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In this work we develop the canonical formalism for constrained systems with a finite number of 
degrees offreedom by making use of the Poincare-Cartan integral invariant method. A set of 
variables suitable for the reduction to the physical ones can be obtained by means of a canonical 
transformation. From the invariance of the Poincare-Cartan integral under canonical 
transformations we get the form of the equations of motion for the physical variables of the 
system. 

1. INTRODUCTION 

It is known that many interesting physical systems are 
described by singular Lagrangian. Some examples are pro­
vided by the electromagnetic, the gravitational, the Yang­
Mills fields, and some relativistic models. 1 Features of all 
these theories are the in variance under certain transforma­
tions and the presence of relations (constraints) among the 
canonical variables, which restrict the motion to a hypersur­
face of the phase space. 

A method for developing the canonical formalism and 
the quantization of constrained systems was proposed by 
Dirac. 2 The constraints are classified into two groups (first­
class and second-class), depending on their algebraic proper­
ties with respect to Poisson brackets. The dynamics of the 
system is generated by an extended Hamiltonian, obtained 
by adding a linear combination of first-class constraints to 
the canonical one. One must take into account the presence 
of second-class constraints by working with generalized 
Poisson brackets (Dirac brackets). The problem of the quan­
tization is complicated by the search for a set of variables 
independent and canonical with respect to Dirac brackets. 
Instead of following the Dirac technique, these variables can 
be directly obtained, as suggested by Shanmugadhasan,3 as a 
subset of the variables of a canonical transformation, whose 
existence is based on some theorems on involutory sys­
tems.4

,5 and function groupS.6 We want to stress that this 
method, as well as the Dirac brackets technique, is a local 
one; in fact the existence of the canonical transformation is 
only locally guaranteed.4 

In this work we pursue the study of the extension of the 
formalism of the Poincare-Cartan integral invariant to con­
strained systems with a finite number of degrees of freedom, 
which one of us began in Ref. 7, and making use of the fnvari­
ance of the Poincare-Cartan integral under canonical trans­
formations, the equations of motion for a set of variables free 
with respect to second-class constraints are easily obtained. 
Furthermore, working in this reduced space of the variables 
independent with respect to second-class constraints, a ca­
nonical transformation which isolates the gauge-indepen-

dent variables from the gauge-dependent ones is performed. 
This is the great advantage of this technique with respect to 
the Dirac one. An interesting result is that, for Lagrangians 
homogeneous of first-degree in the velocities, this procedure 
corresponds to the Hamilton-Jacobi method. 

In Sec. 2 we review and extend the Poincare-Cartan 
integral formalism for constrained systems. Section 3 is de­
voted to the introduction of the concept of canonical trans­
formation and to the proof ofthe invariance of the Poincare­
Cartan integral under canonical transformations. In Sec. 4 
we perform the canonical transformation extended to the 
second-class constraints and the Hamilton equations for the 
new variables are obtained. In Sec. 5 the Hamilton equations 
for the set of variables free with respect to first- and second­
class constraints are obtained. 

2. POINCARE-CARTAN INTEGRAL INVARIANT FOR 
CONSTRAINED SYSTEMS 

The Poincare-Cartan integral invariant plays a funda­
mental role in standard classical mechanics since, from its 
invariance, it follows that the equations of motion of the 
dynamical system are Hamilton canonical equations.8 

In Ref. 7 this result was generalized to systems de­
scribed by singular Lagrangians. 

