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A model of anisotropic fluid with three perfect fluid components in interaction is studied. Each 
fluid component obeys the stiff matter equation of state and is irrotational. The interaction is 
chosen to reproduce an integrable system of equations similar to the one associated to self-dual 
SU(2) gauge fields. An extension of the Belinsky-Zakharov version of the inverse scattering 
transform is presented and used to find soliton solutions to the coupled Einstein equations. A 
particular class of solutions that can be interpreted as lumps of matter propagating in empty 
space-time is examined. 

I. INTRODUCTION 

Anisotropic fluids are found in general relativity when 
electromagnetic fields or a viscous term are present. I But 
they may also be found using two perfect fluid compo­
nents2

-4 or even ~ore components. 5 

Models with multifluid components are increasingly be­
ing used in cosmology,6.7 in the description of coJIapsing 
spheres,S and in the problem of halo and hole formation9

•
10 

in expanding universes to represent inhomogeneous zones 
that develop galaxies and voids. II 

In the present paper we study a model of anisotropic 
fluid with three perfect fluid components in interaction. 
Each fluid component obeys the stiff matter equation of state 
and is irrotational. The interaction is chosen to reproduce an 
integrable system of equations similar to the one associated 
to the Yang equations 12 for self-dual SU (2) gauge fields 
with axial symmetry. For instance, these equations can be 
solved using a simple generalization of the Belinsky-Zak­
harov solution generating technique13 (BZSGT). 

The application of the BZSGT opens the possibility of 
finding solitonlike solutions for the fluid. In particular, we 
can describe lumps of matter coupled to gravity propagating 
in empty space. The description of lumps is greatly simpli­
fied in the three-fluid model, since we only need a two-soli­
ton solution, i.e., a scattering matrix with two complex 
poles. 13 For the two-fluid model we need four complex poles, 
a fact that makes the analysis of the solutions quite compli­
cated. 

These solutions may be generalized to represent the col­
lision of cylindrical lumps which may show some features of 
the merging of galaxies. These generalizations will be treated 
in a future paper. 

In Sec. II we present a summary of the main formulas 
for the model of anisotropic fluid with multifluid compo­
nents, of Ref. 5. In Sec. III we examine a three-fluid model 
with potentials interacting via a Yang-type of equation. In 
Sec. IV we study the Einstein equations coupled to the three­
fluid model for cylindrically symmetric space-times. In Sec. 
V we present a class of two-soliton solutions for the self-

gravitating anisotropic fluid of Sec. III and analyze a partic­
ular subclass that describes the propagation of a lump of 
matter on a flat space-time. In the Appendix we extend the 
usual BZSGT valid for symmetric matrices to the case of 
Hermitian matrices. 

II. A MODEL OF ANISOTROPIC FLUID WITH 
MULTI FLUID COMPONENTS 

The stress-energy tensor for the anistropic fluid is 
formed from the sum of three tensors, each of which is the 
energy-momentum tensor of a perfect fluid, in the particular 
case that the fluids' four-velocities are linearly dependent,5 

i.e., 
3 

T IlV ~ tllV = k (i)' 
i= I 

t1;; = (Pi +Pi)u1i)U~i) _PigIlV. 

The four-velocities u1i) are restricted by 

u1i) U (i)1l = 1, 

(2.1 ) 

(2.2) 

(2.3) 

and the existence of quantities bi different from 0 such that 
3 

L bi u1i) = O. (2.4 ) 
;=1 

The functions Pi andpi are the fluids' rest energies and pres­
sures, respectively. 

With the transformations5 

Il *Il Il (P+YEI2)1I2. Il 
P(l) -+u(l) = cos ¢u(l) + sm ¢U(2l' (2.5a) 

p+aE l 2 

(
p + aEl2 )112. Il Il 

U12) -+uff> = - sm ¢U(I) + cos ¢U(2l' 
P+ yEl2 

(2.5b) 

where 

tan(2¢) =2[(P +aEI2)(p +YEI2)]I12/(a-p), (2.6) 

and the condition (2.4), we find that the energy-momentum 
tensor (2.1) can be cast in the form 

Tllv= (P+1T)UIlUv+ (U-1T)X"XV_1TgIlV. (2.7) 
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The quantities E 12' a, y, and/3 are related to the fluid compo­
nents by 

Eij = Eji = u~i) u(j)/L' i,j = 1,2,3, 

a= (PI + PI) + (P3 + P3)( EI; -=-~2E12r ' 

Y= (P2 + P2) + (P3 + P3)( E2; -=-~22EI3 r ' 

