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The concepts of void and cluster for an arbitrary point distribution in a domain g are defined 
and characterized by some parameters such as volume, density, number of points belonging to 
them, shape, etc. After assigning a weight to each void and cluster-which is a function of its 
characteristics-the concept of distance between two point configurations Sl and Sz in g is 
introduced, both with and without the help of a lattice in the domain g. This defines a 
topology for the point distributions in g, which is different for the different characterizations 
of the voids and clusters. 

I. INTRODUCTION 

The spatial distributions of points in one, two, or a high
er number of dimensions (spatial processes, point processes, 
spatial patterns, spatial point patterns) constitute a very in
teresting field of research, not only in pure mathematical 
statistics but also in its innumerable applications, which 
range from biometrics to astrophysics and includes such di
verse fields as agriculture, econometrics, ecology, traffic 
problems, and medical sciences. In fact, such point distribu
tions may correspond, for instance, to plants of a given spe
cies, to cars along a road, to seeds in a field, to microorgan
isms in a living body, or to stars--or even galaxies or clusters 
of galaxies-in our Universe. An important mathematical 
aspect of spatial processes is the study of the geometrical and 
topological properties of point distributions. 

Although in biometry the study of such distributions 
has always been very popular during the last years-as can 
be seen through the large number of research articles and 
even books which have been issued, 1 in the last couple of 
months the interest about this field of research has grown 
very rapidly, due in great part to the remarkable discoveries 
of de Lapparent, Geller, and Huchra about the spatial distri
bution of galaxies in our Universe. z These authors made an 
optical red shift survey of all 1099 galaxies brighter than 
magnitude 15.5 of a thin slice of sky and came to the conclu
sion that galaxies are concentrated on the surfaces of contig
uous bubble like structures with very large typical diameters 
of about 25 h - 1 Mpc. The large void in Bootes of 60 h - 1 

Mpc, discovered in 1981 by Kirshner et 01.,3 has been there
by proved to be no peculiarity but a very common feature. 
Too often, the analysis of the point distributions of galaxies, 
with their voids and clusters, is done simply by looking at 
pictures and plates with the naked eye, a very primitive pro
cedure which in general is not that bad. Nevertheless, the 
important discoveries we have just mentioned stress once 
more the necessity for a more profound understanding of 
spatial point distributions and, in particular, of the still un
solved problem concerning the construction of a mathemat
ical "measure" for quantifying how far away are two of such 
point distributions (characterized by the number and mag
nitude of the voids and clusters, their forms and spatial dis
tribution, etc.). 

II. DEFINITIONS OF (SPHERICAL) VOID AND CLUSTER 

The very large numbers of points one has to deal with 
makes it almost a necessity to introduce definitions which 
are suitable to be treated with a numerical algorithm. This 
has been pointed out in several previous papers on the sub
ject4 and will be considered later in detail (Sec. VI). How
ever, I do not think that discrete algorithms alone can solve 
these problems satisfactorily, and it is much better to play at 
a time both with discrete and with continuous concepts. 

LetSbe a set of points in a given domain g; of volume V 
in d-dimensional Euclidean space. Let N be the number of 
points in S. For any point peg; and any positive real number 
reR +, the density of points in a ball around p of radius r is 
given by 

Pp (r) = np (r)IVp (r), (2.1) 

where np (r) is the number of points of S inside the ball, and 
Vp (r) is the volume of the ball. By definition, there is a void 
aroundp of radius bigger than r if the density Pp (r) verifies 

Pp (r) <AN IV, (2.2) 

where A';;; 1 must be fixed (we may take, for instance, A = ~). 
The radius of the void around p is defined to be the value r 
such that p 

(2.3) 

In this way the density of any void will be the same. Alterna
tively, one could define the radius of the void as the value ofr 
at which the slope of Pp (r) is maximum. 

