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A canon~cal formalism obtained for path-dependent Lagrangians is applied to Fokker-type 
Lagrangtans. The results are specialized for coupling constant expansions and later on are 
applied to relativistic systems of particles interacting through symmetric scalar and vector 
mesodynamics and electrodynamics. 

I. INTRODUCTION 

Hamiltonian formalism is a desirable feature to demand 
for a classical system. Indeed, it enables us to define the ener­
gy-momentum four-vector and the total angular momentum 
tensor as generating functions for Poincare (resp. Galilei) 
infinitesimal transformations. Furthermore, it permits us to 
construct a statistical mechanics and a quantum mechanics 
according to some standard well defined rules. 

On the other hand, relativistic dynamics for directly in­
teracting particles, i.e., without an intermediate field, has 
been developed following a wide variety of approaches. I In 
most of them a canonical formalism has been obtained, ei­
ther because one a priori starts from a Hamiltonian system,2 

or because an invariant symplectic form is obtained.3 

However, there is an approach to relativistic action-at­
a-distance, that based on path-dependent Lagrangian sys­
tems,4-6 which has long refused a Hamiltonian formulation. 7 

This is especially striking since the starting point is a Lagran­
gian system and a variational principle, although of a very 
particular kind. 

Path-dependent Lagrangians were first used by 
Fokker,4 who proposed an action principle for symmetric 
electrodynamics-half-retarded plus half-advanced~f 

two charges without an intermediate field. This is the reason 
why Lagrangians of this kind are also called "Fokker-type 
Lagrangians. " 

The symmetric electrodynamics of Feynman and 
Wheeler's is a generalization of that of Fokker to the case of 
more than two charges. 

Several other relativistic theories of noninstantaneous 
action-at-a-distance between particles have been set in terms 
of Fokker-type Lagrangians.6 This is usually the case of 
those interactions that are somehow related to a classical 
field. 

Path-dependent Lagrangians exhibit a functional de­
pendence on the trajectories as a whole. That makes these 
systems more complex than standard ones; but, since they 
permit us to consider interaction terms depending on nonin­
stantaneous configurations of particles, these Lagrangians 
are especially useful for describing relativistic systems of di­
rectly interacting particles. The basic claim of these theories 
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is that the field is nothing but a useful tool to describe forces 
between particles. The concept offield, introduced by Fara­
day and Maxwell as an intermediate tool to describe the ac­
tion of some given "source" and a "test charge," must be 
acknowledged as one of the most fruitful in theoretical phys­
ics. However, the self-interaction divergences in classical 
field theory occur as a result of allowing the field to act on its 
own source. In order to avoid this "improperty," some au­
~hors5 introduce what they call the "adjunct field." Namely, 
10 Wheeler-Feynman symmetric electrodynamics, each 
charge is acted on by the "adjunct field" of the others, that is, 
half the sum of the advanced and retarded solutions of the 
Maxwell equations for the other charges. This leads to a 
Fokker-type Lagrangian, which only depends on particle 
variables. 
. The most important drawback of Fokker-type systems 
IS that the Euler equations, derived from the Fokker action 
principle, are of functional-differential type (difference-dif­
ferential equations in the simplest cases). Therefore, the evo­
lution space (space of initial data) is non-Newtonian; that is, 
the positions and velocities in a given instant of "time" do 
not determine uniquely the future evolution of the system. 
Furthermore, the evolution space is not even well deter­
mined. 7 As a consequence, it has not been possible to genera­
lize an algorithm as a Legendre transformation to Fokker­
type Lagrangians, nor has an equivalent Hamiltonian 
formalism been set up yet. We can overcome this problem9 

by changing the point of view that is usual in classical me­
chanics. Since the Euler equations derived from a path-de­
pendent Lagrangian are of functional-differential type, the 
initial data space for a Fokker Lagrangian has infinitely 
many dimensions. In our approach, a whole trajectory of the 
system is taken as the "initial datum." In doing this, the 
Euler equations do not rule the evolution anymore (all infor­
mation about it is already contained in the initial datum), 
and they are merely considered as constraints on the initial 
data. 

