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Generalized Kerr-Schild space-times for a perfect-fluid source are investigated. New Petrov type 
D perfect fluid solutions are obtained starting from conformally flat perfect-fluid metrics. 

I. INTRODUCTION 

This work is concerned with perfect-fluid solutions of 
Einstein's equations for a metric in generalized Kerr-Schild 
form. Since the original Kerr-Schild paper, ] a lot of general­
izations of the Kerr-Schild ansatz have appeared.2 Bilge and 
Giirses3 have shown how the Newman-Penrose spin coeffi­
cients, trace-free Ricci, Ricci scalar, and Weyl spinors trans­
form under the most general Kerr-Schild transformation. In 
this paper we treat generalized Kerr-Schild metrics of the 
form 

(1.1) 

whereg,.p is the metric of any space-time,la is a null, geodes­
ic vector field for the metric gaP' and H is a scalar field. 

As far as we know, no perfect-fluid solution of the Kerr­
Schild type is known. All the solutions we obtain are of Pe­
trov type D, and most of these are new since the velocity of 
the fluid does not lie in the two-space defined by the principal 
null directions of the Weyl tensor.4 

In Sec. II we obtain the Riemann, Ricci, and Weyl ten­
sors of the metric g as functions of the Riemann, Ricci, and 
Weyl tensors of the metric g and the spin coefficients defined 
by a null tetrad associated with la. Our notation and calcula­
tions are quite close to those of Taub (Ref. 2). Section III is 
devoted to writing down the equations in the case whereg is 
a conformally flat solution of Einstein's equations for a per­
fect fluid. It is shown easily that the geodesic (shear-free) null 
vector fields in a conformally flat space-time are the geodesic 
(shear-free) null vector fields in flat space-time. Since the 
most general vector field of this kind is already known,5 one 
has great freedom in choosing the vector field la. Two cases 
appear depending on whether la is shear-free or not. They 
are studied in Secs. IV and V. Finally, in Sec. VI we give 
some examples of how the method works and some explicit 
solutions. 

II. THE RIEMANN, RICCI, AND WEYL TENSORS OF 
GENERALIZED KERR-SCHILD METRICS 

It is easily shown that6 

gaP =~p - 2Hla I P, 

la = la, lala = O. 

Then, we obtain for the Christoffel symbols 

(2.1) 

(2.2) 

rpA =rpA +ApA +2Hlalp lA II'VI'H, (2.3) 

where the rpA are the Christoffel symbols for the metric g 
and 

(2.4) 

or 

A PA = Hla SPA + Ip{/a VA H + HAA a) 

+ IA{/a Vp H + HApa) -lplA va H, (2.5) 

with 

S,.p=Va lp + Vpla' A,.p-==Va lp - Vp lao (2.6) 

Next, we compute the Riemann tensor from the expression 
(2.3) and we find the following: 

RpAI' = RpAI' +VAApl' -VI'ApA 

+ VA [2Hla lp II' JP V pH] 

- VI' [2Hla Ip IA lP Vp H] 

+A~A'-A~A', ~~ 

where R PAl' is the Riemann tensor for the metric g. Then, for 
the Ricci tensor we obtain 

- A A Rpl' = Rpl' + VA A PI' + 2Hlp IP VA A PI" (2.8) 

where Rpl' is the Ricci tensor for the metric g. After a long 
calculation it may be shown that 

VpA~A =NlpiA -IP<Pp{/p kA +IA kp) 

+ 'i{ Ip mA + IA mp) 

+ Omp mA + ~( lp mA + lA mp) 

+ Omp mA + r(mp mA + mA mp), (2.9) 

where we have chosen a null tetrad (I, k, m, m) for the metric 
gand7 

r-=={ p + p)Va (HI a) - 2H (pp + uu + r/Joo), (2.10) 

fi-==2uVa (HI a) - 2H (1/10 + 2 pu), (2.11) 

~=ma cPa - (P + ii + r)Va{Hla) 

- 2H [1/1] - piP + ii) - u(13 + a) - r/J0l]' (2.12) 

cPp-==Vp Va {HI a) - HVP V pip 

- 2{VP Ip)V pH + HI p Rp/J' 

N=-gPUVp Vu H+2{r+r)Va {Hl a) 

- 2H(k PVp Ip)(k A VP IA) 

- 2k a cPa - 2H [ "'2 + 1P2 + k p 1 U Rpu + 4A] . 