/3= ( + ) (E13 - E23E12) (E23 - EI2E13 ) • 

P3 P3 (1 _ Ef2 ) 2 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

The symbols U/L, X', P, u, and 1T represent the fluid flux 
velocity, the direction of anistropy, the fluid rest energy, the 
pressure along the anisotropy direction, and the pressure on 
the "perpendicular directions" to X', respectively. These 
quantities are related to the perfect fluid components by 

U /L */L I( *a * ) 1/2 = u(I) u(I) u(l)a , 

X' = uri> I( - Ur2~ Ur2)a) 1/2, 

P =! (a + y + 2(JE12 - 21T) 

+ ! [(a - y)2 + 4(/3 + aE12 ) (/3 + YE 12 )] 1/2, 

u = -! (a + y + 2(JEI2 - 21T) 

+ ! [(a - y)2 + 4(/3 + aE12) (/3 + YE 12 )] 1/2, 

(2.12) 

(2.13 ) 

(2.14) 

(2.15) 

1T=PI+P2+P3' (2.16) 

Also, we have that 

(2.17) 

p=T/LVU/LUv, u=T/LVX/LXv' (2.18) 

In general, it is necessary to add supplementary condi­
tions to close the model; this point was treated in some detail 
in Ref. 2. 

III. A SPECIAL CASE OF MUL TIFLUID WITH 
IRROTATIONAL COMPONENTS 

A simple closed model of fluid is obtained by assuming 
that each fluid four-velocity component is irrotational, i.e., 

/L ""'/L 1("" ""W ) 1/2 uri) = 'f'(i) 'f'(i),a 'f'(i) , (3.1) 

where, as usual, tP(~ = g /LatP (i) ,a and tP(i),a = aatP(i); and 
obeys the simple equation of state 

_ _ I ""-2",, ""w Pi -Pi -Z'f'(I)'f'(i),a'f'(i)' (3.2) 

i.e., each fluid obeys the stiff matter equation of state. Note 
that for the first component we recover the well-known 
Tabensky-Taub l4 relations for the stiff fluid in terms of the 
potential A=ln tP(I)' Thus the multifluid with fluid compo­
nents obeying (3.2) can be considered as the interaction of a 
Tabensky-Taub fluid with other two irrotational fluids. The 
case tP(3) = ° corresponds to the fluid studied in Ref. 4. 

The condition of linear dependence of the fluids' four­
velocities in this case reads 

b·cI>·/L = 0, (3.3) 

where we have introduced the notation 
3 

A·B = L A(i)B(i). (3.4 ) 
;=1 
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From (2.1), (3.1), and (3.2) we find 

T/Lv = tP(l} (cI>'/L·cI>,v - !g/LvcI>,a·cI>,a). (3.5 ) 

The energy-momentum tensor (3.5) can also be derived, in 
the usual way, from the Lagrangian density 

!t' =! f=gtP(I)2c1>,a·cI>,a. (3.6) 

The simpler condition to determine the fields tP(i) is to 
impose that they satisfy the Euler-Lagrange equations ob­
tained from (3.6), i.e., 

(f=g ~fJtPilN(I),fJ),a + f=gtP(J}cI>,a·cI>,a = 0, (3.7a) 

(f=g ~fJtP(lN(2),fJ),a = 0, (3.7b) 

(f=g ~fJtP(lN(3),fJ),a = 0. (3.7c) 

The energy-momentum tensor (3.5) obeys 

(3.8) 

as a consequence of (3.7). And for each fluid component we 
have 

V/Ltf,; #0. (3.9) 

The relations (3.8) and (3.9) tell us that the whole fluid is a 
closed system with "internal" fluid components in interac­
tion. Also, the anisotropic fluid is completely determinated 
by the fields tP(i) and their evolution equations (3.7), i.e., no 
other extra equation like an equation of state is needed. As a 
matter off act, the anisotropic fluid is completely determined 
by the quantities a, /3, y,1T, and EI2 that in terms of tP(i) can 
be written as 

1T = (1/2tP~ I) )cI>,/L .cI>,/L, 

Ei} = Ai}l P·;;Ajj , 

where 

Ai} = tP(i) ,/LtP(j)'/L . 

(3.10) 

(3.12 ) 

(3.13 ) 

(3.14 ) 

(3.15 ) 

IV. EINSTEIN EQUATIONS COUPLED TO MATTER 

The Einstein equations 

R/Lv - !g/LvR = - T/Lv (4.1) 

coupled to the energy-momentum tensor (3.5) are equiva­
lent to 

(4.2) 

The integrability of (4.1) is guaranteed by the field equa­
tions (3.7). 

