we deduce the Hamilton-Dirac 
equations from Euler-Lagrange equations. Neither is a set of 
normal differential equations, therefore the uniqueness and 
existence theorem cannot be applied. This means that, at 
most, we will only have solutions in a submanifold of the 
respective spaces and in general these solutions will not be 
unique. 

A careful analysis shows that given a solution of the 
Euler-Lagrange equations we can construct a solution of the 
Hamilton-Dirac equations and vice versa. Next we look for 

the appropriate submanifold of the tangent bundle (TQ) 
and a submanifold of the cotangent bundle (T*Q) where the 
solutions exist. These submanifolds are constructed through 
an iterative procedure. In a given local chart they are charac
terized by a set of functions that are called constraints. 

The Hamiltonian formalism as developed in this paper 
differs from the usual development. .,2 The first class primary 
constraints playa privileged role. Other constraints are ei
ther first or second class with respect to them. These con
straints that are first class with respect to the primary first 
class constraints can be associated with Lagrangian con
straints that are FL-projectable (or weakly FL-projectable). 
Those that are second class in the Hamiltonian formalism 
have associated non-FL-projectable Lagrangian constraints, 
It is also shown that all constraints other that the primary 
constraints have either a symmetric or antisymmetric Pois
son bracket (PB) structure with the first class primary con
straints. 

The paper is organized as follows. In Sec. II we show 
that if we have a solution of the Euler-Lagrange equations 
we can construct from it a solution of the Hamilton-Dirac 
equations and vice versa. In Sec. III we develop an algorithm 
for the determination of the Hamiltonian constraints. In Sec. 
IV we develop an analogous algorithm for the Lagrangian 
constraints and we relate the Lagrangian and Hamiltonian 
constraints. 

II. THE EQUIVALENCE THEOREMS 

We consider an N-dimensional configuration space Q 
and a function L, the Lagrangian, defined in its tangent bun
dle TQ. The Euler-Lagrange equations 

d aL aL . 
--. --. =0; J= 1, ... ,n, (2.1) 
dt aif aq' 

can be written in the normal form of ordinary second-order 
differential equations (SODE) only when the Hessian ma-
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trix Wij =0 2L 10;/ oqj is regular. 
If the Hessian matrix is singular, neither the existence 

nor uniqueness theorems for SODE holds. This means that 
the possible solutions of (2.2) lie in a submanifold of TQ and 
given a point of that submanifold we can have more than one 
solution passing through that point. We shall assume in the 
following that the rank of the Hessian matrix W is constant 
in all TQ and is n - m I' If this is not the case, our consider
ations will only hold in an open region of TQ where this 
condition is satisfied. 

A. The map FL 

The fiber derivative of the Lagrangian is the application 
(FL) of the tangent bundle on the cotangent bundle T *Q 

FL: TQ~T*Q, 

given by FL(q,q) = (q,p), where 

oL 6lJ ( .• ) • 1 p; = -. = OJ; q,q I = , ... ,n. 
oq' 

(2.2) 

We shall also assume that FL(TQ) =MoCT*Q is a sub
manifold of T *Q, locally defined by the constraints 

<I>~O) (q,p) = 0, p, = 1,2, ... ,m
" 

which are the primary constraints. 
We also assume 

rank --p,- = mi' I 
a<I>(O) I 

op} 

(2.3) 

(2.4) 

This condition excludes ineffective constraints at this level. 
In the following we will disregard Lagrangians that have 
ineffective constraints at any level. 

The primary Hamiltonian constraints (2.3) are identi
fied at the Lagrangian level, i.e., 

<I>~O) (q,flJ (q,q) )=0, (2.5a) 

or equivalently 

FL*<I>~O)=O, (2.5b) 

where FL* is the pullback application. From (2.5) we de
duce 

a<I>(O) oflJ . 
~q,flJ (q,q)J-;:-!- = 0, 

cJPI dqj 
(2.6) 

and since oflJ Joqj is the Hessian matrix element Wij' we 
have a basis for the null vectors of W: 

a<I>(O) 

11. = FL* ~ P, = 1, ... ,m l , i = 1, ... ,n. (2.7) 
cJp' 

A basis for the kernel of differential application FL * can be 
written in terms of (2.7) : 

. . a rp, = r'p, (q,q)-;-:-. (2.8) 
clql 

A function/eA ° (TQ) is FL-projectable if there exists some 
functiongeAO(T*Q) suchthat/= FL*g. The necessary and 
sufficient condition for /eAo(TQ) to be FL-projectable is 
thae· lO 

r J= 0, p, = 1, ... ,m ,. (2.9) 

The energy function E L (qq) = ql flJ I (qq) - L (qq) verifies 
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condition (2.9). Therefore there exits a function 
HceAo(T*Q) such that 

FL*Hc =EL , (2.10) 

where Hc is only unambiguously defined in Mo. 
Let us proceed to the inversion of the Legendre transfor

mation FL. Given a point (qo,qo)eTQ and its image under 
FL(qaoPo),Po = (qo,qo), we have the identity 

Hc(qo,flJ(qoiJo»)=q~ flJ;(qo,qo) -L(qo,qo), (2.11) 

from which, taking the derivative with respect to q}, we ob
tain 

oHc aflJ;. oflJ l . '1 
~(qoPo)!j."""(q~o) = !j."""(q~o)qo· (2.12) 
cJp I clq} clqj 

Therefore, q~ - (oHJop)(qoPo) is a null vector of Wand 
can be written in terms of (2.7): 