On the other hand, there exists, by definition, a cluster 
aroundp if 

pp(r»NIAV. (2.4) 

The radius of the cluster may be defined to be the value r p 

such that 

(2.5) 

As before, one could alternatively define the radius of the 
cluster as the value of r at which the slope of - p (r) is 

• p 
maximum. 

Until now we have studied only what happens at some 
given place p. A global analysis has to distinguish between 
the different voids and clusters, so that we do not count the 
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same point of the distribution twice: as belonging to a void 
(or cluster) and to another one which intersects the first. 
Moreover, the preceding definitions are best suited for 
spherical voids or clusters only and when p is the center of 
them. These difficulties will be taken care of in the subse
quent sections. 

III. EFFICIENT SEARCH FOR VOIDS AND CLUSTERS 

Let us now introduce a lattice .!f of lattice site a in the 
domain.@. For a given setofrkE]R+, k = 1,2, ... ,m, select the 
set S I of vertices of the lattice corresponding to the s smallest 
andtotheh highestvaluesofpPi(rk ),forallk = 1,2, ... ,m,for 
all lattice vertices p; on .!f. Improve now the set of points p; 
in S I to a set S2 coming from the s smallest and h highest 
values of pq,(rk ) for all k = 1,2, ... ,m, and for all q; of the 
form 

p; + A. LJj:/Pi (rk ) ] - 112m e, (3.1 ) 

where A. is a constant that we can adjust at will (for instance, 
A. = ~ for voids and A. = 2 for clusters), while e sweeps all 
unitary directions of the form 

(3.2) 

where e; is the unitary vector along the i axis of ]Rd. Notice 
that, in general, the points q; are not vertices of the lattice. In 
fact, the vertices of the lattice serve only as starting points in 
order to begin the search for the best centers of the voids and 
clusters. 

The procedure is then repeated until it stabilizes. In this 
way we obtain the positions of the centers of a desired num
ber ofthe less dense voids and of the more dense clusters in 
the point distribution S. 

IV. WEIGHTS OF THE INDIVIDUAL VOIDS AND 
CLUSTERS 

The weight of a spherical void of radius r and density P 
with the center at the point p is given by the following expres
sion: 

(4.1 ) 

where kv is a constant (independent of the void), Vp (r) the 
volume of a sphere of radius r in d dimensions, and n is the 
number of points of S inside the sphere. That this expression 
is correct can be seen through the following argument. For a 
given density p, increase of Wv in (4.1) is proportional to the 
volume of the void, while for fixed volume, increase of Wv is 
proportional to decrease of Pi' as it should be by intuition. 
Alternatively, at fixed n increase of Wv is proportional to the 
volume and also to the decrease of density, i.e., proportional 
to the volume squared. 

The weight of a spherical cluster of radius r and density 
P centered at p is given by 

We = kenp = ke [n2/Vp (r)] = keP
2Vp (r), (4.2) 

where ke is a constant independent of the cluster. Expression 
(4.2) can be understood by reasoning as follows. At fixed n, 
We is proportional to increase of P (or to decrease of vol
ume). At fixedp, We is proportional to increase of n (or to 
increase of volume). Alternatively, with full generality, in-
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crease of We is due both to increase of n (it would also be true 
for fixedp, i.e., letting volume increase) and to increase ofp. 

V. THE SET OF ALL POINT DISTRIBUTIONS AS A 
METRIC SPACE 

Once the spherical voids and clusters have been con
structed by the procedures described in Secs. II and III, and 
just before their individual weights (Sec. IV) are calculated, 
one has to look for superpositions of them which may result 
in nonspherical voids and clusters. The idea is very simple: to 
consider as a unique void (resp. cluster) the union of all of 
them which are connected by a chain of intersections (Fig. 
1). In this way, the numbers of voids and clusters, sand h, 
respectively, diminish and, at the same time, they are no 
more spherical but acquire a form of the type depicted in Fig. 
2. It is now immediate to modify the formulas (4.1) and 
( 4.2) accordingly: in both cases the volume Vp (r) of a d
dimensional sphere of radius r centered at p must be substi
tuted by the volume of the void or cluster considered. Of 
course, the density p and the number of points n will also 
correspond now to the whole, nonspherical void or cluster. 