This approach somehow corresponds to a static point of 
view. The situation is similar to what happens in dealing 
with a static standard Lagrangian L(q,t) (i.e., one depend­
ing on coordinates only): the initial data (qoa )a= I •...• m can, 
in principle, be picked out from an m-dimensional contin­
uum, but the physically significant ones are only those satis­
fying 
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(aL) = ° 
aqa qO).· .• qOm • 

Similarly, in our approach to path-dependent Lagran­
gian systems, one can, in principle, take any m-tuple of 
curves [ql (tl ), ... ,qrn (trn )] as initial data, but these will be 
physically significant only if we have been lucky enough to 
have chosen a set of curves fulfilling the Euler functional­
differential equations, now considered as constraints. 

As has been mentioned elsewhere, those functional dif­
ferential equations admit "too many solutions": contrary to 
what we are used to in Newtonian mechanics, the knowledge 
of all positions and velocities at a given time does not deter­
mine the future evolution of the system. This is a feature of 
Newtonian physics that seems worthy to preserve, as many 
authors 10. 1 1 have considered. Hence several criteria have 
been put forward in order to get rid of the "physically irrele­
vant" solutions. Among these criteria, it is worth mention­
ing that (a) when coupling constants go to zero, motions 
must become free (namely, uniform and rectilinear)12-14; 
(b) in the limit l/c2 --+0, the solutions must yield the Newto­
nian onesll.15.16; and (c) if one mass is much bigger than 
than the others, then the external field approximation must 
be recovered. 17.18 

Any of these three criteria is implemented by requiring 
the physically relevant solutions to be analytical in the corre­
sponding parameter, namely, the coupling constants, the in­
verse speed of light, or the mass ratio, respectively. Any of 
them selects a family of solutions of the functional-differen­
tial equations parametrized by either 6N (noncovariant for­
malism) or 8N (covariant formalism) parameters. It then 
happens (apparently as a consequence of the special struc­
ture of the Fokker-type Lagrangian) that these solutions 
also satisfy a second-order differential system t~at can be 
obtained by techniques l9 provided by predictive relativistic 
mechanics. This differential system is called a second-order 
reduction l9a of the functional-differential system. 

So that, in the covariant formalism given in Ref. 9, we 
consider the map 

rp: TMf --+ E, 

where rp ~ is the predictive solution of the functional-differ­
entia! system determined by one of the above-mentioned cri­
teria and the initial datum (xb,xc )' 

Then, using a kind of Ostrogradski transformation, we 
set up a Hamiltonian formalism for path-dependent Lagran­
gians (Sec. II). Once this has been done for Fokker-type 
Lagrangian systems, as a particular case of path-dependent 
Lagrangians, it can be specialized to any reduction of order 
of the Fokker system. 

The paper is organized as follows: in Sec. II we give the 
canonical formalism for Fokker-type systems. In Sec. III, we 
derive a presymplectic form on the infinite-dimensional evo­
lution space E of a Fokker-type system of relativistic parti­
cles with two-body interactions. Then (Sec. IV) this pre­
symplectic form is specialized to the Newton-like evolution 
space TMf, which results from implementing the condition 
of analytical dependence on the coupling constant. In the 
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latter, we briefly describe perturbation theory and introduce 
the three-dimensional formalism. 

The results obtained are then applied to scalar and vec­
tor interactions, up to the first order of approximation in the 
product gagb of the coupling constants. Special attention is 
paid to Wheeler-Feynman electrodynamics, for which ex­
pansions on l/c2 are carried out and conserved quantities are 
also calculated. 