.' oHc 0'. 
iJ'o - ~(qo,Po) = vp, r'p, (q~o), (2.13) 

cJPI 

for some parameters v~. Note that (qoiJo) is a particular 
point of anti-image FL -I (qo,Po)' The whole anti-image is a 
leaf of foliation, defined in TQ by the equivalence relation 

x-xl++FLx = FLx'; x,xleTQ. (2.14) 

Consequently, Ker FL. at every point xeTQ is given by 
the elements of Tx ( TQ) tangent to the leaves of the foliation 
previously defined. In other words, these leaves are the inte
gral surfaces of the vector fields belonging to Ker FL •. This 
means that FL -1(qoPO) will be generated from the point 

(qo,qo) by the exponential map eu"r" with up, arbitrary pa
rameters and r p, the vector fields (2.8). Therefore, 

FL -1(qoPO) = (qo,q(v»), (2.15) 

where 

. oH a<I>(O) 

q'(v) = ~(qo,po) + vp, -a p, (qoPo), 
cJp; 'PI 

(2.16) 

with the arbitrary parameters vp, given by vp, = v~ + up,. 
Due to the condition (2.4) given a point ofthis leaf we can 
determine the parameters if in terms of the coordinates of 
this point. This means that for a given point (q,p)eMoand all 
its possible anti-images we have the relation 

oH a<I>(O) 

ql = ~(q,p) + vp, (qq):!-(q,p). 
cJp; cJp; 

(2.17) 

Ifwe now consider Eq. (2.17) as a system with (q,p) as 
data and q as unknowns, we show in Appendix A that there 
are no solutions if the data are out of Mo; whereas if the 
(qp)eMo, the solutions of (2.17) are obviously given by 
(2.16). Therefore we conclude that the relations (2.17) and 
(2.2) are equivalent. Therefore Eq. (2.17) is the inverse Le
gendre transformation; note that Eq. (2.17) is an implicit 
equation for q. 

Let us observe that the application of r to both sides of 
(2.17) gives 

rp,vy=l)p,y' (2.18) 

This means that all the functions vp, (qq) are not FL-project
able. However, we shall see in Sec. III that some of these 
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functions admit a canonical form when restricted to a suit
able submanifold of TQ. 

Now if we take the derivative of (2.11) with respect to 
qjJ we have 

aL aBc (aBc )aflJj . - -. (qq) = -y(qp) - qj - ~(qp) ~(q,q), 
aq' a'l cJPj uq 

(2.19) 

where (qp) = FL(qq). If we use Eq. (2.17) we have 

aL aB a4>(0) aflJ. 
- -. (qq) = -i-(qp) - vI' (qq)---;f-(qp)~(qq), 

aq' a'l cJPj uq' 
(2.20) 

but since FL *ct> I' = 0 we have 

FL*(a4>1' )aflJ! + FL*(a4>~) = o. 
apj aq' aq' 

(2.21 ) 

Therefore, Eq. (2.20) can be written as 

aL aB a4>(0) 
--.(qq) =-a ~ (q,p) + vl'(qq)-a~ (q,p). 
~'q' q 

(2.22) 

Let us now consider the equations of motion. 

B. Equations of motion 

A curve q: IeR ..... Q is a solution of the Euler-Lagrange 
equations (2.1) ifthe functionp(t) defined by 

p(t) = flJ(q(t), d~~») (2.23) 

satisfies 

dp = OL( (t), dq ). 
dt aq q dt 

(2.24) 

Due to the equivalence between Eqs. (2.2) and (2.17) we 
can write an expression equivalent to (2.23), i.e., 

~~ = a;c (q(t),p(t») + VI'( q(t), d~~) )0;;0) (q(t),p(t»), 

(2.25) 

also due to (2.22) we have 

aL . aBc (dq(t») - aq (q(t),q(t») = -aq(q(t),P(t») + vI' q(t)'--;jf 

act> (0) 

x a; (q(t),p(t»), (2.26) 

and using (2.24), Eq. (2.26) is written as 

dp aBc 
- - = ~q(t),p(t») 

dt aq 

+ vI' q(t), ~ ~q(t),p(t»). (2.27) ( 
d (t )a4>(0) 

dt aq 
Equations (2.25) and (2.27) are the Hamilton-Dirac equa
tions for the singular LagrangianL (qq), so we can formulate 
the following theorem. 

Theorem: If q(t) is a solution of Euler-Lagrange equa
tions (2.1 ) in configuration space, the lifting to T *Q given by 
(q(t),p(t») with p(t) defined by (2.2), is a solution of the 
Hamilton-Dirac equatic;ms (2.25) and (2.27). 

Furthermore, in the inverse sense, if (q(t),p(t») verify 
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Eq. (2.25) and Eq. (2.27), then (2.23) is satisfied because 
Eq. (2.23) is equivalent to (2.25). Furthermore, from 
(2.26) and (2.27) we obtain (2.24), therefore the following 
theorem holds. 

Theorem 2: If (q (t) ,p (t) ) is a solution of the Hamilton
Dirac equations (2.25) and (2.27), then q(t) verifies the 
Euler-Lagrange equations (2.1). 

If we consider the canonical symplectic structure of 
T*Q we can write Eqs. (2.25) and (2.27) in terms ofPB as 

~~ = {q,Hc} + VI'( q, ~~ ){q, ct>~0)}, (2.28) 

(2.29) 

These equations are not written in the normal form, in 
the same sense as the Euler-Lagrange equations of motion, 
(2.1 ), therefore the possible solutions of those equations lie 
in a submanifold of T *Q and the solution passing through a 
point of that submanifold is not necessarily unique. 