Once all the voids and all the clusters have been con
structed, the remaining region of the domain .@ is filled up 
with a (under ideal conditions) sensibly uniform distribu
tion of points of S with a density almost equal to Po = N / V. 
In practice this must be checked a posteriori and if it were not 
true, the free parameters introduced in the definitions and 
construction of the voids and clusters (s, h, ... ) ought to be 
changed accordingly. For instance, if the density of the re
maining region were smaller than Po, then the number s of 
voids should be increased. On the other hand, if the homo
geneity of the remaining region were not very good then both 
sand h ought to be augmented. 

Let us now consider the plane (V,p) and the points 
(V;,p;) in it, where the index i goes through all the different 
voids and clusters, with one value of the index corresponding 
to the intermediate, remaining region. Introduce a regular 
lattice in this plane and denote the different cells by 
( ~, Pj ), jE/. Define now the functionf( ~,pj) which as-

• •• • 
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FIG. I. Examples for distributions of spherical voids and clusters. They can 
superpose in a variety of ways. 
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FIG. 2. Voids and clusters constructed from the distributions of Fig. 1 in 
order to avoid overcounting. 

signs to each cell (~,pJ) the number of clusters plus the 
number of voids which belong to this cell, each of them mul
tiplied by the corresponding weight (4.2) and (4.1), respec
tively, i.e., 

f(~,pj) =nc(~,pj)Wc(~,pj) 

+nv(~,pj)WvOj,pj)' je/. (5.1) 

Here the intermediate region is to be counted as an addi
tional void or cluster depending on its density p beingp'Po 
or p > Po' respectively. Notice thatf( ~,pj) is different from 
zero only in a finite number of cells (~,pj)' The following 
step is to construct with these points the minimal triangulat
ed surface with vertices at these points. Thus, we get a con
tinuous functionf(V,p) defined on the plane (V,p). Now, 
given another point configuration on the domain g, we de
fine the distance between these two configurations SI and S2 
by 

d(SI,S2)2= II [fl(V,p) -f2(V,p)]ZdVdp, (5.2) 

whereiJ andh are the functions corresponding to the point 
configurations SI and S2' respectively. 

The problem we are dealing with is not so standard. No 
wonder, therefore, that definition (5.2) is not a usual mea
sure of the configuration space. However, it is important to 
observe that d, as given by (5.2), can be easily implemented 
to yield a true distance by the usual mathematical proce
dures. Let us be completely rigorous. 

The set which is going to tum into a metric space is 
Y = set of all finite point distributions in the domain g. 
The "distance" defined by (5.2) is actually only a semidis
tance. In fact, it satisfies (i) d(SI,s2) = 0, (ii) 
d(S2,SI) = d(SI,S2)' and (iii) d(SI,S2) <.d(SI,S3) 
+ d(S3,s2) , for any SI,S2,S3eY. All we have to do is to 

define the coset Y = Y / -, whereSI-S2 iffd(SI>S2) = 0, 
in order to obtain a metric space Y with the distance d given 
by 

(5.3) 

In fact, this is a consistent definition for, let us consider two 
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other configurations S ; ES1 and S ~ ES2• Then, we have 

d(SI,S2)<.d(SI'S;) +d(S;,S~) +d(S~,s2)' 

But d(SI'S;) = ° and d(S2'S ~) = 0, so that d(SI,s2) 
<.d(S; ,S ~). Moreover, 

deS; ,S~ )<.d(S;,SI) + d(SI,S2) + d(S2,s ~), 

and we get d(S;,S~)<.d(SI,S2)' Therefore, d(S;,S~) 
= d(§I,S2)' Equation (5.3) defines a distance d on Y. In 

fact, d satisfies the axioms (i)-(iii) above and, moveover 
the additional one, (i') d(SI,S2) = OimpliesSI = S2' This i~ 
immediate from (5.3) and from the definition of the coset 
Y. 

