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As a further step in the general program of zeta-function regularization of multiseries 
expressions, some original formulas are provided for the analytic continuation, to any value of 
s, of two-dimensional series of Epstein-Hurwitz type, namely, 
l::'.n, =0 [a l (n l + CI )2 + a2 (n2 + C2 )2] - s, where the aj are positive reals and the cj are not 
simultaneously non positive integers. They come out from a generalization to Hurwitz 
functions of the zeta-function regularization theorem of the author and Romeo [Phys. Rev. D 
40,436 (1989)] for ordinary zeta functions. For s = - k,0,2, with k = 1,2,3, ... , the final 
results are, in fact, expressed in terms of Hurwitz zeta functions only. For general s they also 
involve Bessel functions. A partial numerical investigation of the different terms of the exact, 
algebraic equations is also carried out. As a by-product, the series l::=oexp[ - a(n + C)2], 
a,c> 0, is conveniently calculated in terms of them. 

I. INTRODUCTION 

For a few years now, the study of quantum field theories 
in partially compactified space-time manifolds has acquired 
increasing importance in several domains of quantum phys
ics. Let me just mention the issues of dimensional reduction 
and spontaneous compactification, and the multiple ques
tions associated with the study of quantum field theories in 
the presence of boundaries (like the Casimir effect) and on 
curved space-time (manifolds with curvature and nontrivial 
topology), a step towards quantum gravity. 

There are many interesting calculations in these theories 
that can be carried out exactly-and in a very elegant way 
from the mathematical point of view-by the zeta-function 
regularization method. In particular, if all the eigenvalues of 
the Hamiltonian are known, then, very commonly, one is led 
in this method to the computation of expressions ofthe gen
eral form 

(1) 

As such a muitiseries, this expression only makes sense for 
Re(s) big enough, and an analytic (usually meromorphic) 
continuation to other values of s is in order. In the zeta
function method, this is provided by the Riemann and Hur
witz (also called Riemann generalized) zeta functions. 

However, for an expression as general as (1) this pro
gram has proved to be extremely difficult (not to say impos
sible until now) to carry out. The simplest case is obtained 
when (1) corresponds to the Hamiltonian zeta function 

(2) 

(Ej are the eigenvalues of H) of a system of N noninteracting 
harmonic oscillators. In this case, aj = 1, j = 1,2, ... ,N, and 
the aj are the eigenfrequencies {j)j' 1 Another important case 
shows up in the partial toroidal compactification (space
time TPXRH I). Then aj = 2 and, usually, cj = 0, ±! 

(Ref. 2).This leads typically to Epstein zeta functions 

"" L 
""I 

L (3) 
nl •...• nN= - 00 

( the prime prescribes omission of the term with 
n l = n2 = ... = nN = 0). Other powers aj appear when one 
deals with the spherical compactification(space-time 
sP X Rq + 1 ). Moreover, as string theory seems to indicate, 
nothing precludes the possibility of having to consider other 
compactification manifolds, leading to very general values 
for the a j • In this work, however, we shall only deal with the 
particular case a j = 2, j = 1,2, ... ,N, leaving more general 
situations for subsequent study. 

The aim of the paper is to derive some new and useful 
expressions for the analytic continuation of two-dimensional 
sums of the types just mentioned. My results will come from 
a rigorous generalization of the zeta-function regularization 
theorem, 1.3,4 which is carried out in Sec. II, Eq. (7), byob
taining the appropriate counterterm (9). From it, basic ex
pressions for zeta-functions regularization-Eqs. (22), 
(30), and (32) of Secs. III, IV, and V, respectively-will 
follow. They will give rise to the general equation (34) of 
Sec. V, which provides the analytical extension to any com
plex value of s of two-dimensional sums of the type men
tioned in the Abstract, and also to the interesting particular 
formulas (35)-(38). Finally, in Sec. VI a recurrent proce
dure to extend these expressions to arbitrary-N multiseries 
as (1) will be sketched [Eq. (39)]. 

II. THE CASE «1=2: STATEMENT OF THE 
MATHEMATICAL PROBLEM 

The apparently simple case a j = 2 carries enough com
plication that it deserves a complete study on its own. On the 
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other hand, at least formally, the general case is actually very 
similar to this one (the main difference being the transition 
from the cases a j < 2 to the cases aj >2, as will be explained 
later. Thus I shall restrict myself to the expressions 

EN(s;a., ... ,aN;c" ... ,cN) 

- nl •... ~= 0 [jt. aj (nj + Cj)2] - s, (4) 

where it is understood that all aj > 0 and that not all of the cj 

are nonpositive integers. Actually, only the particular situa
tion with N = 2 will be worked out in detail. Let me empha
size the fact of the presence in (4) of general nonzero aj's and 
cj's. The only precedents in the literature (to my knowledge) 
of this kind of evaluations are restricted to very few 
special cases other than a, = a2 = ... = aN and 
c, = c2 = ... = CN = 1.2,5 Maybe the most famous expres
sion in this context is the celebrated result of Hardy,6 which 
can be obtained as a particular case of our final formulas in 
Ref. 4. 