Let us now review the essential points ofthis generaliza­
tion. Let us consider a dynamical system described by a sin­
gular Lagrangian 

L = L (q"q,,(), (s = t, ... ,n). (2.1) 

Due to the singularity of the Lagrangian, the motion of 
the system is restricted to a hypersurface of the phase space, 
determined by a set of constraints. Let 

fla(q"p,) = 0, (a = 1, ... ,T - W), 

be first-class constraints and 

(2.2) 

fl{3(q"p,) = 0, ({3 = T - W + 1, .. "T) (2,3) 

be second-class. 
Making a general variation of the action 
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f
l' 

w= dtL, 
I" 

it is possible to show that the integral 

1= £ (PsDqs - HcDt), 

(2.4) 

(2.5) 

calculated along an arbitrarty closed contour lying on the 
hypersurface S ofthe extended phase space (q"Ps,t), de­
fined by Eqs. (2.2) and (2.3), is invariant under an arbitrary 
displacement (with deformation) ofthe contour along any 
tube of dynamical trajectories. Hc is the canonical Hamil­
tonian of the system. I is called the Poincar~artan integral 
invariant. 

Let us now review the proof of the following theorem 
with some details. 

Theorem 1: Let us suppose to have a dynamical system, 
constrained by Eqs. (2.2) and (2.3), whose trajectories satisfy 
a system of first order differential equations involving arbi­
trary functions fa (a = 1, ... ,T - W) 

d d 
dt qszls(qs,Ps,t·,la) dtPsZgs(qs,Ps,t,fs), (2.6) 

where the sign z (weak equality) means equality on the 
hypersurface S [defined by Eqs. (2.2) and (2.3)]. Let He be a 
function with the property 

(2.7) 

Then, the necessary and sufficient for Eqs. (2.6) be 
Hamilton equations is that the Poincare-Cartan integral 
(2.5) be invariant. 

Proof Firstly, see that the in variance of the Poincare­
Cartan integral is a sufficient condition. 

Following the book of Gantmacher, we introduce an 
auxiliary variableI', supplementing Eq. (2.6) with one more 
equation 

dql = ... = dqn = dpl = ... = dPn = dt = rrdl" (2.8) 
II !" gl gn 

rr being an arbitrary function in the extended phase space. 
For each determination of the fa's we find, integrating Eqs. 
(2.8), 

{

q, = qJ.fl;q~, p~,tQ) 

p, = pJ.fl;q~, p~,to) , 

t = t (p;q~, p~,to) 

(2.9) 

whereq~,p?, to are the initial values, corresponding tOI' = 0, 
which lie on the hypersurface S. In order to obtain a tube of 
dynamical trajectories (2.9), we choose the initial points on a 
closed curve, parametrized by means of a, contained in S. 

The parametric equations for the dynamical paths that 
form the tube are 

qs = q,(p,a), Ps = ps(p,a), t = t(p,a) (O<a</). 
(2.10) 

The value of a isolates a generatrix of the tube while Jl 
fixes a definite point on this generatrix. AssumingI' = const, 
Eqs. (2.10) define a closed curve embracing the tube; by cal­
culating the integral along it, we get I = I (P). 
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If we agree that d means differentiation with respect to 
I' and D with respect to a, by invariance we have 

dI = f [dPsDqs + PsdDqs - dHcDt - Hc dDt ] = O. (2.11) 

Integrating by parts, dividing by dl' = dt Irr and using Eqs. 
(2.6) we get 

f {(gs + ~:c )Dqs + ( -Is + ~:c )8Ps 

( 
dHc aHc ) ~ } + - --+ -- ut rr=O. 
dt at 

(2.12) 

Since rr is an arbitrary factor we obtain 

( 
aHc ~ ( aHc ) gs + a qs + -Is + ~Ps 

qs 'Ps 

( 
dHc aHc ) + --+ - DtzO. 
dt at 

(2.13) 

The Dqs and the Dps are not independent, since C must 
belong to S. So they must satisfy 

(2.14) 
anf3 anf3 
-Dqs + -Dps =0. 
aqs aps 

Introducing a set of Lagrangian multipliers la' If3 
(a = 1, ... ,T- W,/3= T- W + 1, ... ,T), from Eqs. (2.13) 
and (2.14) we deduce 

(2.15) 

aHc ana anf3 
Is z - + la - + lf3 - . 

aps aps ap, 

By requiring that the hypersurface be stationary, the 
ff3's can be determined 

lf3 zCf3f3 ' I n f3 , ,He J, 
where 

Cf3f3 , I n f3 , ,flf3" ) ZDf3f3 " . 