II. HAMILTONIAN FORMALISM FOR FOKKER 
LAGRANGIANS 

Let us consider a Fokker Lagrangian 
N 

L = - L maC - x~ (t)1/2 
a=1 

- a.~ 1 gagb L ds lU~b (t,t + S), 

a#b 

where 

(2.1 ) 

lU~b (ta ,tb ) = Gab «xa (ta) - Xb (tb nz )Fab (xa (ta ) ,xb (tb » 
(2.2) 

and 

Fab (xa,xb ) = ( - xaxb )'( - x~) (I - r)/2( _ x~) (I - r)12, 

(2.3 ) 

a2 = a,..aJ.l, for any four-vector a,.., and rEf{ depends on the 
specific interaction we are considering. 

Notice that L is a homogeneous function of first degree 
of velocities. Therefore, the corresponding action integral is 
reparametrization invariant. We also notice that 

(2.4) 

This Fokker Lagrangian can be put in the form 

L t = r dsl, ... ,dsm 2'(qa (t + Sa ),i/b (t + Sb ),scl, JRm 

a,h,c = 1, ... ,m, (2.5) 

by merely taking 

2' = 2'0+ 2'1 (2.5a) 

with 
N N 

2'0 = L maC - x~ (t + Sa »1/2 II ~(Sd)' 
a=1 d=1 

(2.5b) 
N N 

2'1 = 2 a.~ 1 gagblU~b (t + Sa,t + Sb) JI ~(Sd)' 
a#b 

(2.5c) 

In Ref. 9 we showed how a canonical formalism can be ob­
tained for this kind of Lagrangian (2.5). 

The procedure can be briefly described as follows. We 
start from the action S = f L, dt and the variational princi­
ple ~S = 0, where the variations ~qa (Sa) are taken so that 
they have compact support, gives rise to the equations of 
functional type 

L ds (ia (1' - S,S) - :1' ga (1' - S,S) ] = 0, (2.6) 
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where 

(2.7a) 

and 

(2.7b) 

However, because ofthe functional-differential charac­
ter of the equations of motion, it is necessary to clarify their 
meaning. In principle, the initial data that should be given to 
specify a unique solution are the whole functions qa (A) 
themselves. As a consequence, these equations [ (2.6) ] must 
be regarded as constraints defining the evolution space E 
(also called initial data space), rather than as laws of mo­
tion. 

We then consider the Hamiltonian 

H= a~IL dAPa(A)qa(A) -LO[qb(Sb)] (2.8) 

defined on a phase space r labeled by 

qb(Sb),Pa(Sa), a,b=l, ... ,m, Sa,SbER, 
with elementary Poisson brackets 

{qa (S)>Pb (S')} = t>abt>(S - S '), 

{qa (S),qb (S')} = {Po (S),Ph (S')} = o. 
We then introduce the primary constraints 

Po (A) = go (O,A.) + L ds [fa (A - S,S) 

- a}.go (A - S,S) ]0(,1. - S,S), 
with 

0(u,v) = Y(v) Y(u) - Y( - v) Y(u) 

= HE(V) - du», 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

where Y(v) denotes the Heaviside function and E(V) is the 
"sign function." In Ref. 9, it was found that the secondary 
constraints that follow from (2.11) and the Hamiltonian 
(2.8) are the functional equations (2.6). Therefore, theevo­
lution space E can be immersed into the phase space r by 
defining 

t/!: E--+ r, 
z = qo (Aa) --+t/!(z) = (qo (,1.0 ),Pb (Ab », (2.13 ) 

where each curve Ph (A b ) is given as a function of 
z = (qo (,1.0» by Eq. (2.11). This mapping is invariant under 
"time" t evolution. Then, the symplectic form defined on r 
by the Poisson brackets (2.10) can be pulled back onto E. In 
this way, an equivalence between the Lagrangian formalism 
(2.6) and (2.7) and the Hamiltonian one (1.5)-( 1.9) is es­
tablished. 