(2.13) 

(2.14) 

Therefore, if the metric g is given, the Einstein equations 

(2.15) 

are defined by (2.8) and (2.9). In particular, from (2.8), (2.9), 
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and (2.15) we o\)tain the inter.ting relation 

X/a Tal' = la Ra# + I#(IP <l>p + (x/2) T). (2.16) 

We distinguish two cases. 
(1) 1 a Ra# = all" In this case la is an eigenvector of TaP 

and then perfect-fluid solutions cannot exist. 
(2) I a Ra# =/-al,.. In this case TaP can be the energy-mo­

mentum tensor of a perfect fluid. It is the purpose of this 
paper to study this case when both TaP and TaP are perfect­
fluid energy-momentum tensors. 

Let (I a, k a, ma, rna) be a null tetrad for the metric g. 
Then 

7a = la, ka = k a + HI a, rna = ma, ffia = rna 

is a null tetrad for the metric 8. By using this null tetrad we 
compute the Weyl tensor and we finally obtain 

tpo = ¢o, tpl = ¢I' (2.17) 

3tp2 = 3¢2 - 2Hr/Joo - ~ V). [I). Va (HI a)] 

+ 3p[DH -H(p -p)], (2.18) 

tp3 = ¢3 - H¢I + ~ "f - 2Hr/J1O - (T -fJ - a)(DH - 2H p) 

- ~DH + p~H - H T( P - p) 
+ 2H 011' - P - a) + u6H, (2.19) 

tp4 = ¢4 + H2 ¢o - 2Hfl.u - ut:Jl + 2H uJi 

+ 4H U(r - r) - 2H2U(p -p) 

-~[~H-2H(fJ+a)] -A(DH-2Hp) 

+ (fJ + 3a - 2T)(~H - 2H(fJ + a)). (2.20) 

III. THE EINSTEIN EQUATIONS· FOR A CONFORMALLY 
FLAT PERFECT-FLUID METRIC gall 

Henceforth, we choose the metric g to be conformally 
flat; that is, 

¢o = ¢I = t/12 = ¢3 = ¢4 = 0 {:> gaP = r/J2 'TJaP' (3.1) 

where r/J2 is a positive function ofthe coordinates and 'TJap is 
the metric of flat space-time. Moreover, we assume that gaP 
is a solution of Einstein's equations for a perfect-fluid ener­
gy-momentum tensor; that is to say 

RaP = X( TaP - ! gaP T), (3.2) 

TaP = ( q + p)Ua Up + pgall' ~p Ua Up = - 1. (3.3) 
All metrics of this kind are known: they are either general­
ized interior Schwarzschild solutions or generalized Fried­
mann solutions (Ref. 4). 

It may easily be verified that if gaP is a conformally flat 
space-time, and if la is a null geodesic (shear-free) vector field 
for gaP then it is also a null geodesic (shear-free) vector field 
for flat space-time. But the general solution for vector fields 
ofthis kind in flat space-time is known and is given byS 

1= du + Y d~ + Y d; + YY dv, (3.4) 

where Y is a complex function of the coordinates I u, v, ~, ; } 
verifying 

yay + yay _ ay _ yyay =0. (3.5) 
a~ a~ av au 

When la is also shear-free, Y is defined implicitly by 
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(3.6) 

where F is an arbitrary analytic function of three complex 
variables. The coordinates {u, v,~, t} are related with the 
usual coordinates of the Minkowski space-time by 

.j2u=t-z, .j2v=t+z, .j2~=x+iy, (3.7) 

and the metric gall may be written in these coordinates as 

gaP dxa dxll = 2<,62[ - du dv + d~ d;]. (3.8) 

Now, we choose the null tetrad associated with la as 
follows: 

I, k = r/J2 dv, m = r/J(d~ + Y dv). (3.9) 

Then, after a straightforward calculation, we obtain the 
spin coefficients 

'IT' = - a = - r/J -I rna Va r/J, r = -IL = r/J -I k a Va r/J, 
ay -ay 

p=r/J-2[PM+r/JlaVa r/J], PM= a~ -Ya;;' 

",,-I - ay 
1'=." 1'M +a, 1'M = --, au 

ay ay 
U=r/J-2 UM , uM=--Y-

a; au' 
K = E = A = P = v = O. 

(3.10) 

Moreover, it is well known that the null tetrad is defined up 
to a transformation of the form 

/'=1, m'=eiC(m+Z/), 

k 1= k + Zm + Zm + ZZI. 