Summing up, Y is a metric space endowed with the 
distance d. This constructive procedure is very well known 
to mathematicians, in fact, it is the standard way to proceed. 
This allows one to be a little loosely in the notation and speak 
of the metric space Y and of the distance d, as given by 
(5.2). The alternative definitions of distance which will fol
low have to be compared with (5.2). Actually all of them 
ought to be submitted to the same procedure as given above 
in order that they become true distances d. 

A metric space is readily made into a topological space, 
the topology being provided by the distance, much as in the 
standard example of the metric space an. The neighbor
hoo~s ofth.: basis .9f!his topology are open balls of the form 
Bp(S) = {S'eYld(S,S') <p}, p being any rational num
ber peQ. Being again a little loosely with the notation we 
may say that the set Y of all finite point distributions in g is 
a topological space, the topology being given through the 
distanced in (5.2). 

This is by no means the only possibility to define a dis
tance between two point configurations. But the definition 
which has just been given above is quite a sensible one. An 
example of a different, more simple definition is the follow
ing. Consider the weights (4.1) and (4.2) and place them at 
the negative and positive semiaxis x, respectively (Fig. 3). 
Then discretize this axis by considering intervals of a given 
length I. For each interval of the x axis, on the y axis set the 
number of voids (resp. clusters) with a value of Wv (resp. 
We) which belongs to this interval. Now consider the seg
ment-wise curve constructed with the resulting points (Fig. 
3 ). Let us call this curve g (x). The distance between two 
point configurations SI and S2 can then by defined by 

d(SI,S2)2= I [gl(X) -g2(X)]2dx. (5.4) 

Notice, however, that on taking the weights from the begin
ning we have implicitly introduced in this last case an equiv
alence relation among voids (and among clusters). In some 
cases this can actually be convenient in order to simplify the 
problem from the beginning, but in other situations a finer 
definition such as the first one will have to be adopted. 

VI. POINT DISTRIBUTIONS IN A DOMAIN WITH A 
LATTICE 

In order to treat all the preceding questions in a way 
better suited for numerical manipUlations, one can carry all 
these definitions to a lattice 2' of certain site a on the do-
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-x Wv We x 

FIG. 3. Segment-wise curve g(x) constructed using a discretization of the weights corresponding to voids (negative x axis) and clusters (positive x axis). In 
the y axis the numbers of voids and clusters that fall into each interval of x are represented. 

main 5P. That is, a discretization of the methods which have 
been elaborated above has to be developed. 

One must start by counting the number of points of the 
distribution S in 5P that fall into each of the elementary cells 
of the lattice. The voids will consist of all those cells whose 
number of points does not reach a value n 1 fixed in advance, 
while the clusters are made up of cells with a number of 
points above a second number n2 also fixed in advance. Of 
course, one must have 

(6.1 ) 

where Nc = V lad is the number of cells of the lattice .!f. 
(To begin with, we consider all cells equal and obviate the 
small modifications in these definitions which had to be 
made for cells touching the border of the domain 5P.) In this 
way, extended voids and clusters made up of cells will arise, 
in general. A huge void (cluster) will consist of several con
tiguous cells with a small (big) number of points. Figure 2 
will be almost the same, only that the curved contour will be 
substituted by a segment-wise one, with segments of longi
tude proportional to a. Formulas (4.1) and (4.2) will re
main unchanged: only Vp (r) will be substituted by the vol
ume Vv or Vc of the void or cluster under consideration (a 
volume always proportional to ad, the volume of an elemen
tary cell). 