III. PRESYMPLECTIC FORM ON E 

If we apply the above results to Fokker Lagrangians we 
obtain 

2809 J. Math. Phys., Vol. 30, No. 12, December 1989 

and 

As a consequence, the Euler equations take the form 

~ (max"l' (,1.)( - x! (,1.»-1/2) 
dA 

with the Lagrange operators Jj 01" defined by 

Jj = a d a 
01" ax~ (A) dA ax~ (A) 

The primary constraints (2.11) can be written as 

POI" (A) = t>(A)'lTol" + 1]01" (A), 

where 

'lTal" = maC - x! (0»-1/2xal" (0) 

~ 1 d atu~b (1],0) 
- ~ gagb 1] a'I"(O) 

b- 1 R Xa 
b#a 

and 

1 N 

1]al" (A) = - 2" b~l gagb 

b#a 

(3.3 ) 

(3.4 ) 

(3.5) 

(3.6a) 

x fa d1]Jj al" {tu~b (A - 1],,1.) }0(A - 1],A.). 

(3.6b) 

Notice that the term 'lTal" looks like the expression ob­
tained for mechanical momenta in an analogous field de­
scription of the system. 

The phase space T*E was endowed with a Liouville 
form EEA 1 ( T * E), and the corresponding symplectic struc­
ture9 

n = - dE. (3.7) 

The pullback map t/!* takes EEA 1 
( T * E) onto 

t/!*EEAi(E); thus yielding 

t/!*E= atll dA~(A,[xa(A)])axal"(A). (3.8) 

Here the symbol A denotes the exterior differential in the 
infinite-dimensional manifold E, and it is used in order to 
avoid confusion with the symbol dA under the integral sign. 
Substituting Eq. (2.5) into (2.8) we directly obtain 
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N 

",*'E. = L tr:,t:.xal' (0) 
0=1 

(3.9) 

Notice the simplicity of the first term compared with the 
second one, which involves an integral over the region of R2 
having ®(A. - 7]).) as its characteristic function. 

The expressions for the generating functions of the 
Poincare group can be directly obtained, too, as we already 
discussed in Ref. 9. Thus the total linear momentum is given 
by the generating functions of space-time translations: 

(3.1Oa) 

While the generating functions for Lorentz transformations 
yield the total angular momentum9 

Jl'v = atl i dA.{xa!' (A.)Pav(A.) - xav(A.)Pa!' (A.)} 

N 

= L {Xa!'(O)1Tav -Xav (O)1Ta!'} 
a=1 

+ atl i dA.{xa!' (A.)7]av(A.) - x av (A.)7]a!' (A.)}. 

(3.1Ob) 

These results are in agreement with earlier calculations 
obtained, either by a generalization of the N oether theorem 7 

or by the method of Dettman and Schild,20 provided that 

lim tu~b (A.,7]) = O. 
A-oo 

IV. THE PRESYMPLECTIC STRUCTURE ON TM:' 

Let us consider a set of solutions of Eqs. (3.3), 

(3.11) 

x~(A.) = <p~(A.,Xb'Xc)' (4.1) 

parametrized with the Newton-like initial data xi: (0) = xi:, 
~(O) =~. 

When we introduce them in Eq. (3.9) we obtain 

p = j*'E. 

N 

= L 1Ta!, (xb,xc )t:.x~ 
0=1 

+ atl i dA. 7]a!' (A.,Xb,Xc )t:.<p ~ (A.,Xb,xc ), (4.2) 

wherej* = <p *0",*.9 Moreover, 1Ta!, (xb,xc ) and 7]al' (xb,xc ) 
correspond to 1Tal' and 7]al' evaluated by introducing (4.1) 
into (3.5), and use has been made of the fact that 

j*(~ (A.» = t:.<p ~ (A.,Xb ,xc) 

and 

(4.3) 
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In this way, we obtain a formal expression for the Liouville 
form on TM:. An analogous treatment can be given to the 
total linear and angular momenta. Now, actual calculations 
require explicit expressions for the trajectories <p ~, 
a = 1, ... ,N. As we have already mentioned in the Introduc­
tion, these can be dealt with through perturbative tech­
niques, which can be found in the literature. 19 These tech­
niques use the analytical dependence on the physical 
parameters that we have assumed for the solutions <p ~. 
Then, the corresponding MacLaurin series on these param­
eters are worked out and a perturbative expansion is ob­
tained. In the present paper, we mainly work with coupling 
constant expansions. Let us briefly describe the associated 
perturbation theory. 