Equations (2.28) and (2.39) can be written in a normal 
form if one introduces m 1 arbitrary functions of the evolu
tion parameter AI' (t), and also imposes from the outset the 
primary constraints 

dd
q 

= {q,Hc} + AI' (t){q, ct>~0)}, 
t Mo 

(2.30) 

dp = {P,Bc} + AI' (t){p, ct>~0)}, 
dt Mo 

(2.31) 

where = means weak equality on the surface Mo. Equations 
Mo 

(2.31) are the standard Hamilton-Dirac equations. 1
•
2

•
4

•
s 

III. HAMILTONIAN FORMALISM 

In the preceding section we assumed the existence of 
solutions of the equations of motion and we have shown the 
equivalence between the Lagrangian and Hamiltonian for
malism. Now we study the submanifold where those solu
tions exist, we will use an iterative procedure. Let us begin 
with the Hamiltonian formalism, the Hamilton-Dirac equa
tions of motion are Eqs. (2.28) and (2.29): 

~~ = {q, Bc} + VI'( q, ~; ){q, ct>~0)}, 

: = {P,Bc}+VI'(q, ~;){p,ct>~0)}, 
(3.1) 

where ct>~0) are the primary Hamiltonian constraints and 
vI' (q,q) are known function of q and q. We know, from Ap
pendix A, that (3.1) have only solutions if the initial condi
tions belong to the submanifold Moe T*Q. In that case, a 
curve passing through a point of Mo will be a solution of 
(3.1) if 

d ct>(0) 
--1'- = 0, f..t = 1, ... ,m 1• 

dt Mo 
(3.2a) 

that is, the solution (q (t) ,p (t) ) must belong entirely to Mo. In 
general, Eqs. (3.2) will be restrictions for the initial condi
tions. We write (3.2) as 

(3.2b) 
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To discuss the content of (3.2) it is necessary to know the 
rank of the PB matrix between the primary constraints, i.e., 

rankl{<I>~O),<I>~O)}I =ml-m2' /-l,V= 1, ... ,m l , (3.3) 

which we assume to be constant on Mo. It is convenient to 
introduce an equivalent set of constraints 

.m(0) 1 
'#!' "", /-lo = , ... ,m2' 
.m(0) , - 1 
'#!' p.Q' /-lo - , ... ,ml - m2' 

with the properties 

0=1- detl{<I>(O) <I>(O)}I=detC(1) 
Mo 14' Vo pOvo' 

{.m(0) .m(0)} = 0 {<I>(O) <I>(O)} = 0 
'¥JtOJ'¥J.I.o ' 1'0' va ' 

Mo Mo 

(3.4 ) 

(3.5) 

(3.6) 

(3.7) 

therefore <I>~), <1>:::,> are first and second class, respectively, 

on Mo. Note that <I>(~) are m I - m 2 of the old primary con-
I'i> . 

straints <I>~O), instead <I>~) are linear combinations of them. If 
we consider Eq. (3.2) for the second-class constraints <I>(~), 

I'i> 

we obtain a canonical expression for the functions v ,(q,q): 
vo 

(3.8) 

Therefore the evolution for a generic quantity A (q,p) in Mo 
is given by 

dd~ = {A, H~I)} + vVo (qq){A, <I>~~)}, Vo = 1, ... ,m2' 
t Mo 

where 

H(I)=H - {H <I>(O)}(Cw) -I <1>(0) 
c c c JtO 1'0 va Vo' 

/-l~' v~ = 1, ... ,m l - m2, 

with the properties 13 

(3.9) 

(3.10) 

{<I>(~), H~I)} = O. (3.11) 
I'i> Mo 

The evolution of the first class constraints <I>~~) is given by 

!!..-<I>(O) = {<I>(O) H(I)}=<I>(1) 
dt "" Mo "", c - "", 

the stability conditions for <I>~!) are 

(3.12) 

<1>(1) = O. (3.13) 
1'0 

If all these conditions are satisfied on Mo the analysis is fin
ished, if this is not the case Eqs. (3.13) are new restrictions 
on the initial conditions, which we call secondary con
straints. Note that some of these constraints can be automat
ically satisfied on Mo, but in order to use a more compact 
notation we will continue to use the SUbscript /-lo for all sec
ondary constraints. 

Let M I , be the new submanifold defined by 

<I>(~) = 0, /-l~ = 1, ... ,m l - m 2, 
I'i> (3.14) 

.m(0) - 0 .m(1) - 0 II. - 1 m 
"¥P.o - , '¥1Lo - , rO - , ••• , 2-

A curve passing through a point of MI will be a solution of 
(3.1)if 

d <1>(1) 
__ 1'0_ = O. (3.15a) 

dt M, 

These stability conditions can be written explicitly 
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o = {<I>~!), H~I)} + vvo(q,q) {<I>:.!), <I>~~)}. (3.15b) 
M, 

In Eq. (3.15) a PB matrix appears between the primary first
class constraints on Mo and the secondary constraints. As is 
shown in Appendix B this matrix is symmetric: 

{<I>(1) <I>(O)} = {<I>(1) <I>(O)}. (3.16) 
1-'0' va Vo ' Po M, 

Let m 2 - m3 be the rank of this matrix. Due to this symme
try property we can introduce a new set of constraints 

<I>~~) == 0, <I>~:) = 0, /-ll = 1, ... ,m3, 

<I>(~) = 0, <I>(!) = 0, /-l; = 1, ... ,m2 - m3, 
1'1 1'1 

with the following properties: 
0=1- detl{ <1>(1) <I>(O)}I =det C (2) 

M, pi' vi 1'1 vi' 

{<I>(l) <I>(O)} = 0 
1',' 1'0 ' M, 

(3.17) 

