Poincaré–Cartan integral invariant and canonical transformations for singular Lagrangians: An addendum

D. Dominici
Instituto Nazionale di Fisica Nucleare—Sezione di Firenze, Istituto di Fisica Teorica dell’Università di Firenze, 50125 Firenze, Italy

J. Gomis
Departament de Física Teòrica de la Universitat de Barcelona, Barcelona, Spain

(Received 21 May 1981; accepted for publication 2 September 1981)

The results of a previous work, concerning a method for performing the canonical formalism for constrained systems, are extended when the canonical transformation proposed in that paper is explicitly time dependent.

PACS numbers: 03.20. + i

In a previous paper we discussed in the framework of the Poincaré–Cartan integral invariant, a method for performing the canonical formalism for constrained systems. The basic idea consists of considering a canonical transformation which brings the constraints into a subset of the canonical variables. Thus the physical variables can be easily obtained by means of a reduction of the phase space. Our method is different from the path-integral approach of Faddeev (see also Ref. 3), which use in addition a set of gauge-fixing conditions, one for each first-class constraint. Two applications of our procedure concerning action-at-a-distance relativistic models have been recently studied. In this note we extend the method by considering a time-dependent general canonical transformation, such that all the constraints acquire an explicit time dependence.

Let us consider a dynamical system described in terms of degrees of freedom in the phase space \(q_a, \phi_a \, (s = 1,...,n) \) and constrained to the hypersurface \(S \) defined by

\[
\Omega_\alpha(q,\phi) = 0 \quad (\alpha = 1,...,T - W),
\]

\[
\Omega_\beta(q,\phi) = 0 \quad (\beta = T - W + 1,...,T),
\]

where \(\Omega_\alpha \) are \(T - W \) first-class \(^5\) and \(\Omega_\beta \) \(W \) second-class constraints. In order to guarantee the stability of \(S \) during the evolution, the \(\Omega_\alpha \) are required to satisfy

\[
[\Omega_\alpha, H_\alpha] \simeq 0,
\]

where \(H_\alpha \) is the canonical Hamiltonian. The notation \(\simeq \) means equality on the hypersurface \(S \) (“weak” equality).

Now, given the set (2), according to some theorems on function groups \(^6\) and involutory systems \(^7\) it is possible, at least locally, to find a canonical transformation

\[
[q_a, \phi_a, \, s = 1,...,n] \rightarrow [Q^{s}, P^{s}, \, s = 1,...,n],
\]

such that the equations

\[
Q^{s}_{;f} = P^{s}_{;f} = 0 \quad (f = n_2 + 1,...,n_2),
\]

define the same surface as Eqs. (2) and the following equations,

\[
[Q^{s}, P^{s}_{;f}] = \delta^{s}_{f},
\]

\[
[Q^{s}, Q^{s}_{;f}] = [P^{s}, P^{s}_{;f}] = 0,
\]

are identically (and not only “weakly”) satisfied.

If we denote the generating function by \(F \), defined as

\[
p_{;f} \delta q_{a} - H_{;\beta} dt = P_{;f} \delta Q^{s}_{;f} - K_{;\beta} dt - \delta F,
\]

the Hamilton equations for the new variables are given by

\[
Q^{s}_{;f} \simeq [Q^{s}, K(Q^{s}, P^{s}_{;f}, t)],
\]

\[
P_{;f} \simeq [P^{s}, K(Q^{s}, P^{s}_{;f}, t)]
\]

where \(K \),

\[
K = K_{e} + l_{\alpha} \tilde{\Omega}_{\alpha} - \tilde{\Omega}_{\beta} \tilde{C}_{\beta} \left[\tilde{\Omega}_{\beta}, K_{e} \right] + \frac{\partial \tilde{\Omega}_{\beta}}{\partial t},
\]

is the extended Hamiltonian with \(l_{\alpha} \) arbitrary functions. \(\tilde{\Omega}_{\beta} \) are obtained from Eqs. (1) and (2) by substitution of variables, and \(\tilde{C}_{\beta} \) is defined by

\[
\tilde{C}_{\beta} [\tilde{\Omega}_{\beta}, \tilde{\Omega}_{\alpha}] \simeq \delta_{\beta\alpha}.
\]