In Ref. 4, together with Romeo we began an investiga
tion of the general expression (4), limiting ourselves to the 
simplest case cj = l,j = 1,2, ... ,N. It is not that immediate to 
extend the results there to the present situation, as we shall 
see, 

A basic point in the zeta-function regularization proce-

where ~(z,c) is Hurwitz's (or Riemann's generalized) zeta 
function 

00 

~(z,c) = L (n + c)-S (8) 
n=O 

and .:1~a) (s) is the following integral over the curved part K 
of the contour C: 

.:1~a)(s) == -. ~(s + 1 + aa,c)r(a). i da 

K21Tl 
(9) 

The preceding expressions, Eqs. (7) and (9), constitute 
the more basic result in this paper. They can be viewed as a 
generalization of the zeta-function regularization theorem 
obtained in Ref. 4. There the case of the ordinary Riemann 
zeta function (i.e., c = 1) was studied and a detailed discus-, 
sion on the nature of the term (9) for c = 1 (including nu-
merical computations for different values of s) was pro
vided. It turns out that, for arbitrary positive c, the present 
term (9) can be related to the one in Ref. 4; in fact, it is 
numerically comprised between two expressions both ob
tained from the case c = 1 by suppressing a finite number of 
contributions, namely, the first [c - 1] and [c], respectively 
(here square brackets mean integer part). As the notation 
(i.e., the delta) already suggests, this term (9) always turns 
out to be a correction to the first, leading terms. It is also 
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dure is the interchange of the order of the summations of 
infinite series in expressions like 

s~a)(s)== m~o (m+c)-s-. a~o (~!l)a (m+c)aa. 

(5) 

In the case c = 1 and a < 2, the correct additional contribu
tion coming from this commutation of sums was obtained by 
Weldon.3 Actually, he claimed that his result was valid for 
any aeN. This has turned out to be not right, as rigorously 
shown in Ref. 4 where the correct supplementary contribu
tions for a>2 (always with c = 1) have been obtained. 

III. THE FUNDAMENTAL FORMULA FOR ZETA· 
FUNCTION REGULARIZATION WHEN Q,=2 

I shall now proceed with the calculation of ( 5 ) . It can be 
written as 

s~a)(s)= i (m+c)-s-d~ da.(m+c)-aar(a), 
m=O jc 21T1 

(6) 

where C is the contour (C = L + K) consisting of the 
straight line (L), Re(a) = ao, O<ao< 1, and of a curved 
part (K), which is the semicircumference at infinity on the 
left ofthis line. For Re(s) big enough, we obtain 

s 
-EN, 
a 
s 

--eN, 
a 

(7) 

clear from the above discussion that the most interesting new 
case with respect to the one dealt with in Ref. 4 appears now 
when 0 < C < 1, and this is precisely the specific situation that 
I will consider below. 

In order to be able to provide an expression for the inte
gral (9) in terms of more elementary functions, I shall re
strict myselfto the case a = 2. Use will be made ofthe well
known Hurwitz formula,7 valid (in particular) for Re z < 0 
and O<co;;;;l, 

00 • ( 1TZ) ~(z,c)=2(21T)Z-·r(z-l) L nZ-·sm 21Tnc+-. 
n=. 2 

(10) 
The behavior ofthe lhs for Izl- 00 with Re z < 0 is 

~(z,c)-.;2(21Ty-·r(z-I)sin (21TC+1TZ/2), (11) 

while, for C = 1, we obtain 

~(z) =~(z,1)-2(21T)Z-·r(z-l)sin(1TZ/2). (12) 

From the last two expressions, we get, for 0 < cO;;;; 1, 

lim ~(z,c) = sin(21Tc)cot (~) + COS(21TC). (13) 
Izl-oo ~(z) 2 

Re(z) <0 
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Now, making use of the identity, valid also for Re(z) <0 
(Ref. 7), 

rC ~z)t(1-Z) = LX) dtt -(z+l)12S(t), (14) 

with 
00 

S(t)= L e-n't, (15) 
n=1 

we obtain for the analytic continuation of (9) (with a = 2) 
tos= -1: 

a~2)( _ 1) = ( da. t(2a,c)r(a) 
JK2m 

= ( da [sin(21Tc)cot(1Ta) 
JK 21Ti 

+ COS(21TC) 1t(2a)r(a). (16) 

After making use ofEq. (14), the second termon the rhs can 
be integrated immediately. Writing it now at the beginning 
of the second member, we get 

a~2)( -1) = -,fiTS(r)cos(21TC) 

+ sin(21Tc) { da. roo dt 
JK 2m Jo 

Xt -a-1/2 cot(1Ta)S(rt). 