We shall consider a space-time with the cylindrically 
symmetric metric 

d~ = e"'(dt 2 - dr) - Yab dxa dxb
, (4.3) 

where the sum convention is assumed in the indices a and b 
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that take the values 2 and 3; (XO,X I,x2 ,x3) = (t,r,{),z), Yab 
and cu are functions of t and r only, and 

(4.4) 

dety=t 2. (4.5) 

From (4.2)-( 4.5) and the fact that cylindrical symme­
try implies that the ¢J U ) are functions of t and r only, we get 

- (Roo+Rll) 

= cu.,!t + lit 2 + l tr( Y.t Y:; I + Y.r Y:; I) , 

= ¢J(l}(cV,t·cV.t + cV,r'cV,r)' 

- 2Rol = cu,r lt +! tr(Y,tY,; I), 

= 2¢J(l;cV,t'cV,r' 

and 

where Y- 1 == (Y- I ) . 
,jJ. ,jJ. 

( 4.6a) 

(4.6b) 

(4.7a) 

(4.7b) 

(4.8) 

The field equations (3.7) in space-time with the metric 
(4.3) reduce to 

¢J(l),tt + ¢J(l),,!t - ¢J(l),rr + ¢J(l,'(¢J~2),t - ¢J~2),r + ¢J~3),t 

- ¢J~3).r - ¢J~l),t + ¢J~l),r) = 0, 

(t¢J('}¢J(2),t).1 - (t¢J(1 N(2),r) ,r = 0, 

(t¢J(IN(3),')" - (t¢J(IN(3),r),r =0. 

(4.9a) 

(4.9b) 

(4.9c) 

These three equations can be written in a completely equiva­
lent form as the single matrix equation 

(tQ.IQ-I),1 - (tQ,rQ-I),r =0, 

where 

t ( 1 Q=-
- ¢J{l) ¢J(2) + i¢J(3) 

Note that 

Q=Qt, 

detQ=t2. 

( 4.10) 

(4.11 ) 

( 4.12) 

(4.13 ) 

By using definition (4.11) it is not difficult to prove the 
following useful identities: 

tr(Q,rQ,;I) = -2l/J(1)2cV.r'cV,r' 

tr(Q"Q ,; I) = _ 2(t -2 + ¢J(1)2cV,I'cV.t), 

tr(Q,rQ ,; 1) = - 2¢J(1)2cV,I'cV,r' 

From (4.6), (4.7), and (4.14) we get 

CU,I = - 21t - (t 14)tr(Y,tY,; 1 + Y,rY.; I) 

- (t 12)tr(Q.rQ ,; 1 + Q.IQ ,; 1), 

CU,r = - (t 12)tr(y.,y,; I) - t tr(Q,tQ,; 1). 

(4.14a) 

( 4. 14b) 

(4.14c) 

( 4.15a) 

( 4.15b) 

The existence of cu, i.e., CU,tr = CU,rt, is a direct consequence of 
Eqs. (4.8) and (4.10). Thus the solution of the Einstein 
equations (4.2) for the metric (4.3) reduces to the solution 
of (4.8) and (4.10), and the computation of a quadrature for 
the coefficient cu. [Compare Eqs. (4.15).] 

In the case under consideration we have that the condi­
tion (3.3) is automatically satisfied as a consequence ofthe 
dependence of the function ¢J U ) in only two variables, t and r. 
Then, we can have the anisotropic fluid interpretation of the 
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field equations (4.2). We find, after some algebra, that the 
quantities that appear in (2.8)-(2.12) can be written as 

P=(T=!¢J(1)2e- w
l cV,1 -cV.rllcV,t +cV,rl, (4.16) 

UjJ. = e-
w

/2 [ 2{)2 1/2' - ({)I - {)O)I12,O,O] , 
IfBo ({)I - ()o) 

xjJ. = e-
w

/

2 

[ 2{)2 1/2' - ({)I + {)O)I12,O,O] , 
~2{)o ({)I + ()o) 

( 4.17) 

(4.18 ) 

( 4.19) 

where the vertical bars indicate the usual Euclidean norm 
and 

{)o= IcV.I -cV.rllcV.1 +cV.rl, 

{)I = cV,I'cV,1 + cV,r'cV,r' 

{)2 = cV.I 'cV,r' 

Two useful identities are 

a + Y + 2{3€12 - 21T = 0, 

( 4.20a) 

(4.20b) 

(4.20c) 

(4.21 ) 

() ~ + 4{) ~ - () i = O. ( 4.22) 

Equation (4.21) is a consequence of (3.10)-(3.15) and 
(4.3), and (4.22) follows from (4.20). 