We make such a transformation choosing 

Z= -mauallaua 
so that 

(3.11) 

(3.12) 

m'a Ua = O. (3.13) 

After this change of null tetrad, the new spin coefficients ares 

'IT" = 'IT' - DZ, K' = E' = 0, p' =p. 

u' = U, P' = Zu, a' = a + Z p, 

IL' =IL + Z'IT' + Z2U - 6'Z, 1" = l' + Zu + Zp, 

A I = Z'IT' + 2 Za + Z2 P - ;S'Z, (3.14) 

r' = r + Z1' + Z 2U + ZZ P + Za, 

v' = ZIL + ZZ'IT' + Z21' + Z3U + Z 2 Z p + 2Zr 

+ 2ZZa - fl.' Z, 
Hereafter, we shall drop the primes. 

We search for solutions8aP of Einstein's equations for a 
perfect-fluid energy-momentum tensor 

TaP = (q + P)ua up + P8aP, 

gaP Ua up = - 1. 

(3.15) 

(3,16) 

Taking into account all previous assumptions and re­
sults, the Einstein equations (2.15), (2.8), and (2.9)-once 
they are projected onto the null tetrad-lead us to the fol­
lowing set of equations: 
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(q + p)(/a uaf = (q + p)(/a Ua )2, (3.19) 

V" (l" Vp(B/P)] = X[~( q - 3.0) - ~(q - 3 p) 

+H(q+p)(/a ua )2], (3.20) 

r = (x/2)[ q - .0 - q + p], (3.21) 

N- [ q+p - q+p 
- X 4(/a Ua )2 4(/a Ua )2 

_ H2( q + p)(/a Ua)2 - 2H p], (3.22) 

1: =0. (3.23) 

Starting from (2.11), Eq. (3.18) becomes 

u[DB-H(p-p)] =0. (3.18') 

We can consider two cases. 
(A) u#O. Then Eq. (3.18') implies that we must have 

p = p, DB = O. (3.24) 

This case is studied in the following section. 
(B) u = O. Then (3.18') is automatically satisfied. This 

case is studied in Sec. V. 

IV. THE CASE a#O 

In this section we try to solve Eqs. (3.17)-(3.23) with the 
assumption u#O. 

Throughout this and the next sections we shall use re­
peatedly (but not explicitly) the Bianchi identities and the 
Newman-Penrose equations for the metricga,8 (the Bianchi 
identities are given in the Appendix). Whenever we make 
some assumption or specialization we must restrict these 
equations in the appropriate fashion. The details are omit­
ted. 

First of all, from (3.20), (3.21), and (3.24) we obtain q and 
.0 as functions of q, p, and H, 

xP = X p + 2H¢oo, 

X q = X q + 4H (p2 - uu) - 2H¢oo. 

Furthermore, from (3.19), (3.17), and (3.16), we get ua: 

(4.1) 

(4.2) 

(/a Ua )2 = X( q + p)(/a Ua )2[X( q + p) + 4H(p2 _ uu)] -I, 

rna Ua = O. (4.3) 

Then, we only must solve Eqs. (3.22) and (3.23). 
Starting from (2.12) and (2.13), making use of(3.24), and 

after some standard calculations, we obtain for (3.23) 

~H = 2H(a +P) -H1'-Hp(1'/u). (4.4) 

In the same way, it follows from (2.14), (3.24), and (4.1)-(4.4) 
that Eq. (3.22) becomes 

p!:J/ = H { p( JL + r + Y) + uA + ~(p(1'/ u)) 

+ p(1'/u)(a - {3) - I:&p - p2(1'1'/UU) 

- 4( ¢11/¢oo) (p2 - uu) - 2A} 

- (H2/¢oo)[(p2 - uuf - ¢&]. (4.5) 

From (2.18) and (2.19) with (3.24), (4.5), and (4.4) we get9 (for 
the sake of brevity ;P4 is not written here) 
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;Po = 0, 3;P2 = H (uu - p2 - ¢oo), 

;PI = 0, ;P3 = H (1'/u)(uu - p2). 
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(4.6) 

The question now is the following: Are Eqs. (3.24), (4.4), 
and (4.5) compatible? Since Eqs. (3.24) and (4.4) are linear in 
H, their compatibility with (4.5) (which is nonlinear in H) 
gives us an expression for H which is not, in general, a solu­
tion of Eqs. (3.24), (4.4), and (4.5). In order to proceed we 
assume 