(3.18) 

(3.19) 

{<I>:.!), <I>~~)} :. O. (3.20) 

Note that <I>(~) are m2 - m3 of the old <I>~~), due to the sym-
1', ~ 

metry property, Eq. (3.16), and <I>(!) are also the same 
1', 

m2 - m3 of the <I>:.!). The<l>~~) are a linear combination of the 
<I>~) and the <I>~:) are the same linear combination of the 
<I>~!). This means that we also have 

<1>(1) = {<I>(O) H(!)} 
1'. 1-'.' c , 

(3.21 ) <1>(1) = {<I>(O) H(!)} 
1-'1 1-'1' c , 

This means that the labeling of new constraints is compatible 
with their stability, therefore we have a sort of hereditary 
property. It should be noted that <I>~~) are first-class con
straints on MI' 

At this point, we consider the stability condition for the 
constraints <I>(!). From this we obtain a canonical expression v, 
for the functions v , (qq): ", 

v (qq) = _ (C(2» -I {<I>(1) H(I)}. 
vi M, vipi ",.' C 

(3.22) 

The evolution on Ml is given by 

dA = {A H(2)} + v (qq){A <I>(O)} 
dt M, 'c v. 'v,, (3.23) 

where 
H(2)=H(1)+{H(1) <I>(I)}(C(2»-1 <1>(0) 

c c c 'lti 1-'1 VI vi' (3.24) 

with the properties 

{<I>(!), H~2)} = O. (3.25) 
1', M, 

Now consider the stability of the remaining secondary 
constraints 

!£<I>(1) = {<I> (1) H(2)}:s<l>(2) (3.26) 
dt 1'1 M, J.l..' C 1'1 ' 

the relations <I>~~) = 0 can be satisfied on Ml in which case 
the analysis is finished. Otherwise 

<I>~~) = 0, /-ll = 1, ... ,m3 , (3.27) 

are tertiary constraints. At this level the evolution is restrict
ed to the submanifold M 2 : 
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ct>(0) = 0 ct>(0) = 0 ct>(0) = 0 
!'O ' 1'1 ' 1', ' 

ct>(!) = 0, ct>(O) = 0 ct>(2) = 0 (3.28) 
1', 1', ' 1', ' 

with 

J.Lo = 1, ... ,ml - m2, J.Li = 1, ... ,m2 - m3, J.LI = 1, ... ,m3· 
(3.29) 

In order to stQdy the stability of tertiary constraints 
ct>(2), we need to consider the PB matrix of the primary first-1', 
class constraints on M I , ct>~0), with the tertiary constraints 
ct>~~) . As is shown in Appendix B, this matrix is antisymme
tric in the submanifold M2! 

(3.30) 

Let m3 - m4 be the rank of that matrix. Due to the antisym
metry property we can introduce a set of constraints 

ct>(2) ct>(2) 11.2 = 1, ... ,m4' 
Jl.2' 1'2' r-

(3.31) 

which define the same surface as the set ct>~~), ct>~~), with the 
properties 

(3.32) 

(3.33) 

ct>(1) = {ct>(0) H(I)} ct>(1) = {ct>(0) H(I)} (3.34) 
1-'2 P,l' c' pi pi' c' 

ct>(2) = {ct>(\) H(2)} ct>(2) = {ct>(1) H(2)}. (3.35) 
1'2 1-'2 C '#'2 ,u2' C 

The stability conditions for the tertiary constraints ct>(~), as 1'2 
in the previous case, enables us to obtain a canonical expres-
sion for the functions v •• Using that expression the evolu-

V2 

tion on M2 is given by 

dA = {A H (3)} + v {A ct>(0)} 
d 'c 1'2'v2 ' t M, 

where 

(3.36) 

H(3) =H(2) _ {H(2) ct>(2)} (C(3» -1 ct>(O) (3.37) 
c c C , PI 1-'2 vi vi' 

with the property 

{ct>(~), H ~3)} = O. 
1'2 M2 

(3.38) 

With respect to the stability of ct>~!) we have the relations 

ct>(3) = 0 (3.39) 1', , 

where 

ct>:.!)={ct>~!), H~3)}. (3.40) 

If the relations (3.39) are verified on M2, the analysis is 
finished. Otherwise we have more constraints and therefore 
we need further to require the stability of those constraints 
and the procedure continues as before. Let assume that our 
Lagrangian has a final submanifold Mf where we have solu
tion of the equations of motion (3.1). We write the con
straints defining Mf as 
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ct>(0) 
!'O 

ct>(0) 
1'; 

ct>(0) 
1'2 

ct>( !) 
1', 

ct>(1 ) 
1'2 

ct>(~) 
I'~ 

4>(0) ct>(O) primary; 
1'; I'f' 

ct>( I) ct>(I) 
1'; I'f' 

ct>(2) ct>(2) 
1'; I'f' 

ct>;!j ct> if} , 

secondary; 
(3.41) 

tertiary; 

j-ary, 

where the hereditary property is manifest. The equations of 
motion on Mf are 

ddj4 = {A, HY+ ll} + vVf(qq){Act>~}, (3.42) 
t Mf 

where 

The matrix C (j) is symmetric or antisymmetric depending 
on whether/is odd or even. 

We have 

{ct>(f) H(f+ ll} = 0 
pi' C , 

f M f 

(3.44) 

and since the analysis is finished we have 

(3.45) 

Note that in the equations of motion there appear functions 
v" (qq) that are not determined canonically and are asso-.-f . 

ciated with the primary first class constraints on the sub-
manifold Mf . 