The Eqs. (2.6) can be written in the form 

with 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

By following an analogous reasoning and starting from 
Eqs. (2.18) and (2.19), it is possible to show the in variance of 
the Poincare-Cartan integral (2.5). Thus the proof of the 
theorem is complete. 
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3. CANONICAL TRNASFORMATIONS AND POINCARE:­
CARTAN INTEGRAL INVARIANT 

Let us now extend the concept of canonical transforma­
tion to constrained systems, by introducing, as in standard 
classical mechanics, the following 

Definition: Given a dynamical system, constrained by 
Eqs. (2.2) and (2.3), whose equations of motion are given by 
Eq. (2.18), a transformation 

Qs = Qs(q,p,t), Ps =Ps(q,p,t) (s= l, ... ,n), (3.1) 

is called canonical if a function Kc exists so that Eqs. (2.18) 
become 

. aK . aK 
Qs::::: ap = {Qs,x J, P;::::: - - = {Ps,x I, (3.2) 

s aQs 

with 

and 

CPP ' {.tip".tir], J = 8pp •. 

The .tia (Q,P,t) and .tip (Q,P,t ) appearing in Eq. (3.3) 
are obtained from Eqs. (2.2) and (2.3) by substitution ofvar­
iables. The structure of K is suggested by Theorem I and 
guarantees the stationarity of the hypersurface of the con­
straints. The extra term a.tiplat is due to the explicit depen­
dence on t of the canonical transformation. 

Following the usual procedure of standard classical me­
chanics we will prove the following theorem: 

Theorem 2: Let Eq. (2.18) be the equations of motion of 
a dynamical system; a transformation 

Qs = Qs(q,p,t), Ps = p.(q,p,t), (3.4) 

for which two functions Kc and F exist so that 

Ps8qs - Hc8t = Ps8Qs - Kc8t - 8F 

is canonical. 
Proof From Eq. (3.5) we have 

(3.5) 

£ [Ps8q, - Hc8t - (P,8Qs - Kc8t)] = 0, (3.6) 

where C is an arbitrary closed contour in the extended phase 
space, that we will take lying on S. Let C be the contour 
obtained from Cby means of the transformation (3.4). Then 
the Poincare-Cartan integral is invariant under the consid­
ered transformation. In fact, from Eq. (3.6) we get 

The left-hand side ofEq. (3.7) is invariant under dis­
placement of the contour along the tube of the dynamical 
trajectories, solutions ofEq. (2.18) and lying on S. The right­
hand side will be invariant under displacement of the con­
tour C along the tube obtained by means of the transforma­
tion (3.4) from the proceeding. On the other hand, the trans­
formed trajectories obey a system of first order differential 
equations. Thus, by repeating the proof of Theorem I and by 
taking into account the explicit dependence of the con­
straints on the time, we get 
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Q
. aK p __ aK 
s::::: aps ' s - aQs' (3.8) 

with K given by Eq. (3.3), and therefore the transformation 
is canonical. 

4. A SET OF CANONICAL VARIABLES INDEPENDENT 
WITH RESPECT TO THE SECOND-CLASS 
CONSTRAINTS 

In Ref. 7, as we have reviewed in Sec. 2, the Hamilton 
equations for a constrained system have been obtained [Eq. 
(2.18)]. The variables qs andps are not independent, since 
they must satisfy Eqs. (2.2) and (2.3). A suitable method for 
isolating the true independent variables has been developed 
by Shanmugadhasan.3 His theory is based on two theorems 
on function groups6.9 and involutory systems4