In I we have shown that it is possible to write the equations of motion for the reduced set of variables \(R^{s} = [Q^{s}, P^{s}_{;f}, j = 1,...,n_{2}] \) which are free with respect to the second-class constraints (5) in a simple form

\[
Q^{s}_{;f} \simeq [Q^{s}, \tilde{K}^{s}_{;f}]_{R^{s}},
\]

\[
P_{;f} \simeq [P^{s}, \tilde{K}^{s}_{;f}]_{R^{s}},
\]

\[
\tilde{K}^{s} = \frac{\partial Q^{s}_{;f}}{\partial P^{s}_{;f}} = \tilde{K}^{s}(Q^{s}, P^{s}_{;f}, t) + l_{\alpha} \tilde{\Omega}_{\alpha}(Q^{s}, P^{s}_{;f}, t)
\]

where \(\cdot , \cdot \) \(R^{s} \) denote the Poisson brackets defined on the space \(R^{s} \) and \(\tilde{\Omega}_{\alpha} \) are obtained by setting equal to zero the variables \(Q^{s} \) and \(P^{s}_{;f} \) corresponding to the second-class constraints, in \(K \) and \(\tilde{\Omega}_{\alpha} \) of Eq. (9). As shown in I the \(\tilde{\Omega}_{\alpha} \) so obtained are first class, i.e.,

\[
[\tilde{\Omega}_{\alpha}, \tilde{\Omega}_{\beta}]_{R^{s}} \simeq 0
\]

and, as a consequence of \(d / dt \Omega_{\alpha} (q, \phi) \simeq 0 \), satisfy the stability condition

\[
\frac{d}{dt} \tilde{\Omega}_{\alpha} = \frac{\partial \tilde{\Omega}_{\alpha}}{\partial t} + [\tilde{\Omega}_{\alpha}, \tilde{K}]_{R^{s}} \simeq 0.
\]

In Eq. (14) we have now supposed the \(\tilde{\Omega}_{\alpha} \) explicitly time dependent, unlike what we did for the sake of simplicity in I.

A similar procedure of reduction of the phase space can be performed also for the first-class constraints. In fact, a theorem on involutory systems \(^7\) guarantees that it is possible, at least locally, to replace the \(\tilde{\Omega}_{\alpha} \) by an equivalent set of equations

\[
P_{;e} (Q^{s}, P^{s}_{;f}, t) = 0 \quad (e = n_{1} + 1,...,n_{1}),
\]

\((n_{1} = n - T + W / 2) \), which are in involution. For instance, the set (15) can be obtained by solving the equations

\[

\frac{d}{dt} \tilde{\Omega}_{\alpha} = \frac{\partial \tilde{\Omega}_{\alpha}}{\partial t} + [\tilde{\Omega}_{\alpha}, \tilde{K}]_{R^{s}} \simeq 0.
\]
with respect to an equal number $n_2 - n_1$ of momenta. Without loss of generality we suppose Eq. (16) be solved with respect to $P_j^e (e = n_1 + 1, \ldots, n_2)$, or

$$ \frac{\partial \hat{\alpha}_a}{\partial P_j^e} \neq 0. $$

(17)

Let

$$ P_j^e = f_j (Q_j^e, Q_k^e, P_j^e, t) \quad (k = 1, \ldots, n_1) $$

(18)

be the expression of the equations in involution. The stability of the hypersurface (18) can be easily proved. In fact, from

$$ \hat{\alpha}_a (Q_j^e, Q_k^e, P_j^e, P_k^e, t) = 0 $$

(19)

we get

$$ \frac{\partial \hat{\alpha}_a}{\partial t} \approx - \frac{\partial \hat{\alpha}_a}{\partial P_j^e} \frac{\partial P_j^e}{\partial t} - \frac{\partial \hat{\alpha}_a}{\partial P_k^e} \frac{\partial P_k^e}{\partial t}, $$

(20)

$$ - \{ P_j^e, \hat{\alpha}_a \}_K^e \approx - \frac{\partial \hat{\alpha}_a}{\partial Q_j^e} \frac{\partial Q_j^e}{\partial t} - \frac{\partial \hat{\alpha}_a}{\partial P_j^e} \frac{\partial P_j^e}{\partial t}, $$

(21)