Let us now study the relation between the procedure of 
Dirac brackets (DB) for second class constraints, 1 and the 
procedure developed here. Let us begin with the case with no 
tertiary constraints. The DB with respect to second-class 
constraints ct>(~) ct>(~) ct>(!) can be constructed in two steps. 

1'0 1', 1', 
First we construct the DB for the constraints ct>~), i.e., 

(3.46) 

where (a (1) -1 is the inverse matrix of D (I) defined by 

D (I) = {ct>(0) ct>(0)} 
1'0 vo pO' 1'0 ' 

(3.47) 

which coincides with C(!). [Eq. (3.6)]. The final DB is 
1'0 Va 

written as 

(3.48) 

where X • indicates anyone of the constraints ct>(~), ct>(!), 
~ ~ ~ 

and (D (2» -I is the inverse of the matrix D (2) defined by 
D .:~) • = {X .,X . }H,. Explicitly 

r-l VI 1'1 Vt 

D(2) =( 0 
Mo C(2) 

_C(2») 

K ' 
(3.49) 

where C(2) is the matrix defined in(3.18) and K is a matrix 
constructed with the ct>( ~) constraints. 

J', 

Let us consider (3.47). in the case B = He. Using Eqs. 
(3.48), (3.12), and (3.24) we have 
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Therefore our procedure on the MI surface is equivalent to 
the Dirac procedure. In Appendix C we explicitly prove this 
result for the case of no quartiary constraints. In order to 
give a proof in the general case, we need to consider a more 
geometrical formulation that takes into account the new 
structures we have found. Work in that direction is in prog
ress. 

Summing up, Eqs. (3.42) are equivalent on Mf to the 
equations of motion generated by the total Dirac Hamilto
nian: 

H =HH(f+J)+V cI>(O) (3.51) 
T J.tf J.tf' 

where H H(f + J) is the starred Hamiltonian 13 with respect to 
all second-class constraints. Therefore the OB is not the 
minimal structure to obtain the Hamiltonian equations of 
motion. 

IV. LAGRANGIAN FORMALISM: RELATION BETWEEN 
THE LAGRANGIAN AND HAMILTONIAN CONSTRAINTS 

In the previous section we have built a new scheme for 
the construction and classification of the submanifold of the 
Hamiltonian constraints. Now, we shall use these results to 
do the same with the Lagrangian constraints. 

Using the Hessian matrix WIj' we can write the Lagran
gian equations of motion (2.1) as 

WljqJ = ao 
where 

(4.1 ) 

aL .J a2L 
a i= aqi - q aql aqi' 

(4.2) 

If the rank of Wis n - m l , mJ > 0, the Hessian will have mJ 

null vectors YJ.t (q,q) such that 

WIjY~ = O. (4.3) 

The contraction of Eq. (4.1) with a null vector gives 
(1)_ ._ 

XI' =air;. - O. (4.4) 

This is the first generation of Lagrangian constraints: 

X~I) = 0, /.l = 1, ... ,m J• (4.5) 

The submanifold in TQ locally defined by the vanishing of 
the X~I) is denoted by SJ. These Lagrangian constraints can 
also be obtained with the help of the operator K: 

K=qiFL*~+ aL. FL*~, (4.6) 
aq' aq' api 

which takes a function in AO(T*Q), differentiates it with 
respect to time, and gives the result in A 0 (TQ). As we dem
onstrate in Appendix C, one has 

KcI>~O) = X~I). (4.7) 

From this equation, we can see that every primary constraint 
produces a Lagrangian constraint of the first generation. Be-
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(3.50) 

I 
cause of the linearity of the relations (4.4) and (2.7), the 
classification (3.5) enables us to make the splitting 

(I) 1 XJ.to' /.lo = , ... ,m2' 

X~)' /.l~ = 1, ... ,m J - m2• 

Now we cart demonstrate the following relations: 

(4.8a) 

(4.8b) 

FL *{cI>(O) H } + v (q q' )FL*{ .... (O) .... (O)} _ .... (0) 
pO' c vo' 'f:'JLb ,'f:'vo - 'Vila' 

(4.9a) 

FL*cI>i.!) = xi.!) (mod X~»' (4.9b) 

First, we demonstrate (4.9a), using (2.17), (2.20), 
(04), and (05). We have 

FL*{ cI>(O) H } =X - v (q q' )FL*{cI>(O) cI>(O)} 
pO' c JJ.O va' 1'0' Vo 

- vvo (q,q)FL*{cI>~~),cI>~~)}, (4.10) 

but FL*{ cI>(O) cI>(O)} = 0 due to the fact {cI>(O) cI>(O)} = 0 so 
,..,,0' Jl~,,' JJ.O'VO Mo' 

(4.9a) is demonstrated. Now we can demonstrate (4.9b). 
We have cI>(I) = {cI>(O) H (I)} withH (I) gl'ven by (3 12)' us-1-'0 fJ.o' c c • , 

ing (2.17) and (2.20) we have 
aH (I) Bel> (0) 

FL* C _. i (. )FL* /.lo ---q -vJ.to qq 
api api 

(mod cI>(t» 
J.tO' 

and therefore 

FL *{cI>(O) H (I)} 
Po' c 

=x(1) - v (q q' )FL*{cI>(O) cI>(O)} (modX'~ot.» 
1-1-0 Vo ' j.to'Vo r-

= cI>~~,) (mod x:.1» 
as desired. 