2 - "I, P - uu = 'f'oo' (4.7) 

so that Eq. (4.5) becomes linear as well. 
Keeping this in mind, the compatibility condition of 

(3.24) and (4.4) is simply 

17'=0 (4.8) 

and the compatibility condition of(4.4) with its complex con­
jugate is the reality condition 

Q(~1' + 1'( {3 - a)) = o{~1' + 11 P - a)). (4.9) 

Furtherm~re, Eq. (4.5) now becomes 

!:J/ =H{2(JL+r+y) 

A 1 (r r) 1'1' } 
- 2 P -;; - '2 -;; + 0' - P uu ' (4.10) 

which is compatible with (3.24). Finally, a new integrability 
condition arises from (4.4) and (4.10): 

1:&1' + 3A l' + 1'(JL + r - Y) + 1'(r/u) + 2pii = O. (4.11) 

It is easily shown that this condition is compatible with the 
Newman-Penrose equations. 

We can summarize our results as follows: Let us choose 
the conformally flat perfect-fluid metric gaP and the null 
geodesic vector field /a such that they verify p = p, (4.7), 
(4.8), (4.9), and (4.11). Then, let us solve the integrable system 
of equations for H given by (3.24), (4.4), and (4.10). The new 
Kerr-Schild metric gaP is a solution of Einstein's equations 
for a perfect-fluid energy-momentum tensor (3.15), where q, 
.0, and ua are given by (4.1), (4.2), and (4.3). The Weyl tensor 
of these new solutions is (1' never vanishes) 

;Po = ;PI = 0, 3;P2 = - 2H¢oo, 

;P3 = - H(1'/u)¢oo, ;P4 = - H(r/uZ)¢oo' 

so that we have 3;P2;P4 = 2;p;, and therefore they are of Pe­
trov type D. Since ;P3 and ;p 4 do not vanish, the vector field k a 

is not a multiple null eigenvector of the Weyl tensor, but /a 
certainly is. From (4.4) we have 

ita = ala + bk a 

and then ita does not lie in the preferred two-space spanned 
by the two multiple null eigenvectors of the Weyl tensor. 
Excepting the Wahlquist solution, no solutions of this kind 
were known up to now. 

V. THE CASE a = 0 

Now, we assume u = 0 so that the function Y of (3.4) is 
defined by (3.6) and also we have 

{3=A=O. (5.1) 

We define in this section 

U=8H-2Ha, V==DH-2Hp. (5.2) 

From (3.20), (3.21), (3.19), (3.17), and using the same proce­
dure of the previous section we get 
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XP=Xp-DV- V(3p+p)- 3Hp2_4Hpp 

+ H p2 + 4 Ht/Joo, 

Xq=Xq+ Vip -pI -DV+ 3H(p2 +p2), 

(fa Ua )2 = 2t/Joo{X( q + p) + 4Ht/J00 

- 2[DV + 2Vp + 2Hp(p -pll} -I. 

Equations (3.23) and (3.22) become, respectively, 

t5V + (p +p)U + (T- a)V 

+H[pa+t5p+2T(p-p)] =0, 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

p!:JI = - H1l.(p + p) -lu + aU - rU - TU -I',v 

- 4Ht/J11 + H(r + r)(p - p) - (1/4;00) 

X [DV + 2Vp + 2Hp(p -pI] 

X [DV + 2Vp + 2Hp(p -pI 

- 4Ht/J00 - 8t/J11]' (5.7) 

In order to make compatible U and V we must have 

DU + (2,0 - p)U + (T + trW 
+H[pa+t5p+21T(p-p)] =0. (5.8) 

Also, U must verify the reality condition 

"3u + p!:JI + jiV - Ua + 2H p(r + r) = C.c. (5.9) 

Now, the Weyl tensor is given by 

tpo = tpl = 0, - 6tp2 = [D - 2(p -pI] V, 

tp3 = H [pa +"3 P + TIp - pI] + (2p - p)U, (5.10) 

tp4 = - ["3 - (3a - 2r)]U. 

In this paper, we only solve these equations under the as­
sumptions 

p=p, V= -2Hp, (5.11) 

and so we have 

DH=O. (5.12) 

Then, Equations (5.6), (5.7), (5.8), and (5.9) become, respec­
tively, 

T = 0, (5.13) 

p!:JI = H [ - 2ll.p + 21lP - 4p2(t/J11/t/J00)] - t5U + aU 

- (H2/t/J00)(p2 + t/J00)(p2 - t/Joo), (5.14) 

DU+pU=O, 

"3u - aU = t5U - aU. 