.
5 that we re­

can without giving proofs. 
Theorem 3: A noncommutative function group G of 

rank r is a subgroup of a group of rank 2n whose basis 
(tP., .. ·,tPn ,tP., .. ·,tPn) can be chosen so that 

I tP"tPj J = I tPi'tPj J = 0, {'h,tP! J = 8ij' (iJ = l, ... ,n). 
(4.1) 

Theorem 4: A system of 2m + q independent equations 
(defining a surface SD of dimension D = 2n - 2m - q) 

nr = ° (1' = 1, ... ,2m + q), (4.2) 

such that 

rank II { no-,na' J II = 2m, (u,u' = 1, ... ,2m + q), (4.3) 

can be substituted by a locally equivalent system 

tP). = ° (A. = l, ... ,m + q), 

tPa = ° (a = l, ... ,m), 

for which the relations 

ItP).,tPl" I = {tPa,tPpJ =0, 

I tPa,tP). J = 8a). 
hold locally in the phase space. 

(4.4) 

(4.5) 

First let us apply the last theorem to the set of second­
class constraints lO [Eqs. (2.3)]. Let 

Qf = 0, Pf = 0, (f= n2 + l, ... ,n), (4.6) 

(n2 = n - W 12) be the locally equivalent system such that 

Wf'PI' J =8Jf , Wf,Qr 1= {PPPI' J =0. (4.7) 

The set G = {Qf,Pf ,/ = n2 + 1, ... ,n J now forms a noncom­
mutative function group. Theorem 3 enables us to find a 2n­
dimensional function group which contains G. Let 

I Q ;,P ;;s = I, ... ,n J 

=={ Q;,P ;,QpPf ;} = 1, ... ,n2,/= n2 + I, ... ,n j (4.8) 

denote this function group. Due to the equations 

{Q;,P ;.j = 8ss" W ;,Q;. J = [P;,P;. J = 0, (4.9) 

and denoting the new Hamitonian by Kc and the generating 
function by F, we will have, in the usual way,S 
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We can now apply Theorem 2 and deduce that the 
transformation 

(4.11) 

is canonical. The equations of motion (3.2) become 

Q;:::::{Qj,K}, Pj:::::{Pj,K} (j=I, ... ,n1) (4.12) 

Qf:::::{Qf,K}, Pf:::::{Pf,K} (f=n2 +1, ... ,n), 
(4.13) 

with 

- - _ [ - alip. ] 
K = Kc + lana - npcpp' (np',Kc I + -at ' (4.14) 

where 

lia,p(Q;,P;,t) = na.tJ [qs(Q;P;t),Ps(Q;P;t)] (4.15) 

are the expressions of the constraints in the new variables. 
The term alip/at in the Hamiltonian (4.14) can be re­

moved as a consequence of the stationarity of the 
hypersurface. 

In fact, since when Qf = Pf = 0 we have lip = 0, we 
can develop lip in a power series of Qf and PI' i.e., 

lip(Q ;,P ;,t) 

= a£(Qj,Pj,t)Qf + b £(Qj,Pj,t)Pf + higher orders. 
(4.16) 

If we introduce, following Sudarshan and Mukunda,2 the 
notation of "strong" equality (=), we can rewrite Eq. (4.16) 
as 

lip(Q ;,P ;,t)=a£(Qj,Pj,t)Qf + b £(Qj,Pj,t)Pf . (4.17) 

From Eq. (4.17) we can also locally get the inverse relations 

{ 
Q f==C'j(Q j ,P j ,t )lip 

(4.18) 
Pf=d 1(Q) ,P;,t )Ii'p' 

and in terms of the old variables 

{ 
Qiqs' Ps,t )==c'j(qs, p"t )np(q" Ps) 

(4.19) 
Piqs' Ps,t )==d1(qs,Ps,t )np(q"ps)' 

By taking the partial derivative with respect to t of Eqs. 
(4.19) we get 

aQf -0 aPf -0 ( at _. at - . 4.20) 