Consider the expansion of xa!' in powers of the coupling 
constants ga: 

(4.4) 

When (4.4) is substituted into the equations of motion 
(3.3), a hierarchy of second-order differential systems is ob­
tained, such that each step determines the right-hand side of 
the next one. The condition that in the limit ga --+0 we have 
free motion is then introduced by taking 

<p~~)(A.;Xb'Xc) =xal' +A.Xa!, (4.5) 

and the coefficients in the series (4.4) are uniquely deter­
mined by the Newton-like set of initial data (xb,xc ) atA. = O. 

A similar treatment could be used for the problem if the 
criteria (b) or (c) discussed in Sec. I were chosen, namely, 
1/e2 (see Refs. 11, 15, and 16) and m/M (see Refs. 17 and 
18) expansions, respectively. 

Introducing these kinds of expansions in (4.2) we ob­
tain a perturbative expansion for p. Furthermore, since the 
lowe~t-order term in the expansion for the Lagrange opera­
tor .2" al' is given by 

2'(0) _ a a (a A. a ) (4.6) 
a!, - axal' - aA. axa!, - axa!, ' 

the order of computing integrals and derivatives in Eq. 
(2.13) can be reversed. 

We also have that 

t:.<p~~)(A.;Xb'Xc) =dxa!' +A.dxal" (4.7) 

And, after some rearrangements, it is found that, to the order 
n=2, 

N 

p= L (R~!)dx~+Q~!)d~)+O(g4), (4.8) 
a=1 

where the term O(gn) includes all terms occurring multi­
plied by at least n "charges" gb' Moreover, 

R (2) = 1T(2) (x x) 
QI' all' 

(4.9a) 
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+ a~~ [(N~a - Mba )FbaCXb,Xa)] ] , 

Fba (Xb,Xa) is given by (2.3), and 

(4.9b) 

N~a = f dAd1JAsE>(A-1J.A)Gb~)(A-1J,A), 
JR' 

(4.lOa) 

M~a = f dAd1Ja.dAsE>(A-1J,A)Gb~)(A-1J,A)], 
Jft' 

(4.lOb) 

where, according to (4.5), 

G b~)(Ab,Aa) = Gba (xb - xa + XbAb - xaAa)· 

Similarly, to this order of approximation, the total linear 
momentum is given by 

N 

Pp. = L R ~!) + O(g4), 
a=1 

while the total angular momentum is 
N 

Jp.v = L [R ~!)xav + Q ~!)xav 
a=l 

(4.11 ) 

-R~~)xap. -Q~~)xap.] +O(g4). (4.12) 
Hitherto, we have been working in the covariant formal­

ism. The price we have had to pay for this is the singular 
character of the lowest-order term in the Lagrangian. As a 
consequence, the lowest-order contribution to the presym­
plectic form on TMi" is not regular. In other words, the 
zeroth-order terms in the momenta (3.6a), 1T~~)(Xb'Xc)' ful­
fill the N constraints 

1T(O)P.1T(O) (x X ) = - m2 
a aIL b' ca· 

In order to avoid the problems associated with this singular­
ity, we shall go into the noncovariant formalism by fixing the 
time coordinates x~ and the evolution parameter t according 
to 

X~ = t. (4.13 ) 

Given any quantity A in the covariant formalism, we shall 
denote by A its noncovariant counterpart, that is, the quanti­
ty resulting from introducing the constraints (4.13) into it.] 

A direct calculation shows that 
N 

p=Hdt- L Padqa' (4.14 ) 
a=1 

where 
N 

H= L R~)+O(g4), (4.15 ) 
a=1 

and 

( 4.17) 

The one-form p obtained by restriction of (4.8) to the 
phase space defined by the constraints (4.13) (that is, the 
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phase space of the noncovariant formalism) plays the role of 
a Poincare-Cartan integral invariant. 21 According to this H 
will be the Hamiltonian, i.e., the generating function for time 
evolution, and qa and Pa will be a set of canonical coordi­
nates and momenta. (As usual, an arrow over a symbol indi­
cates the space part of the corresponging four1'ector.) 