The last integral in (17) turns out to be zero. In fact, 

dait -a ___ _ i eitra + e - irra 

K ei1TQ _ e - i1ra 

= (rr dO Rei9t - R(cos 9 + isin 9) 

Jrr/2 
(3rr/2 

_ Jrr dO Rei9t - R(cos 9 + ioin 9) 

. tiR + t -iR . cos(R Ln t) 
=-1 =-21 , 

Ln t Ln t 

from which it follows that 

lim roo dt S( rt) cos(R Ln t) 
R-oo Jo Ln t 

= Re [LOOoo du S(reUIR ) e~U] = O. 

Weare left with just 

a~2)( - 1) = - ,fiTcOS(21Tc)S(r). 

Summing up, I have proved that 

Sc=S~2)(-I)= i: e-(m+c)' 
m=O 

(17) 

(18) 

(19) 

(20) 

(21) 

can be expressed in terms of Hurwitz zeta functions, as 

Sc = i: (- 1 )m t( - 2m,c) 
m=O m! 

+ ,fiT + ,fiT COS(21Tc)S(r) , 
2 

(22) 

with (the standard, related to Jacobi's theta function) S(t) 
being given by Eq. (15). Equation (22) is another meaning
ful result of this paper. It is exact and holds for any value of c. 
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IV. BEHAVIOR OF THE ZETA-REGULARIZED 
FUNDAMENTAL SERIES 

Let me now investigate the behavior of the different se
ries in (22). Depending on the value of c, the series of Hur
witz functions can be convergent (even finite) or asympto
tic. The other two series, i.e., those implicit in the definition 
ofthe S functions, are quickly convergent (the one on the rhs 
much more quickly than the one on the lhs). In fact, to be 
clearer, let us check some specific cases. 

(i) In the particular case c = 1 we recover the known 
equality4,7 

S(1) = (,fiT - 1)/2 + ,fiTS(r). (23) 

(ii) For c =! we have t( - 2m,!) = 0, k = 0,1,2, ... , 
and 

m~o exp[ -(m+ ~r] 
= ,fiT -,fiT i: exp( - m 2r). 

2 m=1 

(24) 

The rhs of (24) permits us to obtain the value of the series on 
the lhs with 10- 10 accuracy, with just two terms 

(25) 

(iii) For c = ° we get an equality equivalent to (23), 

i: e - m' = ~ + ,fiT + ,fiTS( r). (26) 
m=O 2 2 

Actually, it is an immediate consequence of the properties of 
the series in (22) that the equalities one obtains for c + 1 and 
for c - 1 are each equivalent to the corresponding one for c . 
Therefore, only the equalities (22) corresponding to c, 
0< c';;; 1, provide interesting (independent) relations. 

(iv) For c = 1, we get 

(27) 

The series of Hurwitz functions on the rhs is now asympto
tic. It stabilizes between the eighth and the twelfth sum
mands and it provides a best value (with"", 10-7 accuracy) 
exactly when we add its ten first terms. 

(v) For c =! and c =! we obtain, respectively, 

i exp[ - (m + ~)2] 
m=O 3; 

= ,fiT + i: (- ~) m t ( - 2m, ~) 
2 m=O m. 3; 

,fiT 00 + ( - 1)J- L exp( - m2r), j = 1,2. (28) 
2 m=1 

In these cases, contributions from the two series in the rhs 
must be taken into account. The first of them is asymptotic 
[as in (iv) 1 and has exactly the same characteristics as the 
one in (27), both forj = 1,2. The second series is extremely 
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v. THE GENERAL EXPRESSION FOR N=2 rapidly convergent (much more than the series on the Ihs). 
These characteristics are maintained over the full range 
0< C<; 1 (but for the very special values c = !,1 considered 
above). 

One may ask what is gained with these asymptotic ex
pressions. The answer has already been given before, in Eqs. 
(7) and (9), which extend these equalities by analytic con
tinuation to any value of s, and not simply to the case 
s = - 1 exemplified here. I will be more precise in what 
follows. Before being so, let me present two more examples 
of interesting, original relations that come from Eq. (22): 

The calculation of the general expression (4) will be 
now illustrated, for the sake of clarity, in the simpler case 
N = 2. By using the Mellin transform, we write 

E2(s;a"a2;c"c2) 

"" = L [a,(n, + C,)2 + a2(n2 + C2)2]-, 
n •• n1=O 

I "" L"" =-- L dtt,-I 
r(s) n,.n,=O 0 

xexp{ - t [a,(n, + C,)2 + a2(n2 + C2)2]}. (31) 
"" L exp[ - (m + C)2] =..[ii + 2..[ii cos (21TC)S( rr), 

m= - 00 

(29) 

We shall need the following generalization of Eq. (22)
again a basic outcome of my regularization theorem (7 )-( 9) 
and obtained in the same way-

"" "" L m exp[ - (m + C)2] L exp[ - a(m + C)2] 
m=O 

1 "" (- I)m 
=-+ L 

2 m=O m! 