(5.15) 

(S.16) 

As in the previous section, in order to avoid nonlinear terms 
in H we assume 

p2 = t/Joo, (S.17) 

so that Eq. (S.14) may be written 

p!:JI = 2H [p(r + r) - 2( t/J11 + A)] - t5U + a U. 

(5.18) 

The compatibility of this equation with (S.12) leads us to 

IlP + t/J11 + A = O. (S.19) 
This condition eliminates many candidates for gaP (i.e., 

all generalized Schwarzschild metrics).IO Now, the integra­
bility condition of(S.18) with Uis 
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p1l.U + "3t5U - 2li"3u - 2a8U 

+ U [3aa - P(SIl + 3r + r)] = O. (S.20) 

For the Weyl tensor we have 

3tp2 = - 2Hp2, tp3 = pU, tp4 = - ["3 - 3a)U. 
(S.21) 

Consequently, if we want to obtain Petrov type D solutions, 
that is to say 

3tp2 tp4 = 2tp;, 

we must have 

t5U = 3a U + U 2/H. 

We put 

f-==U/H 

(S.22) 

(S.23) 

and then Eqs. (S.15), (S.16), and (S.22) are written as follows: 

Df= -pJ, (5.24) 

"3f + f(a +1) = t51 + Ira + f), (S.2S) 

t5f=aj (S.26) 

On the other hand, bearing Eqs. (S.23HS.26) in mind, Eq. 
(5.20) becomes 

p1l.f - pf(1l + r - r) + fral- af - 4aa) 

+ ra + f)"3f= O. (S.27) 

Equations (S.24HS.27) are satisfied by choosing 

f=Aa, 

where A is an arbitrary real constant, and where two supple­
mentary conditions remain: 

t5a = cr, ll.a = a[ Il + r - r + (aa/p)(S +A )). 

(S.28) 

These conditions are compatible with the Newman-Penrose 
equations. 

Now, we summarize our results in this section: Let us 
choose the conformally flat perfect-fluid metric gaP and the 
shear-free geodesic null vector field fa verifyingp = p. (5.13), 
(S.17), (S.19), and (S.28). Then we set U = AHa and we solve 
Eqs. (S.12), (S.18), and t5H = (2 +A )Ha. These equations 
always have solutions. The new generalized Kerr-Schild 
metric gaP is a solution of the Einstein equations for a per­
fect-fluid energy-momentum tensor (3.1S), where q, p, and 
ua are given by (S.3HS.5) (when they are conveniently re­
stricted to the case we have studied). The Weyl tensor of the 
new metrics is Petrov type D. Unless we have A = 0 or 
a = 0, reasoning similar to that in the previous section leads 
us to solutions previously unknown, as ua does not lie in the 
preferred two-space spanned by the two mUltiple null eigen­
vectors of the Weyl tensor. In the cases A = 0 or a = 0 the 
solutions may belong to the family given by Wainwright. 11 

Obviously, we only have solved a very particular case in 
this section. Other more general cases remain for a subse­
quent paper. 

VI. EXPLICIT EXAMPLES 

In this section we give some examples of how the equa­
tions may be solved explicitly. We can assume two different 
forms for the metric gaP: the form manifestly conformally 
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flat as given in (3.8) and other forms in which the spin coeffi­
cients of the null tetrad are adapted to the conditions ob­
tained in Sees. IV and V, even though we do not know the 
conformal factor explicitly. In the first case the conditions 
on the spin coefficients become equations for the function Y 
of (3.4). Once we have obtained the function Y, we can solve 
the integrable equations for H. In the second case, we have 
the advantage that we do not need the conformal factor, 
which is unknown in many metrics. Next, we give some ex­
amples for both cases. 

