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The results of a previous work, concerning a method for performing the canonical formalism for 
constrained systems, are extended when the canonical transformation proposed in that paper is 
explicitly time dependent. 

PACS numbers: 03.20. + i 

In a previous paper) we discussed in the framework of 
the Poincare-Cartan integral invariant, a method for per
forming the canonical formalism for constrained systems. 
The basic idea consists of considering a canonical transfor
mation which brings the constraints into a subset of the ca
nonical variables. Thus the physical variables can be easily 
obtained by means of a reduction of the phase space. Our 
method is different from the path-integral approach of Fad
deev2 (see also Ref. 3), which use in addition a set of gauge
fixing conditions, one for each first-class constraint. Two 
applications of our procedure concerning action-at-a-dis
tance relativistic models have been recently studied.4 

In this note we extend the method by considering a 
time-dependent general canonical transformation, such that 
all the constraints acquire an explicit time dependence. 

Let us consider a dynamical system described in terms 
of2n degrees offreedom in the phase space qs'Ps (s = I, ... ,n) 
and constrained to the hypersurface S defined by 

ila(q,p) = 0 (a = I, ... ,T - W), 

ilp(q,p) = 0 (j3 = T - W + I, ... ,T), 

(1) 

(2) 

whereila are T - Wfirst-class5 andilp Wsecond-classcon
straints. In order to guarantee the stability of S during the 
evolution, the ila are required to satisfy 

(3) 

where He is the canonical Hamiltonian. The notation"::::" 
means equality on the hypersurface S ("weak" equality). 

Now, given the set (2), according to some theorems on 
function groups6 and involutory systems 7 it is possible, at 
least locally, to find a canonical transformation 

Iq"ps' s=I, ... ,nj-IQ;,P;, s=I, ... ,nj, (4) 

such that the equations 

Q;=P;=O (f=n2+ I, ... ,n),(n2=n- WI2), (5) 

define the same surface as Eqs. (2) and the following 
equations, 

IQ;,P;. j =oss" 

IQ;,Q;,j = IP;,P;,j =0, (6) 

are identically (and not only "weakly") satisfied. 
If we denote the generating function by F, defined as 

(7) 

the Hamilton equations for the new variables are given by 

Q;::::IQ;,K(Q;,P;,t)). P;::::IP;,K(Q;,P;,t)j (8) 

whereK, 

- - - [ - alip . ] K = Ke + laila - ilpCpp . lilp.,Ke j + at ' (9) 

is the extended Hamiltonian with la arbitrary functions. 
lia •p are obtain~d from Eqs. (1) and (2) by substitution of 
variables, and Cpf3' is defined by 

Cpf3' llip.,lip" j ::::opP"' (10) 

In I we have shown that it is possible to write the equa
tions of motion for the reduced set of variables 
R / = lQi,P i,j = I, ... ,n 2 j which are free with respectto the 
second-class constraints (5) in a simple form 

Qi::::lQi,KjR" Pi::::IPi,KjR" (11) 

K = K(Qi,Pi,t) = K,,(Qi,Pi,t) + IJia(Qi,Pi,t) (12) 

where I ' j R' denote the Poisson brackets defined on the 
space R / and Ke and lia are obtained by setting equal to zero 
the variables Q ~ and P.1:., corresponding to the second~lass 
constraints, in Ke and ila ofEq. (9). As shown in I the ila so 
obtained are first class, i.e., 

(13) 

and, as a consequence of(d Idt )ila(q,p)::::O, satisfy thestabil
ity condition 

(14) 

In Eq. (14) we have now supposed the lia explicitly time 
dependent, unlike what we did for the sake of simplicity in I. 

A similar procedure of reduction of the phase space can 
be performed also for the first-class constraints. In fact, a 
theorem on involutory systems7 guarantees that it is possi
ble, at least locally, to replace the lia by an equivalent set of 
equations 

Pe(Qi,Pi,t) = 0 (e = n) + I, ... ,n 2), (15) 

(n) = n - T + W 12), which are in involution. For instance, 
the set (15) can be obtained by solving the equations 
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(16) 

with respect to an equal number n2 - n 1 of momenta. With
out loss of generality we suppose Eq. (16) be solved with 
respect to P ; (e = n 1 + 1 ... .• n2 ). or 

lana lap; 1;60. (17) 

Let 

p. =P; -ie(Q;.Qk.pic.t) (k= 1 ..... n 1) (18) 

be the expression of the equations in involution. The stability 
of the hypersurface (18) can be easily proved. In fact. from 

na(Q".Q;.Pk.p; =/.(Q".Q;.p".t).t) =0 (19) 

we get 

Therefore. from Eq. (14) we get 

ana [ ape -] - - + {Pe.Ke JR' :::::0. 
ap; at 

and using Eq. (17) 

ap -
_e + {Pe.Ke JR' :::::0. 

at 
As a final step we make a transformation 

{Qi.Pi.j = 1 ..... n2 J-IQk.Pk.Qe.Pe.k 
= 1 ..... n 1• e = n1 + 1 ..... n2 J 

with 

(21) 

(22) 

(23) 

(24) 

(25) 

where part of the momenta are the set off unctions in the 
involution (18) which are equivalent to the first-class 
constraints. 

Ifwe denote the new canonical Hamiltonian by K; and 
the new expression for the constraints by 

lia(Qk,Pk.Qe.Pe.t ) 

= na(Qi(Qk.Pk.Qe,Pe.t).Pi(Qk.Pk.Qe,Pe.t).t). (26) 

the Hamiltonian equations are given by 

{
qk:::::IQk.K,; +la~aJR (27) 
Pk ::::: [Pk.K e + lana JR 

{
qe::::: {Qe.K,; + la~a J R (28) 
Pe::::: IPe.K e + lana JR 

where now I ' J R denote the Poisson brackets with respectto 
the set 

R = I Qk,Pk.Qe,Pe,k = 1 ..... n 1.e=n 1 + 1 ..... n2 }. 

With respect to the stability of the hypersurface Ii a = O. 
after the canonical transformations (24) we have 
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(29) 

On the other hand. due to the equivalence between lia and 
Pe we may write 

A 

na(Qk,Pk.Qe.Pe,t) = gae,(Qk,Pk,Qe,Pe,t )Pe" detl gl ;60, 

(30) 

where we introduced the strong equality notation "=" fol
lowing Sudarshan and Mukunda.8 

Thus from Eq. (30) we have 

alia -0 (31) 
at - , 

and using Eqs. (30) and (29) in Eq. (28), we get 

, , aK; 
Pe = IPe,K e J = - :::::0. (32) 

aQ. 

In other words the variables Qe are ignorable variables. 
Finally, the remaining ,equations (27) and (28) become 

{
Q.' k ::::: { Qk ,K,; J R 

(33) 
Pk:::::{Pk,KeJR 

and 

(34) 

where,te = gea la are arbitrary functions. 
We can now consider the reduced space [Qk,Pk,Q.], 

where Qk and Pk satisfy 

. aYe ' 
Qk = aP

k 
' Pk = (k = 1, ... ,nd, (35) 

with 

where the Qe dependence disappears due to Eq. (32) and the 
Qe's are gauge-dependent variables 

, aK; I Qe = -- +,te (e = n 1 + 1" .. ,n2)· 
ape p.~o 

(37) 

In conclusion, we have isolated the set of the gauge
dependent variables Qe from a set of physical (gauge-inde
pendent) variables Qk ,Pk ' 
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