The evaluation of the quantities R ~2) and Q ~2) involves 
differentiation with respect to x~ and ~. (Some useful for­
mulas are given in the Appendix.) 

V. SCALAR AND VECTOR INTERACTIONS. WHEELER­
FEYNMAN PREDICTIVE ELECTRODYNAMICS 

A. Scalar and vector interactions 

The action-at-a-distance counterpart of the field theory 
for scalar particles interacting through a massive scalar 
(resp. vector) field is given by the Lagrangian (2.1) with 
r = ° (resp. r = 1) and 

Gab «Xa (ta) -Xb(tb)f) = Dsym (j.l,(Xa(ta) -Xb(tb)f), 
(5.1 ) 

where 

Dsym (j.l,s) =! [D Adv (j.l,s) + Dre, (j.l,s)] 

= 2 [8(s) - Y( - s)(j.l12F$)J1 ( - j.l~ - s)] 
(5.2) 

is the time symmetric Green's function for the massive 
Klein-Gordon operator. 

In order to obtain a presymplectic structure on TMi", up 
to the second order in the coupling constants ga' it is neces­
sary to give explicit expressions for the results (4.1 0). First 
of all, we notice that, up to this order, 

Fab(xa,Xb) = (-xaxb)'( -xax a)(I-,)/2 

(5.3 ) 

and therefore it does not depend on A. 
Substituting (5.1) into Eq. (4.lOb), we also have 

M~b = 2 J dA d1J a,( [A sE>(A -1J.A)Dsym (Utab (A,1J»], 

(5.4 ) 

fab(A,1J) = [(xa -xb) + (xa -Xb)A -Xb1J]2 

== [Xab + XabA - Xb1J]2. 

Then, taking into account that 

x_ 00 

we obtain 

M~b = 0, S = 0,1,2. 

Consequently, Eqs. (4.10) take the simpler form 

(5.5) 

(5.6) 

R (2) _ (2) 1 ~ F" a 0 ap. - 1Tal' - - ~ gagb ba (Xb,Xa) -- N ba' 
2 b#a ax~ 

(5.7a) 

Q (2) _ 1 ~ a (N0 F (. . » (57b) ap. - - - ~ gagb -.- ba ba Xb,Xa · . 
2 b#a a~ 

A direct calculation yields 
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x (l/rab~ - X~ )exp( - Wab)' (5.Sa) 

~b =X!b - (Xb Xab)2/xi· (5.Sb) 

On the other hand, since the presence of the characteris­
ticfunction 0(A - 'TJ,A) makes the evaluation of N~a rather 
involved, it is more convenient to work it out in terms of its 
Fourier representation. 

Taking into account that 

I-' - 1 d 4
k exp(ikx) 

Dsym (/-l,x xI-') - 41T P.V. --4 2 2' 
JR' (21T) k +/-l 

we obtain 

N~b = lab - Iba, 

where _ . 1 d 4 k exp(ikxab ) 8( kXb) 
lab - 41Tl P.V. 3 2 2 

R4 (21T) k + /-l kXa 

or, after a little calculation, 

1 =-l-il d exp( - rab/-l'TJ/( -xi» 
• 'TJ , 

Aab I-'ab ~ 'TJ2 - U~b 

where 

U b = (1 _ (AabZab )2 1 )112 
a rab ( - X~b ) , 

(5.9) 

(5.lOa) 

(5.lOb) 

(5.11) 

(5.12) 

and the following Poincare invariants have been introduced: 

Zab = Aab 2 [ - X~ (XabXa) + XaXb (XabXb) ] 

and 

A similar result holds for Iba' 

(5.13 ) 

(5.14 ) 

Notice that, since lab is Poincare invariant, the calcula­
tions leading from (5.10) to (5.11) can be worked out in the 
rest frame of particle b, followed by the subsequent transla­
tion into covariant form. 