(4.l1a) 

(4.l1b) 

Furthermore from an analogous equation to (4.10) we have 
that 

FL*{cI>(O).H:} =X(1). (4.12) 
/-to C Po 

From Eq. (4.9a) we see that the constraints x:.1) are not FL

projectable, instead the constraints xi.!) are FL-projectable 
[see Eq. (4.12)]. These results can also be seen using the 
relation 

rJ.tX~1) = FL*{cI>~O),cI>~O)} (4.13) 

[see Appendix C and Eq. (2.9)]. Therefore the Lagrangian 
constraints X(!) associated to the primary second-class con-

1'0 
straints by means of the operator K are not FL-projectable. 
Instead those associated the primary first-class constraints 
are FL-projectable. 

Now we· want to investigate the stability of the con
straints that locally define St. We have 
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d avO) avO) 
_ (I) =q'I_A_Il_+ "1_..1._11_ (4.14) 
dt XIl a~ q ail . 

We can obtain q from the equation of motion introducing the 
completeness relation (see AS) 

~I IkW - . 
Uj = M kj + rllj r'Il' (4.15 ) 

we have 

ql = Mijaj + PII r;., 
S, 

(4.16) 

where 

PII = Yllkqk, (4.17) 

are the accelerations that are undetermined by the equations 
of motion. Substitution of (4.16) in (4.14) gives 

~X(I) =D(Olv(1) + 11 r X(I) 
d II All I-'v v II ' t s, 

where 

D (Ol- Mjl a +'1 a -a - q-
-j ail aql' 

(4.18) 

(4.19) 

If we consider the stability, Eq.(4.14), of the non-FL-pro
jectable constraints, X(~), we have 

IliJ 

O=D(OlXO ) +P t XO ) 
s. Po Vo Vo p.Q' 

(4.20) 

with 

r X(I) = FL*(C(ll) (4.21) 
'Vo pO pOvo' 

due to (4.13) and (3.6). Since C(l) has an inverse one can 
determine the undetermined accelerations f3 , as a function 

Vo 

ofqandq: 

f3 = - FL* [(C I) -I ]D(Olv(l}. (4.22) 
'Va 5. vJ.Lb ApO 

Let us now consider the stability of the FL-projectable con
straints. We have 

~ X(I) = D(OX(!)=X(2). (4.23) 
dt 1'0 s, IliJ 1'0 

If the relations XJ.!) = 0 are automatically verified in SI' the 
analysis is finished. Otherwise the X~) are the second gener
ation of the Lagrangian constraints, which together with 
X~I) define the surface S2' 

Now it is necessary to study the stability of X~). It is 
possible to show that 

K~(I) = X(2) (4.24) 
1'0 s, 1'0' 

where K is the operator defined in (4.6). So the X~) are 
associated with the Hamiltonian constraints ~:.!). Remem
bering the splitting ( 3.17 ), it follows that we have the follow
ing splitting at Lagrangian level: 

(I) (2) 
XII,' XII,' 11-1 = 1, ... ,m3' 

(I) (2) , 1 
XIIi' XIIi' 11-1 = , ... ,m2 - m 3· 

(4.25) 

We see that labeling is compatible with the stability. 
Now we can show 
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FL*CP(2) =X(2) (mod X(~». (4.26b) 
II,S, II, III 

The proof of ( 4.26) is more intricate than the first level and 
is not given here. One can also show 

FL*{CP(l),H(I)} = v(2). (4.27) 
PI c 5. AP-2 

From Eq. (4.26a) we see that the constraints X(~) are not 
III 

FL-projectable, instead the constraintsx~~) are FL-project
able on thesurfaceSI, [seeEq. (4.27) J. We call these objects 
weakly FL-projectable on SI' 

Furthermore, using the results of Appendix C we have 

r X(2) = FL*{CP(I) CP(O)}¥:O 
1'0 #'1 .".' Jlo S. ' 

(4.28) 

instead of 

r v(2) = FL *{ cp(l) CP(O)} = o. (4.29) 
1'0..1.11, II,' 1'0 S, 

This analysis suggests that the necessary and sufficient con
dition for a function 1 to be weakly FL-projectable on SI is 

r 1'01 = 0, 11-0 = 1, ... ,m l • 
s, 

(4.30) 

where r 1'0 are the vector vectors fields ofKer FL tangent to 
St. This result is proved in a separate paper. 

Now we need to require the stability of X~) 

~X(2) = (D 0 + P r )X(2) + P r X(2) 
dt 1'0 S2 Vo Vo Po 'Vo Vo Po 

=D(lX~) +pvorvoX~)' (4.31) 

Ifwe consider the stability condition for X(~), we can express 
III 

the undetermined accelerations P vi in terms of the coordi-

nates and velocities: 

P =FL*[(C(2l)-1 ]D(lX(2) (4.32) 
vi S2 'ViPi #It ' 

due to the nonsingular character of the matrix C(2l, Eq. 
(3.18). Let us now consider the constraints X~~). we have 

(4.33) 

If the relations X~~) , are automatically verified in S2 the anal
ysis is finished. Otherwise X~~) are the third generation of the 
Lagrangian constraints and the procedure continues. At 
Hamiltonian level we have assumed the existence of a sub
manifold M f where we can have solutions. This implies that 
the relations 

(4.34) 

are identities on M f' At the Lagrangian level we have 

(4.35) 

(4.36) 

and 
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This means that we have no more weakly FL-projectable 
constraints. However, we have the non-FL-projectable con
straints x~t: 1). If we consider the stability of these con
straints, we can obtain the undetermined fl ,acceleration in 

PI 

terms of the coordinate and momenta. At this point the anal-
ysis is finished. 

Summing up, at every level a (weakly) FL-projectable 
constraint on a certain submanifold comes from the stability 
of a Hamiltonian constraint of the preceding level, which is 
first class with respect to the primary Hamiltonian con
straint, while a non-FL-projectable constraint comes from 
the stability of a Hamiltonian constraint which converts a 
primary constraint to the second class. Also, if a certain 
number of velocities are canonically determined at a given 
level, the same number of accelerations are determined at the 
next level. 