Notice that this procedure is less time consuming than 
the former one when it is carried out in practice. However, it 
is not so sensible to detect the voids and clusters with preci
sion. In fact, once the lattice .!f has been fixed, a given cell 
can participate at the same time of a void and of a cluster so 
that the total number of points in it may compensate (Fig. 
4), thus hiding this fact completely. Clearly, everything be
comes better as a is made smaller (continuum limit). How
ever, with a (discrete) point distribution this cannot be done 
indefinitely: for a small enough every cell contains at most 
one point only and for such small cells the whole procedure 
ceases to be of much use (this was the difficulty with the 
topology of discrete point distributions in the first place). 

Once the weights (4.1) and (4.2) have been adapted to 
the lattice voids and clusters, the definitions (5.2 )-( 5.4) for 
the distance between two point configurations Sl and S2 go 
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through immediately. Thus, we complete the treatment of 
the lattice case and define a topology for point configura
tions on the domain 5P. One could think, in principle, that in 
order to proceed in accordance with the discretization of 5P , 
the plane ( V,p) ought also to be discretized, i.e., divided into 
rectangles of sides a v and a p' and the minimal triangulated 
surfaces constructed using the vertices corresponding to the 
centers of these cells. However, it must be pointed out that 
this last discretization is completely independent from the 
one of the domain 5P . 

Finally, notice that in our definition only the volume 
and the density (we may substitute one ofthese by the num
ber of points inside) of the void or cluster have been taken 
into account in the definition of the distance d(SI,S2)' A 
more elaborate definition should also include other param
eters such as some characterizing the shape of the void or 
cluster (for instance, a combination of the diameters along 
each of the axes, as the sum or the product of these diame
ters). The functionf( V,p) given in (5.1) and the distance 
(5.2) have to be redefined accordingly. That is (we drop the 
subindexj for convenience) 

•••••• • • • •• •• • • • ••••• • • •••• • • • • •• • •• ~~. . . ••••• • • • ••• • • •••• • • • • • 
• •••• • • • • • • ••••• Ie· •••• 

• •••• • •••• • ••• • ••••• 
• • ••••• • • fe· • • • • • •••• 

• • 
• • • • • • • • 

• • 

FIG. 4. Some cells (here the one in the middle) ofa lattice in §J may partici
pate both from some void and from some cluster. They may compensate and 
give a deceptive mean density approximately equal to Po = N / V. 
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P1 

P2 

P3 

FIG. 5. A huge void or cluster (the points have not been depicted) display
ing the gradient of density: P I is the density of the most inner cell; P2 that of 
the surrounding crown of cells (here 12 ceIls);P3 is the density of the most 
exterior crown (here 24 cells). 

I( V,p,k) = ne (V ,p,k) We (V ,p,k) 

- nv (V ,p,k) Wv (V ,p,k), 

where k is the new parameter, and 

(6.2) 

d(SI,S2)2= fff [/1(V,p,k) -/z(V,p,k)]2dVdpdk, 

(6.3) 
respectively. In an analogous way, we may introduce other 
parameters, such as the gradient of density for large voids or 
clusters, as one proceeds from inside to the border (Fig. 5). 
We may define, for instance, 

h = [(P2 - PI)2 + (P3 - P2)2 + ... ] 1/2 (6.4) 

and include h besides k as a new parameter. All these param-
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eters and others one may think of improve the definition of 
the topology (6.3) and may be introduced at ease into our 
formalism in the way we have just shown. 

VII. OUTLOOK 

The procedures introduced here for the first time (to 
our knowledge) are currently being applied to the point dis
tributions that correspond to the analysis of galaxies of de 
Lapparent et of. 2 and also to other related results. Moreover, 
simulation methods are being developed with the purpose of 
checking the reliability of the distance between point distri
butions as defined here compared with the only one which is 
presently available, namely, the "distance" that our naked 
eye wouldgrosso modo assign to them. The investigation is in 
progress. Its partial results are pretty good and will be pub
lished elsewhere with a detailed account of the analysis in
volved. 
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