Also, we have 

¢J(l) = t IQ", 

¢J(2) = Re(QI2)IQll' 

( 4.23a) 

(4.23b) 

(4.23c) 

Expressions (4.16 )-( 4.19) can also be obtained directly 
by solving the eigenvalue problem for the tensor (3.5) with 
the metric (4.3) and ¢JU) functions of t and r only. In other 
words, the anisotropic fluid interpretation of (4.3) is inde­
pendent of the identifications (3.1) and (3.2). Thus, even 
though (3.1) is meaningless in the case that ¢Ju),a¢Ju) ,a <0 

the anisotropic fluid interpretation of (4.3) is still valid. The 
only problem that one has is that 1T < O. Note that the same 
problem occurs in the one-fluid case (Tabensky-Taub flu­
id).14.15 

Equations (3.7) can also be cast as a matrix equation in 
terms of the matrix Q whose elements are space-time scalars 
[cf. Eq. (4.11)]. 

(4.24) 

In the case of Euclidean metric gjJ.v = 8jJ.v, Eq. (4.24) is 
closely related to the equation for self-dual SU(2) gauge 
fields in the Yang gauge.12 For a cylindrically symmetric 
Euclidean space-time (4.24) reduces exactly to the Yang 
equation for axially symmetric instantons. 16 Hence (4.10) 
can be considered as the hyperbolic version of the Yang 
equation for self-dual SU(2) gauge fields. 

The real case, i.e., Q = Q T is equivalent to the case stud­
ied in Ref. 4. Note that in this case we also have p = (T, i.e., a 
stiff equation of state in the direction of anisotropy. 

V. PARTICULAR SOLITARY WAVE SOLUTION 

There are many different techniques used to solve Eq. 
( 4.10), the most commonly used are the Backlund transfor­
mations and the inverse scattering method. In this section we 
study a particular solution obtained using an extension of the 
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Belinsky-Zakharovl3 version of the inverse scattering trans­
form that we present in the Appendix. 

We shall focus our attention mainly in the matter con­
tent of the solution, for this reason we take the metric as 
being diagonal along the complete evolution of the space­
time, i.e., 

(5.1 ) 

The solution for the matter is generated using the Belinsky­
Zakharov solution generating technique with the diagonal 
seed solution 

Qo = 1 (e ~ A e~)' (5.2) 

In this case we have that the Einstein equations (4.8), 
(4.10), and (4.15) and the metric (4.3) can be written as 

ds2 = e"'''''(dl 2 - dr) - I(eo d() 2 + e - 0 dr), (5.3) 

Woo= -pnl+v[n] +2v[A], (5.4) 

v[n] ==+ J 1 [(n~, + n~r)dl + 2n"n,r dr], (5.5) 

n,u + n,JI - n,rr = 0, (5.6) 

A,u + A,JI - A.rr = O. (5.7) 

This particular solution to the Einstein equation for a 
single fluid component, i.e., 

¢l(i) = eA
, 

¢l(2) = ¢l(3) = 0, 

( 5.8a) 

(5.8b) 

obeying the stiff equation of motion PI = PI is studied in 
Refs, 15 and 17. Note that one recovers the vacuum solution 
(Einstein-Rosenls solution) in the case A = 0 (¢l{l) = 1) 
and ¢l(2) = ¢l(3) = O. 

The application of the one-soluton BZSGT to the seed 
solution (5.2), i.e., to the matter only, yields the solution 
(see the Appendix) 

WOI = Woo + 2ln t 1/21ILII (lp11
2
1 YI1

2 
+ Iql121 YII-

2
) 

[(/ILI1 2-1 2)IILi _121]1/2 ' 

Yk ==exp(Fk - A/2), 

X k == (ILk If) 112. 

(5.9) 

(5.11 ) 

( 5.12) 

By doing A = ql = o we have the solution characterized 
by 

W =~lnt+v[n] +In IILI-iLII 
01 2 I 2 21 ' ILI-I 

¢l(1) = IILllt I, 
¢l(2) = ¢l(3) = O. 
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(5.13 ) 

(5.14a) 

(5.14b) 

To derive (5.13) we have assumed that 1m ILl ;60 used the 
identity 

(IL2 - ILl )(ILJJ.L2 - t 2) = 2(a2 - a I)IL JJ.L2' (5.15) 

and disregarded a constant of integration, a practice that we 
shall follow without warning. 