The Liouville form (4.9), as well as the total linear and 
angular momenta, are determined to this order by R ~~) and 
Q ~~). Their explicit expressions can be found by direct sub­
stitution of (5.3), (5.S), and (5.10) into (5.7). The three­
dimensional formalism can also be developed by merely in­
troducing the constraints (4.13). 

B. Wheeler-Feynman electrodynamics 

There is no doubt that the most widely known Fokker­
type system is Wheeler-Feynman electrodynamics (WFE). 
First introduced by Tetrode22 and Fokker4 for two charges, 
its generalization to N charges, 5 supplemented by the perfect 
absorber theory,S describes the whole classical electrody­
namics, including the radiation reaction effects and the ob­
served retarded interaction. 

WFE corresponds to an action-at-a-distance vector in­
teraction with vanishing mass parameter (i.e., /-l = 0). 
Hence all the results hitherto obtained still hold. 
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Taking into account that 

f d'TJ =-1-ln(v'A1i+~A'TJ2+C), A>O, 
~A'TJ2+C a 

(5.15 ) 

we can express N~b in terms of elementary functions; thus 
obtaining 

Q(2) _ 1 ~ 
al-' - -2 £.. gagb 

b#a 

x-- ---In . a [kab (rab + Aabzab ( - xi) -1/2)] 
ax~ 2Aab roo + AabZba ( - X!) -1/2 

(5.16b) 

By substituting these expressions into (4.15 )-( 4.17) we 
easily obtain the Hamiltonian and a set of canonical coordi­
nates and momenta. 

Furthermore, in order to compare with other results al­
ready known, the post-Newtonian approximation can be 
carried out. Approximating the canonical coordinates and 
momenta up to order c- 2

, we obtain 

~ ... -2 ~ 1 a ( Wab) 0(-4 'fa =Xa -C £.. gagb ---- --... - + c ), 
b #a 4ma OVa IXab I 

(5.17 ) 

(5.IS) 

where Wab = XabVa' 
The simple form of the coordinates, up to this order of 

approximation, suggests the possibility of removing the c- 2 

term by a canonical transformation with generating func­
tion, 

(5.19) 
a 

N ~ V 
U ( -) - -2 ~ 'fab a + O( -4) 

2 q,p - c £.. -- C, 
a,b~ I 41qab I 

(5.20) 

a#b 
[whereva = ~a/ma + O(C- 2) must be understood in the U2 

term], which leads to a new set of canonical coordinates and 
momenta, ~ a and jJ a' that can be obtained by the well known 
expressions21 

~ _ aU(q,jJ) 
'Ja - afia ' 

In this case 

Jaen etal. 2812 

Downloaded 13 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



(S.21a) 

(S.21b) 

Hence, up to order c - 2, physical positions of particles can be taken as canonical coordinates. This result agrees with those 
given in Refs. 23 and 24. 

In order to derive the order c -4 terms for the canonical variables q a and P a' correction terms must be added to Eqs. (S.17) 
and (S.18). Naming these correction terms q4a andp4a' respectively, we have 

~ _ -4 1 ['" 1 a ( // //) v~ '" gagb a ( Wab) '" gagb (( a Wab)-+) -+ ] 'f - c - ~ gbg --- ..At b -..At b - - ~ ---- --- - ~ -- ----- v V 
4a ma b #a a 1bmb Ova a a 2 b #a ma Ova IXab I b #a ma Ova IXab I a a , 

(S.22a) 

(S.22b) 

where 

(S.23 ) 

In order to compare these results with those given in Ref. 2S, we carry out a canonical transformation with generating 
function 

(S.24) 
a 

with 

~ V 
U ( -) -2 '" 'fab a + O( -6) 

2 q,p =C ~gagb~l~ I C, 
a,b 'fab 

and 

va = fia _ c-2 [ jJ~ fia + L gagb fib + L gagb ~(qabfib)] + O(C- 6 ). 

ma 2m~ b,po mb Iqab I b #a 2mb aqa Iqab I 

The final expressions for the canonical variables and mo­
menta ~a and fia up to order c-4 coincide with the above­
mentioned results. 25 

VI. CONCLUSIONS AND OUTLOOK 

Let us briefly sketch the present state of affairs in those 
relativistic theories of directly interacting particles that are 
intended to relate the force acting on one particle to some 
classical field theory. This will help to understand the role 
claimed for the present paper and also for Ref. 9. 