(1) In this example, we choose the conformally flat met­
ric given by Oleson 12 in coordinates [XO, Xl, x2, x3 ) 

= [u,t, x, y) in the following form: 

gaP dxa dx P = t 3/2(dx - (21..{t) G,x dU)2 

+ ..{t (dy + 2..[t G,y dU)2 

- 2Gdtdu + 2G 2M du2, 

a 
x=-' , ax 

M (t ) = 2..{t(a2 + b 2t ), a, b = const, 

G(x,y, u) = g(x, u)h (y,u), g,xx + a2 g = 0, 

h,yy + b 2h = 0, p = (3/4t 3/2)(a2 - 7 b 2t ), 

12b 2 a 
q = p + ..{t' 1 = at' 

m = _1_ (t -1/4~ + it 1/4!..) , 
fU ax ay 

k = G -I( ~ + GM!.. + .J:.- G ~ - 2..{t G !..), 
au at..{t ,x ax ,y ay 

- 1 _ 1 (I" )2 1 
P = P = 2t' (1' = (1' = 4t' Ua = 2M' 

This metric verifies 

"'00 = 3(1'£7, p2 = 4u£7, 'IT = 0, 

so that the conditions (4.7) and (4.8) are satisfied. Then, a 
straightforward calculation leads us to 

r = (lIfU G)(t -1/4 G,x + it 1/4 G,y)' a = 0. 

Now, it may easily be verified that 

6r=8;;-. 

Therefore, condition (4.9) is also automatically satisfied. 
Next, we obtain 

'" = - 2b 2.Jt, r -:y = 2iG -2 G,x G,y' 

and after a little computation the condition (4.11) becomes 

G - G -I G G = 0, G - G -I Gy G u = 0. ,xu ,x .u ,yu .. 

Consequently, we must restrict the metric gaP to the case in 
which 

G(x,y, u) =g(x)h (y)n(u), 

where n(u) is an arbitrary function of the variable u. Once 
this restriction is imposed we know that the equations for H 
are compatible. The integration of these equations [(3.24), 
(4.4), and (4.10)) is standard and we finally obtain 

H = ch (y)l~(x), c = const. 

From (4.1H4.3) we have 
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(la ua )2= [2(M+H)]-I, maUa =0, 

XP=Xp+3HI8t 2, Xq=X(P+ 12b 21..{t). 

The final form for the metric gaP is the following: 

gaP dxa dx P = gaP dxa dx P + 2h (y)g-3(X)G 2 du2, 

G (x, y, u) = g(x)h (y)n(u), g,xx + a2 g = 0, 

h,yy + b 2h = 0, a, b = const. 

(2) The most simple metric gaP we can choose is the 
"flat" Robertson-Walker metric, that is to say 

gaP dx" dx P = 2R 2( - du dv + d; it), 
R = R(u + v), q = q(u + v), p = p(u + v), 

q= -3(q+p) !, R2=; qR4, =:t' 
t=(1/~)(u+v), la dxa=du+ Yd;+ Yd~+ YYdv, 

Ua dxa = - (R I~)(du + dv). 

Now, the function Z of (3.12) is given by 

Z= - YRI(l + YY), 

so that Eqs. (3.11) and (3.14) provide the null tetrad and the 
spin coefficients, respectively. The function Yis defined by 
(3.6). 

To satisfy Eqs. (5.13) and (5.19) it is necessary that 

y=o. 
Then (5.28) is automatically verified. Finally, the condition 
(5.17) leads us to13 

p = -jq, 

and therefore we must restrict the Robertson-Walker metric 
such that 

q=A 2IR 2, R=Be±Ct, C==~XI3A, A,B=const. 

Solving the integrable system of equations for H we easily 
obtain 

H = const. 

Consequently, we obtain the following solution: 

APPENDIX: BIANCHI IDENTITIES 

Next, we list the Bianchi identities for a conformally flat 
perfect-fluid metric. We choose the null tetrad (3.11) such 
that 

"'01 = "'02 = "'12 = I( = E = P - P = 0, 

A = (r/24)( q - 3p), "'00 = (r/2)( q + p)(la Ua )2, 

"'11 = (r/8) (q + pI, "'00 "'22 = 4rPil' 
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and then we have 

¢ooA = 2¢li;:;, ¢oo ii = 2¢1l(r + 17-), 

8( ¢11 + A) = 0, 8¢11 = 17-¢w P, =P, 
D ( ¢11 + A) P, ¢oo - 2 P ¢w 

6.( ¢1l + A) = 2p, ¢ll - P ¢22' 

8 ¢oo = (17- - 2(j - 2{3) ¢oo, 

26. ¢ll - D ¢22 + P ¢22 - 2p, ¢1l = 0, 

6. ¢oo - 2D ¢11 - 2p ¢ll + ¢oo(p, + 2r + 2yl = o. 
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