A more interesting solution is obtained by applying the 
same one-soliton BZSGT to the diagonal one-soliton already 
found. We find the two-soliton solution 

W02 = l.-ln t + v[ n] 1 + In IILI - iLI! IILz - iL21 
2 IILi-t 2I1ILi-(21 

+ 2In(1P21 2IY2/ 2 + Iq212IY21-2), (5.16) 

¢l(1) =EJ ~212IY2122+ Iq21
2
/Y2 1-

2 
2' (5.17a) 

1 1P211Y21X2 1 +lq2I1Y2IX21-
¢l - - EJ (IX2 1

2 
- IX2/- 2)Re(P2q;Y2IY2) 

(2) - t Ip21 21 Y21X212 + Iq21 21 Y21X2 1-2 
(5.17b) 

¢l - IlL I I (IX21
2 -/X21-2)1m(P2q2Y2IY2) (5.17c) 

(3) - -(- 1P2121 Y21X2 /2 + Iq21 21 Y21X21-2 ' 

where 

Y
2 
= e(IL I - IL2 )(iLl - IL2) ) 1/2, 

IL21IL II 
andX2 is given by (5.12). 

The two-soliton solution (5.16) and (5.17) is a particu­
lar case of the complete two-soliton obtained from the vacu­
um as seed solution. 

The solution can be used to represent localized distribu­
tions of matter with cylindrical symmetry propagating in 
empty space. This is not possible with the one-soliton solu­
tion (5.13) and (5.14) because the fluid potential ¢l(l) di­
verges when r- 00. 

From the application of the BZSGT to some cosmologi­
cal solutions we know l9 that two independent complex pole 
trajectories are needed in order to obtain localized solutions 
(gravitational solitons). Moreover since the metric coeffi­
cients have to be real, for each complex pole its complex 
conjugate is also a pole l3

; so that we need four pole trajector­
ies in all. However in the present case, since the matrix Q 
describing the fluid potentials is not real, localized solutions 
can be obtained by using two complex pole trajectories only. 

The way by which localized solutions are obtained is by 
taking opposite signs in the square roots of the two pole tra­
jectoriesILI andIL2 [see Eq. (A6) ]. With such a prescription 
it is easy to see that the fluid potentials ¢l(i) (i = 1,2,3), from 
(5.17), approach the seed values (¢l(1) = I, ¢l(2) = ¢l(3) 
= 0) in the asymptotic regions in the following way. They 

approach the seed decreasing like r- I at (<(r- 00, they de­
crease like t - I at r « t _ 00 , and decrease like 1 -112 along the 
light cone r-I- 00 This behavior is typical of the gravita­
tional solitons in cosmological2O--

23 or cylindrical models24 

and is an indication that the anistropic fluid is localized 
around the light cone r = I. 

In Fig. 1 the fluid density P and pressure along the radial 
direction u( = p) of Eq. (4.16) is represented for the fluid 
potentials (5.17). We take a negative sign for the square root 
of IL I and a positive sign for that of IL2' The density is mainly 
localized around a cylinder that expands at the speed of 
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DENSITY 

FIG. 1. Density p and pressure along the radial direction are given in Eq. 
(4.16) with the fluid potentials (5.17). The parameters taken are 

P2 = q2 = 1 and a, = - 0.2i, a 2 = - O.li. The time and radial coordi­
nates, t and r, are both represented in the range (0.1,1 ). The relatively large 
value of la, - a21 has been taken to avoid sharp picks and to obtain a 
smooth figure. The background outside the wave is p = u~O, the space­
time axes are drawn on the origin of the vertical axis: p = O. The maximum 
value of pis 7.5. 

light. The shape of the wave (its amplitude and width) is 
controlled by the imaginary part of a 1 - a 2• The amplitude 
of the density wave decreases as the wave gets far from the 
origin. The wave propagates on an essentially empty back­
ground (p = 0). 

In Fig. 2 the pressure 11", Eq. (4.17), tangent to the cylin­
der is shown. As for the density we have a wave essentially 
localized along the light cone which propagates on an empty 
background (11" = 0). The peculiarity here is that 11" takes 
negative values on the region r~ t. As mentioned in Sec. IV 
the interpretation in terms of the fluid (3.1) is not possible 
although a fluid interpretation is still valid (see Ref. 15). 