V. CONCLUSIONS 

The equivalence between the Lagrangian and Hamilto
nian formalism for constrained systems has been proved, in 
the sense that given a solution q( + ) of Euler-Lagrange 
equations of motion, the functions q(t) and 
pet) = 9(q(t) [dq(t)/dt]) are solutions of the Hamilto
nian-Dirac equations of motion and vice versa. Note that 
neither of these equations is in normal form. This means that 
we can only have solutions in a submanifold of the respective 
space. These submanifolds are constructed through an inter
active procedure. At the Hamiltonian level, our procedure 
differs from the standard one. All constraints are classified 
according to whether or not they are first class with respect 
to the primary constraints. We have seen that PB matrix of 
the primary first-class constraints on M o and the secondary, 
tertiary, ... constraints are either symmetric or antisymme
tric. This implies that our final Hamiltonian H ~ f + 1) differs 
from the starred Hamiltonian of Komar and Bergman, but 
on the final submanifold M f they both yield the same evolu
tion. 

At the Lagrangian level, we have seen that the Lagran
gian constraints can be obtained from the stability of the 
Hamiltonian constraints using the K operator (4.6). Fur
thermore, the Lagrangian constraints that are FL-project
able or weakly FL-projectable are the Lagrangian counter
parts of the Hamiltonian constraints, which are first class or 
second class with respect to the primary Hamiltonian con
straints. In fact at every level, a (weakly) FL-projectable 
constraint on a certain submanifold comes from the stability 
of a Hamiltonian constraint of the preceding level, which is 
first class with respect to the primary Hamiltonian con
straint, while a non-FL-projectable constraint comes from 
the stability of a Hamiltonian constraint that converts a pri
mary constraint to the second class. Also, if a certain number 
of velocities are canonically determined at a given level, the 
same number of accelerations are determined at the next 
level. 
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APPENDIX A: COMMENTS ON THE INVERSE 
LEGENDRE TRANSFORMATION 

Here we demonstrate that Eqs. (2.17), 

aH act> (0) 

q=-a C (q,p) + up, (qq)-aP (q,p), (AI) 
'Pi 'Pi 

for q in terms of q and p, have solutions only if (q,p) belongs 
to the submanifold Mo of the primary constraints. We know 
that when (q,p) belongs to Mo, the solutions are given by 
(2.16). Therefore, we have the identities 

. aH act>(0) 

q'=FL* __ C + up (qq)FL* -p-. (A2) 
api api 

Now at fixed q we consider an infinitesimal displacement 
p + dp from a point (q,p)eMo' We want to know if there 
exists a solution of (AI), q + dq, derived continuously from 
the solution, q, with data (q,p)eMo' If such a solution exists, 
the following identities must be verified: 

a 2H au (q q' ) a<l>(O) 
dqi = FL * __ C_ dpJ' + p , FL * --p- dqj 

api apj aqj api 

a 2<1>(0) 

+ up (q,q)FL* --P-dpj. 
api apj 

(A3) 

In order to study when these identities are verified, let us 
consider the completeness relation 

i - i & 8 j = Y pjY p + M Wkj , (A4) 

where 

. a<l>(O) 
Y ' =FL*--P-

p, a' 'Pi 
a2H a 2<1> 

Mik=FL* C +up(q,q)FL*--P-, (A5) 
api aPk api ap 

a2L 
Wk·=---

J aqk aqj 

Equation (A4) can be obtained by taking the derivative of 
(A2) with respect to q j' Note that M ik is not unambiguous
ly defined in AO(T*Q). This is due to the ambiguity of the 
definition of Hc out of the surface Mo. 

The change 

Hc (q,p) -H; (q,p) = Hc (q,p) + A.p (q,p)<I>~O)(q,p) 

withA.p arbitrary describes the arbitrariness of the Hamilto
nian. This change produces a new definition of the functions 
up of (2.17), 

u~ (q,q) = up (q,q) - FL*A.p,' (A6) 

and consequently a change in the matrices Mik, 

M'ik = Mik + FL* aA.p ~ + FL* aA.p r.. (A7) 
api p aPk p 

Equation (A3) can be written [using (A4) and (A5)] as 
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(A8) 

where Mik is any element of the family (A7). Since in that 
family there always exists a nonsingular matrix, Eq. (A8) is 
verified only if 

(A9) 

The necessary and sufficient condition for (A9) to be ful
filled is that 

r!dFL*Pk = 0, (AW) 

where r! are the null vectors of W, Eq. (A5). Therefore, we 
have 

FL *d<l> I' = 0, (All) 

and therefore we conclude that the only displacement 
p-p + dp that allow changes on thesolutionsq-q + dqare 
those made on the surface Mo. 