..[ii 
X [t( - 2m -I,c) -ct( - 2m,c)] -Tc 

+..[ii[1Tsin(21Tc) -CCOS(21Tc)]S(rr). (30) 

m=O 

"" ( I)m 
= L -, amt( -2m,c) 

m=O m . 

+J... ~+ ~COS(21TC)S(rr). 
2\ja \ja a2 

Substituting (32) into (31), we get 

This gives 

E2(s;a"a2;c"c2) 

= a2-' i: (- I)mns + m) (a,)m t( _ 2m,c,)t(2s + 2m,c2) + a2-

2 

(1Ta,)112 ns - p t(2s _ l,c
2

) 

r(s) m=O m! a2 2 a2 r(s) 

2"" "" "" [ ~ ] + --cos (21TC )a - ,12 - 1/4a - ,/4 + 1/4 ~ ~ n'- 'l2(n + c ) - ,+ 1/2K 21T...1. n (n + c ) r( ) 'I 2 ~ ~, 2 2 ,- '/2 '2 2, 
S n,=' n,=O a, 

(32) 

(33) 

(34) 

where Kv is the modified Bessel function of the second kind. Equation (34) constitutes the general analytic continuation 
formula for two-dimensional series I was looking for. As is apparent, it involves Bessel functions as well as Hurwitz functions. 
However, the following particular cases look especially simple. 

For s = - k, k = 0,1,2, ... , one obtains 

E2( - k;a"a2;c"c2) 

= a~ ± (- I)mnm - k) (a,)m t( _ 2m,c,)t(2(m _ k),c2) 
r( - k) m=O m! a2 

k ( I) k "" k(k - I)'" (k - m + I) (a,)m = a2 - - c, t( - 2k,c2) + a2 L , - t( - 2m,c,)t(2(m - k),C2)' 
2 m=' m. a2 

(35) 

In particular, for s = 0, 

E2(O;a"a2;c"c2) = (c, - !)(c2 - !), (36) 
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and, for s = - 1, 

E 2( - 1;01,02;ct>c2) 

= 02(! - CI )t( - 2,c2) + °1 (! - c2)t( - 2,cl ) 

= !(c i - !)(c2 - !)[OICI (1 - cI ) + 02C2(1 - C2)]' 

For s = 2, we obtain 

E2 (2;0 1>02;C I,C2) 

(37) 

= ~ f (- l)m(m + 1) (Ol)m t( - 2m,c l )t(2m + 4,c2 ) + .!!-._I_ t (3,c2 ) 

02 m=O 02 402 ~0102 

+r?COS(21TCI) f {(n+c2)-2[exP (21T g(n+C2»)_I]-2 

°1°2 m=O "i °1 

+ [(n + C2)-2 + \ff: (n ~;)-3] [exp( 21T\ff:(n + C2») - 1] -l (38) 

The first two terms on the rhs yield properly the result of the zeta-function regularization method (naive commutation of 
the series summations plus Weldon's additional contribution3

). They produce the desired expression of (4) in terms of zeta 
functions. The last term in (38) generalizes to arbitrary C I,C2 > 0 the supplementary corrections detected in Ref. 4 for 
CI = C2 = 1 and which had been loosely forgotten in Ref. 3. In spite of the imposing aspect of this last term, its contribution is 
actually very small, and the series in n is very quickly convergent (only the first couple of summands need to be taken into 
account in practice). For an arbitrary value of s, one must use the general expression (34). 

VI. A GENERAL EXPRESSION FOR ARBITRARY N 
The preceding calculations can be generalized to multiple sums (4) with arbitary N. The fundamental formula (32) 

introduced into the Mellin transform [as in (31 )-( 33)] allows us to proceed recurrently. One obtains the (exact) equation 

EN (S;OI,· .. ,ON;CI"",CN ) 

Notice, once more, that the last term is a small correction to 
the first two, so that, in practice Eq. (39) can be viewed as a 
recursive formula with a small correction term A (the last 
one) that can be estimated numerically. This is also dis
cussed in Ref. 4 (for the particular case C I = ... = C N = 1) 
in greater detail. 

The application of the formulas derived in this paper to 
the direct evaluation (exact, or at worst, six to seven decimal 
places precise) of the Casimir effect, by just summing over 
modes (provided that they are known exactly) and by zeta
regularizing the resulting expressions, will be developed in a 
separate publication. 
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