This model can be used to represent lumps of matter 
coupled to gravity propagating on empty space. The qualita­
tive similarity of the waves of matter with the gravitational 
solitons,20.21 which are similar to the hydrodynamical soli­
tons, suggests that the collision oflumps of matter might also 

PRESSURE 

FIG. 2. Pressure 1T is tangent to the cylinder of Eq. (4.17), with the same 
parameters as in Fig. 1. The pressure takes positive and negative values in 
different regions of the space-time. The background value outside the "per­
turbation" is 1T~0; the space-time axes are drawn in the negative region of 
the vertical axis: 1T = - 5. 
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have a solitonlike character. Models representing such colli­
sions are being considered by the authors. 

A word should be said about the equality p = a. Al­
though this is not verified by the general three-fluid case 
(2.12)-(2.lS) it is a feature of the cylindrical case, already 
present in the two-fluid case.4 The stiff equation of state veri­
fied along the propagation direction seems to be a feature of 
systems which admit solitons.22 The reason may be traced to 
the fact that there is a unique velocity on the system in the 
direction of propagation of the wave, 24 in this case the speed 
of sound and the speed of the gravitational field are the same: 
It is known, for instance,25 that an initial perturbation with 
cylindrical symmetry on a perfect fluid coupled to gravity 
will disperse and form shock waves unless the fluid is stiff. 
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APPENDIX: EXTENSION OF THE BZSGT 

In this Appendix we present an extension of the BZSGT 
for the use of Hermitian matrices. This extension is already 
known for the elliptic case26 [SU (2) case]. Since the hyper­
bolic case can be treated in a completely similar way, we 
shall give only the results. 

The n-soliton solution constructed from the seed solu­
tion Qo is 

(Qn)ab = IT I~I (<Qo)ab - i N~/)(r-l)lkNbk)) 
k= I t k,l= I f-lkf-ll 

(Al) 

where, now the indices a and b take the values 1 and 2, and 

m~k)<QO)abm~ 
-----:::-:--'-=I'lk' 

f-l kf-ll - t (2) 

N~k)=mbk)(Qo)ab' 

m~k) =m~Z) M b:), 
M(k)=.,. -II 

-'/"O ;"=I-'k' 

f-lk =ak -r± [(ak -r)2_ t 2r12. 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

The bar denotes complex conjugation, m~k) and a k are sets 
of complex constants. Here rpo = rpo(t,r,A) is the solution to 
the equations 

D,rpo = ((tUo +AVo)/(t2 -A 2»)rpO' (A7) 

Drrpo = ((tVo + AUo)/(t 2 - A 2) )rpo, 

where 

D,=a, +(Ut/(t2-A2»)a;.., 

Dr=ar + (U 2/(t2 - A 2»)a;.., 

U=tQo"Q 0 I, V = tQO.rQ 0 I. 

(AS) 

(A9) 

(AlO) 

(All) 

The coefficient OJ can be explicitly computed, we find 
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X(II (11lk -Illllilk -.ull)-I) 
k.l 

k>l 

( 

m Illk 12 _ t2)112 } 
X II det r , 

k= I Illi - t
2

1 

(AI2) 

where &0 denotes the lU function of the seed solution (metric 
and matter). 

For the diagonal seed (S.2) Eqs. (A7) and (A8) can be 
solved along the pole trajectories, we gee7 

.1. 1 1/2(eXp( - Fk ) 
'/"0 A = it. = (2a kll k ) 0 (A13) 

where 

where 

Fk =-J 2~k (llk.tA.t + Ilk.rA.r )dt 

+ (llk.tA.r + Ilk.rA.t )dr). (AI4) 

The existence of Fk is a consequence of (S.7) and that In Ilk 
satisfies the same Eq. (S.7). 

For the diagonal seed solution case27 the expressions 
(A2)-(AS) take the simple form, 

m\k) =Pk(llk)-1/2 exp F k , 

mik) = qk (Ilk) -1/2 exp( - Fk ), 

N \k) = Pkt(llk) -1/2 exp(Fk - A), 

Nik) = qkt(llk )-112 exp( - (Fk - A»), 

(AIS) 

(AI6) 

(AI7) 

(AI8) 

(AI9) 

qk =-m6~) 1(2ak ) 1/2, (A20) 

qk=-m6~)/(2adl/2· (A21) 

Note that the usual BZSGT relations, valid for real as well as for complex poles are obtained by letting .uk -Ilk' 
m6~) -m6~), F1-F1,Pk -Pk' and qk -qk in (AI), (A2), (AI2), and (AI9). 
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