APPENDIX B: STRUCTURE OF THE CONSTRAINTS 
POISSON BRACKET 

In Sec. III we stated that the matrix of PB between a 
subset of primary first-class constraints on Mo and the secon
dary, tertiary, ... constraints was either symmetric or anti
symmetric. Here we demonstrate this property explicitly. 
Let us begin with the matrix of PB between the primary 
constraints <I>~) and the secondary constraints <I>~!). Taking 
into account the definition of <I>~!), the Jacobi identity, and 
the first-class character of<l>~) on Mo we have 

Consider the last term ofEq. (BI), since the <I>~)'s are first 
class on Mo then 

({ <1>(0) <I>(O)}<I>(O)} = 0 
Po' Vo Va Mo ' 

this implies that 

{<I> <I>(O)} = 0(<1>(0» + 0 2 (<1>(0» 
Po' Vo Jl.o 1-'0 ' 

where O(<I>~» is a function that contains a term linear in 
<I>,~O), and 0 2(<I>(~» is a function of<l>,~~) that contains a term 

rO Po ru 

quadratic in <I>(~) as the lowest-order term. This means that 
1'0 

the last term ofEq. (BI) vanishes on the surface M I, there
fore (B I) becomes 

This means that the above matrix is symmetric with respect 
to the interchange of ""0 and Vo on MI' 

Let us now consider the matrix of the PB between the 
primary first class constraints on M2 and the tertiary con
straints. We have 
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+ ({<I>~:),<I>~~)}H;1)} _ {<I>~~),<I>~~)}. 

The PB {<I>~~),<I>~~)} vanishes onMI, furthermore we have 

({<I>(O) <I>(1)}<I>(l)} 
PI' VII'I 

therefore 

{<I>(O) <I>(1)} = 0(<1>(0) + 0(<1>(0» + 0(<1>(0» + 0 2 (<1>(0» 
1'2' VI 1-'0 I'i PI #'1 ' 

which implies 

({<I>~~),<I>~~)}H;1)} =0. 
M, 

Equation (B5) becomes 

{<I>(2) <I>(O)} = _ {<I>(2) <I>(O)} 
PI' VI VI' 1'1 ' 

M, 

which means that this matrix ofPB's is antisymmetric. This 
antisymmetric property is due to the twofold application of 
the Jacobi identity. In the general case for the primary first 
class constraints on Mk and the K-ary constraints, we will 
have 

APPENDIX C: RELATION TO DIRAC BRACKET 

We want to study the relation between the procedure 
developed in the text and the standard Dirac bracket formal
ism for the second class constraints when there are no quar
tiary constraints. In this case the second class constraints are 
<1>(0) <1>(0) <1>(0) <1>(1) <1>(1) <1>(2) if we use the Dirac bracket 

J4,' I'i' Jl2' #'1' 1'2' 1'2' 
with respect to <I>(~) <I>(~) <I>(~), Eq. (3.48), we only need to 

1'0 1'1 1'1 

consider the constraints <1>(0) <1>(1) <1>(2). LetX denote any-
1'2' Ill' p,i ,ui 

one of those constraints and matrixD (~), ={x ,X_,}H,. Us-
1'2V2 1'2 v2 

ing the relations 

{<I>(O) <l>m}H, = {<I>(O) <I>(2)} 
.ui' vi MI .ui' V 2 ' 

we have 

D(3l=( ~ 
M, C(3l 

o 
_C(3l 

B 

_C(3) 
-B 
Q 

(CI) 

(C2) 

whereC(3l isgivenbyEq. (3.32). TheinversematrixD(3l-Iis 
given by 

where 

C(3l-IBC(3l-I 

_C(3l-I 

o 

C(3l-I) 
o , 
o 

(C3) 

M = C(3l-IQC(3l-I + C(3)-IBC(3l-IBC(3l-I. (C4) 
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At this point we can write the final Dirac bracket 

{A.B}H, = {A,B}H2 - {A,Xu' }H'D ~~v) ,- l{X v,B}H2
• 

,..-2. ,....2 2 2. 

If we consider (C5) for the case B = He' we obtain 

{A,He}H, = {A,H ~3)}. 
M. 

Therefore the evolution on M2 with the Dirac bracket for
malism coincides with our procedure. 

APPENDIX D: PROPERTIES OF THE OPERATOR K 

Here we want to show that the operator K, 

K: AO(T*Q) .... Ao(TQ), (01) 

given by 

K=~FL*~+ aL. FL*~, (02) 
aql aq' api 

applied to the primary Hamiltonian constraints <I>~O) pro
duces the first generation of Lagrangian constraints X~O). In 
fact 

a<I>(O) aL a<I>(O) 
K<I>(O) = qiFL* --1"- + - FL* __ 1"_, J.L = I, ... ,m to 

I" aqi aqi api 
(03) 

and from Eqs. (2.7) and (2.21) we have 
a<I>(O) 

FL*-al" =,,;., (04) 
'Pi 

a<I>~O) . a 2L aL 
FL*-r-= -rJ --- -r - (05) 

aqi I" aql aql I" aqi ' 

therefore 

K<I>(O)=r!(aL_ a
2
L '1)= (I). (06) 

I" I" aql aqiaq} q XI" 

In general, the operator K applied to a function 
geAo(T*Q) gives its temporal derivative expressed in 
AO(TQ), which we denote byfa (q,q). Let us now study the 
projectability of fa : 
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(r J.) = (FL* ag )r qi + (FL* ag )r aL. (07) 
1"8 ~ I" ~ I"~ 

Using (04) and (05) we obtain 

rl"fa = FL*{g,<I>~O)}. (08) 

Thereforefa .... A ° ( TQ) will be FL-projectable if g +- A ° (TQ) 
is a first class function with respect to the primary first class 
constraints on Mo. In particular using (08) we have 

r X(I) = FL*{<I>(O) <I>(O)} (09) 
p. v v , J.t ' 

which states only that the Lagrangian constraints associated 
with the first class primary constraints are FL-projectable. 
Another consequence of (08) is 

r X(2) = FL*{<I>(I) <I>(O)} 
ItoVo Vo'I-'o' 

which tells us that the only Lagrangian constraints associat
ed with the secondary Hamiltonian constraints which are 
first class with respect to the primary first-class constraints 
on M o are weakly FL-projectable. 
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