On the other hand, if we take the total derivative with respect 
to t ofEq. (4.19) and use the stationarity ofthenp's we have 

d d 
- Qf:::::O, -Pf:::::O, (4.21) 
dt dt 

and finally from Eq. (4.17), 

a --n(3:::::o. 
at 

(4.22) 

Thus the last term of the Hamiltonian can be dropped, 
because it is strongly equal to zero. Then Eqs. (4.12) and 
(4.13) become 

{ ~!: {Q!,Kc + la~a - ~p~pp, {~f3',Kc lJ, (4,23) 
P j - (Pj,Kc + lana - npcpp ' {np',Kc}}' 

and 
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(j = 1, ... ,n2)' (4.25) 

(4.26) 

where the last eqUalities of Eq. (4.25) define K, 
Ifwe denote the set of variables which are independent 

with respect to second-class constraints by R 

(4.27) 

the equations of motion, in this reduced phase space, can be 
rewritten as 

{ ~~:{Q!'~}R~{Q/'~IR , 
P j - {PjX JR - {Pj,K lR' 

(4.28) 

where I , } R are the Poisson brackets defined in the space R 
and 

R=~+~~, ~~ 
with Kc and lia obtained by setting to zero the variables Qf 
andPf inKe andlia • The "weak" equalities ofEq. (4.28) are 
equalities on the surface determined by 

lia(Q;,P;) = O. (4,30) 

Let us observe that, since na are first-class, we have 
also 

llia,lia,} :::::0, 

{lia,np J :::::0. 

From Eqs. (4.18) and (4.32) we get 

alia - alia -
ap = {Qf,na 1:::::0, aQ = - {Pf,na 1:::::0. 

f f 

Therefore, by defining 

- - - -' (ali an, Ina,fla.jR = (fla,fl
a

, J __ a _a_ 
aQf aPf 

- ~~; ~~~ ), 
and using Eqs. (4.33) and (4,31), we have 

Ilia ,lia, J R :::::0, 

which also implies 
Ina,na , JR :::::0. 

(4.31) 

(4.32) 

(4.33) 

(4,34) 

(4.35) 

(4.36) 

Finally let us prove that the hypersurface determined 
by Eq. (4.30) is stationary. 

In fact, 

d - - - --
dt na::::: {na,K JR::::: {fla,Kc JR 

::::: {lia,Kc JR::::: (lia,Kc J, (4.37) 

where use was made of Eqs. (4.33) and (4.36). On the other 
hand, due to the canonical character of the transformation 
(4.11), Eqs. (2.7) imply 

{liaXe J :::::0, (4.38) 
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and thus 

d - --
-fla;::: !fla,Kc JR ;:::0. 
dt 

(4.39) 

Summing up, we have shown that it is possible, by mak­
ing use of a canonical transformation, to write the equations 
of motion for a set of variables which are independent with 
respect to second-class constraints. As shown in Ref. 3, we 
have the following relation between Dirac brackets and Pois­
son brackets defined in the reduced space R: 

! , }* = I , JR . 
Therefore the variables which are canonical with respect to 
Dirac brackets are directly obtained by means of this canoni­
cal transformation. 

5. EQUATIONS OF MOTION FOR A SET OF 
UNCONSTRAINED VARIABLES 

A further step can be done by extending the transforma­
tion to include first-class constraints too. 

In fact, Theorem 4 guarantees that it is always possible, 
at least locally, to replace the lia by an equivalent set 

Pe = 0, (e = n. + l, ... ,nz), (5.1) 

(n i = n - T + W 12), such that the equations 

[Pe,Pe,j =0 (5.2) 

are identically satisfied and not by virtue of Eqs. (5.1) them­
selves. The same theorem shows that the Pe can be obtained 
by solving Eq. (4.30) for n2 - n. of the momentaP; in terms 
of the remaining momenta and of the coordinates Q;. We 
can, by renumbering the variables if necessary, assume that 
Eq. (4.30) can be solved for the last nz - n. P; in terms ofthe 
first n.P; and all the Q;, i.e., 

Pc =P; -/e(Q;,Qk,PD (k= 1, ... ,n.) 