Therefore, from Eq. (14) we get

$$ \frac{\partial \hat{\alpha}_a}{\partial P_j^e} \frac{\partial P_j^e}{\partial t} \approx 0, $$

(22)

and using Eq. (17)

$$ \frac{\partial P_j^e}{\partial t} + \{ P_j^e, \hat{\alpha}_a \}_K^e \approx 0. $$

(23)

As a final step we make a transformation

$$ \{ Q_j^e, P_j^e \} = \delta_{e,1}, \quad \{ Q_j^e, P_k^e \} = \delta_{e,k}, $$

(24)

where part of the momenta are the set of functions in the involution (18) which are equivalent to the first-class constraints.

If we denote the new canonical Hamiltonian by K^e, and the new expression for the constraints by

$$ \hat{\alpha}_a (Q_k^e, P_k^e, Q_e^e, P_e^e, t), $$

(25)

the Hamiltonian equations are given by

$$ \hat{\dot{Q}}_k \approx \{ Q_k^e, K^e \} + \{ Q_k^e, \hat{\alpha}_a \}_K^e, $$

(26)

$$ \hat{\dot{P}}_k \approx \{ P_k^e, K^e \} + \{ P_k^e, \hat{\alpha}_a \}_K^e, $$

(27)

$$ \hat{\dot{Q}}_e \approx \{ Q_e^e, K^e \} + \{ Q_e^e, \hat{\alpha}_a \}_K^e, $$

(28)

$$ \hat{\dot{P}}_e \approx \{ P_e^e, K^e \} + \{ P_e^e, \hat{\alpha}_a \}_K^e, $$

(29)

where now $\{ , \}_K^e$ denote the Poisson brackets with respect to the set

$$ R = \{ Q_k^e, P_k^e, Q_e^e, P_e^e, k = 1, \ldots, n_1, e = n_1 + 1, \ldots, n_2 \}. $$

With respect to the stability of the hypersurface $\hat{\alpha}_a = 0$, after the canonical transformations (24) we have

$$ \frac{\partial \hat{\alpha}_a}{\partial t} + \{ \hat{\alpha}_a, K^e \}_K \approx 0. $$

(30)

On the other hand, due to the equivalence between $\hat{\alpha}_a$ and P_k^e we may write

$$ \hat{\alpha}_a (Q_k^e, P_k^e, Q_e^e, P_e^e, t) = g_{ae} (Q_k^e, P_k^e, Q_e^e, P_e^e, t) P_e^e, \quad \text{det} \ g \neq 0, $$

(31)

where we introduced the strong equality notation \approx following Sudarshan and Mukunda.\(^8\)

Thus from Eq. (30) we have

$$ \frac{\partial \hat{\alpha}_a}{\partial t} \approx 0, $$

(32)

and using Eqs. (30) and (29) in Eq. (28), we get

$$ \hat{\dot{P}}_e \approx \{ P_e^e, K^e \} + \lambda_e, $$

(33)

where $\lambda_e = g_{ae} l_a$. Then we may write

$$ \hat{\dot{Q}}_e = \{ Q_e^e, K^e \} + \lambda_e, $$

(34)

Finally, the remaining equations (27) and (28) become

$$ \hat{\dot{Q}}_k \approx \{ Q_k^e, K^e \} + \{ Q_k^e, \hat{\alpha}_a \}_K^e, $$

(35)

$$ \hat{\dot{P}}_k \approx \{ P_k^e, K^e \} + \{ P_k^e, \hat{\alpha}_a \}_K^e, $$

(36)

where the Q_e dependence disappears due to Eq. (32) and the Q_k's are gauge-dependent variables.

In conclusion, we have isolated the set of the gauge-dependent variables Q_e from a set of physical (gauge-independent) variables Q_k, P_k.\(^9\)

\(^1\)D. Dominici and J. Gomis, J. Math. Phys. 21, 2124 (1980); from now on we will call it I.

\(^5\)P. A. M. Dirac, Can. J. Math. 2, 129 (1950); see also "Lectures on Quantum Mechanics", Belfer Graduate School of Science, Yeshiva University, New York, 1954.

\(^6\)L. P. Eisenhart, Continuous Groups of Transformations (Dover, New York, 1961), Chap. VI.