These theories start from a Fokker-type Lagrangian 
(A), which is nonlocal in time, and then the Euler equations 
are derived. The latter is a system of functional differential 
equations (B), which is nonpredictive in the Newtonian 
sense, because the particle position and velocities at a given 
time do not determine their future evolution. This seems to 
be a strong qualitative difference with regard to what is com­
mon in nonrelativistic physics. A way out is to accept that 
not all the solutions of (B) are "physically significant," but 
only those satisfying an additional requirement, namely, 
(C) the analytical dependence of particle world lines on 
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some "small parameter" (either the inverse speed of light, 
the coupling constants, or the mass ratio). 

The use of any of these criteria enables one to select a 
family of "physically significant" solutions of (B). Each of 
them can be parametrized by the particle positions and ve­
locities at a given time, and hence satisfy a Newton-like set of 
equations of motion (D). 

The path from (B) to (D) via (C) is conceptually sim­
ple when the inverse speed of light is taken as a "small pa­
rameter" (it can be carried over by merely iterating the sub­
stitution oflower orders of approximation into higher ones), 
and involves the use of more complex perturbative tech­
niques, besides the theoretical framework of predictive rela­
tivistic mechanics, in the remaining two cases. 

Finally, introducing some additional, although rather 
general, assumptions concerning the asymptotic conditions 
in the past and/or future infinity, a Hamiltonian formalism 
(E) can be set up. Apparently this canonical formalism has a 
relationship with the Fokker-type variational principle one 
has started from. 

The main contribution of the present paper, and Ref. 9, 
too, consists of providing a Hamiltonian (presymplectic) 
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formalism for Fokker-type Lagrangian systems. This en­
ables us to introduce the analyticity condition directly in the 
Hamiltonian formalism, so that we can obtain a Hamilto­
nian formalism on a Newton-like phase space for the system 
of interacting particles. In this way, we abridge the path 
from (A) to (E), without losing the connection with the 
canonical formalism that seemed to underlie the Fokker 
variational principle. 

We have finally specialized these general results to sca­
lar and vector mesodynamics,6 and to Wheeler-Feynman 
symmetric electrodynamics, up to the first order in the cou­
pling constants. Although the formalism has here been de­
veloped for a specific kind of theory, namely, relativisitc sys­
tems of directly interacting particles, its interest goes beyond 
this topic. Indeed, it could also be applied to nonlocal field 
theories (presumably with only a few extra technicalities not 
interfering with the core difficulty of a Lagrangian that is 
nonlocal in time). The canonical formalism so obtained 
would then allow one to proceed with a standard canonical 
quantization of nonlocal field theories and to add some new 
insight to other quantization procedures. 26.27 
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APPENDIX: FROM COVARIANT TO NONCOVARIANT 
NOTATION 

Here we give some formulas that are useful in translat­
ing expressions from covariant to noncovariant formalism, 
i.e., when the time fixation x~ = t is introduced. 

These formulas establish in what cases the operations 
(i) introducing the time fixations and (ii) differentiation 
commute or do not commute. 

In general, we must deal with a Poincare-invariant func­
tionf(x~d,xcdxe,.;(xd)' c,d,e = I, ... ,N. Introducing the fix­
ation, we have 

ji-( 2 ... ) ji(l-+ 12 -+ -+ 1+-+ -+ ) Xcd,XcdX.,XcXd = Xed ,XcdVe' - VcVd , 

where the notation given in Sec. IV has been used. 
A short calculation proves that 
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aj ~ -+ aj aj Al 
al -+1 2 +£"'vea(-+-+ =-a.-+'() 

Xac e.c xacve) Xa 
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