(e = n l + l, ... ,nz). (5.3) 

We observe, from Eq. (5.3), the local character of this 
technique. Thus, in general, we will have to repeat the proce­
dure we wiIl develop in thefollowing, for the different sheets 
of the hypersurface (4.30). 

. Let us notice that from Eqs. (4.9) and (5.3) we have 

I Q ;,Pe' I R = Dee , (5.4) 

or, following the terminology of the function groups, Q; 
(that from now on we wiIl call Q.) and Pe form a noncommu­
tative function group of dimension 2(nz - nl)' By applying 
again Theorem 3 we can construct a canonical 
transformation 

Qj,Pj,l-Qk,Pk>Qe'P, (k = l, ... ,n.),(e = n l + I, ... ,nz), 
(5.5) 

with 

(5.6) 

and the other Poisson brackets vanishing. 
If we denote the new canonical Hamiltonian by Kc ' and 

if we write the constraints (4.30) in terms of the new varia­
bles as 
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n (Qk,Pk,Q.,Pe) 

= lia (Q;(Qk,Pk,Q.,p.),P ;(Qk,Pk,Q.,Pe» = 0, (5.7) 

the new equations of motion can be obtained by applying 
Theorem 2 in the reduced phase space R: 

{ 
~k;::: {Qk>~C + la~a JR , (5.8) 
Pk;:::{Pk.Kc +laflaIR' 

and 

{ 
~e;::: !Qe,~c + la~a I R , 

p.;::: !PoKe + lafla JR . 
(5.9) 

On the other hand, due to the fact that whenP. = O,n" 
= 0, we can write, as for the second-class constraints [Eqs. 

(4.17)], 

(5.10) 

Thus substituting Eq. (5.10) in Eq. (5.8) and (5.9), we get 

{ 
~k;::: !Qk,~e + A.,Pe, JR;:::! Qk'~c JR , (5.11) 

Pk;:::!Pk,Kc +Ae,P.,JR;:::!Pk.KcJR' 

{ ~e;:::\Q.,~c +A •. Pe'h;:::\Q .. ~clR +Ae, (5.12) 

Pe;::: IPe,Ke + A.,Pe, IR;::: IP.,Ke lR , 

where Ae = l"g: are arbitrary functions of t. 

Let us finally show that this sheet of hypersurface is 
stationary. By differentiating Eq. (4.30) with respect to any 
variable u (Q; or Pi) and using Eq. (5.3) we get 

alia alia a Ie alia aPe 

au 
Therefore 

- - ali -
[fla,KeIR = _a [Pe,Kcl R , 

ap; 

and using Eq. (4.39) and the fact that we locally have 

I 
alia I det -- #0, 
ap; 

we get 

[Pe,Ke lR ;:::0, 

and after the canonical transformation (5.5) 

afe ~ 
- = IKe,Pe JR ;:::0, 
aQe 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

which ensures the hypersurface be stationary. In addition 
Eq. (5.17) state that the variables Qe are ignorable variables 
on the hypersurface. 3 

Thus we have the following equations of motion: 

Qe;::: l Qe,Ke J + Ae p. ;:::0, 

where Ae are arbitrary functions. 

(5.18) 

We can finally consider a reduced space of uncon­
strained variables [Qk, Pk and Qe ], which are the intrinisic 
coordinates of the hypersurface of the motion: 

(5.19) 
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Their evolution equations are 

. aXe I . aXe I 
Qk = -- ,Pk = - -- , 

aPk P.=O aQk p.=O 

. aXe I Q.= - +A •. 
ape p.=o 

Ifwe put 

%e(Qk,Pk,t) = Xe(Qk,Pk,Q.,p.,t) \ P,=o , 

Eqs. (5.20) can be rewritten as 

. a%e 
Qk = --(Qk,Pk,t), 

aPk 

. a%e 1) Pk = - --(Qk,Pk,t) (k= , ... ,n 1 , 
aQk 

(S.20) 

(5.21) 

(5.22) 

(5.23) 

whereas Eqs. (5.21) are left unchanged since the two oper­
ations of setting p. = 0 and differentiating with respect to p. 
do not commute. 

As shown by Eqs. (5.20) and (5.21) this method allows 
to isolate the gauge independent variables Qk' Pk (physical 
variables) from the gauge dependent Q., whose evolution is 
determined only when the arbitrary functions are given. 

We point out that when He = 0, that is when, if a la­
grangian formulation exists, the action is parameter-invar­
iant,11 we have Xc = 0 and Eqs. (5.20) and (5.21) become 

Qk = 0, i\ = 0, (5.24) 

Qe = Ae . (5.25) 

Thus, for what concerns the physical variables, the pro-
cedure is equivalent to the Hamilton-Jacobi method. 

Let us finally observe that we can choose anyone of the 
coordinates Q., 12 for example Q. (n 1 < e<,n2), as evolution 
parameter and rewrite Eqs. (5.24) and (5.25) as 

dPk 
-=0 
dQe ' 

(5.26) 

dQr =.,1, /.,1,- (r=n l +1, ... e-l,e+l, ... n2) (5.27) 
dQ. r e 

Q" =Ae · (S.28) 

Thus in order to get the relation between Qr and Q. we must 
give the ratio of the arbitrary functions .,1,,/ Ae as a function of 
Qe and if we are interested in the relation between Q" and the 
unphysical parameter t we must give Ae as a function of t. 

Therefore, with this procedure we get a reduced class of 
gauge (we can only choose one of the coordinates Qe as evo­
lution parameter). This a consequence of the definition of Pe 

[Eqs. (5.3)]. On the other hand, different classes of gauges 
can be obtained by solving Eq. (4.30) to a different set of 
momenta. 

CONCLUSIONS 

Making use of the Poincare-Cartan integral for con­
strained systems, we have shown that the invariance of this 
integral enables us to write the equations of motion for a 
dynamical system as Hamilton equations. We want to ob­
serve that with this procedure, all the first-class constraints 
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appear in the Hamiltonian, because we cannot introduce any 
distinction between them. Recent papers, by Cawley l3 and 
Frenkel, 14 have shown, with some examples, that not all the 
first-class secondary cqnstraints generate gauge transforma­
tions and therefore not all the first-class constraints appear 
in the Hamiltonian. 15 Thus we are investigating an algebraic 
procedure in order to take into account this result. 

Furthermore, we have introduced a definition of ca­
nonical transformation, which is the trivial generalization of 
the usual one, and shown that the Poincare-Cartan integral 
is invariant under this transformation. Then, following 
Shanmugadhasan,3 we have performed a canonical transfor­
mation such that a subset of the new variables is equivalent 
to the second-class constraints. The reduced set of variables, 
independent with respect to second-class constraints, is 
nothing but the set of variables which are canonical with 
respect to Dirac brackets. 

A further step is done by performing a new canonical 
transformation in the reduced phase space which isolates the 
variables corresponding to first-class constraints. This trans­
formation is very useful because it isolates also the gauge 
independent variables from the gauge dependent ones. The 
evolution of these gauge dependent variables, contrary to the 
result of Shanmugadhasan, consistently depends on arbi­
trary functions. 

When" He = 0 this technique becomes equivalent to the 
Hamilton-Jacobi method. Explicit examples (the free rela­
tivistic point and a model of two interacting relativistic parti­
cles) have been already studied 16; presently we are investi­
gating the possibility of extending this technique to 
continuous systems, studying the relativistic string model 
(see Nambu and Scherk in Ref. 1). 
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